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Abstract
In this paper, we give a criterion for 4-noids to have nullineater than 3 and its
applications. We also compute the indices and the nullitfiesome families ofZ -
invariantn-noids, and analyze the correspondence between nullityaafhakx map.

1. Introduction

Let M be a Riemann surface, and: M — R® a complete conformal minimal
immersion. The index oiX is the supremum of the numbers of negative eigenvalues
of the Jacobi operator-A — |dG|? on relatively compact domains d¥l, where A
is the Laplacian with respect to the metds® = X* d% on M induced byX, and
G: M — S is the Gauss map oK. Fischer—Corbrie [5] and Gulliver-Lawson [6, 7]
proved thatX has a finite index if and only if it has finite total curvaturedaOsser-
man [22] proved that ifX has finite total curvature, thell is conformally equivalent
with a compact Riemann surfadd punctured by a finite number of points, and its
Weierstrass datag( ) extends meromorphically oM.

If X has finite total curvature, then its index depends only onetttended Gauss
mapG =IT"1og: M - S c R®, where we denote the stereographic projection from
the north pole byIl. Indeed, the index coincides with the number of negativereig
values of the operator-A* — 2, where A* is the Laplacian with respect to the met-
ric G*dsé2 on M induced byG. Hence we denote the index of by both Ind(X)
and Indg).

On the other hand, the nullity oK is defined as the dimension of the space of
bounded Jacobi functions, elements of the kernel of thebjamerator. It also depends
only on G since it coincides with the number of zero eigenvalues-af* — 2. Hence
we denote the nullity ofX by both Nul(X) and Nul@) in the same way as index.

Since there exists a 3-dimensional isometry group of pelrafanslations inR,
Nul(X) > 3 holds for anyX. The following fact is very significant since it charactesz
nullity completely in a sense.
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Theorem 1.1 (Ejiri—Kotani [4], Montiel-Ros [21]) If X has finite total curva-
ture, then Nul(X) > 3 holds if and only if its Gauss map is realized also as the Gauss
map of some flat-ended non-branched or branched minimahceurf

Other than this result, it is also known that Xf has finite total curvature, and if
all of its ends are embedded ends and parallel with each,dtier Nul(X) > 3 holds
(cf. [16]). On the other hand, we see, by combining Nayasagkample in [20, 84] and
basic facts, that there exists a family ¥fs such that Nulk) > 3, each of which has
N + 1 catenoidal ends arranged on the positions of the verti€es regular N-gonal
pyramid (see Example 3.3).

By Theorem 1.1, each of thes€'s also has the same Gauss map as that of some
flat-ended minimal surface. However, the reasons for ngatrnullity seem to be dif-
ferent between flat or parallel ones and pyramidal onesgsine former have natural
deformations which induce nontrivial bounded Jacobi fiomg, that is homotheties or
rotations (or deformations to their associated family op&b-Ros deformations if the
genus ofM is zero), but such deformations for the latter are not saalriwWhat hap-
pens in the latter case? Which kind &f has the same Gauss map as a flat-ended
surface in general? In particular, is some symmetry necgdsa

Since the eigenvalues depend continuously on any pararoétdeformations of
X, index is lower semicontinuous, and nullity is upper semftwous with respect to
the parameter. Therefore, determining the index and thigynaf some sampling point
makes a significant role. For instance, Nayatani [18] shothed Ind(X) = 2(h — 1) —
1=2n-3 and NulX) = 3 hold for Jorge-Meeks’ surface with ends © > 3). Since
the moduli space of maps which are realized as the Gauss niagsne flat-ended
minimal surface has codimension greater than 1 as a subgbe afpace of meromor-
phic maps of the common degree, Ejiri—Kotani [4] showed ihahe genus ofM is
zero, that isM = = C:=CU {oo}, then IndX) = 2d — 1 and NulX) = 3 hold
for a genericX such that deg = d. In particular, since there is no flat-ended minimal
surface with deg = 2, Ind(X) =2-2—1 = 3 and NulX) = 3 hold for any X such
that degg = 2. On the other hand, since there are many flat-ended miniorédces
with d = degg > 3, Nul(X) > 3 (and Ind¥) < 2d — 1 also) holds for someX such
that degg > 3.

In this paper, we study index and nullity ofnoids, complete conformal minimal
immersions withn embedded ends. In §82—-3 we summarize basic facts-oids and
flat-ended minimal surfaces respectively, and in 884-5, ive g criterion for 4-noids
to have nullity greater than 3, and its applications. In 886we compute the indices
and the nullities of some families & y-invariant n-noids. In 88, we discuss the cor-
respondence between nullity and a flux map.

Both the authors would like to thank Professor Toshihiro dghéor fruitful discus-
sions and useful comments. They also thank Professors NEjirioand Shin Nayatani
for helpful advices.
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2. Basic facts onn-noids and their flux

Let X: M = M\ {0y, ...,0qn} — R® be a complete conformal minimal immersion
with finite total curvature. We use the Enneper—Weierstragsesentation formula of
the following type:

X(2) = Re/z (1= o? V=11 + g2, 29)n.

The flux vectorof the endq; of X is defined by the integral

@j IZ[ nds
Y

i

wherey; is a loop surroundingj; from the left,fi is a unit conormal vector field along
y; such that g;’, Ai) is positively oriented, andls is the line element oiX(M). ¢; is
independent of the choice ¢f. By divergence formula, or residue theorem, it always
holds thatZT=1 ¢j = 0. We call this equality thélux formula

It is known that, if the endg; is an embedded end, then it is asymptotic to a
catenoid or a plane. We call such an endagenoidal endor planar endrespectively.
It is also known that the flux vector of any embedded end isligdta its limit normal.
Hence we can define theeight of the embedded end; by w(q;) := ¢;/(47G(q;)),
where G is the Gauss map oK as before. In another word, the weight is the ratio
of the size of the asymptotic catenoid of the end to the sthdatenoid.w(q;) =0
holds if and only if the endy; is a planar end.

We call X ann-noid if all the endsqy, ..., g, are embedded ends. For amoid
X, we can rewrite the flux formula by using the weights as foiow

n

> w(@;)G(g;) = 0.

=1

We call a suit of unit vectorsus, ..., vy, and real numbersy, ..., a, satisfying
ZT=1 ajv; = 0 a flux data We say ann-noid or a flux data is of TYPE Ill
(resp. TYPEI, TYPEII) if the flux vectors span a 3- (resp. 1-, 2-) dimensionalteec
space. Umehara, Yamada and the first author [11, 12, 13] ¢rtha, for generic flux
data of TYPE Il (or TYPE Il withn < 8), there exists am-noid X of genus zero
satisfying G(q;) = vj, w(q;) = aj (j=1,...,n). )
In general, if the genus oM is zero, that isM = C, then the Weierstrass data

(9, n) of ann-noid X: M = C\ {qy, ..., g} — R® with g; # 00, g(qj) = p; # oo,
w(g;) =4a; (j =1,...,n) is of the following form:

P(2)

(2.1) 9(2) = o " —Q(2)*dz
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with
n n
p;bj b
2.2 P(z) = ——, Q2 =
(22) 2 ;Z_qj 2 ;Z_qj
and
ijmq —@eR
«—
k=1:k
2.3) 7 e (G=1,...,n)
k=LK ]| q—qJ

Hence, to find am-noid with the prescribed flux data, we have only to solve J(28
an algebraic equation. More precisely, For any givgna; (j = 1,..., n) satisfying
the balancing condition

2Rep; 2Imp; ijlz—l) t
ajvj = , , =(0,0,0),
Z a le (|p,~|2+1 P+ ) = 00

if qj,b; (j=1,..., n) satisfy the equation (2.3), and #(z) and Q(z) have no com-

mon zero, then the Weierstrass datgr() given by (2.1) with (2.2) realizes am-noid
such that

9@;) = pj, .

=1,...,n).

{w(CIj) =a, U )

We note here that it is useful to rewrite the second equasliiie (2.3) asAb =
0 with

PP+l Pipa+1
_ Q2—Q1 On — Ot b
T P2pn + 1 o
PP+ 2 . )
A= 01— G2 On — G2 , b:= .
PPi+l Pap2+1l 0 bn

01 —0On 02 — On

If qu,..., g, andby, ..., b, realizes somen-noid, then it must hold that dé&t= 0 and
0 # b € Ker A. In particular, in the casa = 4, rankA = 3 (resp. 2) holds if the data
is of TYPE Ill (resp. TYPE II) (cf. [11, Proposition 3.2]).

We also note here that we can define tletative weightsof end-pairs q;, qx)

(jk=1,...,n; j #K) by
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which is conformal invariants satisfyingy; = wj and ZEZM# wix = w(q;)
(cf. [10, 9]).
In general, we may assume that # oo, p; # oo (j = 1,...,n) without loss

of generality. However, in some cases, it is more useful suae that some;’s and
gj’s areoco. In such case, we need to modify the equation (2.3) and (2 Zpliows:
(1) The case thatl = p; = o0 andq; # oo, pj #oo (j =2,...,n):

n
Zblbk:aly
k=2 n
b+ 3 by Pl — g,
K=2: k| Ok — 4
(2.4) ; (1=2....n),
> bib(—p) =0,
k=2
+1_
b; by} + Z bb PP _ g
k=2:k# O —q;
and
n b n b
(2.5) PO =-b+Y P op=) .
= z-q = z-q

(2) The case thaty = p; = p, = o0 andqg; # oo (j =2,...,n), p; #oo (j =3,...,n):

n
Z bibk = ay,
k=3
n
-1
Z Coboy
k=3 O —

= ap,

bjb1+|o,c2 -~ Z bbkq _q =
(2.6) sk T (i =3....n),
bica(—1) + Z bybi(—pe) = 0,
k=3

n
Coby + Z Coby B =0,
3 Qk

1
+ Z b b pjpk+ 0,
k=3 k| Ok — Qj

b; blpj +b Czq
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and

n n
Co p,—bj bj
(2.7) P(z) = —b; + + , Q@)= :
"Tz-q ;z—qj ;z—qj'

3. Basic facts on flat-ended minimal surfaces

In this section, we summarize basic facts on flat-ended nahisarfaces in the
style suitable for our situation.

