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Abstract
Let (G/H, o) be a compact 4-symmetric space of inner and exceptiona. typ
Suppose that the dimension of the centertbfis one andH is not a centralizer of
a toral subgroup o6. In this paper we shall classify the involutianof G satisfying
TOO =00T.

1. Introduction

It is known thatk-symmetric spaces is a generalizations of symmetric spades
definition is as follows:

Let G be a Lie group anH a closed subgroup d&. A homogeneous spacg/H
is called ak-symmetric spacéd there exists an automorphism on G such that
e G CcHCG?, whereG” andGj are the sets of fixed points of and its identity
component, respectively,

e oX=Idando' #Id for any| < k.

We denote by G/H, o) a k-symmetric space with an automorphismof orderk.
Gray [2] classified 3-symmetric spaces (see also Wolf and/ Gr4] and [15]). More-
over compact 4-symmetric spaces are classified by JeméneZ ¥ structure ofk-
symmetric spaces are closely related to the study of finileroautomorphisms of Lie
groups. Such automorphisms of compact simple Lie groupe whassified (cf. Kac [5]
and Helgason [3]).

It is known that involutions ork-symmetric spaces are important. For example,
the classifications of affine symmetric spaces by Berger f&] &n essence, the clas-
sification of involutions on compact symmetric spacggH preservingH. Similarly,
such involutions play an important role in the classificated symmetric submanifolds
on compact symmetric spaces (cf. Naitoh [9], [10] and [11]).

On a compact 3-symmetric spad®/H, o), an involutiont preservingH satisfies
Too =00t Of Too =0 tor. The classification of affine 3-symmetric spaces ([14]
and [15]) was made by classifying involutionssatisfyingt oo = o o 7. Moreover, in
[12], [13] half-dimensional, totally real and totally gesxic submanifold (with respect
to the canonical almost complex structures) of compact Bierian 3-symmetric spaces
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(G/H, (, ), o) by using involutionst on G satisfyingr oo = oo 7 are classified.

Let G be a compact simple Lie group an@/(H, s) a 4-symmetric space of inner
type. Now, we consider the problem of the classification thepof involutions ofG
preservingH. In [6], the authors studied involutions @ preservingH for the case
where the dimension of the cent&(H) of H is at most one. In particular we classi-
fied involutions ofG preservingH for the case where di@(H) =0, or dimzZ(H) =1
and H is a centralizer of a toral subgroup &. In this paper, we treat the case where
G/H is exceptional type andi is not a centralizer of a toral subgroup @f In par-
ticular, we classify all involutiong of G for the case where difd(H) =1 andH is
not a centralizer of a toral subgroup &f satisfyingr co = o o7.

More precisely, letg and b be the Lie algebras o6 and H, respectively. Then
there exists a maximal abelian subalgelraf g contained inh such thatz(t) = t
for any involution z preservinglh. We classify involutionst of the root system of)
with respect tot. Then for each involutiong of the root system of), there exists
an involution o preservingh such thatrg|; = 7. Each involutionz can be written as
T = 190 Ad(exp~/—1h) or r = Ad(exp+/—1h) for some~/—1h € t, and we classify all
T by considering conjugations within automorphisms pregsgr. For the case where
T = Id, we classify all involutionst by an argument similar to [6].

Using the result of this paper, the non-compact Riemanniapdmetric spaces of
exceptional type will be classified in forthcoming paper. [7]

The organization of this paper is as follows:

In Section 2, we recall the notions of root systems neededhi®rremaining part
of this paper. Moreover we recall some results on automommhisf orderk (k < 4).

In Section 3, we remark on some relation between involutmné-symmetric space
(G/H, (, ), o) reservingH and root systems of the Lie algebra Gf

In Section 4, by using the results in Section 3, we descrileerdistrictions of in-
volutions to the root systems for the case where the dimensiche center is one.

In Sections 5 and 6, we enumerate all involutianef compact 4-symmetric spaces
of exceptional type such tha{H) = H, the dimension of the center &f is one,to0 =
OOoT.

In Section 7, we describe some conjugations between ingokit

In Section 8, by making use of the results in Sections 5 andgéthear with con-
jugations in Section 7, we give the classification theorenthaf conjugation classes
of involutions.

2. Preliminaries

2.1. Root systems. Let g and t be a compact semisimple Lie algebra and a
maximal abelian subalgebra @f respectively. We denote hy. and tc the complexi-
fications ofg andt, respectively. LetA(gc, tc) be the root system of with respect
to t¢ and II(gc, tc) = {o1, ..., an} the set of fundamental roots af(gc, tc) with
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respect to a lexicographic order. Fere A(gc, tc), put
(2.1) 0o = {X €gc; [H, X] =a(H)X for any H € t¢}.
For o € A(gc, tc) we defineH, € t¢c (¢ € A(ge, tc)) by a(H) = B(Hy, H), H € t¢,

where B is the Killing form of gc. As in [3], we take the Weyl basi§E, € g,: a €
A(ge, tc)} of ge so that

[Eaa Efot] = Hou
[Ea, Eﬂ] = Na,ﬁ EOH-/S: Na,ﬁ S R,
Na,ﬁ = _Nfa,fﬂi

A, =E,—E,, By,:=v-1E,+E,)€g.

We denote byA*(gc, tc) the set of positive roots ofA(ge, tc) with respect to the
order. Then it follows that

(2.2) g=t+ Y (RA+RB,), t=)» RV-1H,.

aeA*(ge te) i=1

For o € A(gc, tc), we define a Lie subalgebra, (2) of g by
(2.3) su,(2) := Rv—1H, + RA, + RB,.

It is obvious thatsu,(2) =~ su(2). We denote byt, the root reflection alongx €
A(ge, tc)- Then there exists an extension f to an element of the group I
of inner automorphisms of, which is denoted by the same symbol tas Since the
root reflection ofsu,(2) alonga coincides with the restriction of, to R+/—1H, and
t, is the identical transformation on the orthogonal completra R+/—1H, in t, the
following lemma holds.

Lemma 2.1. There exists an elemenp € Int(su,(2)) (C Int(g)) such that
le =t

DefineK; etc (j =1,...,n) by
ai(Ky) =46, 1,j=1,...,n,

and denote the highest roétof A(gc, tc) by

n
8= ijaj, m; € Z.
=1
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In this paper, properly speaking, we denote Ad(exg—1H) (H € t¢) by =4 simply.
Then from (2.1) we have

(2.4) th(Ey) = €V 2ME, ¢ e Age, to).
Assume thaty is simple. Then the following is known.

Lemma 2.2 ([8]). Any inner automorphism of orde? on g is conjugate within
Int(g) to somerk, with my =1 or 2.

If h—h = Zi”:la,» Ki, & € 2Z for h, ' € tc, we say thath is congruent toh’
modulo 27(gc, tc) and it is denoted byh = h’ (mod 21 (gc, tc)). It follows from
(2.4) thatty = 1y if h=h" (mod 21 (gc, tc)).

