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Abstract
In this paper, we give a criterion for 4-noids to have nullitygreater than 3 and its

applications. We also compute the indices and the nullitiesof some families ofZN-
invariant n-noids, and analyze the correspondence between nullity anda flux map.

1. Introduction

Let M be a Riemann surface, andX W M ! R3 a complete conformal minimal
immersion. The index ofX is the supremum of the numbers of negative eigenvalues
of the Jacobi operator�1 � jdGj2 on relatively compact domains ofM, where1
is the Laplacian with respect to the metricds2

D X� ds3
R3 on M induced byX, and

G W M ! S2 is the Gauss map ofX. Fischer–Corbrie [5] and Gulliver-Lawson [6, 7]
proved thatX has a finite index if and only if it has finite total curvature, and Osser-
man [22] proved that ifX has finite total curvature, thenM is conformally equivalent
with a compact Riemann surfaceNM punctured by a finite number of points, and its
Weierstrass data (g, �) extends meromorphically onNM .

If X has finite total curvature, then its index depends only on theextended Gauss
map G D 5�1

Æ g W NM ! S2
� R3, where we denote the stereographic projection from

the north pole by5. Indeed, the index coincides with the number of negative eigen-
values of the operator�1�

� 2, where1� is the Laplacian with respect to the met-
ric G�ds2

S2 on NM induced byG. Hence we denote the index ofX by both Ind(X)
and Ind(g).

On the other hand, the nullity ofX is defined as the dimension of the space of
bounded Jacobi functions, elements of the kernel of the Jacobi operator. It also depends
only on G since it coincides with the number of zero eigenvalues of�1�

� 2. Hence
we denote the nullity ofX by both Nul(X) and Nul(g) in the same way as index.

Since there exists a 3-dimensional isometry group of parallel translations inR3,
Nul(X)� 3 holds for anyX. The following fact is very significant since it characterizes
nullity completely in a sense.
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Theorem 1.1 (Ejiri–Kotani [4], Montiel–Ros [21]). If X has finite total curva-
ture, then Nul(X) > 3 holds if and only if its Gauss map is realized also as the Gauss
map of some flat-ended non-branched or branched minimal surface.

Other than this result, it is also known that ifX has finite total curvature, and if
all of its ends are embedded ends and parallel with each other, then Nul(X) > 3 holds
(cf. [16]). On the other hand, we see, by combining Nayatani’s example in [20, §4] and
basic facts, that there exists a family ofX’s such that Nul(X) > 3, each of which has
N C 1 catenoidal ends arranged on the positions of the vertices of a regular N-gonal
pyramid (see Example 3.3).

By Theorem 1.1, each of theseX’s also has the same Gauss map as that of some
flat-ended minimal surface. However, the reasons for nontrivial nullity seem to be dif-
ferent between flat or parallel ones and pyramidal ones, since the former have natural
deformations which induce nontrivial bounded Jacobi functions, that is homotheties or
rotations (or deformations to their associated family or López–Ros deformations if the
genus of NM is zero), but such deformations for the latter are not so trivial. What hap-
pens in the latter case? Which kind ofX has the same Gauss map as a flat-ended
surface in general? In particular, is some symmetry necessary?

Since the eigenvalues depend continuously on any parameterof deformations of
X, index is lower semicontinuous, and nullity is upper semicontinuous with respect to
the parameter. Therefore, determining the index and the nullity of some sampling point
makes a significant role. For instance, Nayatani [18] showedthat Ind(X) D 2(n� 1)�
1D 2n� 3 and Nul(X) D 3 hold for Jorge-Meeks’ surface withn ends (n � 3). Since
the moduli space of maps which are realized as the Gauss maps of some flat-ended
minimal surface has codimension greater than 1 as a subset ofthe space of meromor-
phic maps of the common degree, Ejiri–Kotani [4] showed thatif the genus of NM is
zero, that is NM D S2

D

OC WD C [ {1}, then Ind(X) D 2d � 1 and Nul(X) D 3 hold
for a genericX such that deggD d. In particular, since there is no flat-ended minimal
surface with degg D 2, Ind(X) D 2 � 2� 1D 3 and Nul(X) D 3 hold for any X such
that degg D 2. On the other hand, since there are many flat-ended minimal surfaces
with d D degg � 3, Nul(X) > 3 (and Ind(X) < 2d � 1 also) holds for someX such
that degg � 3.

In this paper, we study index and nullity ofn-noids, complete conformal minimal
immersions withn embedded ends. In §§2–3 we summarize basic facts onn-noids and
flat-ended minimal surfaces respectively, and in §§4–5, we give a criterion for 4-noids
to have nullity greater than 3, and its applications. In §§6–7, we compute the indices
and the nullities of some families ofZN-invariant n-noids. In §8, we discuss the cor-
respondence between nullity and a flux map.

Both the authors would like to thank Professor Toshihiro Shoda for fruitful discus-
sions and useful comments. They also thank Professors NorioEjiri and Shin Nayatani
for helpful advices.
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2. Basic facts onn-noids and their flux

Let X W M D NM n {q1, : : : , qn}! R3 be a complete conformal minimal immersion
with finite total curvature. We use the Enneper–Weierstrassrepresentation formula of
the following type:

X(z) D Re
Z z

t (1� g2,
p

�1(1C g2), 2g)�.

The flux vectorof the endq j of X is defined by the integral

' j WD

Z


 j

En ds,

where
 j is a loop surroundingq j from the left, En is a unit conormal vector field along

 j such that (
 j

0, En) is positively oriented, andds is the line element ofX(M). ' j is
independent of the choice of
 j . By divergence formula, or residue theorem, it always
holds that

Pn
jD1 ' j D 0. We call this equality theflux formula.

It is known that, if the endq j is an embedded end, then it is asymptotic to a
catenoid or a plane. We call such an end acatenoidal endor planar endrespectively.
It is also known that the flux vector of any embedded end is parallel to its limit normal.
Hence we can define theweight of the embedded endq j by w(q j ) WD ' j =(4�G(q j )),
where G is the Gauss map ofX as before. In another word, the weight is the ratio
of the size of the asymptotic catenoid of the end to the standard catenoid.w(q j ) D 0
holds if and only if the endq j is a planar end.

We call X an n-noid if all the endsq1, : : : , qn are embedded ends. For ann-noid
X, we can rewrite the flux formula by using the weights as follows:

n
X

jD1

w(q j )G(q j ) D 0.

We call a suit of unit vectorsv1, : : : , vn and real numbersa1, : : : , an satisfying
Pn

jD1 a j v j D 0 a flux data. We say ann-noid or a flux data is ofTYPE III
(resp.TYPE I, TYPE II) if the flux vectors span a 3- (resp. 1-, 2-) dimensional vector
space. Umehara, Yamada and the first author [11, 12, 13] proved that, for generic flux
data of TYPE III (or TYPE II with n � 8), there exists ann-noid X of genus zero
satisfying G(q j ) D v j , w(q j ) D a j ( j D 1, : : : , n).

In general, if the genus ofNM is zero, that is NM D OC, then the Weierstrass data
(g, �) of an n-noid X W M D OC n {q1, : : : , qn} ! R3 with q j ¤ 1, g(q j ) D p j ¤ 1,
w(q j ) D a j ( j D 1, : : : , n) is of the following form:

(2.1) g(z) D
P(z)

Q(z)
, � D �Q(z)2 dz
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with

(2.2) P(z) D
n
X

jD1

p j b j

z� q j
, Q(z) D

n
X

jD1

b j

z� q j

and

(2.3)

8

�

�

�

�

�

<

�

�

�

�

�

:

n
X

kD1Ik¤ j

b j bk
pk � p j

qk � q j
D a j 2 R,

n
X

kD1Ik¤ j

b j bk
p j pk C 1

qk � q j
D 0,

( j D 1, : : : , n).

Hence, to find ann-noid with the prescribed flux data, we have only to solve (2.3) as
an algebraic equation. More precisely, For any givenp j , a j ( j D 1, : : : , n) satisfying
the balancing condition

n
X

jD1

a j v j D

n
X

jD1

a j

t� 2 Rep j

jp j j
2
C 1

,
2 Im p j

jp j j
2
C 1

,
jp j j

2
� 1

jp j j
2
C 1

�

D

t (0, 0, 0),

if q j , b j ( j D 1, : : : , n) satisfy the equation (2.3), and ifP(z) and Q(z) have no com-
mon zero, then the Weierstrass data (g, �) given by (2.1) with (2.2) realizes ann-noid
such that

�

g(q j ) D p j ,
w(q j ) D a j ,

( j D 1, : : : , n).

We note here that it is useful to rewrite the second equalities in (2.3) asAb D
0 with

A WD

0

B

B

B

B

B

B

B

B

�

0
p1 p2C 1

q2 � q1
� � �

p1 pn C 1

qn � q1
p2 p1C 1

q1 � q2
0 � � �

p2 pn C 1

qn � q2
...

...
.. .

...
pn p1C 1

q1 � qn

pn p2C 1

q2 � qn
� � � 0

1

C

C

C

C

C

C

C

C

A

, b WD

0

B

B

B

�

b1

b2
...

bn

1

C

C

C

A

.

If q1, : : : , qn and b1, : : : , bn realizes somen-noid, then it must hold that detAD 0 and
0¤ b 2 Ker A. In particular, in the casen D 4, rankAD 3 (resp. 2) holds if the data
is of TYPE III (resp. TYPE II) (cf. [11, Proposition 3.2]).

We also note here that we can define therelative weightsof end-pairs (q j , qk)
( j , k D 1, : : : , n; j ¤ k) by

w jk WD b j bk
pk � p j

qk � q j
,
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which is conformal invariants satisfyingwk j D w jk and
Pn

kD1I k¤ j w jk D w(q j )
(cf. [10, 9]).

In general, we may assume thatq j ¤ 1, p j ¤ 1 ( j D 1, : : : , n) without loss
of generality. However, in some cases, it is more useful to assume that somep j ’s and
q j ’s are1. In such case, we need to modify the equation (2.3) and (2.2) as follows:
(1) The case thatq1 D p1 D1 and q j ¤ 1, p j ¤ 1 ( j D 2, : : : , n):

(2.4)

8

�

�

�

�

�

�

�

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

�

�

�

�

�

�

�

:

n
X

kD2

b1bk D a1,

b j b1C

n
X

kD2I k¤ j

b j bk
pk � p j

qk � q j
D a j ,

n
X

kD2

b1bk(�pk) D 0,

b j b1 p j C

n
X

kD2Ik¤ j

b j bk
p j pk C 1

qk � q j
D 0,

( j D 2, : : : , n),

and

(2.5) P(z) D �b1C

n
X

jD2

p j b j

z� q j
, Q(z) D

n
X

jD2

b j

z� q j
.