Let X: M = M\ {a, ..., 0.} — R® be a complete conformal minimal branched
(or non-branched) immersion with finite total curvature. &l the endq; is a flat
endif it is asymptotic to a plane. A flat end is not necessarily ambedded end. We
say X is flat-endedif all of the endsqy, ..., g, are flat ends.

Since minimal surfaces with embedded flat ends, that is plands, have a corres-
pondence with Willmore surfaces R®, they were studied in early years. In particular,
Bryant [2] proved many significant results on their modulasgs. However, to deter-
mine the indices and the nullities of minimal surfaces bylgpg Theorem 1.1, we
have to consider minimal surfaces with non-embedded flas etgb.

Here we call the end); of X is of order k if at least one ofy and g°n has a
pole atg; and the maximum of the orders @} is k. For the well-definedness oX,

k must be greater than 1. The end is an embedded end if and okly=iR2. On the
other hand, the end; of orderk is a flat end if and only ify; is a zero ofg’ of order
at leastk — 1 (see [4, Proposition 3.5]).

Now, let X be of genus zero, that sl = C. We may assume thafj # oo (j =
1,...,n) without loss of generality as before. df, is an end of ordek;, thenk; > 2
must hold for the well-definedness of aroundq; (j =1,...,n). On the other hand,
since oo is not an end ofX, both n and g°; do not have a pole ato, that is, both
n/dz and g?/dz have a zero of order at least 2 . Hence, if degy = d > 0, then
it must hold that

o
n

n n 2
ki 1 k. 9N
fmax{de H(z—qj)ld—z},de H(z—qj)JE}}
j=1 j=1
n
<Y k-2
i=1

2d = deg

Now we see that

=

kj > max{2n, 2d + 2}.
j=1
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Moreover, ifZ?:l kj > 2d +2, thenX hasZ?:l kj —2d —2 branch points if counting
their multiplicities.
On the other hand, i is flat-ended, then it holds that

Y k-1 <#zeM|g(@® =0 =2d-2.
j=1

Combining these facts, we have the following:
Lemma 3.1. Let X be a flat-ended conformal minimal branch¢dr non-

branched immersion of genus zero. Suppose that each gnafgX is of order k
(j =1,...,n), and thatdegg = d > 0. Then it holds that

n
max(2n, 2d +2} < ) kj <n+2d-2.
j=1

In particular, it must hold that &> 3 and4 <n <2d -2

For instance, in the casg = 3, we have
n
max{2n, 8} SZk,- <n+4
j=1

andn = 4. Hence the orders of the ends must satisfy the following:
4
8<) k=8, (k}=1{22232.
j=1

In 84, we give a classification and a characterization of tiwases in this class.
On the other hand, in the case= 4, we have

n
max(2n, 10} < > kj <n+8
j=1
andn = 4,5 or 6. In this case, there are the following five possibiit

n=4, 10< ki <10, {kj}={2,2,2,4 or({2,2,3,3,
n=5, 10 ki <11, {kj}={2,2,2,2,2 or{2,2,2,2,3 (1 branch point),

6
n=6, 12< Zk,— <12, {kj}={2,2,2,2,2,2 (2 branch points),
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where we counted the multiplicity of branch points as befdtés known that{k;} =
{2,2,2,2,2 is not the case (cf. [2]; see Remark 4.2 for a short proof of fact).
However, to give some estimate for nullity, we must consither remaining cases.

The following result has also to be recalled here. For lat®, we describe the
statement by means of &L(2, C)-action, in place of theSQ3, C)-action Bryant
considered.

Lemma 3.2. Let (g, n) be the Weierstrass data of a flat-ended minimal surface
of genus zero. Then

(ag+/3

s (g + 8)277)

is also the Weierstrass data of some flat-ended minimal sairfar anyo, 8,y,8 € C
such thataé — By # 0.

Proof. By the assumption, all the residues'¢fl — g?)n, v—1(1 + g?)n, 2gn)
vanish. Hence those d{{(yg + 8)? — (eg + B)*}n, V=1{(yg + 8)? + (xg + B)*}n,
2(xg + B)(yg + 8)n) also, because

{(yg +8)* — (ag + B)*}n
( V=U(yg+6)? + (ag + B)*In )
2(@g + B)yg+ on
o — g2 —y? + 52 V=12 + B2 —y?—6%)  2(-aB +yd)
= (\/—_1(—012—}—,32—)/24—82) of + B2 +y?+ 62 2~/—_1(aﬂ+y8))
2(—ay + B9) 2V =1(—ay — B5) 2(as + By)

(1—-99n
| V=1 +6?n |
291

Since this transformation is linear, the property that hé £nds are flat is preserved
(cf. [4, Proposition 3.1]). O

By this lemma, we see that two rational functiogssand g, have the same index
and nullity with each other if there exist Mobius transforimas ¢ and F of C satis-
fying g1 0o ¢ = F o gy. In this paper, we say that these two functiopsand g, are
equivalentwith each other.

ExamMPLE 3.3 ((N + 1)-noids with pyramidal flux). Nayatani [20] showed that
Ind(gne m) =2d—2=2(N+M)—2 and Nul@n e m) = 5 hold for the mamy & m(2) :=
2N+ zM (N,MeN, N+ M > 3). Let N be an integer such that > 3, and set
N = €2V=UN_ For the data
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i l1,...,N|[N+1
pi | PNt 00
a; a a

with p € R\ {0,£1}, a€ R\ {0} anda’ = Na(1— p?)/(1+ p?), by solving the equation
(2.4), we get the following Weierstrass data (cf. [8, ExaenBl3]):

_ (N=1)(p* =)z + pM{(N + 1)p* + (N - 1))
Ooyr(2) = 2N pRZN-1 '

N—-1\ 2
a (Zszz )dz.

Ty = o = )p2(p2 + )\ 2V = pM

This data realizes anN\(+ 1)-noid whose flux vectors are arranged on the positions of
the vertices of a regulaN-gonal pyramid. Since

2Np2 e\N ! e\ !
(N_1)(p? 1) D = (E) * (E)

_¥N+D&+W—DFM‘
L (N=)(PP-1)

holds for

pyr is equivalent withzN 1 +z 71, that is a special case gf& m, and hence Indfy,) =
2d —2=2N—-2=2(N + 1)—4 and Nul@p,) = 5 hold.

4. A criterion in the case degg = 3

In this section, we give a criterion for the rational funcoof degree 3 to be the
Gauss map of some flat-ended minimal surface.

As we have already seen in 83, for any flat-ended minimal ser§ach that degy=
3, each of its ends must be an embedded flat end, namely thecsud a flat-ended
4-noid. The structure of the space of flat-endedoids was already studied by Bryant
[2] (see also Kusner—Schmidt [15]), and we can compute tbdexirand the nullity of
any flat-ended 4-noid by applying Nayatani's estimatedgg y with (N, M) = (2, 1).
First, we summarlize these facts in the style suitable forcmnsideration.

In the case of flat-endedknoids, that is the casa =0 (j = 1,...,n), the algebraic
equation (2.3) is equivalent with the following equation:

n
Zbk ! =0,

Ko Tk | Ok — g

s 1
D prbe =0,

K=Lk# | % — 9

(4.1)
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Hence, to classify all of the flat-ended 4-noids, we have dolgolve (4.1) withn = 4

completely as an algebraic equation with respecyjtoandb; (j =1, ...,

here that the equation (4.1) is rewritten Agb = Apc = 0 with

01 — 02

1

1
02 — 01

1

01— On

02 — O

1

On — O
1

O — Q2

4). Note
by piby
b, p2bo
.|, €= .
bn pn bn

One of the most typical examples is given by the data

j

2

3

4

P

-P

piv-1

p /1

with p := (v/6 4+ +/2)/2. By solving (4.1), we get a family of solutions

j 1 2 3 4
g | —p | Pt | -pv-lpyl
bj | —p7tvt | —ptVE | pvt pvt

wheret € C\ {0} is a parameter of homothety. The Weierstrass data of therildéd
4-noids given by these solutions are as follows:

'——t{ 2422(22 — /3) }Zdz——St{ 2(z2 — V/73) }2
TEN@E- Y@+, T\ A r2vER-1

In 86, we will analyze a family of functions which includeg: as a special case. By
Lemma 3.2, we see that the Weierstrass data

aGet + B 9 ) (a Pet + BQtet , )
4.2 et f o\ _ (@PetFQe b i 2,
“2) (ygtet +39 ( Gret ) ¥ Pret + 8 Qtet (¥ Pret Qtet)

also realizes a flat-ended 4-noid for amyp, v, § € C such thatas — By # 0, where
we set

2V2(v/322 + 1)
Z-pAZ+p)

23/22(22 — V/3)

Plel2) = @Z-p @+ P

Qret(2) :=
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The following fact seems to be well known among the reseascbé this field.
Bryant [1, §5] pointed out it to classify Willmore immers®rirom S into S® with
Willmore energy 12. It follows directly by (4.1).

Lemma 4.1. If X is a flat-ended4-noid, then its ends g 0z, g3, g4 satisfy the
condition that the cross ratio igs4 := (01 — 02)(d3 — Ga)/(01 — 93)(G2 — 04) coincides
with ¢s = e"V-1/3 or g = e *V~1/3, that is the ends can be arranged on the positions
of the vertices of a regular tetrahedron.