REMARK 2.3. According to Lemma 2.2, for any inner automorphisgmof order
2 ong, there exists an inner automorphisnof g such thav(H) = K; (mod 21 (g¢, tc)),
mi =1 or 2.

We write h ~ k if 7, is conjugate torx within Int(g). Then the following lem-
mas hold.

Lemma 2.4 ([6]). (An) If g is of type A, then K ~ K 1.
(Dp) If g is of type Oy, then K ~ K, (1 <i <[n/2]). In particular, if n is odd
then K1 ~ K.
(E6) If g is of type E, then Ki ~ Kg, Ko ~ K3 ~ Ks.

Lemma 2.5([4]). Leto be an inner automorphism of orderon g. Theno ~
T1/2h, Where either

ho = Ki, m =4,

hy =Ki or Kj+Kg, m =3 mj=m=2,

h=Ki +Kj, m=1, m; =2,

hs =K +K;j+Kg, m=mj=m=1,

hy = Ki, mj =1,

hs = Ki, Kj+Kg or 2Kp+Kg, m =2, mj=mg=mp=mg=1

REMARK 2.6. (1) If o is conjugate tor(2)n,, then a pair ¢, g°) is symmetric.
If o is conjugate torg,2)n,, then a pair §, g”) is 3-symmetric. ([6])

(2) Letj be the center of°. If o = 72, (@ =0, 1, 2, 3), then the dimension gf
is equal toa ([4]).
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3. Some remarks on automorphisms of order 4

In this section we use the same notation as in Section 2. G¢H( o) be a 4-
symmetric space with an inner automorphismof order 4. Letg and h be the Lie
algebras ofG and H, respectively. Note thaf coincides with the sef” of fixed points
of o. Choose a subspaae of g so thatg = h + m is an AdH)- and o-invariant
decomposition. Let be a maximal abelian subalgebra gfcontained inh, andj the
center ofb.

Suppose tha is a compact simple Lie algebra and dirx 1. Let Aut,(g) be the
set of automorphisms of preservingh. Then by Lemma 2.5 is conjugate within
Int(g) to somer(1 o)k, M = 3 OF T(1/2)(K.+Ky), Ma = Mp = 2. In the previous paper [6],
we classify involutions ofg preservingh such thato is conjugate torg sk, m = 3.
Then the following lemma and two remarks hold (see [6]).

Lemma 3.1 ([6]). ASSUM& = 7(1/2)(K,+Ky)» Ma = My = 2, Wheres = 3"_; m;a;
is the highest root ofA(gc, tc) as in Section 2 Then for eachu € Auty(g), we have
,uoaou’l =o oro L

REMARK 3.2 ([6]). Lemma 3.1 dose not hold in general. dfis conjugate to
T2k (M = 3 or 4), then Lemma 3.1 holds. However in other cases, Lemma 3.
dose not hold.

REMARK 3.3 ([6]). If o is an automorphism of order 2 or 3, then we have
cop~t=0 oro! for any u € Auty(g).

Now, similarly as in the proof of Lemma 3.2 and Lemma 3.3 in, [ have the
following two lemmas.

Lemma 3.4. Suppose that = 7(1/2)K.+k,) With my =my = 2. Lett be an in-
volutive automorphism of preservingh. Then
(i) too =0cort if and only if 1(Ky + Kp) = Ka + K, (mod 41 (gc, tc)),
(i) Too =0"tor if and only if t(Ks + Kp) = —(Ka + Kp) (mod 47 (g, tc)).

Lemma 3.5. Suppose that = 7(1/2)(k,+ky) With My = mp = 2.
(i) Lett; and 1, be involutive automorphisms @f preservingh. If there existsu €
Auty(g) such thatp otpo ™t =15, Then

(3.1) g"=g” bhnNgtx=hng®

+1 ;tlo ’

(i) Putt :=porout neAut(g). If too=0 7/,

respectively.

ot,thent’ oo =0o
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In the remaining part of this paper, we suppose et 7(1/2)k,+k, for some
Qa, @p € (g, tc) With my = my, = 2. Then the Dynkin diagram adf is isomorphic
to the extended Dynkin diagram df (g¢, tc) excepta, and o (cf. Theorem 5.15 of
Chapter X of [3]). We denote byI(h) the fundamental root system gfcorresponding
to the Dynkin diagram of). Then the following holds.

Lemma 3.6 ([6]). For any involutive automorphism of g preservingh, there
existsu € Int(h) such thatu o t o u=1(I1(h)) = I1(h).

From Remark 3.3 and Lemma 3.1 if djm= 1, then we have the following
two cases:
Too =001 Of Too =0 tor.
In the following sections, we shall classify the conjugaticlasses of involutive
automorphismg within Auty(g) such that diny =1 androo =0 ot.

4. The restriction of T to t

In the remaining part of this paper we use the same notatioin &ections 2
and 3. Let G/H, o) be a compact 4-symmetric space such t@ats compact sim-
ple Lie group and> is inner automorphisms of order 4. As before, {die a maximal
abelian subalgebra of contained inh. We suppose that = 7(1/2)k,+k,) fOr some
g, ap € IT(ge, tc) wWith my = my, = 2. Then; = Rv/—1(K, — Kp,). Let ¢ be an in-
volution of g satisfyingtr o0 = o o . By Lemma 3.6, we may assume thgt) = t
and t(I1(h)) = I1(h). Then it follows from Lemma 3.4 that
(C1) t(Ka — Kp) = Ka — Kp, 7(Ka + Kp) = Ka + Kp (mod 47 (gc, tc)),

(C2) 7(Ka — Kp) = —(Ka — Kp), 7(Ka + Kp) = Ka + Kp (mod 4T(gc, tc))-

Now we denote by(m, n) the set ofa € A*(gc, tc) such that the coefficients of

ay and oy in o« arem and n, respectively. Then we have

g™ = {£(0, 0, £(0, 1), £(0, 2, £(2, 0), £(2, 1), £(2, 2},
(g™=)" = {£(1, 0, £(1, 1), £(1, 2},
g™ = {+(0, 0), £(1, 0, £(0, 2, £(2, 0), £(1, 2, +£(2, 2},
(g™0)* = {£(0, 1), £(1, 1), +(2, ).

(4.1)

The right hand sides are the sums of the root spaces of théisgemots.
CAsE (C1) We haver(Ks) = Ks (mod 41 (g¢, tc)), S=a,b and hencer o 7y o
t1=1¢,s=ab. Thus we have

(@) = g%, (@) =) G=ab
and

T(ghe N g™) = g% N g™, (@)t N (™)) = (@)t N )"
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Therefore by (4.1) the involution satisfies following relations.

t({£(1, D)) = {£(1, D},

4.2) t({£(1, 0, £(1, 2}) = {£(1, 0, £(1, 2},
t({£(0, 1, £(2, I}) = {£(0, 1), £(2, 1},
t({£(2, 0, £(0, 2}) = {£(2, 0, £(0, 2}

CASE (C2) We haver o7, o 71 = 1, and hence

T(g™e) = g™, T((g™)") = (g™)".
Therefore the involutiorr satisfies following relations.
t({£(0, 0, £(2, 2}) = {£(0, 0), £(2, 2},

7({£(0, 1), £(0, 2), £(2, 0), £(2, }) = {£(1, 0), £(0, 2, £(2, 0), £(1, 2)},
T({£(1, 0), £(1, 1), £(1, 2}) = {£(0, 1), (1, 1), £(2, 1}.