(2) The case thatq1D p1D p2D1 andq j ¤1 ( j D 2,:::,n), p j ¤1 ( j D 3,:::,n):

(2.6)

8

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

:

n
X

kD3

b1bk D a1,

n
X

kD3

c2bk
�1

qk � q2
D a2,

b j b1C b j c2
1

q2 � q j
C

n
X

kD3Ik¤ j

b j bk
pk � p j

qk � q j
D a j ,

b1c2(�1)C
n
X

kD3

b1bk(�pk) D 0,

c2b1C

n
X

kD3

c2bk
pk

qk � q2
D 0,

b j b1 p j C b j c2
p j

q2 � q j
C

n
X

kD3Ik¤ j

b j bk
p j pk C 1

qk � q j
D 0,

( j D 3, : : : , n),
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and

(2.7) P(z) D �b1C
c2

z� q2
C

n
X

jD3

p j b j

z� q j
, Q(z) D

n
X

jD3

b j

z� q j
.

3. Basic facts on flat-ended minimal surfaces

In this section, we summarize basic facts on flat-ended minimal surfaces in the
style suitable for our situation.

Let X W M D NM n {q1, : : : , qn} ! R3 be a complete conformal minimal branched
(or non-branched) immersion with finite total curvature. Wecall the endq j is a flat
end if it is asymptotic to a plane. A flat end is not necessarily an embedded end. We
say X is flat-endedif all of the endsq1, : : : , qn are flat ends.

Since minimal surfaces with embedded flat ends, that is planar ends, have a corres-
pondence with Willmore surfaces inR3, they were studied in early years. In particular,
Bryant [2] proved many significant results on their moduli spaces. However, to deter-
mine the indices and the nullities of minimal surfaces by applying Theorem 1.1, we
have to consider minimal surfaces with non-embedded flat ends also.

Here we call the endq j of X is of order k if at least one of� and g2
� has a

pole atq j and the maximum of the orders atq j is k. For the well-definedness ofX,
k must be greater than 1. The end is an embedded end if and only ifk D 2. On the
other hand, the endq j of orderk is a flat end if and only ifq j is a zero ofg0 of order
at leastk � 1 (see [4, Proposition 3.5]).

Now, let X be of genus zero, that isNM D OC. We may assume thatq j ¤1 ( j D
1, : : : , n) without loss of generality as before. Ifq j is an end of orderk j , thenk j � 2
must hold for the well-definedness ofX aroundq j ( j D 1, : : : , n). On the other hand,
since1 is not an end ofX, both � and g2

� do not have a pole at1, that is, both
�=dz and g2

�=dz have a zero of order at least 2 at1. Hence, if degg D d > 0, then
it must hold that

2d D deg
g2
�

�

� max

(

deg

(

n
Y

jD1

(z� q j )
k j
�

dz

)

, deg

(

n
Y

jD1

(z� q j )
k j

g2
�

dz

))

�

n
X

jD1

k j � 2.

Now we see that
n
X

jD1

k j � max{2n, 2dC 2}.
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Moreover, if
Pn

jD1 k j > 2dC2, thenX has
Pn

jD1 k j �2d�2 branch points if counting
their multiplicities.

On the other hand, ifX is flat-ended, then it holds that

n
X

jD1

(k j � 1)� #{z 2 NM j g0(z) D 0} D 2d � 2.

Combining these facts, we have the following:

Lemma 3.1. Let X be a flat-ended conformal minimal branched(or non-
branched) immersion of genus zero. Suppose that each end qj of X is of order kj
( j D 1, : : : , n), and thatdegg D d > 0. Then it holds that

max{2n, 2dC 2} �

n
X

jD1

k j � nC 2d � 2.

In particular, it must hold that d� 3 and 4� n � 2d � 2.

For instance, in the cased D 3, we have

max{2n, 8} �
n
X

jD1

k j � nC 4

and n D 4. Hence the orders of the ends must satisfy the following:

8�
4
X

jD1

k j � 8, {k j } D {2, 2, 2, 2}.

In §4, we give a classification and a characterization of the surfaces in this class.
On the other hand, in the cased D 4, we have

max{2n, 10} �
n
X

jD1

k j � nC 8

and n D 4, 5 or 6. In this case, there are the following five possibilities:

nD4, 10�
4
X

jD1

k j �10, {k j }D {2, 2, 2, 4} or {2, 2, 3, 3},

nD5, 10�
5
X

jD1

k j �11, {k j }D {2, 2, 2, 2, 2} or {2, 2, 2, 2, 3} (1 branch point),

nD6, 12�
6
X

jD1

k j �12, {k j }D {2, 2, 2, 2, 2, 2} (2 branch points),
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where we counted the multiplicity of branch points as before. It is known that{k j } D

{2, 2, 2, 2, 2} is not the case (cf. [2]; see Remark 4.2 for a short proof of this fact).
However, to give some estimate for nullity, we must considerthe remaining cases.

The following result has also to be recalled here. For later use, we describe the
statement by means of aGL(2, C)-action, in place of theSO(3, C)-action Bryant
considered.

Lemma 3.2. Let (g, �) be the Weierstrass data of a flat-ended minimal surface
of genus zero. Then

�

�gC �


 gC Æ
, (
 gC Æ)2

�

�

is also the Weierstrass data of some flat-ended minimal surface for any�, �, 
 , Æ 2 C
such that�Æ � �
 ¤ 0.

Proof. By the assumption, all the residues oft ((1 � g2)�,
p

�1(1C g2)�, 2g�)
vanish. Hence those oft ({(
 g C Æ)2

� (�g C �)2}�,
p

�1{(
 g C Æ)2
C (�g C �)2}�,

2(�gC �)(
 gC Æ)�) also, because

0

�

{(
 gC Æ)2
� (�gC �)2}�

p

�1{(
 gC Æ)2
C (�gC �)2}�

2(�gC �)(
 gC Æ)�

1

A

D

0

�

�

2
� �

2
� 


2
C Æ

2
p

�1(�2
C �

2
� 


2
� Æ

2) 2(��� C 
 Æ)
p

�1(��2
C �

2
� 


2
C Æ

2) �

2
C �

2
C 


2
C Æ

2 2
p

�1(�� C 
 Æ)
2(��
 C �Æ) 2

p

�1(��
 � �Æ) 2(�Æ C �
 )

1

A

�

0

�

(1� g2)�
p

�1(1C g2)�
2g�

1

A.

Since this transformation is linear, the property that all the ends are flat is preserved
(cf. [4, Proposition 3.1]).

By this lemma, we see that two rational functionsg1 and g2 have the same index
and nullity with each other if there exist Möbius transformations ' and F of OC satis-
fying g1 Æ ' D F Æ g2. In this paper, we say that these two functionsg1 and g2 are
equivalentwith each other.

EXAMPLE 3.3 ((N C 1)-noids with pyramidal flux). Nayatani [20] showed that
Ind(gN & M )D 2d�2D 2(NCM)�2 and Nul(gN & M )D 5 hold for the mapgN & M (z) WD
zN
C z�M (N, M 2 N, N C M � 3). Let N be an integer such thatN � 3, and set

�N WD e2�
p

�1=N . For the data
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j 1, : : : , N N C 1
p j p�N

j�1
1

a j a a0

with p 2 Rn{0,�1}, a 2 Rn{0} anda0 D Na(1� p2)=(1C p2), by solving the equation
(2.4), we get the following Weierstrass data (cf. [8, Example 3.3]):

gpyr(z) D
(N � 1)(p2

� 1)zN
C pN{(N C 1)p2

C (N � 1)}

2N p2zN�1
,

�pyr D �
a

2(N � 1)p2(p2
C 1)

�

2N p2zN�1

zN
� pN

�2

dz.

This data realizes an (NC 1)-noid whose flux vectors are arranged on the positions of
the vertices of a regularN-gonal pyramid. Since

2N p2

(N � 1)(p2
� 1) � �

gpyr(z) D

�

�

z

�N�1

C

�

�

z

�

�1

holds for

� D

�

(N C 1)p2
C (N � 1)

(N � 1)(p2
� 1)

�1=N

� p,

gpyr is equivalent withzN�1
Cz�1, that is a special case ofgN & M , and hence Ind(gpyr)D

2d � 2D 2N � 2D 2(N C 1)� 4 and Nul(gpyr) D 5 hold.

4. A criterion in the case degg D 3

In this section, we give a criterion for the rational functions of degree 3 to be the
Gauss map of some flat-ended minimal surface.

As we have already seen in §3, for any flat-ended minimal surface such that deggD
3, each of its ends must be an embedded flat end, namely the surface is a flat-ended
4-noid. The structure of the space of flat-endedn-noids was already studied by Bryant
[2] (see also Kusner–Schmidt [15]), and we can compute the index and the nullity of
any flat-ended 4-noid by applying Nayatani’s estimate forgN & M with (N, M) D (2, 1).
First, we summarlize these facts in the style suitable for our consideration.

In the case of flat-endedn-noids, that is the casea j D 0 ( j D 1,:::,n), the algebraic
equation (2.3) is equivalent with the following equation:

(4.1)

8

�

�

�

�

�

<

�

�

�

�

�

:

n
X

kD1Ik¤ j

bk
1

qk � q j
D 0,

n
X

kD1Ik¤ j

pkbk
1

qk � q j
D 0,

( j D 1, : : : , n).
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Hence, to classify all of the flat-ended 4-noids, we have onlyto solve (4.1) withnD 4
completely as an algebraic equation with respect toq j and b j ( j D 1, : : : , 4). Note
here that the equation (4.1) is rewritten asA0b D A0cD 0 with

A0 WD

0

B

B

B

B

B

B

B

B

B

B

B

�

0
1

q2 � q1
� � �

1

qn � q1

1

q1 � q2
0 � � �

1

qn � q2

...
...

...
...

1

q1 � qn

1

q2 � qn
� � � 0

1

C

C

C

C

C

C

C

C

C

C

C

A

, b WD

0

B

B

B

�

b1

b2
...

bn

1

C

C

C

A

, c WD

0

B

B

B

�

p1b1

p2b2
...

pnbn

1

C

C

C

A

.

One of the most typical examples is given by the data

j 1 2 3 4

p j p �p p�1
p

�1 �p�1
p

�1

with p WD (
p

6C
p

2)=2. By solving (4.1), we get a family of solutions

j 1 2 3 4

q j �p�1 p�1
�p
p

�1 p
p

�1

b j �p�1
p

t �p�1
p

t p
p

t p
p

t

where t 2 C n {0} is a parameter of homothety. The Weierstrass data of the flat-ended
4-noids given by these solutions are as follows:

gtet(z) WD

p

3z2
C 1

z(z2
�

p

3)
,

� WD �t

�

2
p

2z(z2
�

p

3)

(z2
� p�2)(z2

C p2)

�2

dzD �8t

�

z(z2
�

p

3)

z4
C 2
p

3z2
� 1

�2

dz.

In §6, we will analyze a family of functions which includesgtet as a special case. By
Lemma 3.2, we see that the Weierstrass data

(4.2)

�

�gtetC �


 gtetC Æ
, (
 gtetC Æ)

2
�

�

D

�

�PtetC �Qtet


 PtetC ÆQtet
, �(
 PtetC ÆQtet)

2 dz

�

also realizes a flat-ended 4-noid for any�, �, 
 , Æ 2 C such that�Æ � �
 ¤ 0, where
we set

Ptet(z) WD
2
p

2(
p

3z2
C 1)

(z2
� p�2)(z2

C p2)
, Qtet(z) WD

2
p

2z(z2
�

p

3)

(z2
� p�2)(z2

C p2)
.
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The following fact seems to be well known among the researchers of this field.
Bryant [1, §5] pointed out it to classify Willmore immersions from S2 into S3 with
Willmore energy 12� . It follows directly by (4.1).

