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Abstract

The main result of this note gives an explicit presentatibrihe S*-equivariant
cohomology ring of ther(— k, k) Springer variety (in typeA) as a quotient of a
polynomial ring by an ideal, in the spirit of the well-known Borel presentation of
the cohomology of the flag variety.
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1. Introduction

The Springer varietySy associated to a nilpotent operatbr: C" — C" is the
subvariety ofFlagg(C") defined as

Sn = {V, € FlagqC™) | NV, C V;_; for all 1 <i <n}
whereV, denotes a nested sequence
0=VoCViC---CVp1CV,=C"

of subspaces of" and diny V; =i for all i. When N consists of two Jordan blocks
of sizesn — k and k with n > 2k, we denoteSy by Spn-kk. The cohomology ring
of Springer varietySy has been much studied due to its relation to representatibns
the permutation group on letters ([5], [6]). In fact, the ordinary cohomology ring
H*(Sn; Q) is known to be the quotient of a polynomial ring by an idedlezhTanisaki’'s
ideal ([7]). In this paper we study the equivariant cohorggloing of Sp_ k) with re-
spect to a certain circle action &y which we describe below.

Recall that then-dimensional compact toru§ consisting of diagonal unitary ma-
trices of sizen acts onFlagqC") in a natural way. A certain circle subgroupof T

2010 Mathematics Subject Classification. Primary 55N91p8éary 05A17.



1052 T. HORIGUCHI

leavesSy invariant (cf. Section 2). The ring homomorphism
Hy (Flags(C"): Q) — HE(Sn: Q)

induced from the inclusions afy into FlaggC") and Sinto T is known to be surjec-
tive (cf. [3]). The main result of this paper is an expliciepentation oHZ(Sn—k k) Q)
as a ring using the epimorphism above (Theorem 3.3). Ineglatork, Dewitt and
Harada [1] give a module basis &1&(Sn-kk): Q) over H*(BS Q) whenk = 2 from
the viewpoint of Schubert calculus.

Finally, since the restriction map

HS(Sn: Q) — H*(Sn: Q)

is also known to be surjective for any nilpotent operatdr our presentation of
HZ(Sin-k10: Q) yields a presentation dfl *(Sn—x k); Q) as a ring (Corollary 3.4). How-
ever, the resulting presentation is slightly differentnfréghe one given in [7].

This paper is organized as follows. We briefly recall the seagy background in
Section 2. Our main theorem, Theorem 3.3, is formulated ioti®® 3 and proved
in Section 4.

2. Nilpotent Springer varieties and St-fixed points

We begin by recalling the definition of the nilpotent Springarieties in type A.
Since we work exclusively with type A in this paper, we hewnctf omit it from our
terminology.

The flag varietyFlagg(C") is the projective variety of nested subspace<h i.e.

FlaggCM = {V. =(0=VoC V1 C - C Vo1 CVya=C") | dimc V, =i}.

DEFINITION. Let N: C" — C" be a nilpotent operator. Thai(potenf Springer
variety Sy associated tdN is defined as

Sn = {V. e FlagyC") | NV, € Vi_; for all 1<i <n}.

Since Syng1 is homeomorphic (in fact, isomorphic as algebraic vargti® Sy
for any g € GL,(C), we may assume thatl is in Jordan canonical form with Jordan
blocks of weakly decreasing sizes. Lef denote the partition oh with entries the
sizes of the Jordan blocks dfi. The n-dimensional torusT consisting of diagonal
unitary matrices of sizex acts onFlaggC") in a natural way and the circle subgroup
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S of T defined as
g
(2.1) S= . geC, g =1
. .
leaves Sy € FlaggC") invariant (see [2]). TheT-fixed point setFlagC")" of
Flagg(C") is given by
{({ew) C (Bu) €u@) C - C (€uq), €u@) - - - €um) = C") | w € S}

whereey, &, ..., €, is the standard basis @" and S, is the permutation group on
letters{1, 2,...,n}, so we identifyFlaggC")" with S, as is standard. Also, since the
SHixed point setFlaggC")® of Flagg(C") agrees withFlaggC")", we have

SS = Sy N Flag(C™S = Sy N Flag(C"' C S,

We denote bySp—kk the Springer variety corresponding to the partitibg =
(n —k, k) with 2k < n. We next describe th&-fixed points inSp_ik. Let wi, i,
be an element of, defined by

n—k+j if i=I,
i it 1 <i <l

2.2) wign () = {

wherelg := 0, ly1:=n+1. Note thatw, § | (i) <w. ] ()ifl<i<i"<n-k
orn—k+1<i<i =n.