Similarly as in the case (C1), since

(g™ N g™e) = g™ N g™, T((g™)" N (g™)") = (g™)" N (g™e),
it follows from (4.1) that

t({£(1, DY) = {£(1, D},
(4.3) t({£(1, 0, £(1, 2}) = {£(0, 1), £(2, 1)},
t({£(2, 0, £(0, 2}) = {£(2, 0), £(0, 2}.

Next, we investigate the possibilities of; for the case forg is a simple Lie al-
gebra of exceptional type antl = t(1/2)K,+Ky), Ma = Mp = 2.
From [4], a pair §, h) is one of the following:

@ (¢, 50(6) D 50(4) B R), (e7, 5u(6) ® su(2) BR), (e7, 50(8) ® s0(4) B R),
7 (ea 50(12)® su(2) ®R), (4, 5p(2) ® 5p(1) D R).

Suppose thap is of type e;. According to [4, Theorem 3.2] we may assume the
Dynkin diagram offy coincides with the extended Dynkin diagram of except® in
the following:

(i):$:i:$:

a7 o as o4 a3 oy o (=—0)
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(")3331333

a7 o o5 s a3 op o (=—6)
CAsE (i) In this case,o = t2)K,+Ks). PUlY = a2 + a3 + 204 + 205 + 206 + 7.
Then we have(0, 2) = {y} and (2, 0) = @. Therefore by (4.2) and (4.3) we have

(4.5) (y) =y or —y.

From the Dynkin diagram (i) the involutiom satisfies one of following relations:
(1) t(i) =« (i=0,2,3,4,5,7),

(i2) T(xo) = a7, (i) =i (i =2,3,4,5),

(i3) t(as) = a5, t(ai) =i (1 =0,2,4,7),

(i4) t(ag) = a7, t(az) =as, (o) = ¢ (i =2, 4),

(i5) t(w2) = a3, T(ai) =i (i =0,4,5,7),

(i6) (o) = a7, t(a2) = a3, t(o) = ¢ (i =4,5),

(i7) t(e2) = a5, T(i) =i (i =0,3,4,7),

(i8) t(xo) = a7, T(2) = @5, (i) = i (i = 3, 4).

For each case (i1)—(i8) we calculatéx;) and t(ag).

(i1): It follows from (4.5) thatr|¢ =Id; or t(¢) = ¢, 1 =0,2,3,4,5, 7t(01) =
a1 +y andt(ag) = —y + ae. This is of Type | in Table | below.
(i2): Sincet(ag) = a7 and (o) = o, | = 2, 3, 4, 5, we haver(ay) + t(ag) =

a1 + ag. Then from (4.5) we have(ag) ¢ A. Thus this case dose not occur.

(i3): As in (i2) we haver(ag) ¢ A, and this case dose not occur.

(i4): Similarly as in the case (i2) it(y) = y, then we haver(wg) = @1 + y and
(1) = —y + ae. This is of Type VI in Table | below. Ifr(y) = —y, then we have
7(ae) = o1 and t(x1) = we. This is of Type IV in Table | below.

(i5): We have 2(a1) + 2t(ae) = 201 — 2 + a3 + 206 and this case dose not occur.

(i6)—(i8): Similarly as in the case (i5) these cases do naunc

Case (ii) In this case,o = 12 K,+K,), and an involutionr satisfies one of
the following:

(i1) () =0 (i =0,3,4,5,6,7),
(ii2) (o) = a0, T(z) = 7, T(ota) = s, T(0s5) = @ts.

Note that
a2, 02+ g, 02 +a3+ a4, 02+ 0g+as,
axtazt+oag+os, ax+ost+os+oe, o2+ o3+ as+as+as,
ax+oas+as+ag+az, ar+az+ 204+ os,

(46) (0,1 =

aztaztastast+asgtar, axtaz+204+os+os,
oo+ a3+ 2004 + a5 + og + a7, oo + a3 + 2004 + 205 + g,

o + a3+ 204 + 205 + og + a7, g + a3+ 204 + 205 + 2006 + 07
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(ii1): In the case (C1) sincex + i ¢ A anday —aj ¢ A, 1<i <7,i # 4,
1<j<7wehaver(ax+o)¢A(L<i=<7,i#4)andt(ec1—)¢A(L=Zi=<T7).
Thus we have

A7) tle)+a¢A, Tle)—o; ¢4, i=3,567]=3456,17.

From (4.2) and the fact thdt-(2, 1)} = @, we haver(az) € {£+(0, 1)} and therefore it
follows from (4.6) and (4.7) that(«2) = a2 and t(«1) = 3. Thus we haver|¢ = Id;.

In the case (C2) since1+o; ¢ A, a1 —aj ¢ A, 1<i<7,i #3,1=<j <7, we have
(et +a)¢gAQ=<i<7i#3)andr(e1—«aj)¢ A (1= ]j =<7). Therefore we have

(4.8) (o) +ai €A, t(e1))—aj¢A, 1=4,56,7,j=3,456,7.

Since{£(2, 1)} = @, it follows from (4.3) thatr(«1) € {£(0, 1)}. Hence by (4.6) and
(4.8) this case dose not occur.
(ii2): We note that

(4.9) T(og) + t(o2) = a1 + a2 + a3 + a4 — g — az.
Similarly as in the case (iil) of (C1) we have
(4.10) () +ai €A, t(w)—aj¢ A, 1=3,56,7,j=3,456,7

and t(a2) € {£(0, 1}} which, together with (4.6) implies that(a;) = —ap — a3 — 204 —
205 — 206 — 7. From this and (4.9) we have(ay) = ay + 2a, + 2a3 + 3a4 + 205 + ap.
This is of Type VIl in Table | below.

By a similar argument as above, we obtain the possibilities|p# Id which are
listed in Table | below.

REMARK 4.1. According to [4, Corollary 3.5]K; + K3 ~ Ky + Ks ~ K3 + Ksg
for the case wherg = ¢;.

REMARK 4.2. For Type VIl in Table I, it is easy to segK; + Kg) = —Kj; +
3Kg = —(K1 + Kg) (mod 41 (gc, tc)). Hence we have oo = o=t o 7. Similarly, for
Type | and Type IV we have oo = o ot and for the other types, we haweo o =
(771 oT.

By the above argument together with Remark 4.1 we obtaioviatg proposition.