Lemma 4.1. If X is a flat-ended4-noid, then its ends q1, q2, q3, q4 satisfy the
condition that the cross ratio q1234 WD (q1 � q2)(q3 � q4)=(q1 � q3)(q2 � q4) coincides

with �6 D e�
p

�1=3 or �6 D e��
p

�1=3, that is, the ends can be arranged on the positions
of the vertices of a regular tetrahedron.

Proof. By the first equalities of (4.1), we have0¤ b 2 KerA0. Now, sincenD 4,
it holds that

0D det A0 D

�

q1234
2
� q1234C 1

q1234(q1 � q4)(q2 � q3)

�2

.

This implies our assertion.

REMARK 4.2. By the second equalities of (4.1), we also have0 ¤ c 2 Ker A0.
Since deggD n� 1, b and c are linearly independent. Hence rankA0 must be smaller
than or equal ton � 2. Therefore, also in the casen D 5, the cross ratio of each
four of {q1, : : : , q5} must be�6 or �6. However there are no arrangement of the ends
which satisfies such a condition. Indeed, ifq1234D �6 and q1235D �6, then q2543D

q1234=q1235D �3 ¤ �6, �6. Hence there are no flat-ended 5-noids. This is an essence of
the proof of the nonexistence result forn D 5 given by Bryant [2].

The following fact asserts that the inverse of the assertionof Lemma 4.1 is also
true. It is a restatement of the classification by Bryant [1, §5] we have already men-
tioned before.

Lemma 4.3. Let g be a rational function ofdegg D 3. If the cross ratio of the
zeroes of g0 coincides with�6 or �6, then g is equivalent with the Gauss map of one
of the flat-ended4-noids given by(4.2).

Proof. By the assumption,OC n {z j g0(z) D 0} is conformally equivalent withOC n
{z j gtet

0(z) D 0} D OC n {�p�1,�p
p

�1}, where pD (
p

6C
p

2)=2. Hence there exists
a Möbius transformation' such that{z j (g Æ ')0(z) D 0} D {z j gtet

0(z) D 0}. Set

g Æ '(z) WD

P3
jD0 � j z j

P3
jD0 � j z j

.

Then it holds that

(g Æ ')0(z) D
(�3�2 � �2�3)(z4

C 2
p

3z2
� 1)

�

P3
jD0 � j z j

�2 , �3�2 � �2�3 ¤ 0.
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Hence we have

8

�

�

<

�

�

:

2(�3�1 � �1�3) D 0,
3(�3�0 � �0�3)C (�2�1 � �1�2) D 2

p

3(�3�2 � �2�3),
2(�2�0 � �0�2) D 0,
�1�0 � �0�1 D �(�3�2 � �2�3),

from which it follows that�1 D �
p

3�3, �2 D
p

3�0, �1 D �
p

3�3 and �2 D
p

3�0,
where we use the assumption degg D 3. Now, we see that

g Æ '(z) D
�3z3
C

p

3�0z2
�

p

3�3zC �0

�3z3
C

p

3�0z2
�

p

3�3zC �0

D

�0(
p

3z2
C 1)C �3z(z2

�

p

3)

�0(
p

3z2
C 1)C �3z(z2

�

p

3)
D

�0gtet(z)C �3

�0gtet(z)C �3
D F Æ gtet(z),

where

F(w) D
�0w C �3

�0w C �3

and

�0�3 � �3�0 D
1
p

3
�2 � �3 � �3 �

1
p

3
�2 D �

1
p

3
(�3�2 � �2�3) ¤ 0.

By combining Lemmas 4.1 and 4.3, we see that the Weierstrass data of any flat-
ended 4-noid is given by (4.2) up to conformal coordinate transformations. In particu-
lar, all the elements have the common index and nullity. The function z2

C z�1, that is
one of Nayatani’s examplesgN & M (z) with (N, M)D (2, 1), is also in this case. Indeed,
if we choose Möbius transformations

'(z) WD �21=6
�

z� p

pzC 1
, F(w) WD

3

21=6
�

pw C 1

w � p

with p D (
p

6 C
p

2)=2, then we haveF Æ gtet(z) D gN & M Æ '(z). Hence, for any
flat-ended 4-noid, its index and nullity must be 4 and 5 respectively. Now, we get the
following:

Lemma 4.4. Let X be a conformal minimal immersion of genus zero such that
deggD 3. If the cross ratio of the zeroes of g0 coincides with�6 or �6, then Ind(X)D 4
and Nul(X) D 5 hold. Otherwise, Ind(X) D 5 and Nul(X) D 3 hold.

Let us give a criterion for the assumption in Lemma 4.4, whichwe will use in §5.
First we prepare a criterion for polynomials.
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Lemma 4.5. Set f(z) WD
P4

jD0a j z j (a4 ¤ 0). Then OCn{z j f (z)D 0} is conform-

ally equivalent with OC n {z j gtet
0(z) D 0} if and only if Dtet0 WD a2

2
� 3a3a1C 12a0a4 D

0 holds.

Proof. Let{z1,z2,z3,z4} be the set of solutions off (z)D 0. Then OCn{z1,z2,z3,z4}

is conformally equivalent withOCn{z j gtet
0(z)D 0} if and only if its cross ratioz1234 WD

(z1�z2)(z3�z4)=(z1�z3)(z2�z4) coincides with either�6 or �6, that is,z1234
2
�z1234C

1D 0. This equality is equivalent with

0D (z1 � z2)2(z3 � z4)2
� (z1 � z2)(z3 � z4)(z1 � z3)(z2 � z4)C (z1 � z3)2(z2 � z4)2

D

X

i< j

zi
2zj

2
�

X

i< j ,i¤k, j¤k

zi zj zk
2
C 6z1z2z3z4 DW D1.

Denote the elementary symmetric expression of degreej by � j , and set�2,2 WD
P

i< j zi
2zj

2 and �1,1,2 WD
P

i< j I k¤i , j zi zj zk
2. Then, sinceD1 D �2,2 � �1,1,2C 6�4,

�2
2
D �2,2C 2�1,1,2C 6�4 and �1�3 D �1,1,2C 4�4, we have

D1 D �2,2C 2�1,1,2C 6�4 � 3�1,1,2D �2
2
� 3(�1�3 � 4�4) D �2

2
� 3�1�3C 12�4

D

�

a2

a4

�2

� 3

�

�

a3

a4

��

�

a1

a4

�

C 12
a0

a4
D

1

a4
2
(a2

2
� 3a3a1C 12a0a4) D

Dtet0

a4
2

.

As a corollary to this lemma, we have a criterion for rationalfunctions.

Lemma 4.6. Let g(z)D �(z)=�(z) be a rational function ofdeggD 3. Set�(z) WD
P3

jD0 � j z j and �(z) WD
P3

jD0 � j z j . Then OC n {z j g0(z) D 0} is conformally equivalent

with OC n {z j gtet
0(z) D 0} if and only if Dtet WD 3�3�0� �2�1C �1�2� 3�0�3 D 0 holds.

Proof. By applying Lemma 4.5 tof (z) D �0(z)�(z) � �(z)� 0(z), we have

Dtet0D (3�3�0 � �2�1C �1�2 � 3�0�3)2
D Dtet

2.

By combining Lemmas 4.4 and 4.6, we get the following:

Theorem 4.7. Let g(z)D
P3

jD0� j z j
=

P3
jD0� j z j be a rational function ofdeggD

3. If Dtet D 3�3�0 � �2�1C �1�2 � 3�0�3 D 0, then Ind(g) D 4 and Nul(g) D 5 hold.
Otherwise, Ind(g) D 5 and Nul(g) D 3 hold.

5. Index and nullity of 4-noids

In this section, we observe which kind of 4-noid has the same Gauss map as that
of a flat-ended 4-noid by applying Theorem 4.7.
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As we have already mentioned in introduction, anyn-noid of TYPE I has non-
trivial bounded Jacobi functions, and hence Ind(X) D 4 and Nul(X) D 5 hold for any
4-noid X of TYPE I. On the other hand, these equalities also hold for any 4-noid X of
TYPE III whose flux vectors are arranged on the positions of the vertices of a regular
trigonal pyramid.

It should be remarked here that each 4-noid in these two families is located at a
special position in the space of 4-noids from the viewpoint of the equation detAD 0.
Indeed, for any flux data of TYPE I, detA D 0 is automatically satisfied and suitable
conformal classes cannot be decided only by detAD 0. On the other hand, for any flux
data of TYPE III, the number of suitable conformal classes isat most 4, since detAD
0 is equivalent with a quartic equation on the cross ratio of the ends (cf. [11, §3]).
However, for any data of pyramidal type as above, the number is 2, that is, pyramidal
examples are given by double solutions of the equation detAD 0.

Hence it seems that there is some correspondence between theequation detAD 0
and nullity, and the similar phenomenon is also expected in the case of TYPE II. How-
ever the condition that the cross ratio of the ends ofX is given by a double solution
of det A D 0 is not a sufficient condition for Nul(X) > 3. Indeed, for any flux data
of TYPE II, each 4-noid is given by a double solution of detAD 0 by the reason we
describe below. But, for instance, the nullity of Jorge-Meeks’ 4-noid is 3.

Here we present a result similar to above in the case of quadruple solutions.

Theorem 5.1. If a 4-noid X is of TYPEII, and if its conformal class is given by
a unique quadruple solution of the equationdet A D 0 on the cross ratio of the ends
for some given flux data, then Ind(X) D 4 and Nul(X) D 5 hold.

Proof. Since deggD 4�1D 3 holds for any 4-noidXW M D OCn{q1,q2,q3,q4}!

R3, the limit normalsp1, p2, p3, p4 must take at least two distinct values.
First, we consider the case that at least one ofp j ’s is different from the others. In

this case, we may assume thatp1 is different from the others, and in particularp1D1

without loss of generality. Since we can also choose threeq j ’s freely, we assume here
that q1 D1, q2 D 0 andq3 D 1.

For the data and the assumption

j 1 2 3 4
p j 1 p2 p3 p4

q j 1 0 1 q
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with p2, p3, p4 2 R and q 2 OC n {1, 0, 1}, set

A WD

0

B

B

B

B

B

B

B

B

B

�

0 �p2 �p3 �p4

p2 0 p2 p3C 1
p2 p4C 1

q

p3 �(p3 p2C 1) 0
p3 p4C 1

q � 1

p4
p4 p2C 1

�q

p4 p3C 1

1� q
0

1

C

C

C

C

C

C

C

C

C

A

.

If the equation (2.4) has a solution, then it holds that detA D 0 and 0 ¤ b D
t (b1, b2, b3, b4) 2 Ker A. In particular, sinceA is an alternative matrix, the pfaffian PfA
of A, that is a homogeneous polynomial of components ofA satisfying detAD (PfA)2,
is also defined, and given by

Pf AD
�1

q(q � 1)
{p2(p3 p4C 1)q � p3(p2 p4C 1)(q � 1)C p4(p2 p3C 1)q(q � 1)}.