ExAMPLE. Taken = 4 andk = 2. Using one-line notation, the set of permuta-
tions of the form described in (2.2) are as follows:

[3,4,1,2],[3,1,4,2],[3,1,2,4],[1, 3,4, 2], [1, 3, 2, 411,[2, 3, 4].
Lemma 2.1. The S-fixed point§(§7k’k) of the Springer variety5;_x k) is the set
{w, €S 11l <lp<--<lg=n}
Proof.  SinceSg, ,\, C FlagC")", any elementV, of S{ ) is of the form
Ve = ((Ew)) C (Bw) €uw@) C -+ C (€w@) €u(@): - - -+ Cu(n)))

for somew € S,. Since N is the nilpotent operator consisting of two Jordan blocks
with weakly decreasing sizes ¢ k, k),

Ne — 0 if i=1 or n—-k+1,
q= e_, otherwise.
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Therefore, ifV, belongs toSu_kk), thenw(l) =1 orn—k + 1. If w(l) =1 then
w@)=2orn—k+ 1 If w(l)=n—-k+1thenw(2)=1 orn—k+ 2, and so on.
This shows thatw = wy,,,..) for some 1<|; <l <--- < Iy < n. Conversely, one
can easily see thaby, 1, i, € Sp_y - O

3. Main theorem

In this section, we formulate our main theorem which givesgplicit presentation
of the S-equivariant cohomology ring of then &k, k) Springer variety.

First, we recall an explicit presentation of tAeequivariant cohomology ring of
the flag variety. LetE; be the subbundle of the trivial vector bundiéagqC") x C"
over FlagqC") whose fiber at a flag/, is just V;. We denote theT -equivariant first
Chern class of the line bundIE;/E;_; by X € HZ(FlagSC"); Q). The torusT con-
sisting of diagonal unitary matrices of sizehas a natural product decompositidnz
(SH™ where St is the unit circle ofC. This decomposition identifieB T with (BSH)"
and induces an identification

Hi(pt: Q) = H*(BT: Q) = X) H*(BS: Q) = Ql[ty, . .., tn],

wheret; (1 <i < n) denotes the element corresponding to a fixed genetatof
H?(BS';Q). Then H{(FlaggC"); Q) is generated b¥y,...,Xn,t1,...,tn as a ring. We

define a ring homomorphismr from the polynomial ring Q[Xy, ..., X,] to
Hf(FlaggC"); Q) by m(xi) = X;. It is known thatz is an epimorphism and Ker
is generated as an ideal ®/(xy,..., X)) —¢€(ty,...,t,) for all 1 <i <n, whereeg

is the ith elementary symmetric polynomial. Thus, we have an ispimem:

H{ (FlagS(C"); Q)
>~ Q[X1, .y Xyt . tl/(@ (K, - X)) — & (t, L., ), D50 S n).

We consider the following commutative diagram:

H; (Flag(C"); Q) —— H{(Flag(C")"; Q) = P, s, Qlta, - - -, to]

(3.1) ml ”2l

HE(Sn; Q) ————— HE(SR: Q) = B, cs5cs, Qt]
where all the maps are induced from inclusion maps, and we havidentification
Hi(pt: Q) = H*(BS Q) = H*(BS: Q) = Qlt]

where we identifyS with S' through the map diag( g?, ..., g") — g. The maps;
and:, in (3.1) are injective since the odd degree cohomology gmfiFlagqC") and
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Sn vanish. The mapr; in (3.1) is known to be surjective (cf. [3]) and the map is
obviously surjective. Sincer; is surjective, we have the following lemma. Let be
the imagern,(X;) of X; for eachi.

Lemma 3.1. The S-equivariant cohomology ringZkSn; Q) is generated byy,...,
Tn, t @s a ring wherer; is the image ofk; under the mapr; in (3.1).

We next consider relations between . .., 5, andt. We have

12(ti)w = w(i)t

becauset1(Xi)lw = twgy, u(ti)lw = t, and mp(t) = it, where f|, denotes the
w-component off € P, .5 Q[ty, ..., tn].
Lemma 3.2. The elementsy, ..., 1,, t satisfy the following relations
nn+1

(3.2) Z T — ( 5 )t:0,

1<i<n
(3.3) (m+ta-—M-k+it)(n —t1—-t)=0 (1=<i=<n),
(3.4) [[@-G-)=0 @<io<---<ik=<n),

0<j=<k
wheretg = 0.