Proposition 4.3. Suppose tha{G/H, o) is compact4d-symmetric space of excep-
tional type ando = 7(1/2)K.+ky): Ma = My = 2. Let T be an involution ofg such that
too =0 o7 and r|¢ # Id,. Thent is conjugate within one of two involutions of
Type | and Type IV in Table L
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Table I. The possibilities ot|, such thatr|¢ # Id (0 = /o).

Type[ g [ h 7|
| ¢s | K+ Ksg o = (I =0, 2, 4),0[1 = o, 03 > o5

aj—>a (i=2,6),00~ as

I eg | Ks+ Ks o3 = oo + az + 204 + 205 + ag

o5 > a1 + as + 203 + 204 + o5
oo = o2, 0g = 04

1 ¢s | Ks+ Ksg az > oy + a2 + 203 + 204 + a5
o5 = oo + a3z + 204 + 205 + ag
v e7 | Ki+ Kg ai—>a (i =2,4), 01 ag, a3 > a5, a7 = o
agr—a (i=0,234,5,7)
Vv e7 | Ki+ Kg o1 = og + o + a3z + 204 + 205 + 206 + 07

ag > —og — oz — 204 — 2005 — 0tg — A7
a>a (i=2,4),03 a5, a7 ag

VI e7 | Ki+ Kg o1 > —0p — o3 — 2004 — 205 — 0lg — Ol7

og > o1 + o + a3 + 204 + 205 + 206 + 007
oo — 0o, 03— 07, 04— g, 05> U5
VII e7 | K14+ Ky a1 > a1 + 202 + 203 + 304 + 205 + o

g > —p — o3 — 2004 — 2005 — 2006 — A7

ag—a (1=0,2,34,56,7)
VIII eg | K1+ Kg | ag = 201 + 202 + 3oz + dog + 3os + 206 + a7 + a3
Olj_l—>—()[1—20[2—30[3—40[4—30[5—20[6—017
ai—~a (i=0,2,3),01 = a1 + o+ 203 + 204
oy > —0p — 2003 — 0y

IX fa | Ki+Ka

Finally, in the previous paper [6], we proved the followirgmma.

Lemma 4.4 ([6]). Lett, be the(+1)-eigenspace ot|,. Then

dimg® = dimt, +#A"(gc, tc) + 2#{a € A% (g, te): 7(Ea) = Eu}
—#a € AT (gc, te); T(a) = a}. ]

5. The involution for the case wheret|, # Id

As before, let G/H, o) be a compact 4-symmetric space such tBats simple
ando is inner. Suppose that dign= 1 and t(1,2)k,+k,), Ma = My = 2. In this section
we investigate involutions of g such thatr oo = o ot and r|; # Id.

From Proposition 4.3 we investigate the Type | and Type IV &bl€ I.
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Type I: In this caseg = ¢g and h = s0(6) ® so(4) & R. Let t. be the ¢1)-
eigenspaces of |¢, respectively. Sincey;(t(K;)) = 7(«)(K;j), we have

V=1t = spafKy + Kg, Ky, K3 + Ks, Ka}, v—1t_ = sparfK; — Kg, K3 — Ks}.
For eachh_ € v—1t_, we haverot,_ o1 = 7,(n.y = 7_n_. Thus we have
(5.1) @ ) totom =T1o01o.

From (5.1) for eacth € t_, an involutiont o 1, is conjugate within Int{) to z. Then
using h_ :=t(K; — Kg) € +/—1t_, we may assume(E,,) = E,,. Indeed, ift(Ey,) =
aE, (aeC, |a] = 1), then it follows from (2.4) and (5.1) that

(th. ) o7 0 1 (Euy) = ™V IE,,.

Taking t so thata = e 271 we may assume(E,,) = E,,. Similarly, usingh_ =
t(Ks — Ks), we may assume(E,,) = E,,. Therefore we have

(5.2) T(Ey,) = Eoy T(Ew,) = £E4,, t(Es) = Euy  T(Eq,) = £Ea,.

On the other hand, it is known that there exists an involuiwomorphismg of
outer type satisfying

(53) ¢(E0tl) = Eot6! ¢(Ea2) = Eazv ¢(E0t3) = Eot5! ¢(Ea4) = Ea4-

By (5.3) it is obvious thaip|; = t|;. Then, by Proposition 5.3 of Chapter IX of [3],
there existsh € +/—1t such thatt = ¢ o 7. Put

h:= h++h_, h+ € V—1t+, h_ (S] \/—lt_,
hy = ki(K1 + Kg) + koK3 + k3(Kz + Ks) + ksKa,
h_ := ks(K1 — Kg) + ks(K3 — Ks),
whereky, ...,ks € R. Sincer? =1d and¢(h) = h, —h_, we haver,, = Id and hence

2h, =0 (mod 21(gc, tc)). Therefore we havéy, ko, ks, ks € Z. Considering (5.2) and
(5.3) together with (2.4), we have

a1(h) = ag(h) = as(h) = ag(h) =0 (mod 2),
and therefore
h =kK; + kyKyg  (mod 2T (g, tc)).

Hencer is conjugate within Auj(g) to one of the following involutions:

¢, PoTk, POoTk, @ OTKrK,-
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We shall check conjugations between the above involutiorSince su,,(2),
Slgyra,(2) C 9%, 10,(K2) = =Kz + Kyg and tyy14,(K2) = 2K, — K4, we haveg ot,, =
taz o ¢: d’ o totg+0t2 = ta0+az o ¢ and

¢ 0Ttk =@ 0 Tty (K2) = poty, 01k, 0 to:zl =tg, © (o TKz) ° t(;zlv

POoTK, = PO T, 0, (Ky) = @ O logpa, 0Tk, © toha, = taotaz © (B 0 Tk,) 0ty g -
Note thatt,,, ty,+«, € INt(h) sincesu,,(2),suq,+4,(2) C h. Hence we havep o tx, k, ~
¢ o 1k, & ¢ o 1¢,, Where we writety ~ . if Ty iS conjugate tory within Autg(g).
Consequently we obtain ~ ¢ or t ~ ¢ o tk,.

Putv := 7| It is easy to see that the sat" of positive rootse satisfyingv(a) =
« coincides with
o2, 0, 0 + 04, 3 + g + os,
a2 + a3+ ag+as, az + oz + 2004 + as,

Aj = a1 +az3+og+ o5 + o, @1 + a2 + oz + g + as + ag,

o1 + o + oz + 204 + a5 + o, 1 + ap + 203 + 204 + 205 + g,

ay +az + 203 + 3og + 205 + s, — g

Hence it follows from Lemma 4.4 and (5.3) that difh= 52. By using the classifica-
tion of symmetric spaces, we hagé =~ F,.

The subset{a, B} of A(gc, tc) such thata € A*(gc, tc), ¢(a) = B, a # £
anda(Ks + Ks) = 0 (mod 4) is only{ay, ag}. Furthermorex € A*(g¢, tc) such that
¢(@) = ¢ and a(K3z + Ks) = 0 (mod 4) are—ag, a2, as, a2 + a4, —(ag + a2) and
—(ao + a2 + a4). Since dimt, = 4, we have

dim@ N g?) = 4+ ((1+ 6) x 2) = 18.