Set

pfa(q) WD �q(q � 1) Pf A

D p4(p2 p3C 1)q2
C (�p2 p3 p4C p2 � p3 � p4)qC p3(p2 p4C 1).

Then its derivative pfa0(q) and discriminantDpfa of pfa(q) as a polynomial ofq are
given respectively by

pfa0(q) D 2p4(p2 p3C 1)qC (�p2 p3 p4C p2 � p3 � p4),

Dpfa WD pfa0(q)2
� 4p4(p2 p3C 1) pfa(q)

D �3p2
2 p3

2 p4
2
� 2p2

2 p3 p4 � 2p2 p3
2 p4 � 2p2 p3 p4

2

C p2
2
C p3

2
C p4

2
� 2p2 p3 � 2p2 p4 � 2p3 p4.

Now, for any b 2 Ker A n {0}, the corresponding Weierstrass data (g, �) is given
by (2.1) with (2.5). Set�(z) WD z(z� 1)(z� q)P(z) and �(z) WD z(z� 1)(z� q)Q(z).
Then we have

�(z) D �b1z3
C {(qC 1)b1C p2b2C p3b3C p4b4}z

2

C {�qb1 � (qC 1)p2b2 � qp3b3 � p4b4}zC qp2b2,

�(z) D (b2C b3C b4)z2
C {�(qC 1)b2 � qb3 � b4}zC qb2.
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Since KerA is spanned byt (p2 p3C1, p3,�p2, 0) andt (�(p2 p4C1),�p4q, 0, p2q),
b is given by

b D

0

B

B

�

b1

b2

b3

b4

1

C

C

A

D

0

B

B

�

s(p2 p3C 1)� t(p2 p4C 1)
sp3 � tp4q
�sp2

tp2q

1

C

C

A

for some (s, t) 2 C2
n {(0, 0)}. By direct computation, we have

Dtet(q) D (b1b2C b1b3)q2
C {�2b1b2 � (p2 � p4)b2b4 � (p3 � p4)b3b4}q

C {b1b2C b1b4 � (p2 � p3)b2b3C (p3 � p4)b3b4}

D {�(p2 p3C 1)(p2 � p3)q2
� 2p3(p2 p3C 1)qC p3(p2

2
C 1)}s2

C {�p4(p2 p3C 1)q3
C (p2 � p3C 2p4C 2p2 p3 p4)q2

C (p2C 2p3 � p4C 2p2 p3 p4)q � p3(p2 p4C 1)}st

C {p4(p2
2
C 1)q3

� 2p4(p2 p4C 1)q2
� (p2 p4C 1)(p2 � p4)q}t2,

and

2p4(p2 p3C 1)2Dtet(q) D D2(q, s, t) pfa0(q)C C1(s, t) pfa(q) pfa0(q)C C2(s, t) pfa(q),

where we set

D2(q, s, t) WD �2(p2 p3C 1)2{(p2 � p3)qC p3}s
2

C 4(p2 p3C 1){(p2 � p3)qC p3(p2 p4C 1)}st

C 2[{�(p2 � p3)(p2
2
C 1)C p2 p4(p2 p3C 1)(p2 � p4)}q

� p3(p2
2
C 1)(p2 p4C 1)]t2,

C1(s, t) WD �(p2 p3C 1)stC (p2
2
C 1)t2,

C2(s, t) WD 2(p2 � p3)(p2 p3C 1)2s2

C (p2 p3C 1){�3(p2 � p3)C p4(p2 p3C 1)}st

C (p2
2
C 1){(p2 � p3) � p4(p2 p3C 1)}t2.

Now, if the data (g,�) realizes a well-defined 4-noidX, then pfa(q)D 0 and hence
2p4(p2 p3C1)2Dtet(q)D D2(q,s,t)pfa0(q) holds. Moreover, ifX is given by a quadruple
solution, thenDpfaD 0 and hence pfa0(q) D 0 holds. If p4 D 0 or p2 p3C 1D 0, then
pfa0(q) D p2 � p3 D 0 must hold. However, in the casep4 D 0, it is already known
that this is not the case (cf. [11, Theorem 4.5]), and in the case p2 p3 C 1 D 0, this
contradicts the assumption thatp2, p3 2 R. Hence p4 ¤ 0 and p2 p3C 1¤ 0, and we
get Dtet(q) D 0.
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Secondly, we consider the case thatp1 takes the same value withp2 only. In this
case, we may assume thatp1 D p2 D1 without loss of generality. Since we can also
choose threeq j ’s freely, we assume here thatq1 D 1, q2 D 0 andq3 D 1.

For the data and the assumption

j 1 2 3 4
p j 1 1 p3 p4

q j 1 0 1 q

with p3, p4 2 R and q 2 OC n {1, 0, 1}, set

LA WD

0

B

B

B

B

B

B

B

B

B

�

0 �1 �p3 �p4

1 0 p3
p4

q

p3 �p3 0
p3 p4C 1

q � 1

p4
p4

�q

p4 p3C 1

1� q
0

1

C

C

C

C

C

C

C

C

C

A

.

If the equation (2.6) has a solution, then it holds that detLA D 0 and 0 ¤ Lb WD
t (b1, c2, b3, b4) 2 Ker LA. In particular, sinceLA is also an alternative matrix, the pfaffian
Pf LA of LA is also defined, and given by

Pf LAD
�1

q(q � 1)
{(p3 p4C 1)q � p3 p4(q � 1)C p3 p4q(q � 1)}.

Set

pfa(q) WD �q(q � 1) Pf LAD p3 p4q2
C (�p3 p4C 1)qC p3 p4.

Then its derivative pfa0(q) and discriminantDpfa of pfa(q) as a polynomial ofq are
given respectively by

pfa0(q) D 2p3 p4qC (�p3 p4C 1),

Dpfa WD pfa0(q)2
� 4p3 p4 pfa(q)

D �3p3
2 p4

2
� 2p3 p4C 1D �(3p3 p4 � 1)(p3 p4C 1).

Now, for any Lb 2 Ker LA n {0}, the corresponding Weierstrass data (g, �) is given
by (2.1) with (2.7). Set�(z) and �(z) as in the first case. Then we have

�(z) D �b1z3
C {(qC 1)b1C c2C p3b3C p4b4}z

2

C {�qb1 � (qC 1)c2 � p3qb3 � p4b4}zC qc2,

�(z) D (b3C b4)z2
C (�qb3 � b4)z.
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Since Ker LA is spanned byt (p3, p3, �1, 0) andt (�p4, �p4q, 0, q), Lb is given by

Lb D

0

B

B

�

b1

c2

b3

b4

1

C

C

A

D

0

B

B

�

sp3 � tp4

sp3 � tp4q
�s
tq

1

C

C

A

for some (s, t) 2 C2
n {(0, 0)}. By direct computation, we have

Dtet(q) D (q2
� 1)(�p3s2

C p4qt2),

and

2p3
2 p4Dtet(q) D D2(q, s, t) pfa0(q)C C1(t) pfa(q) pfa0(q)C C2(s, t) pfa(q),

where we set

D2(q, s, t) WD 2p3q(�p3s2
C p4qt2),

C1(t) WD �t2,

C2(s, t) WD 2p3
2s2
� (p3 p4 � 1)t2.

Now, if the data (g,�) realizes a well-defined 4-noidX, then pfa(q)D 0 and hence
2p3

2 p4Dtet(q) D D2(q, s, t) pfa0(q) holds. Moreover, ifX is given by a quadruple solu-
tion, thenDpfaD 0 and hence pfa0(q) D 0 holds. If p3 D 0 or p4 D 0, then pfa0(q) D 1
must hold. This contradicts pfa0(q) D 0. Hence p3 ¤ 0 and p4 ¤ 0, and we get
Dtet(q) D 0.

Now, in both cases, by applying Theorem 4.7, we get our assertion.

It is clear from the proof of Theorem 5.1 that the sufficient condition pfa0(q) D 0
is valid independent of the choice of the parameterss and t . On the other hand, we
can see also by the proof of Theorem 5.1 thatD2(q, s, t) D 0 also impliesDtet(q) D 0.
Since this condition depends on the choice ofs and t , it comes from another type
of deformation.

Before concluding this section, we present a description ofthe conditionDtet D 0
by means of relative weights.

Theorem 5.2. Let X be a4-noid of genus zero. ThenInd(X) D 4 and Nul(X) D
5 hold if and only if its relative weights and cross ratios satisfy the following condition:

(5.1) (w12C w34)C (w13C w24)q1324
2
C (w14C w23)q1423

2
D 0.
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This condition holds if the relative weights satisfy the following condition:

(5.2)

8

<

:

w

� (1)� (2)w� (3)� (4) ¤ w� (1)� (3)w� (2)� (4) (8� 2 S4),
(w12C w34)(w13w24� w14w23)2

C (w13C w24)(w14w23� w12w34)2

C (w14C w23)(w12w34� w13w24)2
D 0.

Proof. We may assume thatq j ¤ 1 ( j D 1, 2, 3, 4) without loss of general-
ity. Under this assumption, the Weierstrass data ofX is given by (2.1) and (2.2). Set
�(z) WD P(z)

Q4
jD1(z�q j ) and�(z) WD Q(z)

Q4
jD1(z�q j ). Then, by direct computation,

we have

DtetD (w12C w34)(q1 � q2)2(q3 � q4)2
C (w13C w24)(q1 � q3)2(q2 � q4)2

C (w14C w23)(q1 � q4)2(q2 � q3)2,

from which the condition (5.1) follows.
Now, if the inequalities in (5.2) hold, then the cross ratiosof the ends are given

by the following:

q
� (1)� (2)� (3)� (4) D

(q
� (1) � q

� (2))(q� (3) � q
� (4))

(q
� (1) � q

� (3))(q� (2) � q
� (4))

D

w

� (1)� (4)w� (2)� (3) � w� (1)� (3)w� (2)� (4)

w

� (1)� (4)w� (2)� (3) � w� (1)� (2)w� (3)� (4)
(8� 2 S4).

By applying these equalities to (5.1), we get the equality in(5.2).

As for the second assertion of Theorem 5.2, the condition given by the inequalities
in (5.2) is a generic condition. Indeed, it means that the cross ratios of the ends and
the limit normals are different from each other, and these cross ratios coincide with
each other only if the limit normalsp1, p2, p3, p4 satisfies

det Aj(q1,q2,q3,q4)D(p1, p2, p3, p4) D det

�

p j pk C 1

pk � p j

�

j ,kD1,2,3,4

D 0.

In the case that this equality holds, a 4-noid realizing the corresponding relative weights
is not unique, and we cannot determine the index and the nullity of such a 4-noid only
by its relative weights.

6. Flat-ended minimal surfaces of degg � 4

In this section, we want to determine the nullities and the indices of a family of
rational functions of degree greater than or equal to 3, which includesgtet and gN & M

as special cases.
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Let N, L 2 N, L � N �1, and lets11, s12, s21, s22 2 C n {0}, s11s22� s12s21¤ 0. Set

g(z) WD
s11zN

C s12

zL (s21zN
C s22)

.