Proof. By the first equalities of (4.1), we hale# b € Ker Ag. Now, sincen = 4,
it holds that

Oh23d® — Ouosa+ 1 }2

0 =detAy =
etho {Q1234(Q1 —04)(02 — 03)

This implies our assertion. O

REMARK 4.2. By the second equalities of (4.1), we also h@vg c € Ker Ay.
Since de@y = n—1, b andc are linearly independent. Hence rafjk must be smaller
than or equal ton — 2. Therefore, also in the case= 5, the cross ratio of each
four of {q, ..., gs} must becs or ¢g. However there are no arrangement of the ends
which satisfies such a condition. Indeed,gifzs = ¢6 and gi23s = 6, then gossz =
Ou234/Q1235 = {3 # &6, (6. Hence there are no flat-ended 5-noids. This is an essence of
the proof of the nonexistence result for= 5 given by Bryant [2].

The following fact asserts that the inverse of the asseribhemma 4.1 is also
true. It is a restatement of the classification by Bryant [3] ®e have already men-
tioned before.

Lemma 4.3. Let g be a rational function oflegg = 3. If the cross ratio of the
zeroes of gcoincides with¢g or ¢, then g is equivalent with the Gauss map of one
of the flat-endedi-noids given by(4.2).

Proof. By the assumptiorC \ {z| g'(z) = O} is conformally equivalent witC \
(z| gef(2) = 0} = C\ {£p L, £pv/—1}, where p = (v/6+ +/2)/2. Hence there exists
a Mobius transformatiop such that{z | (o ¢)'(2) = 0} = {z | G (2) = 0}. Set
3 .
C 'ZJ
gog(d) = =107
Zj:o B;z!

Then it holds that

(a3B2 — 03)(2* + 24/32%2 — 1)
(Z?=o Bz )2

(9o9)(2) = , a3fa—azfz # 0.
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Hence we have

2(a3p1 —a1p3) = 0,

3(@afo — coB3) + (@2f1 — a1B2) = 2+/3(af2 — a2P3),
2(a2fo — aof2) = 0,

a1B0 — aoP1 = —(azf2 — a2P3),

from which it follows thatay = —+v/3a3, as = /3, f1 = —+/3B3 and B2 = +/3Bo,
where we use the assumption dpg 3. Now, we see that

01323 + \/501022 - \/\.3)0132 + o

90D =+ Akt — 3er+ fo
_ ao(v/322 + 1) + a32(22 — /3) _ %002 + o3 _ F o ge(2)
Bo(v/3Z + 1) + Baz(Z2 — V/3)  PoGed?) + Bs Gretl2):
where
F(w) = QoW + a3
Bow + B3
and
1 1 1
aof3 — azfo = ﬁaz “Bz—az- ﬁﬂz = —ﬁ(asﬂz —azf3) # 0. O

By combining Lemmas 4.1 and 4.3, we see that the Weierstratss af any flat-
ended 4-noid is given by (4.2) up to conformal coordinat@sfarmations. In particu-
lar, all the elements have the common index and nullity. Tirection z2 + z 1, that is
one of Nayatani’'s examplegy ¢ m(2) with (N, M) = (2,1), is also in this case. Indeed,
if we choose Md&bius transformations

o(2) = —2v6. 2= P 3 pw+l

Fw) :=
pz+1' (w) 216 w—p

with p = (V6 + +/2)/2, then we haveF o ge(z) = gnem © ¢(2). Hence, for any
flat-ended 4-noid, its index and nullity must be 4 and 5 rethpslg. Now, we get the
following:

Lemma 4.4. Let X be a conformal minimal immersion of genus zero such that
degg = 3. If the cross ratio of the zeroes of goincides withg or Zg, thenInd(X) = 4
and Nul(X) = 5 hold. OtherwiseInd(X) = 5 and Nul(X) = 3 hold.

Let us give a criterion for the assumption in Lemma 4.4, whighwill use in 85.
First we prepare a criterion for polynomials.
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Lemma 4.5. Set f(2) := Z‘j‘:oaj Z (a4 # 0). Thené\{z| f(2) = 0} is conform-

ally equivalent withC \{Z] gef(2) = 0} if and only if Dy := a? —3azay + 12308y =
0 holds.

Proof. Let{z;,2,,23,24} be the set of solutions of (z) = 0. Thené\{zl,zz,zg,a}
is conformally equivalent witfé\{z| Ot (2) = O} if and only if its cross ratia;pz4:=
(Z]_ — 22)(23 — Z4)/(Z]_ — Z3)(Zz — Z4) coincides with eitheze or &, that is, 212342 —Z1234+
1 = 0. This equality is equivalent with

0= (21— )23 — 24)* — (21 — 2)(23 — 2)(Z1 — Z3)(Z2 — Zs) + (21 — Z3)*(20 — 2Z4)?
= Z z%2;% - Z 222 + 621222324 =: Dy.
i<] i<j,izk, j£k

Denote the elementary symmetric expression of degreby oj, and setozs :=
Yi.ijz’zi? andor12:= Y. 4225 Then, sinceD; = 02, — 01,12 + 6oy,
(722 =022+ 20'1’12—‘1- 604 and o103 = 01,12+ 404, we have

D1 = 022+ 201,12+ 604 — 301,12 = 022 — 3(0103 — 40a) = 0,° — 30103 + 1204

2

a az a o 1 2 Dreto

_ —3(-Z2) -2 ) + 122 = — (8,2 — 3aa; + 1230ay) = .0
(a4) ( a4)( a4) a a2 % ™

As a corollary to this lemma, we have a criterion for ratiohaictions.

Lemma 4.6. Let o(z) = a(2)/B(2) be a rational function oflegg = 3. Seta(2) :=
Z]?’:o a2 and B(2) := Z?:o Biz. ThenC \ {z | d'(2) = 0} is conformally equivalent
with C \ {z | gef(2) = 0} if and only if Det := 3wzBo — a2B1 + 182 — 3Bz = 0 holds.

Proof. By applying Lemma 4.5 td (2) = «'(2)8(2) — «(2)8'(2), we have
Dreto = (30aflo — 021 + 182 — 3toPs)’ = Dief’. O
By combining Lemmas 4.4 and 4.6, we get the following:
Theorem 4.7. Let o(2) = ¥5_ojz1/Y°_,8;2} be a rational function oflegg =
3. If Dyt = 3azBo — a1 + @182 — 3Bz = 0, thenInd(g) = 4 and Nul(g) = 5 hold.

Otherwise Ind(g) = 5 and Nul(g) = 3 hold.

5. Index and nullity of 4-noids

In this section, we observe which kind of 4-noid has the saraas& map as that
of a flat-ended 4-noid by applying Theorem 4.7.
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As we have already mentioned in introduction, amyoid of TYPE | has non-
trivial bounded Jacobi functions, and hence Ky& 4 and NulX) = 5 hold for any
4-noid X of TYPE I. On the other hand, these equalities also hold fgr &noid X of
TYPE Il whose flux vectors are arranged on the positions ef\uértices of a regular
trigonal pyramid.

It should be remarked here that each 4-noid in these two ifeeni$ located at a
special position in the space of 4-noids from the viewpoihthe equation defA = 0.
Indeed, for any flux data of TYPE I, dét= 0 is automatically satisfied and suitable
conformal classes cannot be decided only byAdet0. On the other hand, for any flux
data of TYPE IIl, the number of suitable conformal classeatisnost 4, since d&t =
0 is equivalent with a quartic equation on the cross ratiohef €nds (cf. [11, §3]).
However, for any data of pyramidal type as above, the numbé, ithat is, pyramidal
examples are given by double solutions of the equatiorAdetO.

Hence it seems that there is some correspondence betweequhaton deA =0
and nullity, and the similar phenomenon is also expectediéncise of TYPE Il. How-
ever the condition that the cross ratio of the endsXofs given by a double solution
of detA = 0 is not a sufficient condition for NuK) > 3. Indeed, for any flux data
of TYPE I, each 4-noid is given by a double solution of det 0 by the reason we
describe below. But, for instance, the nullity of Jorge-M&ek-noid is 3.

Here we present a result similar to above in the case of gpédsolutions.

Theorem 5.1. If a 4-noid X is of TYPHI, and if its conformal class is given by
a unique quadruple solution of the equatidetA = 0 on the cross ratio of the ends
for some given flux datghen Ind(X) = 4 and Nul(X) = 5 hold.

Proof. Since deg = 4—1 = 3 holds for any 4-noidX: M = é\{ql,qz,qg,q4} —
RS, the limit normalspi, P2, P3, Ps must take at least two distinct values.

First, we consider the case that at least ongg$ is different from the others. In
this case, we may assume thatis different from the others, and in particulpy = oo
without loss of generality. Since we can also choose tleefreely, we assume here
thatg; = oo, g = 0 andgz = 1.