Since ¢, h N g®) is symmetric pair we can seégn g? =~ D3 @ A;.
Similarly as above we obtaig?°™: = C4 andh N g?°™2 = B; & B; @ A; ® R.
Type IV: In this caseg = ¢; and h = s0(8) @ so(4) @ R. According to Section 5
in [6], there exists an involutiony on g such that

W(Eal) = Eae! 1ﬁ(Eth) = Evtz! W(Eas) = Eﬂtsi 1ﬁ(EOlzt) = ED&U
‘(//(Eas) = Ea31 I//(Eots) = Eot11 w(Eoﬂ) = Ea01 w(an) = EC{7'
Let t. be the @1)-eigenspaces of. Then we have

ty = sparfKi + Kg — 2K7, Kz — K7, K3 + K5 — 3K7, K4 — 2K7},
t_ = spanii—Ki + Kg, —K3 + Ks, K7}.
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By an argument similar to the case of Type I, we can prove th& conjugate
within Int(h) to one of the following involutions:

¥, Yotk, Yotk, Y OTK,OTK,-

We shall check conjugations between the above involuti@nscet,, oy = v ot,,,
we have

-1 _
totz o 1// o TKz Otaz - ‘([/ o TK2+K41

which implies thaty o tx, ~ i o ¢, o 7,. Moreover sincd,, oy = ¥ ot,, and above
equation, we have

fa © (tay © ¥ 0 Tk, 0 11) 0 150 = Lo, 0 (¥ © Tik,) 0 1)
(5.4) = ¥ 0ty © Tiprky O Ly
=yo Tty (K2+Ka)-
On the other hand, it is easy to see that
(5.5) to, (Ko + Kg) = 2Ky + K3 — Ks + Ks = Ks + (K3 + Ks)  (mod 2T (ge, tc)),
(5.6) ¥(Ks—Ks) = —(Kz—Ks).
Therefore from (5.4), (5.5) and (5.6) we have
ty, 0 (ty, 0P o1, 0 tol_zl) ° tot_41 = ¥ 0 Tk, © T(Ks—Ks)
= T_(1/2)(Ks—Ks) © (¥ © Tk,) © T(1/2)(Ks—Ks)-

Hence usind,,, ty, and o xk.—ks) € INt(h), we havey o tx, ~ V¥ o 1k,.
By an argument similar to the case of Type |, we obtgih= Es® R, hNg¥ =
Bs @ Ag, ngTKZ = A; andpn g]//OTKZ =B, ®B; P A;.

6. The involution for the case wheret|; = Id

First, we suppose that is of type ¢; and o = t(1/2)k,+k,). Then by Dynkin dia-
gram (ii) in Section 4, we have

h=AL®AsDRV-1(Ki— Ky).

Moreover a maximal abelian subalgelrés decomposed into= (A1 Nt) ® (AsNt) D
R+/—1(K; — K3). Hence we can write

T =11, OTT, © Tm(K;—-Kp)s V 1T e Aint, v—1T, € AsNt.
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We definevg € v—1(A1Nt) andv; € v—=1(AsNt), i € A :={3,4,5,6,7 by o;(vj) = &,
i,j €{0}UA. Since ¢,|a,)? = Ida, and €r,|a;)? = lda,, it follows from Lemma 2.2
and Remark 2.3 that there exigt € Int(A;) and us € Int(As) such that

0 mod 274,
vo mod 21p,,

0 mod 27,4,

(6.1) pa(Ty) = { vi mod 2Tp, (i € A),

u2(Tz) = {

where IT5, denotes the fundamental root system of Tyfye Therefore considering
Lemma 2.4 we may assume

(6 2) T — 2Movo, _ 2mguz + - - - + 2myuy,
' 1= Vo + 2mMguyg, o v + 2mguz + - - - + 2myuy,
wherei = 5, 6, 7 andmg, mg, ..., m; € Z. Consequentlyr is conjugate within Intf)

to one of the following automorphisms:

T2moug+2mauz+-42myv74+m(K; —Ko)
(6.3) Toj+2movo+2Mgvz-+ -+ 2M7v7+ M(K1—K2) s
Tvg+vj +2Moug+2Mzvz+++2m7v7+m(K1—K2) s

wherei =0,5,6,7,j =5,6,7 andmg, Mg, My, ..., M; € Z, me R.
Now we shall writev; (i =0, 3,4,...,7) by the linear combination oy, ..., K7.
Puty = Y/_,a Kj, a e R. First we computey. Since A; Nt = R+/~1H,, and

ANt={v=IH et;a;(H) =0, j =2,...,7},

we haveal = --- = a2 = 0. Hence we have, = alK;. Becausexo(vo) = 1, we have
1
(64) Vo = _E Kl.

Next, we computey; (i = 3,4,...,7). Then computing simultaneous equation&;) =
ij, i, ] € A, we have

1 1
v = alKy — E(Zaf +3)Kz + Kz, vg = alK; — E(2a;1 + 4Ky + Ky,

1 1
(6.5) Vs = ale - E(Zaf + 3)K2 + Ks, vg = a‘le - E(Zaf + 2)K2 + K,

1
v7 = alKy — 5(251} + 1)Ky + K.
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Now, in order to determinail (i € A), we write K;—K; by the linear combination

of Hays .-y Hepo PULK; = 217:1 c‘j Hq, , c‘j €R, i =1,2. Then sincesj; = o;(K;),
we have

7
(6.6) S1=ai(K) =) cai(Hy), i=1,2,...,7

=1

and therefore

1 Cl Cl Cl Cl Cl Cl
(c}_%)almal):l, d-%-0 T4g-%-0 -%2-%:q-%5-0

1 G G, . G G, 1
——=2=0, —2+¢——=0, —=24c¢;=0.
tE5 2 1% 2 TG

G

2

Indeed, considering the;-series containingrj, we haveo;(H,,) =0 for j # 1,3 and
203(Hg,)/01(Hy,) = —1. Thus ifi = 1 in (6.6), then we have

7
1=a1(K1) = ) clea(Hea;) = Gea(Ha,) + Choa(Ha,)
j=1
1

= Goa(Ha,) + c%(—%al(Hal)) = (c% - C—;)al(HM).

We can get the other equations by a similar computation aseabo
Computing these simultaneous equations we obtain

K1 (2Hq, + 2Hy, + 3H,, + 4Hy, + 3H, + 2Hy, + Hy,).