In the case that some ofs11, s12, s21, s22 are equal to 0,g is equivalent withzNCL ,
zN�L , zNCL

C zL or zN�L
C z�L . The first (resp. second) one is the Gauss map of

Jorge-Meeks’ (N C L C 1)- (resp. (N � L C 1)-) noid, and Nayatani [18] proved that
Ind(g) D 2d � 1D 2(N C L C 1)� 3 (resp. 2(N � L C 1)� 3) and Nul(g) D 3 hold.
Also for the last one, Nayatani [20] proved that Ind(g) D 2d � 2D 2(N C 1)� 4 and
Nul(g) D 5 hold under the assumption 2� L or L � N � 2 (see Example 3.3).

Here we assume that each ofs11, s12, s21, s22 is not equal to 0. In this case,g is
equivalent with

(6.1) gs(z) WD
szN
C 1

zL (zN
� s)

for somes 2 C n {0} satisfyings2
C 1¤ 0. Indeed, it holds that

g(� Qz) D
s12

s21�
NCL
� gs(Qz)

with � WD (�s12s22=s11s21)1=(2N) ands WD (�s11s22=s12s21)1=2. In the case (N, L)D (2,1),
gp3 coincides with the functiongtet which we considered in §4, and it is also equiva-

lent with z2
C z�1. However gs is not equivalent withgN & M (z) D zN

C z�M for a
general pair (N, L), since the orders of zeroes ofdGs and dGN & M do not coincide
with each other in general, whereGs WD 5

�1
Æ gs and GN & M WD 5

�1
Æ gN & M .

Indeed, the derivative ofgs is given by

gs
0(z) D

�zL�1{NzN(s2
C 1)C L(zN

� s)(szN
C 1)}

z2L (zN
� s)2

D

�[L(sz2N
� s)C {(N � L)s2

C (N C L)}zN ]

zLC1(zN
� s)2

D

�Ls(zN
� t)(zN

C t�1)

zLC1(zN
� s)2

,

where t 2 C n {0} is a solution of the quadratic equationLs(t2
� 1)C {(N � L)s2

C

(NC L)}t D 0. Sinces2
C 1¤ 0, it holds thatt � s¤ 0 andstC 1¤ 0. Now, assume

that (N � L)2s2
C (NC L)2

¤ 0 additionally. Then the equation above does not have a
double solution, that is,t2

C 1¤ 0. Henceq1, j WD t1=N
�N

j�1 and q2, j WD t�1=N
�2N

2 j�1

( j D 1, : : : , N) are the solutions of the algebraic equationLs(z2N
� 1)C {(N � L)s2

C

(NC L)}zN
D 0, and zeroes ofdGs of order 1. Moreover, 0 and1 are zeroes ofdGs

of order L � 1. On the other hand, the derivative ofgN & M is given by g0N & M (z) D
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(NzNCM
�M)=zMC1, and hence (M=N)1=(NCM)

�

j�1
NCM ( j D 1, : : : , NCM) are zeroes of

dGN & M of order 1, and 0 (resp.1) is a zero ofdGN & M of order M�1 (resp.N�1).
Kusner [14] gave an example of flat-ended minimal surface whose Gauss map is

given by gs in the case thatN � 2, L D N � 1 andsD
p

2N � 1.
In general, ifgs is the Gauss map of some flat-ended minimal surface, then each

of the ends of the surface must be a zero ofdGs. Moreover, if (gs,�) is the Weierstrass
data of the surface, then each ofq1, j , q2, j ( j D 1, : : : , N) (resp. 0,1) is not a pole
or a pole of�, gs�, gs

2
� whose order is 2 (resp. at mostL if L � 2). Hence� must

be of the following form:

� D

zL (zN
� s)2h(z)

(zN
� t)2(zN

C t�1)2
dz,

whereh is a polynomial of degree at most 2N � 2. Heregs� and gs
2
� is given by

gs� D
(zN
� s)(szN

C 1)h(z)

(zN
� t)2(zN

C t�1)2
dz,

gs
2
� D

(szN
C 1)2h(z)

zL (zN
� t)2(zN

C t�1)2
dz.

Set

h(z) WD
2N�2
X

lD0

hl z
l .

It is clear that both� and gs� do not have a pole onzD 0. On the other hand,
gs

2
� has the following Laurent expansion nearzD 0.

gs
2
�

dz
D

L�1
X

lD0

hl

zL�l
C “holomorphic part”.

If zD 0 is a regular point or a well-defined flat end, then the residueof this form must
be zero, that is,hL�1 D 0.

By the coordinate transformationQz WD z�1, the Weierstrass data (gs, �) is rewritten
as follows:

gs(Qz) D �
QzL (QzN

C s)

sQzN
� 1

, � D �

(sQzN
� 1)2 Qh(Qz)

QzL (QzN
� t�1)2(QzN

C t)2
dQz,

where Qh is a polynomial defined by

Qh(Qz) WD Qz2N�2h(Qz�1) D
2N�2
X

lD0

h2N�2�l Qz
l .



122 S. KATO AND K. TATEMICHI

Here gs� and gs
2
� is given by

gs� D
(sQzN

� 1)(QzN
C s) Qh(Qz)

(QzN
� t�1)2(QzN

C t)2
dQz,

gs
2
� D �

QzL (QzN
C s)2

Qh(Qz)

(QzN
� t�1)2(QzN

C t)2
dQz.

It is clear that bothgs� and gs
2
� do not have a pole onQzD 0. On the other hand,

� has the following Laurent expansion nearQzD 0.

�

dQz
D

L�1
X

lD0

�h2N�2�l

QzL�l
C “holomorphic part”.

If QzD 0, that iszD 1, is a regular point or a well-defined flat end, then the residue
of this form must be zero, that is,h2N�L�1 D 0.

Now, let us calculate the residues of�, gs� and gs
2
� at zD q1, j ( j D 1, : : : , N).

By direct computation, we have the following expansions:

zL
D

t

q1, j
N�L

�

1C
L

q1, j
(z� q1, j )C O((z� q1, j )

2)

�

,

1

zL
D

q1, j
N�L

t

�

1�
L

q1, j
(z� q1, j )C O((z� q1, j )

2)

�

,

zN
� sD (t � s)

�

1C
Nt

(t � s)q1, j
(z� q1, j )C O((z� q1, j )

2)

�

,

szN
C 1D (stC 1)

�

1C
Nst

(stC 1)q1, j
(z� q1, j )C O((z� q1, j )

2)

�

,

1

zN
C t�1

D

1

t C t�1

�

1�
Nt

(t C t�1)q1, j
(z� q1, j )C O((z� q1, j )

2)

�

,

z� q1, j

zN
� t
D

q1, j

Nt

�

1�
N � 1

2q1, j
(z� q1, j )C O((z� q1, j )

2)

�

,

from which it follows that

zL (zN
� s)2

(zN
� t)2(zN

C t�1)2
D

t(t � s)2q1, j
�NCLC2

N2(t2
C 1)2

�

1

(z� q1, j )2
C

q1, j
�1
�1,0

z� q1, j
C O(1)

�

,

(zN
� s)(szN

C 1)

(zN
� t)2(zN

C t�1)2
D

(t � s)(stC 1)q1, j
2

N2(t2
C 1)2

�

1

(z� q1, j )2
C

q1, j
�1
�1,1

z� q1, j
C O(1)

�

,

(szN
C 1)2

zL (zN
� t)2(zN

C t�1)2
D

(stC 1)2q1, j
N�LC2

N2t(t2
C 1)2

�

1

(z� q1, j )2
C

q1, j
�1
�1,2

z� q1, j
C O(1)

�

,
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where we set

�1,0 WD �(N � L � 1)C
2Nt(stC 1)

(t2
C 1)(t � s)

,

�1,2 WD �(N C L � 1)�
2Nt(t � s)

(t2
C 1)(stC 1)

,

�1,1 WD
�1,0C �1,2

2
.

By the definition oft , we have

�1,0� �1,2D �(N � L � 1)C (N C L � 1)C
2Nt(stC 1)

(t2
C 1)(t � s)

C

2Nt(t � s)

(t2
C 1)(stC 1)

D

2{Nt(s2
C 1)C L(t � s)(stC 1)}

(t � s)(stC 1)
D 0,

namely�1,0D �1,1D �1,2. Denote this value by�1. Then we get the following residues:

ReszDq1, j � D

t(t � s)2q1, j
�NCLC2

N2(t2
C 1)2

(h0(q1, j )C q1, j
�1
�1h(q1, j )),

ReszDq1, j gs� D
(t � s)(stC 1)q1, j

2

N2(t2
C 1)2

(h0(q1, j )C q1, j
�1
�1h(q1, j )),

ReszDq1, j gs
2
� D

(stC 1)2q1, j
N�LC2

N2t(t2
C 1)2

(h0(q1, j )C q1, j
�1
�1h(q1, j )).

Since

h0(z)C z�1
�1h(z) D z�1(�1h(z)C zh0(z))

D z�1
2N�2
X

lD0I l¤L�1,2N�L�1

(�1C l )hl z
l ,

we get the following conditions for the endq1, j to be a well-defined flat end:

(6.2)

0D
2N�2
X

lD0Il¤L�1,2N�L�1

(�1C l )hl q1, j
l

D

2N�2
X

lD0Il¤L�1,2N�L�1

(�1C l )hl t
l=N
�N

l ( j�1).
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For any integerm such that 0� m� N � 1, it holds that

(6.3)

0D
N
X

jD1

�N
�m( j�1)

2N�2
X

lD0Il¤L�1,2N�L�1

(�1C l )hl t
l=N
�N

l ( j�1)

D

2N�2
X

lD0Il¤L�1,2N�L�1

(�1C l )t l=Nhl

N
X

jD1

�N
(l�m)( j�1)

D

8

<

:

Ntm=N{(�1Cm)hmC (�1CmC N)thmCN} (m 2 ZN,L ),
Ntm=N(�1Cm)hm (mD N � L � 1, N � 1),
Ntm=N(�1CmC N)thmCN (mD L � 1),

where we setZN,L WD {m 2 Z j 0 � m � N � 2, m¤ L � 1, N � L � 1}, and we use
the equality

N
X

jD1

�N
(l�m)( j�1)

D

�

0 (l ¥ m mod N),
N (l � m mod N).

The condition (6.3) is equivalent with the original condition (6.2) (j D 1, : : : , N).
By replacingt by �t�1, we can also show that the endsq2, j ( j D 1, : : : , N) are

well-defined flat ends if and only if

0D

8

<

:

Nt�m=N
�2N

m{(�2Cm)hm � (�2CmC N)t�1hmCN} (m 2 ZN,L ),
Nt�m=N

�2N
m(�2Cm)hm (mD N � L � 1, N � 1),

Nt�m=N
�2N

m(�1)(�2CmC N)t�1hmCN (mD L � 1)

(6.4)

holds for any integerm such that 0� m� N � 1, where we set

�2 WD �(N � L � 1)C
2Nt(t � s)

(t2
C 1)(stC 1)

D �(N C L � 1)�
2Nt(stC 1)

(t2
C 1)(t � s)

D �(2N � 2)� �1.