For the data and the assumption

1
Pj | o0 | P2 | P3| P4
qj | o©
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with py, ps, pa€ R andq € C\ {00, 0, 1, set

0 ) —P3 —Pa L

+
p2 0 pops+ 1 Papar 2
A= +1
ps —(p3p2+1) 0 PoPs 22

q-1

1 1
0a P4p2 + P4P3 + 0

—-q 1-q

If the equation (2.4) has a solution, then it holds that Alet 0 and 0 # b =
Y(by, b, b3, bs) € Ker A. In particular, sinceA is an alternative matrix, the pfaffian Rf
of A, that is a homogeneous polynomial of component@afatisfying deA = (PfA)?,
is also defined, and given by

-1
PfA= m{ P2(p3ps + 1)g — p3(pP2ps + 1)@ — 1) + pa(p2p3 + L)a(g — 1)}.
Set

pfa@) := —q(q — 1) PfA
= pa(P2Ps + 1)0° + (—P2PsPa + P2 — Ps — Pa)d + Pa(P2ps + 1).
Then its derivative pféq) and discriminantDys, of pfa() as a polynomial ofg are
given respectively by
pfe(q) = 2pa(p2ps + 1)q + (—P2pP3Ps + P2 — Pz — Pa),
Dpta := pfa(a)* — 4pa(p2ps + 1) pfa@)
= —32° Pa®Pa’® — 2P2° PaPa — 2P2P3° Pa — 2P2 P3Pa’
+ P2? + pa® + pa® —2pP2P3 — 2P2Pa — 2P3Pa.
Now, for anyb € Ker A\ {0}, the corresponding Weierstrass datg 1) is given
by (2.1) with (2.5). Sew(2) := z(z— 1)(z— q)P(2) and 8(2) := z(z— 1)(z— ) Q(2).
Then we have
a(2) = —b1Z% + {(q + 1)by + Pabz + Psbs + paba)Z?
+ {—qby — (g + 1) p2bz — qpsbs — paba}z + qp2by,
B(2) = (b2 + bs + bs)Z? + {—(q + 1)b — gbs — by} z + qby.
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Since KerA is spanned by(p,pz + 1, p3, — P2, 0) and!(—(p2 ps + 1),— pad, 0, p=q),
b is given by

by S(p2p3 + 1) —t(p2ps + 1)
b— by _ Sps —tpaq

bs —Sp

bs tp2q

for some §,t) € C2\ {(0, 0)}. By direct computation, we have

Die(d) = (bib2 + bib3)g? + {—2b1b, — (P2 — Pa)bzbs — (Ps — pa)bsbalq
+ {b1bz + b1bs — (P2 — ps)b2bs + (P3 — Pa)bsba}
= {—(P2Ps + 1)(p2 — Pa)q* — 2ps(P2pPs + 1)q + Ps(p2” + 1)}s?
+ {=Pa(P2p3 + 1)3° + (P2 — Ps + 2pa + 2Pz P3pa)q’
+ (P2 + 2p3 — Pa + 2p2P3pa)d — Ps(P2 s + 1)}st

+ {pa(p2® + 1)0° — 2pa(P2ps + 1)0* — (P2ps + 1)(p2 — pa)a}t?,
and

2pa(P2ps + 1)*Die(d) = D2(q, s, t) pfal(q) + Ca(s, t) pfa() pfa(q) + Ca(s, t) pfa(@),
where we set

D2(q, s, t) := —2(p2ps + 1)*{(p2 — pa)d + pa}s’
+ 4(p2ps + 1){(P2 — P3)d + Ps(p2ps + 1)}st
+ 2[{=(P2 = Pa)(P2” + 1) + P2Pa(P2P3 + 1)(P2 — Pa)}q
— ps(p2® + 1)(P2pas + DI?,
Ci(s 1) == —(p2ps + 1)st + (p° + 1)t?,
Ca(s, t) := 2(p2 — pa)(P2ps + 1)’
+ (P23 + 1){—=3(p2 — Ps) + Pa(pP2ps + 1)}st
+ (p2% + 1){(p2 — P3) — pa(p2ps + L)H2
Now, if the data ¢, n) realizes a well-defined 4-noi, then pfag) = 0 and hence
2pa(p2p3+1)?Died(q) = D2(q,s,t)pfa(q) holds. Moreover, ifX is given by a quadruple
solution, thenDysa = 0 and hence pféy) = 0 holds. If p, =0 or pops +1 =0, then
pfad(q) = p> — ps = 0 must hold. However, in the case = O, it is already known
that this is not the case (cf. [11, Theorem 4.5]), and in theeqgps + 1 = 0, this

contradicts the assumption thpt, ps € R. Henceps # 0 and p,ps + 1 # 0, and we
get Diet(q) = 0.
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Secondly, we consider the case timttakes the same value wit, only. In this
case, we may assume thpd = p, = co without loss of generality. Since we can also
choose threq;’s freely, we assume here that = oo, g = 0 andgz = 1.

For the data and the assumption

i1 1234
Pj |00 | o0 | P3| P4
g joo | 0] 1]q

with p3, p € R andq € c \ {00, 0, 1}, set

o -1 —Ps3 —Pa
) 1 0 Ps %
SE I —p3qp4_*i 1
P4 % —p41pi—(: 1 0

If the equation (2.6) has a solution, then it holds that Alet 0 and 0 # b :=
t(by, 2, bs, bs) € Ker A. In particular, sinceA is also an alternative matrix, the pfaffian
PfA of A is also defined, and given by

-1

A= —— +1)q— ~1)+ — 1))
q(q—l){(p3p4 ) — P3pa(@ — 1) + pspsq(q — 1)}

Set
pfa@) := —q(q — 1) PfA = p3paq? + (—papa + 1)q + papa-

Then its derivative pféq) and discriminantDys, of pfa() as a polynomial ofg are
given respectively by
pfa(q) = 2pspad + (—papa + 1),
Dpra := pfa () — 4psps pfa@)
= —3ps*ps® — 2psPs + 1 = —(3psps — 1)(Pspas + 1).

Now, for anyB € Ker/—v\\ {0}, the corresponding Weierstrass datg 1) is given
by (2.1) with (2.7). Sewx(z) and 8(2) as in the first case. Then we have

a(2) = =01 2° + {(q + 1)by + Co + p3bs + pabs}Z?
+ {—qby — (g + 1)c2 — psgbs — psbs}z + qcy,
B(2) = (b3 + bs)Z? + (—qbs — by)z.
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Since KerA is spanned by(ps, ps, —1, 0) and'(—pa, —paq, 0, q), b is given by

by Sps—tpa
| C|_|sSm—tra

b3 —S

b4 tq

for some §,t) € C?\ {(0, 0)}. By direct computation, we have

Diei(@) = (0° — 1)(—psS® + paqt?),
and

2ps?paDied(d) = D2(q, s, t) pfal(a) + Ca(t) pfa@) pfa(q) + Ca(s, t) pfa(@),
where we set

D2(a, s, t) := 2psa(—pss” + paqt?),
Ca(s, t) := 2pa®s? — (p3ps — L2

Now, if the data ¢, n) realizes a well-defined 4-noi, then pfag) = 0 and hence
2ps?psDied(q) = Da(q, s, t) pfa(q) holds. Moreover, ifX is given by a quadruple solu-
tion, thenDyta = 0 and hence pféy) = 0 holds. If p; = 0 or ps = 0, then pf4q) =1
must hold. This contradicts pgfg) = 0. Henceps # 0 and p; # 0, and we get
Dtet(q) =0.

Now, in both cases, by applying Theorem 4.7, we get our dseert O

It is clear from the proof of Theorem 5.1 that the sufficienhdition pfd(q) =0
is valid independent of the choice of the paramete@ndt. On the other hand, we
can see also by the proof of Theorem 5.1 tBa{q, s,t) = 0 also impliesDi(q) = 0.
Since this condition depends on the choicesofind t, it comes from another type
of deformation.

Before concluding this section, we present a descriptiothefconditionDi = 0
by means of relative weights.

Theorem 5.2. Let X be a4-noid of genus zero. Theind(X) = 4 and Nul(X) =
5 hold if and only if its relative weights and cross ratios séithe following condition

(5.1) (W12 + wa4) + (wiz + waa)G1324” + (W14 + w2a)qrazd® = O.
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This condition holds if the relative weights satisfy thddiwing condition

Wo (1)0 (2)Wo B)o (4) 7 Wo (Lo @Wo) @) (YO € &),
(5.2) (w12 + Wwag)(W1zwas — w1aw2s)? + (W13 + Wag)(W1aW23 — W12W34)?
+ (w14 + w23)(W1ow34 — W1gw24)? = 0.

Proof. We may assume thaf # oo (j = 1, 2, 3, 4) without loss of general-
ity. Under this assumption, the Weierstrass dataXofs given by (2.1) and (2.2). Set
(2) = P@)[T}_1(z—q;) and B(2) := Q@) [T}_4(z—q;). Then, by direct computation,
we have

Dret = (w12 + w3a)(01 — G2)%(Gs — Ga)? + (w13 + w24)(01 — U3)*(G — Cla)?
+ (w14 + w23) (01 — Ga)* (G2 — 03)?,

from which the condition (5.1) follows.
Now, if the inequalities in (5.2) hold, then the cross ratasthe ends are given
by the following:

(Ao (1) = 902 (o (3) — Tor (4))

o (1)0 (2)0 (3)0(4) =
oWl @r® (@) — @)@ — Qo)
_ Wo (1)o (4)Wo (2)0(3) — Wo(1)o(3)Wo (2)o (4) (Vo € Q).
Wo (1)o (4 Wo (2)0(3) — Wo (L) (2)Wo ()0 (4)
By applying these equalities to (5.1), we get the equality5r2). ]

As for the second assertion of Theorem 5.2, the conditioarglyy the inequalities
in (5.2) is a generic condition. Indeed, it means that thesenatios of the ends and
the limit normals are different from each other, and thesessratios coincide with
each other only if the limit normal®;, p2, ps, ps satisfies

Pipc+1

det Al(qy,ap,05,00=(p, P2, P, pa) = det( _ ) =0.
Pk — Pj Jjk=12,34

In the case that this equality holds, a 4-noid realizing theesponding relative weights
is not unique, and we cannot determine the index and thetynoflisuch a 4-noid only
by its relative weights.