Proof. The relation (3.2) follows from a relation id;(Flag(C"); Q). In fact,

> - D e X et ) =0,
1<i=n

In the following, we denote,(z;) by the same notation; for eachi. To prove
the relation (3.3), it is sufficient to prove either
(3.5) @+t1—(—K+))|w,, , =0 or @—t-1—Yw,, , =0
for any wy, ... € S(?Fkvk) since the restriction map in (3.1) is injective.

We first treat the case= 1. By the definition ofwy,,  in (2.2) the following
holds:

Tl|w|l,|2,...,|k = Wiy lp,..., |k(1)t =

(M—k+1t if I;=1,
t it 1y £ 1.

This shows (3.5) folii = 1 becausery = 0.
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We now treat the case 4 i < n. Note that

(36) (Ti - Tifl)|w|l,|2,...,lk = (w|1y|2 ----- |k(i) = Wiy Iy,..., |k(i - 1))t!

(3.7 (ni + Ti—1)|w|1,|2,...,|k = Wiy ly,... i () + Wiy o, 0 (= D)

We take four cases depending on whetherl andi appear inlq, ..., I or not.
(i) flj=i-1<i=Ij;4, for some 1< j <k -1, then by (2.2) and (3.6),

(= iy, 4 = (M—K+ ] +2) = (n—k+ )t =t.
(i) If Ij <i—1<i <lj;1 for some 0< j <Kk, then by (2.2) and (3.6),

R | P (S ) R (R R ) 8
(i) If I; =i —1<i <41 for some 1< j <k, then by (2.2) and (3.7),

(@ + 6Dy, =@ =D +O-k+ht=M-k+i)t

12,1k

(iv) If Ij_1 <i—1<i =I; for some 1< j <k, then by (2.2) and (3.7),

(@ + Ty, = ((M=Kk+ )+ 0 =Nt =0—-k+it.

12,1k

Therefore, (3.5) holds in all cases, proving the relatich8)(
Finally we prove the relations (3.4). For amy, |, . € S(?\—k,k)’ there is a positive
integeri; such thatl; <ij <l;4, for some 0< j <k. Thus, we have

w|1,|2,...,|k(ij) = ij -]

This means that

1_[ (Tij —(ij - j)t)|u/|l,|2,...,|k =0.

0<j<k
Therefore, the relations (3.4) hold, and the proof is comeple ]

It follows from Lemma 3.2 that we obtain a well-defined ringntmmorphism

(3.8) @: Q[Xy, ..., Xn, t]/1 = Hg(Sinkk: Q)
where| is the ideal of a polynomial rin@[xs, ..., Xn, t] generated by the following
three types of elements:
nin+1

(3.9) > % - M,

1<i=<n
(3.10) X +X_1—(—kK+DD)G —x-1—1t) QL=<i=<n),
(3.11) [T =G =) (@<io<---<ik<n),

O=j=k
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where xg = 0. Moreover,¢ is surjective by Lemma 3.1.
The following is our main theorem and will be proved in the ns&ction.

Theorem 3.3. Let Sk k) be the(n—k,k) Springer variety with0 <k <n/2 and
let the circle group S act o—k k) as described irSection 2 Then the S-equivariant
cohomology ring ofSi_k k) is given by

Hs(Sh—kk: Q) = Q[X1, . . ., Xn, t]/I

where H(pt; Q) = Q[t] and | is the ideal of the polynomial rin@[xa, ..., Xn, t]
generated by the elements listed($19), (3.10),and (3.11)

Since the ordinary cohomology ring &{,_xk) can be obtained by taking= 0 in
Theorem 3.3, we obtain the following corollary.

Corollary 3.4. Let Spn_ik be (n—k, k) Springer variety with0 < k < n/2. Then
the ordinary cohomology ring ofn—k ) iS given by

H*(Sth-kk: Q) = Q[X1, ..., Xn]/J

where J is the ideal of the polynomial rin@[xy, ..., Xn] generated by the following
three types of elements