Combining the conditions (6.3) and (6.4) for the endsq1, j and q2, j ( j D 1, : : : , n),
we get the following:
(1) For mD N�L�1 or N�1 (resp.L�1), we can choosehm ¤ 0 (resp.hmCN ¤ 0)
if and only if �1CmD �2CmD 0 (resp.�1CmC N D �2CmC N D 0).
(2) For m 2 ZN,L , we can choose (hm, hmCN) ¤ (0, 0) if and only if

0D �

�

�

�

�

�1Cm (�1CmC N)t
�2Cm �(�2CmC N)t�1

�

�

�

�

D (�1Cm)(�2CmC N)t�1
C (�1CmC N)t(�2Cm)

D t�1{(�1Cm)(�2CmC N)C (�1CmC N)(�2Cm)t2}.



INDEX, NULLITY AND FLUX OF n-NOIDS 125

Since�1C�2 D �(2N�2), (1) is the case if and only ifmD ��1 D ��2D N�1.
In this case, by��1 D N � 1 and the definition oft , we have

2(stC 1)

t2
C 1

D

�L(t � s)

Nt
D

s2
C 1

stC 1
,

from which it follows that (stC 1)2 D (s� t)2. Hence we havet D (s� 1)=(sC 1) or
�(sC1)=(s�1). Now, by using the definition oft again, we gets2

D (NCL)=(N�L).
For consider the situation (2), set

DN & L WD
(�1Cm)(�2CmC N)C (�1CmC N)(�2Cm)t2

t2
C 1

.

Then, by direct computation, we have

DN & L D m2
C (�1C �2C N)mC �1�2C

N(�1C �2t2)

t2
C 1

D m2
� (N � 2)mC

�1�2(t2
C 1)C N(�1C �2t2)

t2
C 1

.

Moreover, by using the equalities

�1�2 D (�1C N � L � 1)(�2C N � L � 1)� (N � L � 1)(�1C �2) � (N � L � 1)2

D

2Nt(stC 1)

(t2
C 1)(t � s)

�

2Nt(t � s)

(t2
C 1)(stC 1)

C (N � L � 1)(2N � 2)� (N � L � 1)2

D

4N2t2

(t2
C 1)2

C (N � L � 1)(N C L � 1),

�1C �2t2
D (�1C N � L � 1)C (�2C N � L � 1)t2

� (N � L � 1)(t2
C 1)

D

2Nt{(stC 1)2C (t � s)2t2}

(t2
C 1)(t � s)(stC 1)

� (N � L � 1)(t2
C 1),

we have

DN & L D m2
� (N � 2)mC (N � L � 1)(N C L � 1)� N(N � L � 1)

C

2N2t{2t(t � s)(stC 1)C (stC 1)2C (t � s)2t2}

(t2
C 1)2(t � s)(stC 1)

D m2
� (N � 2)mC (N � L � 1)(L � 1)C

2N2t

(t � s)(stC 1)

D m2
� (N � 2)mC (N � L � 1)(L � 1)�

2N L

s2
C 1

.

Set

SN,L (m) WD
2N L

m2
� (N � 2)mC (N � L � 1)(L � 1)

� 1.
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Then, DN & L D 0 holds if and only ifs2
D SN,L (m) holds for somem 2 ZN,L .

Note here thatSN,L (N � 1)D (N C L)=(N � L), and that

SN,L (m) D
2N L

{m� (N � 2)=2}2
� (N � 2L)2

=4
� 1

D �

{m� (N C L � 1)}{m� (�L � 1)}

{m� (N � L � 1)}{m� (L � 1)}
.

The latter implies thatSN,L (m1)D SN,L (m2) holds if and only ifm1Dm2 or m1Cm2D

N � 2. It is clear that the matrix

�

�1Cm (�1CmC N)t
�2Cm �(�2CmC N)t�1

�

cannot be the zero matrix. Now, we get the following fact on Nul(gs):

Theorem 6.1. Let gs be the rational function given by(6.1). Then the following
assertions hold for its nullity:
(1) If N � 2 and s2 D SN,L (N � 1)D (N C L)=(N � L) > 0, then Nul(gs) D 5 holds.
(2) If N � 4 and s2 2 {SN,L (m) jm2 Z, (N�1)=2�m� N�2, m¤ L�1,N�L�1},
then Nul(gs) D 7 holds.
(3) If N is even, N � 4, L ¤ N=2, and s2 D SN,L ((N � 2)=2) D �(N C 2L)2

=(N �
2L)2

< 0, then Nul(gs) D 5 holds.
(4) Nul(gs) D 3 holds for any other s such that s2

� {�1,�(N C L)2
=(N � L)2}.

In particular, if Nul(gs) > 3, thens 2 R [
p

�1R. If m< min{L � 1, N � L � 1}

or max{L � 1, N � L � 1} < m, then s 2 R, and if min{L � 1, N � L � 1} < m <

max{L � 1, N � L � 1}, then s 2
p

�1R.
Since the set ofs such that Nul(gs) D 3 is connected and includes 0, and since

g0(z) D z�L�N , it holds that Ind(gs) D Ind(g0) D 2d � 1D 2(N C L) � 1 for suchs.
In the case thatm D N � 1 and s2

D (N C L)=(N � L), each of the flat-ended
minimal surfaces above has the same symmetry as that of Costa’s or Hoffman-Meeks’
surfaces. Hence we can compute their indices by applying themethod in Nayatani [20,
19] (see also [17]).

Set

� (s) WD
(N � L)s2

C (N C L)

2Ls
.

Then, for anys, t is given by t D �� (s)�
p

� (s)2
C 1. In particular, for anys 2 R, it

also holds thatt 2 R. Here we chooset D �� (s)C
p

� (s)2
C 1. If s> 0, then� (s) > 0

and t > 0. Moreover, since

(sC � (s))2
� (� (s)2

C 1)D
N

L
(s2
C 1)> 0,
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we haves> t .
Set I1(z) WD z, I2(z) WD �Nz and

�m WD
zLCm(zN

� s)2

(zN
� t)2(zN

C t�1)2
dz.

Then it holds that

gs(I1(z)) D gs(z), I1
�

�m D �m,

gs(I2(z)) D �N
�L gs(z), I2

�

�m D �N
LCmC1

�m.

Let XNeu (resp. XDir) be the flat-ended 2N-noid given by the Weierstrass data (g, �) D
(gp(NCL)=(N�L), hN�1�N�1) with hN�1 2 R n {0} (resp.hN�1 2

p

�1R n {0}).
Recall here that, for any conformal minimal immersionX(z)D t (X1(z),X2(z),X3(z))

whose Weierstrass data is given by (g, �), the following assertions hold:
(1) X(I1(z)) D �t (X1(z),�X2(z), X3(z)) holds up to parallel translations if and only if
(g, �) satisfies

g(I1(z)) D g(z), I1
�

� D ��.(6.5
�

)

(2) X(I2(z)) D �

t (cos(2L�=N)X1(z) � sin(2L�=N)X2(z), � sin(2L�=N)X1(z) �
cos(2L�=N)X2(z), X3(z)) holds up to parallel translations if and only if (g, �)
satisfies

g(I2(z)) D �N
�L g(z), I2

�

� D ��N
L
�.(6.6

�

)

Since the Weierstrass data ofXNeu satisfies both of the conditions (6.5
C

) and
(6.6

C

), it is symmetric with respect to bothx1x3-plane and the plane{(x1, x2, x3) 2
R3
j x1 C

p

�1x2 2 �2N
LR} up to parallel translations. SinceGp

(NCL)=(N�L) D 5

�1
Æ

gp(NCL)=(N�L) also have the same symmetry asXNeu, if we denote it byG, then it
holds that

hXNeu(I1(z)), G(I1(z))i D hXNeu(I2(z)), G(I2(z))i D hXNeu(z), G(z)i.

Hence we see thathXNeu, Gi is an eigenfunction of the Laplacian1� with respect to
the metricG�(ds2

S2) on NM D OC which satisfies the Neumann boundary condition as an
eigenfunction on the fundamental closed domain of the symmetry

� WD {z 2 OC j 0� argz� �=N}.

On the other hand, since the Weierstrass data ofXDir satisfies both of the condi-
tions (6.5

�

) and (6.6
�

), it holds that

hXDir(I1(z)), G(I1(z))i D hXDir(I2(z)), G(I2(z))i D �hXDir(z), G(z)i.
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✲
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Fig. 6.1. The case (N, L) D (2, 1).

Hence we see thathXDir , Gi is an eigenfunction of1� which satisfies the Dirichlet
boundary condition as an eigenfunction on�.

Now, the pushforwards of these functions byG can be regarded as eigenfunctions
of the Laplacian with respect to the standard metricds2

S2 on the closed domain

G(�) D 5�1
Æ g(�)

D

�

5

�1(w) 2 S2

�

�

�

�

w 2 C, �
N C L

N
� � argw � 0

�

[ {5�1(1)},

which satisfy the Neumann or Dirichlet boundary condition if we regard

G(��) D 5�1
Æ g(��) D {5�1(x) 2 S2

j x 2 R, x � � or 0� x}

[ {5�1(�x�2N
�L ) 2 S2

j x 2 R, ��1
� x} [ {5�1(1)}

as its boundary, where we set� WD gs(t1=N) D (stC 1)={t L=N(t � s)} (see Fig. 6.1).
Since t < s, � < 0 holds. Moreover, sincegs

0(t1=N) D 0, we see that

d�

ds
D

d

ds
gs(t

1=N) D
�gs

�s
(t1=N)C gs

0(t1=N)
d

ds
(t1=N)

D

�

�s

�

szN
C 1

zL (zN
� s)

�

�

�

�

�

zDt1=N

C 0 �
d

ds
(t1=N)

D

z2N
C 1

zL (zN
� s)2

�

�

�

�

zDt1=N

D

t2
C 1

t L=N(t � s)2
> 0,

that is,� is monotonically increasing with respect tos, and hence the boundaryG(��)
is monotonically increasing and the domainG(�) is monotonically decreasing. In this
situation, we can show that each Neumann (resp. Dirichlet) eigenvalue is monotonically
non-increasing (resp. non-decreasing) with respect tos by the same way as [20, Lem-
mas 1 (b) and 6]. Since Ind(gs) D 2d � 1 D 2(N C L) � 1 and Nul(gs) D 3 hold for



INDEX, NULLITY AND FLUX OF n-NOIDS 129

any s enough close to
p

(N C L)=(N � L), and since Nul(gp(NCL)=(N�L)) D 5, it must
hold that Ind(gp(NCL)=(N�L)) D 2d � 2D 2(N C L) � 2.

Theorem 6.2. Let gs be the rational function given by(6.1). If N � 2 and s2 D
SN,L (N � 1) D (N C L)=(N � L) > 0, then Ind(gs) D 2d � 2 D 2(N C L) � 2 and
Nul(gs) D 5 hold.