6. Flat-ended minimal surfaces of deg > 4

In this section, we want to determine the nullities and thdides of a family of
rational functions of degree greater than or equal to 3, Wwimcludesge: and gy g m
as special cases.
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Let N,L eN, L < N-1, and letsi3, S12, 1, 22 € C\ {0}, 11852 — S1251 # 0. Set

s1zN + sp2

N A

In the case that some &f1, S12, S1, S22 are equal to 0g is equivalent withzN+t,
N-L N+ 47 or ZN-L 4 7L, The first (resp. second) one is the Gauss map of
Jorge-Meeks’ N + L + 1)- (resp. N — L + 1)-) noid, and Nayatani [18] proved that
Ind@) =2d—-1=2(N+ L +1)—3 (resp. 2N — L + 1) — 3) and Nulg) = 3 hold.
Also for the last one, Nayatani [20] proved that Igil& 2d —2 = 2(N + 1) — 4 and
Nul(g) = 5 hold under the assumption®2L or L < N — 2 (see Example 3.3).

Here we assume that each ®f, s12, $1, S22 is not equal to 0. In this case, is
equivalent with

sN+1

(6.1) 9s(2) := A9

for somes € C\ {0} satisfyings? + 1 # 0. Indeed, it holds that
5 Sl 5
9(e2) = SH—NZL - s(2)

with € 1= (—S1252/51152) Y@ and's := (—s1152/S1251)Y2. In the casely,L) = (2,1),
g3 coincides with the functiorge: Which we considered in 84, and it is also equiva-
lent with z2 4+ z . However gs is not equivalent withgyg m(2) = zN + z M for a
general pair N, L), since the orders of zeroes diGs and dGyg m do not coincide
with each other in general, whe@s ;=TT ogs andGnewm ;=T 1o gnem.

Indeed, the derivative ofjs is given by

—ZFYNZN(S? + 1) + LN —s)(s2Y + 1))
—[L(sZ" —8) + {(N — L)s* + (N + L)}z"]
Z-H1(zN — )2

—Ls(zN —t)(2N +t D)
- AN —g2

0s'(2) =

wheret € C\ {0} is a solution of the quadratic equatidrs(t? — 1) + {(N — L)s? +

(N + L)}t = 0. Sinces? + 1 # 0, it holds thatt —s # 0 andst+ 1 # 0. Now, assume
that (N — L)?s? + (N + L)? # 0 additionally. Then the equation above does not have a
double solution, that ist? + 1 # 0. Henceqy j := tYN¢y! ™t andgpj := t7/Ngpy? -t

(j =1,...,N) are the solutions of the algebraic equatios(z2N — 1) + {(N — L)s? +
(N+L)}zN =0, and zeroes ofiGs of order 1. Moreover, 0 ando are zeroes ofl Gs

of order L — 1. On the other hand, the derivative gfs m is given by gyg m(2 =
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(NZNFM —M)/zM+1, and hence NI/N)Y(NFMgJot (= 1,..., N + M) are zeroes of
dGne m Of order 1, and O (respo) is a zero ofdGy g m Of order M —1 (resp.N —1).

Kusner [14] gave an example of flat-ended minimal surfacesehGauss map is
given by gs in the case thaNh > 2, L = N -1 ands = +/2N — 1.

In general, ifgs is the Gauss map of some flat-ended minimal surface, then each
of the ends of the surface must be a zera@®s. Moreover, if @s,n) is the Weierstrass
data of the surface, then each @f;, oo ; (j =1,..., N) (resp. 0,00) is not a pole
or a pole ofy, gsn, gs>n whose order is 2 (resp. at moktif L > 2). Hencen must
be of the following form:

M@V -9)*h(2)
(2N —t)2(2N +t71)2 dz,

whereh is a polynomial of degree at mosN2— 2. Heregsn and g’z is given by
(2N —s)(s2' + 1h(2) ,
(N —t(N +t1)2 T

(2 + 1@
A e

Osn =

932’7 =

Set
2N-2

h(z):= ) hZ.
1=0

It is clear that bothy and gsn do not have a pole oz = 0. On the other hand,
gs’n has the following Laurent expansion neae= 0.

L-1
92~ h _ )
dz Z i + “holomorphic part”.

=0

If z=0 is a regular point or a well-defined flat end, then the resmfuhis form must
be zero, that ish,_; = 0.

By the coordinate transformatidh:= z~*, the Weierstrass datay ) is rewritten
as follows:

_ 2@ +9) (szN — 1h(2)
0s(2) = TN 1 n=

CZLEN —thEN )2 T

whereh is a polynomial defined by

2N-2
h@) :=2"2h@E@ ) = ) hoy o2,
1=0
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Here gsn and gs?n is given by
_sN-1)@EN +9h(@) .
&I = "GN N 12 02
2@ +9°h()
(zN _ tfl)Z(ZN + t)2

952’7 =

It is clear that bothgsy and gs?n do not have a pole oa = 0. On the other hand,
n has the following Laurent expansion neat 0.

L-1

= Z % + “holomorphic part”.
1=0

n
dz
If Z=0, that isz = oo, is a regular point or a well-defined flat end, then the residue
of this form must be zero, that i$,n_ -1 = O.
Now, let us calculate the residues pf gsn andgs?n atz=qy; (j =1,..., N).
By direct computation, we have the following expansions:

. t { L 2}

z=—3 11+t —@—mj)+ O0((z—a1;)) .
Ou| N—L o, ( ql,J) (( ql,]) )

1 quijL L )

P L G e R

N _s— (t—s){1+ (2— ) + 0((z—q1,j)2>},

(t —s)au,j

sN +1=(st+1) (z—ql,,-)+0((2—q1,j)2)},

s
14— —
{ (st+ 1)qu,j

1 _ 1 Nt _ P
T T e )+ O,
Z-uj _

N1
Nt Nt {1_ 20 (Z_ql’j)+o((z_ql‘j)2)}'

from which it follows that

Z-ZN -5 t(t—s)%qy; VT2 1 O B0
@ XN + 72 T N2(t2 4 1) {(z— Wl z-my 0(1)}’
@ -9 +1)  (t—s)(st+ L)aw,;? { 1 Qs 0(1)}
@ -2 +t)2 T N2(2+12 | (z—auj)? | z—qu ’
(sN + 1) _ (st+1)%qy N2 1 O, 1812
2@ 0 AU NA@ER + 1P {(z— w2 zoa, T O(l’}’



INDEX, NULLITY AND FLUX OF n-NoIDS 123

where we set

2Nt(st + 1)

t2+D@t-s9)’
2Nt(t —s)

(t2+ 1)(st+ 1)’

Bro:=—(N—-L-1)+

Br2:=—(N+L—-1)—

_ Brot b

Bi1: >

By the definition oft, we have

2Nt(st+ 1) 2Nt(t —s)
(t2+1)t—s) (t2+1)(st+1)
_2ANY(SP 4+ 1)+ Lt —s)(st+ 1)}
N (t —s)(st+ 1) B

Pro—Prz2=—(N-L-1)+(N+L-1)+

Oy

namelyBi 0 = 1,1 = B1,2. Denote this value by;. Then we get the following residues:

_ t(t _ S)qu,j —N+L+2

ReS—q, n = NZ(EZ + 1) (W(Qj) + guj *B1h(au ),
(t—s)(st+ 1aw;? _
Res—q,; Osn = NZ(Z 1 1) L (W(a) + u; 7 Bih(an,)),
st+1 2 N—-L+2 ) B
Res—q., 0621 = S I (g ) + gaAun(an ).

N2t (t2 + 1)2
Since

W (2) + 2z 'g1h(2) = Z 1 (B1h(2) + 2N (2)
2N-2

=zt Y (fi+hhZ,

1=0;1#L—1,2N—L—1
we get the following conditions for the erg ; to be a well-defined flat end:

2N-2

0= > (Bi+hhay

|=0;l#L-1,2N-L—-1
2N-2

= Y (B DhtNg 0D,

I=0; %L—1,2N-L-1

(6.2)
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For any integem such that < m < N — 1, it holds that

N 2N-2
0=2 o™ 37 (Bt hHutNe07Y
j=1 1=0:1%L—1,2N—L—1
2N-2 N .
63 = 2 BEDtNn Y gy

=01 #L—1,2N—-L—1 j=1

Nt™N{(B1 + mhm + (B + M+ N)thn N}  (Me Zy L),
= ¢ Nt"N(B; + m)hp, (m=N-L—-1,N-1),

Nt™N(B; +m+ N)thmyn (m=1L-1),

where we seZy L :={meZ|0<m=<N-2, m#L—-1,N—-L -1}, and we use
the equality

ig ¢-myi-1 _ JO (I #mmodN),
= N N (I = mmodN).

The condition (6.3) is equivalent with the original conditi(6.2) ( = 1,..., N).
By replacingt by —t~1, we can also show that the ends; (j = 1,..., N) are
well-defined flat ends if and only if

(6.4)
Nt ™Neon™{(B2 + Mhm — (B2 + M+ N)t thyyn}  (Me Zyy),

0= { Nt"™Ngn™(B2 + mhn (m=N-L—-1,N—-1),
Nt™NeHN™(=1)(B2 + M+ N)tthmsn (m=1L-1)

holds for any integem such that 0< m < N — 1, where we set
2Nt(t —s)
(t2+1)(st+ 1)
2Nt(st+ 1)
(t2+ 1)t —s)

Combining the conditions (6.3) and (6.4) for the emdg anday; (j =1,...,n),
we get the following:
(1) Form=N-L—-1 or N—1 (resp.L—1), we can chooséy, # 0 (resp.hmin # 0)
ifand only if B1+m=p8,+m=0 (resp.f1+ M+ N =8,+m+ N =0).
(2) Forme Zy L, we can choosehf,, hmin) # (0, 0) if and only if

Bai=—(N—L—1)+

= (N+L-1)— = (2N - 2)— Bi.

| Bi+m (Bi+m+ Nt
B2+m —(Bz+m+ Nt

= (Br +M)(Bz + M+ N}t + (B + m+ N)t(B2 + m)
=t7H{(B1 + M)(B2 + M+ N) + (B1 + m + N)(B2 + m)t?}.