- Oll( HOtl)

By an argument similar as above, we obtain

K2

- (4Hq, + THa, + 8Hq, + 12Hy, + 9Ha, + 6Hy, + 3Ha)).
0(2(Ha2)

From the Dynkin diagram (i) in Section 4, we can put= «3(K3) = a2(Ky) and
therefore

1
(6.7) Ki—K;= E(_SH"Z — 2Hy, — 4Hy, — 3Ho, — 2H,y, — Hyo).
Since v L(K; — Kp) (i € A), it follows from (6.5) thata = —5/6, af = —2/3, & =
—1/2, a8 = —1/3 anda] = —1/6, which implies that

5 2 2 4
=——K;—=K K y =—=-K;—zK K ’
v3 6173 2+ Kz, g 373 2+ Ky

1 2 1 1
=—=K;—Ky+Ks, =—=K;—=Ks+Kg, =——K;—=Ks+Ks.
Us 5 1 2+ Ks, vg 3 1 3 2+ Ke, V7 6 1 3 2+ Kz

(6.8)
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It follows from (6.3), (6.4) and (6.8) that is conjugate within Intf) to one of the
following:

(69) TaK1+bK2, Tvi+aK1+bK21 Tug+vj+aK1+bK2- I = Oy 51 61 71J = 51 61 7

wherea = —my—5m3/3—4m,/3—ms —2mg/3—m7/3+m andb = —4mz/3—8m,/3—
2ms — 4mg/3 — 2m;/3 — m. Moreover, sincer? = Id, it follows from (6.4), (6.8) and
(6.9) thatt is conjugate within Int{) to somer, whereh is one of the following:

Ki, Ki+ Kz Ki+Kj, Ky+Kj, Ki+ K+ Kj

wherei =1,2,5,6,7 andj =5, 6, 7.
If h = Ks, then from Lemma 4.4 we have digis = 63 andg™s = A;. Further-
more we have

hNg™s =t > (RA, +RB,) C h(= su(2) & su(6) & R).

aeA*(ge,tc)
a(K1)+a(Kz)=0 mod 4
a(Ks)=0 mod 2

In this case, A;® = A, @ A, @R and A/® = R, and hence
hng™s = Ay @ Ay @R

Similarly as above, we can geg’( h N g*) for eacht = 1.

Note thatsu,,(2) C h andt,, € Int(h). It is easy to check that,, mapsK; +
Ks = —4K; + Ks, K; + K7 = =2K;1 + K7, K; + Ky + K = —6K; + K> + K5 and
K1+ Kz + K7 = —4K1 + K3 + K. Therefore we haveg, 1k, ~ Tky, Tki+K; X TKys
TKy+Ko+Ks A TKotKs AN Tk, 4 Ko1Ky A TKy+Ky -

REMARK 6.1. From Lemma 2.4, we can see that , is conjugate within Intfs)
(C Int(h)) to 7,,|a;- Therefore by the above argumeni, is conjugate within Intf) to
TKyr TKy+K7r TKp+Ks OF TK,+K,+K,. HOwever,gts 2% g™ and g™s % g™u+<7, and hence
TKs = TKa+K7 = TK+Kp+Ky

For the case wherg = ¢7 ando = 71,2k, +ke), We can check that is conjugate
within Int(h) to somer, whereh is one of the following:

Ki, Ki+Kg Ki+K7, Kg+ K7, Ki+Kj, Kg+Kj, K7+4+Kj,
Ki+Ke+ Kj, Ki+ K7+ Kj, Ke+ K7+ Kj, Ki+ Kg+ K7+ Kj,
i=123456,] =2,3,4.

In the Table Il, we show some conjugations within Mg) betweent = r, for the
aboveh.
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Table Il. Conjugations within Ayf(g) of ez with o = 7(1/2)k,+ke)-

reflection(s) | conjugation

tao TK1+Ks ~ TKs
TK1+Ko+K7 = TKy+Ky
TK1+Kg+K7 = TKy+K7
toy TKe+K7 & TK;
TKo+Ke+K7s = TKy+Ky
TKa+Ke+K7 = TKa+Ky

~

TKa+Ke+Kz = TKy+K7

TKi+Ks+Ke+Kz & TKi+Ks+K7

ta2+0t3+2(¥4+2a5+20t6+0t7 TKo+Kes ~ TK1+K;
TK1+Ks+Kes =~ TK;

TK14+Ke+K7 = TKy
TK1+Ka+Ke+Kz = TKy+K7

ta1+0{3+0{4+0l5+015 o ta1+2a2+2a3+3a4+2u5+0[5 th ~ TK]_

tos © Loy ragt204tas TK14+Ke ~ TK3

Ly, © Loy taat20s+as TK1+Ka+Ke+K7 = TKy+Ky
Loy O toptas+as TK1+Ks N TKy

tos O lograptos TK14+Kg4+Kg = TK,

t0t4 © ta2+£x4+0t5 TKs+Kg =~ TKy

REMARK 6.2. For example, it is easy to see that

ta/1+ot3+ot4+o(5+o(6 o ta/1+2012+2013+3a4+20t5+a6(K1 + K2)

= ta1+a3+a4+a5+a5(Kl - 2K2 + K6) = _Kl - K21

which means that

tot1+0(3+0(4+0(5+0t5 o ta1+20t2+20(3+30¢4+20¢5+0¢5 € AUth (g)

For the case wherg = ¢s and o = 7(1/2)k,+ks), WE can check that is conjugate
within Int(h) to somer, whereh is one of the following:

Ki, K3+ Ks, K1+ Kg K3+ Kj, Kj+Ks  Ky+ Ky,
Ki+ Ks+Ks, Ki+Ks+Ks  Ki4+ Ko+ Kg, Kz+ Ks+ Kj,
Ko+ Ks+ Kk, Kz + Ks+ Kg, K+ Kz + Ks + K,

Ki+ Ko+ Kz + Kg, K1+ K3+ Ks+Kg, Ki+4+ Ko+ Ks+ Keg,
Ki+Ky+Ks+Ks+Kg, i=1,2,3,56,j=1,2,6,k=1,6.

In the Table 1ll, we show some conjugations within i) betweent = 1, for the
aboveh.
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Table Ill. Conjugations within Auf(g) of es With o = 7(1/2)(Ks+Ks)-

reflection(s) | conjugation

te, TKy+Ks = TK;

TKy1+Kz+Ks = TK;+Ks
TK1+Kz+Kz ~ TKy 4K,
TK1+Kz+Kg ~ TK;+Kqg
TK1+Ko+Kz+Ks = TK +Kp+Ks
TK1+Ko+Kz+Kg = TKi+Kp+Kg
Lo TKs+Ke =~ TKg

TK3+Ks+Ke ¥ TK3+Kg
TK2+Ks+Ke ¥ TKp+Kg
TK1+Ks+Ke ¥ TKy+Kg
TK2+Kz+Ks+Kg =~ TK+Ks+Ke
TK1+Kz+Ks+Kg ¥ TKi+Ko+Ke

tao TK1+Ko+Ks = TK;+Ks
ta]_ o tote TK1+K3+Ks+Kg ~ TK1+Ke
TK1+ Ko+ Kz+Ks+Ke X TKi+Ky+Kg

Loy © Yoy topt+205+ 204+ 205 +0s | TKo+Kat+Ks R TK,

Finally we consider an involutiop € Aut(g) (see (5.3)). Then it is easy to see that
#(K1) = Ke, ¢(K2) = Kz, ¢(K3) = Ks,
#(Ks) = Ka,  ¢(Ks) = Kz, ¢(Kg) = Ky,
and thereforep gives the following conjugations:
TKy = TKgr  TKy = TKsy  TKy+Ky N TKy4Ker  TKi+Ky = TKy+Kgs

TKi+Ks = TKe+Ker  TKat+Ks & Tat+Kar  TKi+Ka+Ks = TKa+Ka+Kes

TK1+Ks+Ks ~ TK3+Ky+Kg-

For the case wherg = ¢g ando = 7(1/2)k,+kg). W€ can check that is conjugate
within Int(h) to somet, whereh is one of the following:

Ki, Ki+Kj, Kj+Kg Ki+Kg Ki+Kj+Kg,
i=123458,)]=23,4,5.