7. Index and nullity of Z N-invariant n-noids

In this section, we give examples ofn-noids with nontrivial nullity by applying the
computations in §6.

EXAMPLE 7.1 (n-noids with parallel flux). As we have already mentioned in in-
troduction, anyn-noid with parallel ends has nontrivial nullity. Here we determine their
indices for a typical case.

Let N be an integer such thatN � 2. For the data

j 1, : : : , N N C 1 N C 2
p j 0 0 1

a j a �a(N � 1)=2 a(N C 1)=2

with a 2 R n {0}, by solving the equation (2.4), we get the following Weierstrass data:

g(z) D �
1

t f (z)
, � D �ta f (z)2 dz,

where f is a rational function given by

f (z) D
(N C 1)zN

C (N � 1)

z(zN
� 1)

,

and t 2 R n {0} is a parameter of so-called López–Ros deformation. This data real-
izes a family ofZN-invariant (N C 2)-noids of TYPE I for eachN � 2 (cf. [11, Ex-
ample 4.9]).

Now, since

f (
z

r
) D (N � 1)r NC1 r NzC 1

z(zN
� r N)

, r D

�

N C 1

N � 1

�1=2N

,

the aboveg is equivalent withgs with s D
p

(N C L)=(N � L) and (N, L) D (N, 1)
in §6. Hence, by Theorem 6.2, we have Ind(g) D 2(N C 1)� 2 D 2(N C 2)� 4 and
Nul(g) D 5.
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EXAMPLE 7.2 (2N-noids with antiprismatic flux). LetN and M be integers such
that N � 2, 1� M � N � 1 and (N, M) D 1. For the data

j 1, : : : , N N C 1, : : : , 2N
p j p�N

M( j�1) p�1
�2N

M(2 j�1)

a j a a

with p 2 R n {0} and a 2 R, by solving the equation (2.3), we get the following
Weierstrass data:

(7.1) g(z) D
szN
C 1

zN�M (zN
� s)

, � D �t
z2N�M�1(zN

� s)2

(zN
� qN)2(zN

C q�N)2
dz,

where

sD
pq2N�M

� 1

qN�M (pC qM )
,

q 2 C n {0} satisfies

p2
� 2�(q)p� 1D 0, �(q) D

N

N � M
�

q2N�M
� qM

q2N
C 1

,

and t 2 R n {0} is a parameter of homothety chosen to satisfy

t D
aN(p2

� 1)(q2N
C 1)(pC qM )2

(p2
C 1)q2M (p2q2N�2M

� 1)

if p2q2N�2M
� 1¤ 0.

In particular, in the caseq 2 R, any 2N-noid given by one of these data has the
symmetry of a regularN-gonal antiprism, which has no branch point ifM D 1 and
q ¤ �1.

Here we regardq 2 R n {0} as the parameter of deformation, and consider the
case that

p D �(q)C
p

�(q)2
C 1> 0.

In this case, by direct computation, we have

� p

�q
D

p
p

�(q)2
C 1

�

0(q),

N � M

N
�

0(q) D
�qM�1

(q2N
C 1)2

'(q2),

where we set

'(t) WD Mt2N�M
� (2N � M)t N

� (2N � M)t N�M
C M.
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Hence� p=�q D 0 holds if and only if

'(q2) D M(q4N�2M
C 1)� (2N � M)q2N�2M (q2M

C 1)D 0.

On the other hand,s2
D SN,N�M D (2N � M)=M holds if and only if

0D M(pq2N�M
� 1)2 � (2N � M){qN�M (pC qM )}2

D

'(q2)(p2q2N�2M
� 1)

q2N�2M
� 1

.

Namely, if � p=�q D 0, that is, q is a double solution of the equation�(q) D
(p2
� 1)=(2p), then, by Theorem 6.2 again, we have Ind(g) D 2(2N � M) � 2 and

Nul(g) D 5. p2q2N�2M
� 1 D 0 with q2N�2M

� 1 ¤ 0 is the case of flat-ended ones
(cf. [14, Remarks 1 and 2] forM D 1).

In particular, in the case thatN D 2, M D 1 andq D pD (
p

6C
p

2)=2, the data
(7.1) realizes a tetrahedrally symmetric 4-noid. Sinces2

D 3 D S2,1, this is a special
case of both the consideration above and Example 3.3, and hence its nullity is 5.

On the other hand, in the case thatN D 3, M D 1 and q D p D (
p

6C
p

2)=2,
the data (7.1) realizes an octahedrally symmetric 6-noid. Since s2

D 25=2¤ 5D S3,2,
by Theorem 6.1 and the fact for the indices of generic surfaces by Ejiri–Kotani [4] we
introduced in the introduction, we get the following:

Theorem 7.3. Let X be the octahedrally symmetric6-noid as above. Then
Ind(X) D 2 � 6� 3D 9 and Nul(X) D 3 hold.

Namely, symmetries of platonic solids do not always induce nontrivial bounded
Jacobi functions.

8. Nullity and a flux map

In this section, we study the correspondence between nullity and a flux map.
In the case ofn-noids of TYPE I and positive genus, Pérez–Ros [23] considered a

map from the moduli space of suchn-noids to the space of the weights and the heights
of the ends, and defined the nondegeneracy of suchn-noids mainly by the property
that any bounded Jacobi function is a trivial one, that is, the nullity of the surface is
3C 1 D 4. By using these concepts, they analyzed the real analytic structure of the
moduli space of suchn-noids.

On the other hand, Umehara, Yamada and the first author [11, 12, 13] considered
a flux map defined as a map from the parameter space ofn-noids of genus zero with
common limit normals to the space of the weights of the ends for each suit of limit
normals, and proved that, for a generic flux data of TYPE III (or TYPE II with n � 8),
there exists ann-noid of genus zero which realizes the given flux data, by showing that
the rank of the Jacobian matrix of the flux map is maximal for generic parameters and
limit normals.
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For the case of TYPE II, genus zero and Alexandrov-embedded,Cosín–Ros [3]
considered a flux map defined as a map from the moduli space of such n-noids to
the space of flux polygons, that is the ordered flux vectors of the ends, and defined
the nondenegeracy of suchn-noids in the same way as in Pérez–Ros [23] with the
condition that the nullity is 3. They proved that the flux map is a real analytic diffeo-
morphism on to the space of flux polygons each of which bounds an immersed disc in
the plane.

From these points of view, it seems natural to expect, as the contraposition to some
generalization of these results, that if ann-noid X is degenerate or a critical point of
a flux map in some sense, then there exists a nontrivial bounded Jacobi function and
Nul(X) > 3. Indeed, we can show this forn-noids of arbitrary genus. Although its
proof is given by a quite natural calculation, we show its detail here to observe the
correspondence between Jacobi functions and flux precisely. Here we define a flux map
in an essentially similar way as in [11, 12, 13]. Since we treat a situation different from
that of [23], our consequence also takes a somewhat different form from that in [23].

Let U be an open subset ofC, and I an open interval inR. Let q(t) (t 2 I ) be a
smooth curve inU , and XW (U� I )n{(q(t),t) j t 2 I }! R3 a smooth 1-parameter family
of conformal minimal immersions in the sense thatX( � , t) is a conformal minimal
immersion for eacht 2 I and that both5�1

Æ g and5�1
Æ (�=dz) are smooth with

respect to (z, t) as maps fromU � I to S2, where (g, �) is the Weierstrass data of
X( � , t). Assume that each ofX( � , t) has a catenoidal or planar end atq(t). Then the
Taylor or Laurent expansions of (g, �) aroundq D q(t) is of the following form:

g D pC 
 (z� q)C (z� q)2g2(z),

� D

�

B

(z� q)2
C

b

z� q
C f0(z)

�

dz,

where p, 
 , B andb are smooth functions depending only on the parametert 2 I , and
g2 and f0 are holomorphic functions onU both of which are smooth onI . By these
expansions, it follows that

g� D

�

pB

(z� q)2
C

pbC 
 B

z� q
C f1(z)

�

dz,

g2
� D

�

p2B

(z� q)2
C

p2bC 2p
 B

z� q
C f2(z)

�

dz

for some holomorphic functionsf1 and f2, from which it also follows that

�1 WD
(1� g2)�

dz
D

(1� p2)B

(z� q)2
C

(1� p2)b� 2p
 B

z� q
C ( f0(z) � f2(z)),
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�2 WD

p

�1(1C g2)�

dz

D

p

�1(1C p2)B

(z� q)2
C

p

�1{(1C p2)bC 2p
 B}

z� q
C

p

�1( f0(z)C f2(z)),

�3 WD
2g�

dz
D

2pB

(z� q)2
C

2(pbC 
 B)

z� q
C 2 f1(z).

Let (v, a) be the flux data ofX( � , t). Then we have

(1� p2)b� 2p
 B D �2av1 D
�2a

jpj2C 1
(pC p),

p

�1{(1C p2)bC 2p
 B} D �2av2 D
�2a

jpj2C 1
(�
p

�1)(p� p),

2(pbC 
 B) D �2av3 D
�2a

jpj2C 1
(jpj2 � 1),

and hence we get

a D 
 B, bD
�2a

jpj2C 1
p.

By integrate the 1-forms above, we have

81 WD

Z z

�1 dzD �
(1� p2)B

z� q
� 2av1 log(z� q)C (F0 � F2),

82 WD

Z z

�2 dzD �

p

�1(1C p2)B

z� q
� 2av2 log(z� q)C

p

�1(F0C F2),

83 WD

Z z

�3 dzD �
2pB

z� q
� 2av3 log(z� q)C 2F1,

where F0, F1 and F2 are holomorphic functions onU each of which is smooth onI .
Henceforth we denote the derivative with respect to the parameter t by t or ( )t . By
differentiate81, 82 and83 by t , we get

(81)t D �
qt (1� p2)B

(z� q)2
�

�2ppt BC (1� p2)Bt � 2qtav1

z� q

� 2{atv1C a(v1)t } log(z� q)C (F0 � F2)t ,

(82)t D �
qt

p

�1(1C p2)B

(z� q)2
�

p

�1{2ppt BC (1C p2)Bt } � 2qtav2

z� q

� 2{atv2C a(v2)t } log(z� q)C
p

�1(F0C F2)t ,

(83)t D �
qt � 2pB

(z� q)2
�

2(pt BC pBt ) � 2qtav3

z� q
� 2{atv3C a(v3)t} log(z� q)C 2(F1)t .
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On the other hand, since the Gauss mapG( � , t) of X( � , t) is given by

G D t (G1, G2, G3) D 5�1
Æ g D

1

jgj2C 1
t (gC g, �

p

�1(g� g), jgj2 � 1),

by the expansiong D pC 
 (z� q)C (z� q)2g2(z), we have

G1 D
1

jgj2C 1
{(pC p)C 
 (z� q)C 
 (z� q)C O(jz� qj2)},

G2 D
1

jgj2C 1
{(�
p

�1)(p� p)C (�
p

�1)
 (z� q)C
p

�1
 (z� q)C O(jz� qj2)},

G3 D
1

jgj2C 1
{(jpj2 � 1)C p
 (z� q)C p
 (z� q)C O(jz� qj2)}.