0=
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Since B+ B2 = —(2N—2), (1) is the case if and only ilh=—8; = -, = N—1.
In this case, by—1 = N — 1 and the definition ot, we have

2(st+1) —L(t—s) s*+1
t2+41 Nt  st+1’

from which it follows that ét + 1> = (s —t)°. Hence we have = (s — 1)/(s+ 1) or
—(s+1)/(s—1). Now, by using the definition df again, we ges? = (N +L)/(N—L).
For consider the situation (2), set

_ (Bim)(Bz+m+ N) + (B + m+ N)(Bz + m)t*

Onat 2+1

Then, by direct computation, we have

N(B1 + Bat?)
t2+1
B1Ba(t? + 1) + N(B1 + fBat?)
t2+1 '

DneL = M+ (B1+ B2+ N)m+ B1Bs +

=m?—(N—-2)m+

Moreover, by using the equalities

BBo=@BL+N-L-1B2+N-L—-1)—(N—L—1)(B1+ B2) — (N — L —1)?
2Nt(st+ 1) 2Nt(t —s)

T @rDi-s @@+t
4N?t2

T @vip

Br+Bat?>=(Br+N—-L-1)+ B+ N-L—-1)t>?—(N-L-1)(t>+1)

_ 2Nt{(st+ 1)? + (t —5)?t?}
(24t -s)(st+ 1)

+(N—=L—-1)2N—-2)— (N — L —1)?

+(N—L—1)(N+L—1),

—(N=L-1)(*+12),

we have

Dnat =m?2—(N—2)m+(N—L—1)(N+L—-1)— N(N—L—1)
2N2t{2t(t —s)(st + 1) + (st + 1) + (t — s)*t?}
+ @+ 1t —s)st+ 1)

2
:mZ_(N_z)m+(N—L—l)(L_l)Jr%
=m2_(N—2)m+(N—L_1)(L_1)_s§L+L1'

Set
2NL

SyL(m) = m2—(N—2m+(N—-L—-1)(L-1) -t
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Then, Dyg L = 0 holds if and only ifs?> = Sy, (m) holds for somem e Zy | .
Note here thatSy (N —1)= (N + L)/(N — L), and that

2N L
S = TN =227 —(N—2L)7 /4 -
__{m—(N +L-1{m—(-L -1)}
= Mo (N L Lym- (L 1)

The latter implies thaBy . (m1) = Sy, (M) holds if and only ifm; = my or mp+my =
N — 2. It is clear that the matrix

(ﬂ1+m (ﬂ1+m+N)t)
Bo+m —(Bz+m+ N)tt

cannot be the zero matrix. Now, we get the following fact on(by):

Theorem 6.1. Let g be the rational function given bg6.1). Then the following
assertions hold for its nullity
(D FN>2and & =Sy (N-1)=(N+L)/(N—L) > 0, thenNul(gs) = 5 holds.
(2 IN>4and e {SyL(m|meZ, (N-1)/2<m<N-2,m#L-1,N-L-1},
then Nul(gs) = 7 holds.
(3) If Niseven N >4, L # N/2,and & = SyL((N —2)/2) = —(N + 2L)?/(N —
2L)? < 0, then Nul(gs) = 5 holds.
(4) Nul(gs) = 3 holds for any other s such thaf ¢ {—1, —(N + L)?/(N — L)3}.

In particular, if Nulgs) > 3, thense RU +/—1R. If m<min{L —1, N — L — 1}
ormaXL —1,N—L -1} <m, thenseR, and if minL —1,N—L -1} <m<
maxL —1, N — L — 1}, thens € v/—1R.

Since the set of such that Nul§s) = 3 is connected and includes 0, and since
go(2) = z-~N, it holds that Indgs) = Ind(go) = 2d —1 = 2(N + L) — 1 for suchs.

In the case tham = N —1 ands® = (N + L)/(N — L), each of the flat-ended
minimal surfaces above has the same symmetry as that of 'Sostéloffman-Meeks’
surfaces. Hence we can compute their indices by applyingrtséhod in Nayatani [20,
19] (see also [17]).

Set
(N—-1L)s?>+ (N + L)

©(8):= 2Ls

Then, for anys, t is given byt = —7(s) & /7(s)2 + 1. In particular, for anys € R, it
also holds that € R. Here we choosé = —t(s)+ /()2 + 1. If s> 0, thenz(s) > 0
andt > 0. Moreover, since

(s+1(9)?— (z(s)?> + 1) = %(32 +1)> 0,
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we haves > t.
Setl1(2) :=7Z, 1,(2) := ¢nZ and

ZL+m(ZN _ S)2
Nm 1= dz
(2N —1)2(2N + t-1)2

Then it holds that

0s(11(2) = 9s(2), 11" 1m = Tim,
0s(12(2)) = tn " 0s(@), 12 m = oS T T .

Let Xneu (resp. Xpir) be the flat-ended IR-noid given by the Weierstrass datg, ) =
(9 nTO7N=D) MN-1n-1) With hy_g € R\ {0} (resp.hy_1 € V1R \ {0}).

Recall here that, for any conformal minimal immersitz) = '(X1(2), X2(2), X3(2))
whose Weierstrass data is given lgy §), the following assertions hold:
(1) X(11(2)) = £4(X1(2), —X2(2), X3(2)) holds up to parallel translations if and only if
(g9, n) satisfies

(6.5+) 0(11(2) = 9(2), 11"n = +£7.

(2) X(12(2)) = =£'(cos(Lm/N)X1(2) — sin(2Lm/N)X2(2), —sin(2Lx/N)X1(2) —
cos(d/N)X2(2), X3(2)) holds up to parallel translations if and only ifg,(n)
satisfies

(6.61) 9(12(2)) = e t0@), 12" = o'

Since the Weierstrass data ofye, satisfies both of the conditions (6. and
(6.6,), it is symmetric with respect to botk;xs-plane and the plané(xi, X2, X3) €
R3 | x; + v/—1x2 € zon"R} up to parallel translations. Sindd sFoN= = Mmlo
g /NFoyN-0) also have the same symmetry Xs., if we denote it byG, then it
holds that

(Xneu(11(2), G(11(2))) = (Xneu(12(2)), G(12(2))) = (Xneu(2), G(2)).

Hence we see thatXney, G) is an eigenfunction of the Laplacian* with respect to
the metricG*(dsgz) on M = C which satisfies the Neumann boundary condition as an
eigenfunction on the fundamental closed domain of the sytnyme

Q:={zeC|0<argz < n/N}.

On the other hand, since the Weierstrass datXgf satisfies both of the condi-
tions (6.5) and (6.6), it holds that

(Xoir(11(2)), G(11(2))) = (Xpir(12(2)), G(12(2))) = —(Xoir(2), G(2)).
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i’

9(2) 9(0<2)
o 0 >
—alon Tt

v

Fig. 6.1. The caseN, L) = (2, 1).

Hence we see thatXpj, G) is an eigenfunction ofA* which satisfies the Dirichlet
boundary condition as an eigenfunction gn

Now, the pushforwards of these functions @ycan be regarded as eigenfunctions
of the Laplacian with respect to the standard mecrhj;é%2 on the closed domain

G(@) = M tog@)

weC, —

= {nl(w) e

Ln <argw < 0} U {H’l(oo)},

which satisfy the Neumann or Dirichlet boundary conditiérwe regard
GOR) =M1og(dR) = (T} (x) e FP|xeR, x<a or 0= x}
UL (—x¢n ") € I x € R, o™ < x} U {TT7}(00)}

as its boundary, where we set:= gs(t/N) = (st + 1)/{t*/N(t — s)} (see Fig. 6.1).
Sincet < s, @ < 0 holds. Moreover, sinces'(t¥/N) = 0, we see that

de d e} d
o 9Ny = 99N 1Ny L N
T2 = oG = SEEN) + gV ()
d( sN+1 d
= —Q — PR t /N
aS{ZL(ZN —S)} Z2—tUN +0 dS( )
N +1 t?+1
= = —— > O,
v (N —s)? | ,_un  tYN(t —5)?

that is,« is monotonically increasing with respect $pand hence the boundafy(0<2)
is monotonically increasing and the domag{2) is monotonically decreasing. In this
situation, we can show that each Neumann (resp. DirichlgBnealue is monotonically
non-increasing (resp. non-decreasing) with resped by the same way as [20, Lem-
mas 1 (b) and 6]. Since Ing{) =2d —1=2(N + L)—1 and Nul@s) = 3 hold for
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any s enough close ta/(N + L)/(N — L), and since Nulf  x+rymv=ry) = S, it must
hold that Indi) =2d-2= Z(N + L) — 2.

Theorem 6.2. Let g be the rational function given bg6.1). If N > 2 and & =
Svit(N—-1)=(N+L)/(N—-L)>0,thenind(gs) =2d —2 =2(N + L) — 2 and
Nul(gs) = 5 hold.

7. Index and nullity of Zy-invariant n-noids

In this section, we give examples nfnoids with nontrivial nullity by applying the
computations in 86.

ExAMPLE 7.1 (h-noids with parallel flux). As we have already mentioned in in
troduction, anyn-noid with parallel ends has nontrivial nullity. Here we elehine their
indices for a typical case.