In the Table 1V, we show some conjugations within A betweent = z, for the
aboveh.
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Table IV. Conjugations within Auyi(g) of es With o = T(1/2)K,+Ky)-

reflection(s) | conjugation

toe TKy+Kg = TKyr TKs+Kg 2 TKs
TK1+K2+Kg = TK1+K,

taa ° ta2+as+20t4 TK1+Kg = TKy
TK1+Ka+Kg = TKy+Kg

tots o t0t2+0t3+20t4+0t5 TK1+Ks x TKs

~

tot1+2a2+3a3+4a4+3a5+2015+vt7+0t3 7:K3+K8 ~ tKl“r Ks
TK1+Kz+Kg TK3
TK1+Ks+Kg TKs

~

~
I

Table V. Conjugations within Ay(g) of §;, with o = T(1/2)K,+Ky)-

reflection(s) | conjugation

1:(11/3 tK3+K4 ~ tK3
TK1+Kz+Kq ~ TK1+K3

tOlo TK1+K, = TK,

t042+013 TKo+Ks = TK,

tot2+20t3+20t4 tK1+K2+K4 x TKZ

For the case wherg = f, ando = 1(1/2)k,+k,), We can check that is conjugate
within Int(h) to somer, whereh is one of the following:

Ki, Ki+Ky Ki+Kz Ki4+Kg Ko+ Ky,

Ka+Ks Ki+Ko+Ky Ki+Ks+Ky i=1,2,3 4.

In the Table V, we show some conjugations within Nig) betweent = t, for the
aboveh.
Consequently we have the following proposition.

Proposition 6.3. Suppose thatlim; = 1 and o = 7/2)K,+k,) for somea,, ap €
I (gc, tc) with my = mp = 2. Let ¢ be an involution ofg such thatt oo = o o 7.
Thenr is conjugate withinAut,(g) to one of involutions listed iTable VI.

7. Remarks on conjugations

To complete the classification of involutions we prove the following lemma.

Lemma 7.1. Suppose that = 72)K.+k,), Ma = My = 2. Thentk, is not con-
jugate within Auty(g) to t«,+k,-
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Table VI. Involutions of exceptional Lie algebra such thang = 1,
0 = T(1/2)(Ka+Kb) andtoo =0cor.

(g, h) [ hz=m) ] 4 | hNne

(¢6, 50(6) B s0(4) ®R) K1 Ds ®R Dy Ay
Ko As & A D, & DzﬂBRZ
Ks AsDA | Dsd DR
K1+ Kz Ds ® R B, ® B &R
K1+ Ks AsD AL | DA DR
K1 + Kg Ds ® R D3@R3
Kz + K3 Ds ® R D, ® D, ® R?
K3z + Ksg Ds ® R Ds® D, d R
Ki+Ky+Ks | As@A; | BB ®R

(e7, su(6) ® su(2) d R) Ky Ds® AL | As@ AR
Kz A7 As ® AL ®R
Ks A7 A ® A ®R®
Ke De® A1 | As® A & A; ®R?
K7 Es ®R A4 O R?
K1 + Ks Es ®R As b A1 DR
K1+ Keg De® AL | As® AL A @R
Ko + Ksg De & A1 A2®A2®R3
Kz + Ke Es®R | Az AL AL dR?
Kz + Kz De® A | Ay@R*
Ki+ K+ Kg | A7 A; @ AL ® AL @ R?

(e7, 50(8) ® s0(4) ® R) Ky De & Ay Ds® D, d R
Ky A; A3@D2@R2
Kz De® AL | Az AL ®R®
Kg De ® A1 Do® D, DR
K7 Es ®R Dis® A ®R
K1+ K3 Es ®R Az & D ®R
K1+ Ks De®Ar | Ds®D2®R
K2 + K7 De® A | Az ® RS
K3z + K7 A7 Asd AL DR
K4 + K7 A7 D, & D2®R3
Ki+Ks+K7 | Es®R Az AL DR

(eg, 50(12) D su(2) P R) | Ky Dg De® A1 ®R
K, Dg As @ R3
Kz Er® AL | As®d AL ®R?
Ks E-®A | Ds®D2®dALDR
Ks Dg D3®D3@R2
Ka E,dA | De® A BR
K1+ K> Erd A | AsdR3
K1+ K3 Dg As ® AL d R?
K1+ Kg Er® AL | De® ALOR
Ks+ Kg Dg Dis®dD,dA®R

(Fa» 59(2) ® 5p(1) © R) Ky C:dA | COCLOR
Ko Cs A A1®R3
K3 By CieCi®Ci®R
Ks C:dA | CBCiBR
K1+ Ks C:pA |CipCi®Ci PR
K1+ Ky CihA | CHCiHR

(g, b) | T | 4 | hne

(6, 50(6) ® s0(4) B R) ¢ Fa D; & A
¢ o 1k, Cy Bi®B & A &R

(e7, 50(8) ® s0(4) D R) ¥ Es ®R Bs & AL
Y o Tk, Ay B®Bid A

¢: Ey, = Eyy Eo, = Eg,y Eos = Eggy Eoy = Eg,
¥ Ey = Eggr Eop, = Eoyy Eoy = Eugy By = Eqyy Eoy = Eq
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Proof of Lemma 7.1. Assume that there exigts Auty(g) satisfying

(7.1) 4O Tk, O T = T,iks-

Sinceu(h) = b, we haveo ou(X) = u(X) for any X € b. In particular (ttooou)|¢ =
Id which implies that there exist§ € t¢ such thatytoo opu = 7.
Since ¢1)* = (u oo opu)* =Id, we have I =0 (mod 27I(gc, tc)) and

(7.2) ,u_l 00 Ol = T(12T-
Consideringa € (0, 0} together with (2.4), we have
(7.3) aj(K)=0 (mod 4) for i #a,b.

We take a rootr = 20 + 205+, pMici € (2,2 (M; € Z). Sinceptooou(E,) =
E., it follows from (2.4) and (7.2) tha&(K) € 4Z, which together with (7.3), implies
205(K) 4+ 20(K) = 0 (mod 4) and hences(K) + ap(K) = 0 (mod 2). Thus we can
expressK € t as follows

(7.4) K =aa(K)Ka+ ap(K)Kp + D ai(K)Ki,  aa(K) + an(K) € 2Z.
i#ab

From (7.1) and (7.2) we have
(7.5) Ty = Tui(Kat k) = (T@/2p (Kot k). = (W0 0 0 ) = 7.