Z Xi,
1<i<n
x2 (L<i<n),

1
[[ x @<ii<-<iga<n).
1<j=<k+1

REMARK. A ring presentation of the cohomology ring of the Springariety Sy
is given in [7] for an arbitrary nilpotent operat®. Specifically, it is the quotient of
a polynomial ring by an ideal called Tanisaki's ideal. Whap = (n —Kk, k), Tanisaki's
ideal is generated by the following three types of elements:

e]_(X]_, LIRS | Xn)1
Xy, ---y%,,) (@A=<ip<---<ip1=n),
Ecr1(Xigs - -1 Xigyy) (A =i1 <+ <iggr =),

where g is the ith elementary symmetric polynomial. Note that the first ahuldt
elements above are the same as those in Corollary 3.4. Indaetcan easily check
that Tanisaki’s ideal above agrees with the iddain Corollary 3.4 although the gen-
erators are slightly different.
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4. Proof of the main theorem

This section is devoted to the proof of Theorem 3.3. More pedgi we will prove
that the epimorphisnp in (3.8) is an isomorphism. For this, we first find generators
of Q[Xs, ..., Xn, t]/1 as aQ[t]-module.

Recall that &filling of A by the alphabefl, ..., n} is an injective placing of the
integers{1,..., n} into the boxes of..

DEFINITION. Let A be a Young diagram witln boxes. A filling of A is a permis-
sible filling if for every horizontal adjacendya|[b| we havea < b. Also, a permissible

filling is a standard tableauf for every vertical adjacenc we havea < b.

Let T be a permissible filling ofr(—1,1) with 0 <| <k. Let ji, j2,..., ji be the
numbers in the bottom row of . We definext := X, Xj, - - - Xj, and xy, := 1 whereTy
is the standard tableau on)(

Proposition 4.1. The set{xr | T standard tableau orfn —1I, 1) with 0 < | < k}
generatesQ[Xy, - . ., Xn, t]/1 as a Q[t]-module.

Proof. It is sufficient to prove thaty X, - - -Xp (1 <b; <by <---<Iby <n) can
be written iINQ[Xq, ..., X, t]/1 as aQ[t]-linear combination of thex;y whereT is a
standard tableau. We prove this by inductionlorThe base caske= 0 is clear. Now
we assume thdt > 1 and the claim holds fok — 1. The relations (3.10) imply that

@41 XF=@m-k+i+Dx+t Y Xp— Y (n—k+pt* (1<i<n)
1<p<i-1 1<psi

by an inductive argument on so we may assumb; < b, <--- < by.
To prove the claim fol, we consider two cases: 4| <k andl > k + 1.
CAsE (i) Suppose I=| < k. We write Xy, Xp, - - - Xp, = Xy Where

U —la] - Jafaga ] an]
by|--- b
is a permissible filling of i —I,1). Let j be the minimal positive integer in the set
{fria >b,1=<r <}, e,
(4.2) a<b (@A=<i<j),

(4.3) a; > bj.
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We consider the following equation which follows from thdaten (3.9):

(—Xay = Xa, =+ -+ — Xaj—l)j *Xpjgtr Xp
(4.4)

nin+1) J
= ( Xou X0, o X Xy ey e Xa Tt Xt X

Claim 1. The left hand side if4.4) is a Q[t]-linear combination of the x where
the T are standard tableaux.

Proof. We expand the left hand side in (4.4). Then any monlowligch appears
in the expansion is of the form

a ®j-1
Xall tes )(aji1 Xb1+1 <o Xp,

where Zij;i aj = j andg; > 0. Note thate; > 1 for somei since Zij;i a = j and
a; > 0. Therefore, using the relations (4.1), the monomial altovas into a sum of
elements of the form

f(O) - Xe, -+ Xe,

whereh <I,1<c¢; <--- < ¢y, <n, and f(t) € Q[t], and by the induction assumption
the term above can be written as@{t]-linear combination of thex; whereT is a
standard tableau. This proves Claim 1. O

Claim 2. The right hand side in4.4) can be written as a[t]-linear combin-
ation of x; and monomials ¥ and x;» where the coefficient ofyxis equal tol, T is
a standard tableau on shapg@ —1,1) and U is a permissible filling ofn —1I, 1) such
that each of the leftmost j columns are strictly increasing. ¢ < b, 1=<r < j).