Let N be an integer such that > 2. For the data

i |11,...,N N+1 N +2
Pj 0 0 o0
a, a —a(N —-1)/2 | a(N + 1)/2

with a € R\ {0}, by solving the equation (2.4), we get the following Weisass data:
n = —taf(2)?dz,

where f is a rational function given by

(N +1)2N +(N—1)
z(zN — 1) '

f(z2) =

andt € R\ {0} is a parameter of so-called Lopez—Ros deformation. Thia dadal-
izes a family ofZy-invariant (N + 2)-noids of TYPE | for eachN > 2 (cf. [11, Ex-
ample 4.9]).

Now, since

z rNz+1 N + 1\ 2N
fEy=(N—qN 2T (22
()= (N -1y (N_l) |

the aboveg is equivalent withgs with s = /(N +L)/(N—L) and (N, L) = (N, 1)
in 86. Hence, by Theorem 6.2, we have lgd& 2(N + 1) —2 = 2(N + 2) — 4 and
Nul(g) = 5.
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EXAMPLE 7.2 (2N-noids with antiprismatic flux). LeN andM be integers such
thatN>2,1<M <N-1and (N, M) = 1. For the data

i [1,...,N[N=+1,...,2N
pj | pen™MID | pigyME@D
a; a a

with p € R\ {0} and a € R, by solving the equation (2.3), we get the following
Weierstrass data:

s +1 22N-M-1(zN _ )2

(7.1) 99 = wn g 1= U a1 q e O%

where
2N-M _
S= I\Fl)qM :ll\.n '
aN-M(p +gM)
g € C\ {0} satisfies
q2N7M _ qM

N—M qgN+1

p>—2p(@p-1=0, p(q)=

andt € R\ {0} is a parameter of homothety chosen to satisfy

_aN(p* - 1)@ + 1)(p +qV)?
(P2 + 1)g2M(p2g2N-2M — 1)

if p2q2N72M -1 7& 0.
In particular, in the casg € R, any 2N-noid given by one of these data has the
symmetry of a regulaiN-gonal antiprism, which has no branch pointhf = 1 and

q# -1
Here we regardy € R \ {0} as the parameter of deformation, and consider the

case that
p=p(@+ vVp(@)?+1>0.

In this case, by direct computation, we have

o P )

9  Jo@z+1

N-M o
NP @ = @ +1)zw(q ),

where we set

o(t) ;= Mt2N-M _ 2N — M)tN — 2N = M)tNM 4+ M.
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Hencedp/aq = 0 holds if and only if
0(@*) = M@*" M +1)— 2N — M)g?N M (@M + 1) = 0.
On the other hands? = Sy,n_m = (2N — M)/M holds if and only if

2 2~2N—-2M __ 1
0= M(pg?™ — 12— (2N — M)(g" M (p + M) = £ )q(zpwqm 1 :

Namely, if ap/oqg = 0, that is, q is a double solution of the equatiop(q) =
(p? = 1)/(2p), then, by Theorem 6.2 again, we have gd& 2(2N — M) — 2 and
Nul(g) = 5. p?g®NM — 1 = 0 with q®N=2M — 1 £ 0 is the case of flat-ended ones
(cf. [14, Remarks 1 and 2] foM = 1).

In particular, in the case thal =2, M =1 andq = p = (V6 + +/2)/2, the data
(7.1) realizes a tetrahedrally symmetric 4-noid. Sisée= 3 = S 1, this is a special
case of both the consideration above and Example 3.3, antkhennullity is 5.

On the other hand, in the case thdt=3, M = 1 andq = p = (v/6 + v2)/2,
the data (7.1) realizes an octahedrally symmetric 6-noidceSs?> = 25/2 #5 = S 5,
by Theorem 6.1 and the fact for the indices of generic susfdmeEjiri—Kotani [4] we
introduced in the introduction, we get the following:

Theorem 7.3. Let X be the octahedrally symmetrignoid as above. Then
Ind(X) =2-6—3 =9 and Nul(X) = 3 hold.

Namely, symmetries of platonic solids do not always inducatrivial bounded
Jacobi functions.

8. Nullity and a flux map

In this section, we study the correspondence between ynalitl a flux map.

In the case oh-noids of TYPE | and positive genus, Pérez—Ros [23] consitler
map from the moduli space of suchnoids to the space of the weights and the heights
of the ends, and defined the nondegeneracy of sudlids mainly by the property
that any bounded Jacobi function is a trivial one, that ig, mhllity of the surface is
3+ 1 = 4. By using these concepts, they analyzed the real analrtictsre of the
moduli space of such-noids.

On the other hand, Umehara, Yamada and the first author [11,3]lZonsidered
a flux map defined as a map from the parameter spacermfids of genus zero with
common limit normals to the space of the weights of the endseéch suit of limit
normals, and proved that, for a generic flux data of TYPE IH TOPE Il with n <8),
there exists am-noid of genus zero which realizes the given flux data, by shgwhat
the rank of the Jacobian matrix of the flux map is maximal fonegee parameters and
limit normals.
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For the case of TYPE II, genus zero and Alexandrov-embed@edin—Ros [3]
considered a flux map defined as a map from the moduli space obf rsmoids to
the space of flux polygons, that is the ordered flux vectorshef énds, and defined
the nondenegeracy of suafnoids in the same way as in Pérez—Ros [23] with the
condition that the nullity is 3. They proved that the flux mapai real analytic diffeo-
morphism on to the space of flux polygons each of which boumdenanersed disc in
the plane.

From these points of view, it seems natural to expect, asdhé&aposition to some
generalization of these results, that if amoid X is degenerate or a critical point of
a flux map in some sense, then there exists a nontrivial bauddeobi function and
Nul(X) > 3. Indeed, we can show this far-noids of arbitrary genus. Although its
proof is given by a quite natural calculation, we show itsadethere to observe the
correspondence between Jacobi functions and flux precisielse we define a flux map
in an essentially similar way as in [11, 12, 13]. Since wetteeaituation different from
that of [23], our consequence also takes a somewhat difféoem from that in [23].

Let U be an open subset @, and| an open interval irR. Letq(t) (t € l) be a
smooth curve ifJ, and X: (U x1)\{(q(t),t) | t € I} — R® a smooth 1-parameter family
of conformal minimal immersions in the sense thét-,t) is a conformal minimal
immersion for eacht € | and that bothlT' o g and IT~* o (/d2) are smooth with
respect to %, t) as maps fromU x | to %, where @, n) is the Weierstrass data of
X(-,t). Assume that each oX(-,t) has a catenoidal or planar end@t). Then the
Taylor or Laurent expansions of,(n) aroundq = q(t) is of the following form:

g=p+rz-a) + (-0 %),

B b
=0 ———+——+f dz,
! {(Z—q)2 g " O(Z)} ‘
where p, ¥, B andb are smooth functions depending only on the parantetet, and
g2 and fp are holomorphic functions ol both of which are smooth oh. By these

expansions, it follows that

B b+ yB
gn={ PE_, P +g +f1(2)}dz,

(z—0q)? z—-
2 2
2 p-B p°b + 2py B
- f
g {(Z—q)2 z—q T A@jaz

for some holomorphic function$; and f,, from which it also follows that

_(1-¢d9m @-p)B  (1-pHb-2pyB
b1 1= G " o + — + (fo(2) — f2(2)),
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gy w Y2 G
2= dz
_ Ve P )B  V-U@+pb+2pyB} V1@ + Fa(2)),
(z—a) z=4
297 _ 2pB__ 2(pb+yB)
¢3 = dZ - (Z—q)2 Z—q +2f1(z)

Let (v, a) be the flux data ofX(-,t). Then we have

1-p’)b—2pyB = —2a
(1-1p9) py v = |p|2Jr1(|0+|0)
vV—=1{(1+ p®)b+ 2py B} = —2av, = | |2Jrl( V-1)(p-),
2 B) = —2 2_1
(pb+ ¥ B) avg = | |2Jrl(l pl*—1),
and hence we get
—2a
= yB, =—P.
=y p2+1"

By integrate the 1-forms above, we have
z 1— 2 B
@ = / ¢1dz= —% — 2av; log(z — q) + (Fo — Fa),

z _ 2
b, = / ¢, dz= —M —2avylog(z—q) + \/—_].(FO + F),

z—q

z
By = / p3dz= _% — 2avz log(z — q) + 2F,

where Fo, F; and F, are holomorphic functions ok each of which is smooth oh.
Henceforth we denote the derivative with respect to therpatert by ; or (). By
differentiate ®;, ®, and ®3 by t, we get

®(1-p)B  —2ppB + (1 - p?)B: — 2qav,

@k =" gy z—q
— 2{avy + a(vy) ) log(z — q) + (Fo — Fak,
(), = av-1(1+ p?)B  V-1{2ppB + (1 + p?) B} — 2qav;
= _

(z—0q)? z—q
— 2{ayvy + a(vo)} log(z — q) + v—1(Fo + Fo),
G -2pB  2(ptB + pB) —2qavs

(P3)r = — a7 7—q — 2{av3 + a(vs)} log(z — q) + 2(Fo):.
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On the other hand, since the Gauss n@&p ,t) of X(-,t) is given by

G="G1, GGy =M tog= Y9+3 -v-1g-0). lg* - 1),

|g|2+ 1

by the expansioy = p + y(z—q) + (z— 9)?g2(2), we have

G1 = |g|21+1{(p+ P+ 7z -0 + 7z + Oz~ ),
Gy = |g|2+1{( V=1)(p-1) + (V=1 (z-q) + V-1y(z-9) + O(|z—q*)},
Gs = |g|2+1{(|p|2 1)+ Pr(z—a) + py(z—0) + O(1z—q*)}.