Leta =ag + -+ ap € A(ge, tc)- Then we havex(K,) = 1, a(K) = aa(K) +
ap(K) € 2Z and hence

tiu(Ea) = €Y El = —Eo,
% (Ey) = @V —1@a(K)+ap(K)) E,=E

oy

which contradicts (7.5). ]

Using Lemma 7.1 we have the following:

For the case wherg = ¢; ando = t(1/2)k,+ks) We havery, % Tk, k.

For the case wherg = eg and o = 1(1/2)k,+kg) W€ haverk, % Tk, +ks-

For the case wherg = f, and o = 712k, +k,) We haverk, % Tk, +k,-

Next, for the case wherg = ¢s and o = 7(1/2)k,+ks) We considerg € Auty(g)
(see (5.3)). Pujuy := ¢ oty 0y € Aut(g). Then we have

pnilor) = —ae,  pa(o) = —ay — o — 2003 — 3004 — 2005 — e,

ui(as) = as, pilos) = ag, palas) = as,  pales) = o1,
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which implies that/ql(Kng Ks) = —4K; + K3+ K5 and ,lLIl(K1+ K3) = —2K;, + K.
Thus ;! is in Auty(g) and gives a conjugation betweep, k, and .

8. Classifications

From Proposition 6.3 together with the results in Section&,obtain the follow-
ing theorem which gives the complete classification of intiohs 7.

Theorem 8.1. Let (G/H, o) be a4-symmetric space such that G is a compact
simple Lie group of exceptional type. Suppose tiat; = 1 and o = T(1/2)K,+Ky)
for somewy,, ap € M (gc, tc) with my = my = 2. Then the following Table VII gives
the complete list of the conjugation classes witiat,(g) of involutionst satisfying
TOO =00T.

REMARK 8.2. Let G/H, o) be a compact 4-symmetric space of inner and ex-
ceptional type. In the previous paper [6], we classified limions of G preservingH
for the case where the dimension of the centeHofs zero, or one anH is a cen-
tralizer of a toral subgroup of5. This, together with Theorem 8.1, means that the
involution  of G preservingH satisfiedr o o = o o 7 is conjugate within Aui(g) to
one of involutions listed in Table VII and Tables 7 and 8 in.[6]



INVOLUTIONS ON A COMPACT 4-SYMMETRIC SPACE

Table VII. Involutions of exceptional Lie algebra such tloing = 1,
0 = T(1/2)(Ka+Ky) ANd T 00 =0 0T,

(g, h) [ ht=m) ] t | hne
(¢6, 50(6) D so(4)®R) | Ky s0(10)d R 50(6) @ su(2)
K> su(6) ® su(2) | (so(4) + s0(2)) B so(4) DR
Kz su(6) ® su(2) | so0(6) d so(4) PR
K+ Kz 50(10)® R s0(5) D so(3)dR
K1+ Ks s50(10)® R 50(6) @ (s0(2) + 50(2)) ® R
Kz + Kz 50(10)® R (s0(4) + s0(2)® s0(4)® R
Kz + Ks 50(10)® R 50(6)  so(4) PR
K1+ Kz + Ks | su(6) @ su(2) |so(5) @D so(3)dR
(e7, su(6) ®su()®R) | Ky 50(12) @ su(2) | su(6) ® su(2) d R
K2 su(8) su(6) dsu(2) ®R
Ks s5u(8) su(3) + u(3)) ®s0(2) ® R
Ke 50(12) ® su(2) | s(u(4) + u(2)) ® su(2) d R
K7 s ®R s(ud) +u(l)) dso(2) PR
K1+ Kz e ®R su(6) ® su(2) e R
K1+ Keg 50(12) ® su(2) | s(u(4) + u(2)) ® su(2) d R
Kz + Ks 50(12) ® su(2) | s(u(3) + u@B) D so(2) DR
Kz + Ke s ®R s(u(4) + u(2)) ® su(2) ® R
Ky + K7 50(12) ® su(2) | s(u(5) + u(1)) d so(2) d R
K1 4+ Kz + Kg | 5u(8) s(u(4) + u(2)) ® su(2) d R
(e7,50(8) D so(4)®R) | Ky 50(12) ® su(2) | s0(8) ® s0(4) DR
K, s5u(8) su(4) @ so(4) ® R?
Ks 50(12) @ su(2) | su(4) ® su(2) ® R3
Ky 50(12) @ su(2) | (so(4) + so(4)) ® so(4) P R
K s ®R 50(8) ® su(2) ® R?
K1+ Ky e ®R su(4) @ so(4) ® R?
K1+ Keg 50(12) ® su(2) | s0(8) d so(4) DR
Ky + K7 50(12) @ su(2) | su(4) ® (so(2) + s0(2)) ® R?
Kz + K7 s5u(8) su(4) @ su(2) ® R®
Ks+ K7 su(8) (s0(4) + s0(4)) ® 250(2) +50(2)®R
Ki+ K3z +K7|ee DR 5u(4) (&) 5u(2) ® R
(eg, 50(12) d su(2) P R) | Ky 50(16) s0(12)dsu(2) ® R
K, 50(16) 5u(6) ® 50(2) O R?
Ks e7 @ su(2) su(6) ® su(2) ® R?
Ky e7 @ su(2) (50(8) + s0(4)) ® su(2) d R
Ks 50(16) (s0(B) + s0(6)) ® s0(2) ® R
Kg e7 @ su(2) s0(12)d su(2) ® R
Ki+ Kz e7 @ su(2) 5u(6) ® s0(2) ® R?
K1+ Ks 50(16) s5u(6) ® su(2) ® R?
Ky + Kg e7 @ su(2) s50(12)® su(2) ® R
Ks + Kg 50(16) (50(8) + s0(4)) ® su(2) d R
(Far sp(Q) ®sp(1) B R) | Ky sp(3) ® su(2) |sp(2) ®sp(l) ®R
K, sp(3) @ su(2) | su(2) ® R®
Kz 50(9) (sp(1) +spQ)) D sp(l)®R
Ka sp(3) D su(2) | sp(2)dsp(l) PR
K1+ Ks spB) @ su(2) | (sp(l)+sp(L) b sp(l) PR
K1+ Ky sp(3) d su(2) | sp(2) b sp(l) DR
(g, h) T 14 hnt
(e, 50(B) D so(4)®R) | ¢ fa 50(6) P su(2)
¢ o 1, sp(4) (s0(3) + s0(3)) D su(2) ® R
(e7,50(8)®so(4)®R) |V s DR 50(7) ® su(2)
Yoo 1, s5u(8) (s0(5) + 50(3)) @ s5u(2)
¢ andvr are the same involution as in Table VI.
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