Proof. We expand the right hand side in (4.4). A monomial Whappears in this
expansion is of the form

Buo L yBmoyar | yon
Xor o X Xa" Xy 1+ X

bpm a‘h N !

whereY™ B+ i <j, f>L e >1land1<p <---<pn<l, <o <

- < gh =n—1. It is enough to consider the cade" , B + Zih:l aj = j since if
Zimzl Bi + Zihzl aj < j then it follows from the induction assumption that the above
form can be written as #[t]-linear combination of thex; where T is a standard
tableau. Ifpn, > j + 1 or somep; or «; is more than 1, then it follows from the
relations (4.1) and the induction assumption that the maaloabove can be written
as a linear combination afy’s over Q[t] where T is a standard tableau. I, < |
and allg; ande; are equal to 1, theh = j—m and the monomial above is of the form

Xbm o Xbpmxaq1 e XaqumXle " Xp
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where 1< py <:-- < pm=<j <th <+ < Qj—m < n—1I. This monomial is associated
to a permissible fillingU’ given by

o e e ] o]
d |- [a
where
_{bpi if 1<i<m,
' min{{ag,, . . ., 8q_ps Bj11, -« B} = {Omy1, ..., i)} if m<i <,
and

¢ =min{{ag, ..., a1, by, ..., bj} —{ag, ..., a8, bp, ... bp,, o, Gilt))

for 1 <i <n-—I. Note thatxy, = xy if and only if m= j, sincem= j < d =b; for
1<i =<I|. We consider the cas@ < j. Sincej < q; anda; > b; by (4.3), we have

¢ =min{{as, ..., a1, b1, ..., by} —{bp, ..., bp,, C1, ..., Ci_1}}

fori<i<j. If1<i<m wehaveg <ag <b <b, =d. If m<i=<j, we
havec; < maxa;_1, bj} < min{a;, bj11} < d by (4.2), (4.3), andj < g;. Thus,U’ is
a permissible filling of it — I, 1) such that each of the leftmog$t columns are strictly
increasing (i.ea; < by, 1<r < j). This proves Claim 2. ]

Claims 1 and 2 show that, can be written as &[t]-linear combination ofxy
and xr, whereU’ and T are as above. Applying the above discussionXgrin place
of xy, we see thaky' can be written as ®[t]-linear combination ofk,» andxr where
U” is a permissible filling of it —1,I) such that each of the leftmo$t+ 1 columns are
strictly increasing (i.ea; < b, 1<r <j+1) andT is a standard tableau. Repeating
this procedure, we can finally express as aQ[t]-linear combination of thes; where
T is a standard tableau.

Case (i) If I > k+ 1, it follows from the relations (3.11) and the induction
assumption thaky, Xy, - - - X, can be expressed as@{t]-linear combination of the«r
whereT is a standard tableau.

This completes the induction step and proves the propasitio O

Recall that for a boxb in the ith row and jth column of a Young diagram.,
h(i, j) denote the number of boxes in the hook formed by the boxeswbblin the
jth column, the boxes to the right &f in the ith row, andb itself.

[]
ExAMPLE. For the Young diagrani_ ] and the box in the (2, 1) location,
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[]
(]|

LI
the hook ism| |

O andh(2, 1) = 6.
|
[m]

Lemma 4.2. Let A be a Young diagram. Let*fdenote the number of standard

tableaux oni. Then
n
_ (n—11)
(k) = )y {0,
0<l=<k

Proof. We prove the lemma by induction dén As the casek = 0 is clear, we
assume thak > 1 and that the lemma holds fdr— 1. We use the following hook
length formula:

n n!
G heah(, j)

Using the induction assumption and the hook length formwia,have

Z f(nfl,l) — Z f(nfl,l)_i_ f(nfk,k)

0=l =k 0=l=k-1
_(n n(n—2k+ 1)
N (k—l) (n—k+ 1)k
n
B (k)
This completes the induction step and proves the lemma. ]

It follows from Proposition 4.1 and Lemma 4.2 that

rankgp Q[Xa, - . ., Xn, t]/1 < Z fl-tl) (n)

0=<l=k k
On the other hand, since the odd degree cohomology grougs, ofanish, we have

an isomorphismHZ(Sn: Q) = Q[t] ® H*(Sn: Q) asQ[t]-modules, and the cellular de-
composition ofSy given by Spaltenstein [4] (cf. also Hotta—Springer [3]) liep that

. * . (") .= A
dimH*(Sn: Q) = ()\N) = (All Ao! ...)w!)

whereiy = (A1, A2, ..., A). These show

. i n
rankgry HE (Sm-kk; Q) = dimg H*(Sin-k k; Q) = (k)
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Therefore, we have
rankgr Q[Xq, - . ., Xn, t]/1 < rankyp Hs(Sp-kk): Q).

This means that the epimorphisgnin (3.8) is actually an isomorphism, proving The-
orem 3.3.
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