Note here that§+P,—v/—1(p—0),|p[*—1) = (|p|*+ 1)(v1,v2,v3), v1°+v2” +vs® =
and @12 + vo? + v3?), = 0. By direct computation, we have

(l9l” + 1)<<I>t G) = (|9 + 1){(®1):G1 + (P2): G2 + (P3):G3)

T (z-qQ2 q)2[ ®B{(1— pA)(p+P) + V=11 + pI)(—v-1)(p—P) + 2p(| p|* — 1}]

+ Bl ) 1+ VoI V=D + 29T

—2pB{—p(p + P) + vV=1p(—v-1)(p—P) + (| p|* - 1)}
—B{(1-pA)(p+P) + vV-1(1+ p)(—v—=1)(p—P) + 2p(|p|> — 1)}
+ 2geafvi(p + P) + v2(—v=1)(p — P) + va(| pI* — 1)}]

+(_ q)2[ q7B{(1— p?) -1+ vV=1(1+ p?)-v~1+ 2p- p}]

—2logz - q)[a{(p + P)v1 + (—v—=1)(p — P)v2 + (| pl? — 1)vs}
+a{(p+ Pk + (—V=1)(p — P)(w2) + (|p|* — 1)(s)}] + O(1)

1
= m(—QtB'O)

1
+ m[—qtyB-Z(lpler1)+ZmB-(|p|2+1)— B -0
+ 2g¢a{vs - vi(Ipl® + 1) + vz - v2(|PI* + 1) + v - va(|pl® + 1)}]

zZ—
+ - )2( ayB-0)
—2log@— q)[ac{va(|pl? + 1) - v1 + v2(|p® + 1) - v2 + va(|pl* + 1) - v}
+ a{vi(Ipl? + 1)« (v + v2(Ipl? + 1) - (v2)e + va(IpI2 + 1) - (va)i}]

+0(1)
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1
z—q

{—2qa(|pl* + 1) + 2p B(|p|* + 1) + 2qra(v1® + v2* + v3?)(| p|* + 1)}

1
—2kw@—q%a@f+vf+v¥mm2+n+a-§m2+w2+w%ﬂm2+n}
+ 0(1)

_ 2pB
— o2+ D 222 — 2109z ) + O,

Finally, we get

(8.1) (@, G)

_|m2+1{2gB

= Erilz—q 2a; log(z — q)} + 0(1).

Hence, if pp = 0 anda; = 0, then(X;, G) = Re(®¢, G) is bounded neagq.

For later use, we also give here an estimate #¢-(, t))*(X;) in the special case
that (X;, G) = 0 holds for somet € |, that is, X; is a tangent vector field of the
image of X( -, t). If, for instance,v3 = G3(q) # 0, that is|p| = |g(q)| # 1, then it
holds aroundy that

1
(Xl)x(XZ)y - (Xl)y(XZ)x

x [{(xz)y(xl)t —(xl)y(xz)t}giX XX+ (xl)x(xz)t};—y]

(X, 1) (%) =

By straightforward calculation, we see that

2 2
a

(X1)x(X2)y — (X1)y(X2)x = — Reg1Im ¢z + Im ¢y Rep, = 97

_ (PP =D)BP+ (z—a)fa(@d + Z—-0) a2
|z—ql* ’

9n
dz

where f, is aC-valued real analytic function od. On the other hand, we also see that
1 I _
(X2)y(Xo)t = (Xp)y(X2) = > IMm{g1 - (P2)r — ¢2 - (P1)t + P1 - (P2)t — P2 - (Do)},

—(X2)x (X1t + (X)x(X2)t = % Re(¢1 - (Do) — P2+ (P1)t + b1+ (P2) — 2 - (Do),
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and, if pp = 0 (and hencey); = (v2); = (v3); = 0) anda = 0, then

¢1- (P2t — P2 - (Pt

_ [0 2Bg{—v-1(1- pAav, — (1 + pPavi +2pyB} () ]
- ﬂ[(z—q)‘* * Z-0) MRCETE
(0 fu(2) } _ VI

‘ﬂ{(z—q)“(z—q)z a2’

()
lz—ql*’

$1- (Do) — o+ (@) =

where f, (resp. fc) is a holomorphic (respC-valued real analytic) function otJ.
Since we assum@ € C and |p| # 1 here, it holds that|p|?> — 1)|B|?> # 0 and hence
we see that X(-,1))*(X;) extends smoothly on the erd Also in the case that; # 0
or vy # 0, we can show the same assertion by quite similar calcuakatio

Let M be the space of-noids of arbitrary genus. Define a flux map: M —
(S)" x R" by F(X) = (G(ch), - - -, G(h), w(th), - - -, w(gn)) for any X: M = M \
{Ga,...,0n} — R®, whereG is the Gauss map oX, G(gj) andw(q;) is the limit normal
and the weight of the eng; of X as before [ =1,...,n). Setp; :=9(q;) = Mo G(q;)
anda; :=w(q;) (j =1,...,n). Let X: M x| — R® be a smooth variation itM such
that )V((-,O) = X, wherel is an open interval including 0. It is known th{af(th:o,G)
is a Jacobi function oM. Now, we may assume thé(qj,t) #%0,0,1)  =1,...,n)
holds for the Gauss ma@(-,t) of X(-,t) (t € 1) without loss of generality.

We also assume foX that there exists a 1-parameter family of universal coggrin
mapsn(-,t) (t € I) satisfying the following conditions:
(1) 7: M x| — M is a smooth map.
(2) Eachn(-,t): M — M(t) is a holomorphic map, where we denote bi(t) the
compact Riemann surfadd equipped with the complex structure induced )3{/- 1)
and extended naturally.
(3) The family of lifts X(-,t) := )V((yr(-,t),t) (t € 1) is a smooth 1-parameter family
of conformal minimal immersions in our sense. ~

Note here thatM does not depend on Indeed we may sell := C (resp.C, the
upper half-planeH) if the genus ofM = 0 (resp.= 1, > 2). Since

Xt('! O): XI(T[(' ’ 0)! 0)
+ X (m (-, 0), 0)a 0 (-, 0)+ X (7 (-, 0), 0)xz 0 7)e( -, 0),

it always holds tha()v(thzo,G) om(-,0)= (X, Gom)|i=0, Where &, x2) is a local co-
ordinate system oM = M(0). Hence we can estimate the Jacobi funct{&@h:o, G)
by applying (8.1) to the family of liftsX(-, t) even in the case of positive genus.

If the variation preserves the flux data, then, sipgeanda; are constant functions
of t, it holds that p;}y =0 and @;); =0 (j =1,...,n). Hence the Jacobi function
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(X{lt=o, G) is bounded onM, since, by (8.1) and the periodicity, its lift
(Xt, G o 7)|i—0 = Re(®y, G o 7)|i—o is bounded onM. Parallel translations, rotations
and Lopez—Ros deformations in the case of TYPE I, and horiethand deformations
to their associated family for flat-endednoids are in this case.

Here we sayX € M is a critical point of the flux mapF, if there exists a smooth
variation X(-,t) in M such thatX(-, 0) = X,

. 0 v 0 v
Xt|t=O=a X(‘,t)¢01 a F(X(-,t)):O,
t=0 t=0

and in particular,)v(t|t:0 does not coincide with the derivative of some deformation
induced only by some parallel translations and some coatelitransformations.

Now, assume thatX is a critical point of . The criticality of X implies
(Pj)tlt=o = 0 and @j)tlt—o =0 (j = 1,...,n). Hence, by (8.1) again, we see that
the Jacobi functior()v(th:o, G) is bounded onM also in this case. If this function co-
incides with the Jacobi function induced by a family of pkalatranslations defined by
tV € R® (t € 1), then the variation defined bYX°(-,t) := X(-,t)—tV (t € 1) satisfies
X%+, 0)= X and

(X%i=0, G) = (X¢|t=0, G) — (V, G) = 0,

that is, X0|;—o is a tangent vector field oX(M). Set X°(-,t) := X°(x(-,1),t) (t € I).
Note here that

(7 (-, 0 (X*(Xl=0)) = (X°(-, 0)Y'(X{( (-, 0), 0))

2
= (XO(+, )Y (XP(+, 0) = > _(xi o m)(+, 0)- (X°(+, 0))* (X (x (-, 0), 0))

i=1

2
= (X°(+, 0))" (XPl=0) = D_(%i o (-, 0)- (w (-, O)* (X*(Xx (7 (-, 0))))

i=1

2
= (X°(-, 0 (X)) = D% o 7N (+, 0)- (-, o))*(i) .

") 3Xi

and that the second term of the right-hand side of this efyualismooth. Sincex®(-,t)
has the common Weierstrass data wid{ - , t), we can apply the estimate for
(X(+, t))*(X¢) under the conditionsp, = 0 anda = 0 also to K°( -, 0))*(X?|i0)
around each end, and we see that the pullback vector I{é(dv(?h:o) on M extends
smoothly onM.

Hence there exists a 1-parameter family of transformatimug of M which in-
ducesX*()v(?h:o), from which it also follows that there exists a 1-paramdganily of
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coordinate transformations of defined onM which induces)v(?h:o. This contradicts
our definition of criticality. Therefore, we conclude that any critical point X of the
flux mapF, Nul(X) > 3 holds.

We note here that the theorems in the previous sections taenobtained directly
as corollaries to the fact above, since it is difficult in gehdo examine a givem-
noid to be a critical point ofF or not. Indeed, even if it is a double solution of some
part of the equation (2.3) (or (2.4), (2.6)), such asAlet 0, it is not always a critical
point of 7. Moreover, the fact above gives us no information about indésnce we
need some other criterions to understand the correspoaderteveen index and flux of
n-noids.
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