Note here that (pC p,�
p

�1(p� p),jpj2�1)D (jpj2C1)(v1,v2,v3), v1
2
Cv2

2
Cv3

2
� 1

and (v1
2
C v2

2
C v3

2)t � 0. By direct computation, we have

(jgj2C 1)h8t , Gi D (jgj2C 1){(81)t G1C (82)t G2C (83)t G3}

D

1

(z� q)2
[�qt B{(1� p2)(pC p)C

p

�1(1C p2)(�
p

�1)(p� p)C 2p(jpj2 � 1)}]

C

1

z� q
[�qt
 B{(1� p2) � 1C

p

�1(1C p2)(�
p

�1)C 2p � p}

� 2pt B{�p(pC p)C
p

�1p(�
p

�1)(p� p)C (jpj2 � 1)}

� Bt{(1� p2)(pC p)C
p

�1(1C p2)(�
p

�1)(p� p)C 2p(jpj2 � 1)}

C 2qta{v1(pC p)C v2(�
p

�1)(p� p)C v3(jpj2 � 1)}]

C

z� q

(z� q)2
[�qt
 B{(1� p2) � 1C

p

�1(1C p2) �
p

�1C 2p � p}]

� 2 log(z� q)[at{(pC p)v1C (�
p

�1)(p� p)v2C (jpj2 � 1)v3}

C a{(pC p)(v1)t C (�
p

�1)(p� p)(v2)t C (jpj2 � 1)(v3)t }] C O(1)

D

1

(z� q)2
(�qt B � 0)

C

1

z� q
[�qt
 B � 2(jpj2C 1)C 2pt B � (jpj

2
C 1)� Bt � 0

C 2qta{v1 � v1(jpj2C 1)C v2 � v2(jpj2C 1)C v3 � v3(jpj2C 1)}]

C

z� q

(z� q)2
(�qt
 B � 0)

� 2 log(z� q)[at{v1(jpj2C 1) � v1C v2(jpj2C 1) � v2C v3(jpj2C 1) � v3}

C a{v1(jpj2C 1) � (v1)t C v2(jpj2C 1) � (v2)t C v3(jpj2C 1) � (v3)t }]

C O(1)
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D

1

z� q
{�2qta(jpj2C 1)C 2pt B(jpj2C 1)C 2qta(v1

2
C v2

2
C v3

2)(jpj2C 1)}

� 2 log(z� q)

�

at (v1
2
C v2

2
C v3

2)(jpj2C 1)C a �
1

2
(v1

2
C v2

2
C v3

2)t (jpj
2
C 1)

�

C O(1)

D (jpj2C 1)

�

2pt B

z� q
� 2at log(z� q)

�

C O(1).

Finally, we get

(8.1) h8t , Gi D
jpj2C 1

jgj2C 1

�

2pt B

z� q
� 2at log(z� q)

�

C O(1).

Hence, if pt D 0 andat D 0, thenhXt , Gi D Reh8t , Gi is bounded nearq.
For later use, we also give here an estimate for (X( � , t))�(Xt ) in the special case

that hXt , Gi D 0 holds for somet 2 I , that is, Xt is a tangent vector field of the
image of X( � , t). If, for instance,v3 D G3(q) ¤ 0, that is jpj D jg(q)j ¤ 1, then it
holds aroundq that

(X( � , t))�(Xt ) D
1

(X1)x(X2)y� (X1)y(X2)x

�

�

{(X2)y(X1)t � (X1)y(X2)t }
�

�x
C{�(X2)x(X1)tC (X1)x(X2)t }

�

�y

�

.

By straightforward calculation, we see that

(X1)x(X2)y � (X1)y(X2)x D � Re�1 Im �2C Im �1 Re�2 D

�

�

�

�

g2
�

dz

�

�

�

�

2

�

�

�

�

�

�

dz

�

�

�

�

2

D

(jpj2 � 1)jBj2C (z� q) fa(z)C (z� q) fa(z)

jz� qj4
,

where fa is a C-valued real analytic function onU . On the other hand, we also see that

(X2)y(X1)t � (X1)y(X2)t D
1

2
Im{�1 � (82)t � �2 � (81)t C �1 � (82)t � �2 � (81)t },

�(X2)x(X1)t C (X1)x(X2)t D
1

2
Re{�1 � (82)t � �2 � (81)t C �1 � (82)t � �2 � (81)t },
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and, if pt D 0 (and hence (v1)t D (v2)t D (v3)t D 0) andat D 0, then

�1 � (82)t � �2 � (81)t

D

p

�1

�

0

(z� q)4
C

2Bqt{�
p

�1(1� p2)av2 � (1C p2)av1C 2p
 B}

(z� q)3
C

fb(z)

(z� q)2

�

D

p

�1

�

0

(z� q)3
C

fb(z)

(z� q)2

�

D

p

�1 fb(z)

(z� q)2
,

�1 � (82)t � �2 � (81)t D
fc(z)

jz� qj4
,

where fb (resp. fc) is a holomorphic (resp.C-valued real analytic) function onU .
Since we assumep 2 C and jpj ¤ 1 here, it holds that (jpj2 � 1)jBj2 ¤ 0 and hence
we see that (X( � , t))�(Xt ) extends smoothly on the endq. Also in the case thatv1 ¤ 0
or v2 ¤ 0, we can show the same assertion by quite similar calculations.

Let M be the space ofn-noids of arbitrary genus. Define a flux mapF WM!

(S2)n
� Rn by F (X) D (G(q1), : : : , G(qn), w(q1), : : : , w(qn)) for any X W M D NM n

{q1,:::,qn}! R3, whereG is the Gauss map ofX, G(q j ) andw(q j ) is the limit normal
and the weight of the endq j of X as before (j D 1,: : : ,n). Set p j WD g(q j )D5ÆG(q j )

and a j WD w(q j ) ( j D 1, : : : , n). Let LX W M � I ! R3 be a smooth variation inM such

that LX( � , 0)D X, where I is an open interval including 0. It is known thath LXt jtD0, Gi
is a Jacobi function onM. Now, we may assume thatLG(q j , t)¤ t (0,0,1) (j D 1,: : : ,n)

holds for the Gauss mapLG( � , t) of LX( � , t) (t 2 I ) without loss of generality.
We also assume forLX that there exists a 1-parameter family of universal covering

maps�( � , t) (t 2 I ) satisfying the following conditions:

(1) � W QNM � I ! NM is a smooth map.

(2) Each�( � , t) W QNM ! NM(t) is a holomorphic map, where we denote byNM(t) the
compact Riemann surfaceNM equipped with the complex structure induced byLX( � , t)
and extended naturally.
(3) The family of lifts X( � , t) WD LX(�( � , t), t) (t 2 I ) is a smooth 1-parameter family
of conformal minimal immersions in our sense.

Note here that QNM does not depend ont . Indeed we may setQNM WD OC (resp.C, the
upper half-planeH ) if the genus of NM D 0 (resp.D 1, � 2). Since

Xt ( � , 0)D LXt (�( � , 0), 0)

C

LXx1(�( � , 0), 0)(x1 Æ �)t ( � , 0)C LXx2(�( � , 0), 0)(x2 Æ �)t ( � , 0),

it always holds thath LXt jtD0, Gi Æ�( � , 0)D hXt , G Æ�ijtD0, where (x1, x2) is a local co-
ordinate system ofNM D NM(0). Hence we can estimate the Jacobi functionh LXt jtD0, Gi
by applying (8.1) to the family of liftsX( � , t) even in the case of positive genus.

If the variation preserves the flux data, then, sincep j anda j are constant functions
of t , it holds that (p j )t � 0 and (a j )t � 0 ( j D 1, : : : , n). Hence the Jacobi function
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h

LXt jtD0, Gi is bounded on NM , since, by (8.1) and the periodicity, its lift

hXt , G Æ �ijtD0 D Reh8t , G Æ �ijtD0 is bounded on QNM . Parallel translations, rotations
and López–Ros deformations in the case of TYPE I, and homotheties and deformations
to their associated family for flat-endedn-noids are in this case.

Here we sayX 2M is a critical point of the flux mapF , if there exists a smooth
variation LX( � , t) in M such that LX( � , 0)D X,

LXt jtD0 D
�

�t

�

�

�

�

tD0

LX( � , t) ¥ 0,
�

�t

�

�

�

�

tD0

F ( LX( � , t)) D 0,

and in particular, LXt jtD0 does not coincide with the derivative of some deformation
induced only by some parallel translations and some coordinate transformations.

Now, assume thatX is a critical point of F . The criticality of X implies
(p j )t jtD0 D 0 and (a j )t jtD0 D 0 ( j D 1, : : : , n). Hence, by (8.1) again, we see that

the Jacobi functionh LXt jtD0, Gi is bounded on NM also in this case. If this function co-
incides with the Jacobi function induced by a family of parallel translations defined by
tV 2 R3 (t 2 I ), then the variation defined byLX0( � , t) WD LX( � , t)� tV (t 2 I ) satisfies
LX0( � , 0)D X and

h

LX0
t jtD0, Gi D h LXt jtD0, Gi � hV, Gi D 0,

that is, LX0
t jtD0 is a tangent vector field onX(M). Set X0( � , t) WD LX0(�( � , t), t) (t 2 I ).

Note here that

(�( � , 0))�(X�( LX0
t jtD0)) D (X0( � , 0))�( LX0

t (�( � , 0), 0))

D (X0( � , 0))�(X0
t ( � , 0))�

2
X

iD1

(xi Æ �)t ( � , 0) � (X0( � , 0))�( LXxi (�( � , 0), 0))

D (X0( � , 0))�(X0
t jtD0) �

2
X

iD1

(xi Æ �)t ( � , 0) � (�( � , 0))�(X�(Xxi (�( � , 0))))

D (X0( � , 0))�(X0
t jtD0) �

2
X

iD1

(xi Æ �)t ( � , 0) � (�( � , 0))�
�

�

�xi

�

�(�,0)

and that the second term of the right-hand side of this equality is smooth. SinceX0(�,t)
has the common Weierstrass data withX( � , t), we can apply the estimate for
(X( � , t))�(Xt ) under the conditionspt D 0 and at D 0 also to (X0( � , 0))�(X0

t jtD0)

around each end, and we see that the pullback vector fieldX�( LX0
t jtD0) on M extends

smoothly on NM .
Hence there exists a 1-parameter family of transformation group of NM which in-

ducesX�( LX0
t jtD0), from which it also follows that there exists a 1-parameterfamily of
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coordinate transformations ofX defined on NM which induces LX0
t jtD0. This contradicts

our definition of criticality. Therefore, we conclude thatfor any critical point X of the
flux mapF , Nul(X) > 3 holds.

We note here that the theorems in the previous sections cannot be obtained directly
as corollaries to the fact above, since it is difficult in general to examine a givenn-
noid to be a critical point ofF or not. Indeed, even if it is a double solution of some
part of the equation (2.3) (or (2.4), (2.6)), such as detAD 0, it is not always a critical
point of F . Moreover, the fact above gives us no information about index. Hence we
need some other criterions to understand the correspondence between index and flux of
n-noids.
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