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Abstract
Let a, b, ¢ be distinct positive integers. Sé&l = a + b + ¢ and N = abc
We give an explicit description of the Mordell-Weil group diet elliptic curve

Em n: y>—Mxy—Ny = x% overQ. In particular we determine the torsion subgroup
of Eqv,ny(Q) and show that its rank is positive. Furthermore there digitely many
positive integersM that can be written im different ways,n € {2, 3}, as the sum
of three distinct positive integers with the same proddcend Em n)(Q) has rank
at leastn.

1. Introduction

The subject of partitioning integers has been used to amsctsinfinite families of
elliptic curves with positive rank. Many authors attack dies linking partitioning
integers and elliptic curves arising from these integer®. éxample in [1] the elliptic
curve E,: y? = x3 — nx wheren = a* + b* is proved to be of rank at least 2 over
Q(a, b). If n can be written as a sum of two biquadrates in two differentsyalyen
[4] indicates the existence of an infinite number of integersuch thatE,(Q) is of
rank at least 3, and this lower bound is improved in [1] to be 4.

In this note we study the partitions of a positive integepitiiree positive integers
with the same product. A triple of positive integers, ¥, z) is said to be gpartition
of a positive integeM if M = x + y 4+ z. The integersx, y, z are theparts of the
partition. We setN = xyz If we are looking for all integer triplesx( y, z) with sum
M and productN, then we are trying to solve two Diophantine equations. Héating
z will yield the elliptic curve

Emny: Y2 — Mxy— Ny = x3.

In [5], the elliptic curve Egw,ny was shown to be of positive rank ové& under the
mild condition that ifM = d; +d, + d3, N = d;d,d3 whered; > d, > d3 thendy(d, —
ds) # d3(d; — dy)3. We reprove this fact and give an explicit description of thesion
part EE‘,\’,[N)(Q) of the Mordell-Weil groupEw, ny(Q). More precisely we show that
EEOMr’N)(Q) is one of the following subgroup® /3%, Z/6Z, or Z./2Z x 7./6Z.
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If the curve E(u ny has positive rank ove®, then this means that there is an infin-
ite number of triples of nonzero rational humbers adding apAt and having product
N. We investigate the rank of this elliptic curve M can be written as a sum of three
nonzero positive integers with produbt in at least two different ways.

We parametrize positive integeld that have two different partitions into triples
with productN. The parametrization oM is given in terms of four parameters q,

r, s. Consequently we show thdw ny has rank at least 2 oveQ(p, g, r, s). Thus
there exists an infinite number of pairs of integel, N) such thatE, ny(Q) has rank
at least 2.

A weaker result is presented whéh has three different partitions into triples with
product N. An infinite parametric family of such pairdv, N) is constructed. The
parametrization depends on three paramefers, r. We prove thatEw n)y has rank
at least 3 overQ(p, g, r), and hence the existence of an infinite number of pairs of
integers M, N) for which Em n)(Q) has rank at least 3.

In this note, a partitioning question is used to exhibit inéinfamilies of elliptic
curves with positive rank. This partitioning question esponds to an interesting geo-
metric problem. Namely, if M, N) is a pair of positive integers such thaM4is the
perimeter of a rectangular baR with integer side lengthes, arid is the volume ofR,
then how many different rectangular boxes with integer sidave the same perimeter
and volume? Indeed, that rafiigm n)(Q) > 1 means that there are an infinite num-
ber of rectangular boxes with rational sides, and the samienpter and volume. We
parametrize the pairsM, N) for which there exist two rectangular boxes with inte-
ger sides, perimeterM, and volumeN. Moreover we give infinite parametric pairs
(M, N) for which there exists three rectangular boxes with integjigdes, perimeter M,
and volumeN. These pairs I, N) give rise to elliptic curves of rank at least 2 and
3 respectively.

All calculations throughout this note were performed usBepe [8], and Math-
ematica [6]. We would like to thank the anonymous referee for seve@hments
and suggestions.

2. Partitions

In this section we collect elementary properties aboutitpars with equal products.

Lemma 2.1. Let M be a positive integer that has at least two distinct jiarts
into triples with equal product N. The following statemeats true
a) There is no common entry between any of the triples. In padaicN ¢ {p, pq}
where p g are primes.
b) N is not a prime power.
c) N is a product of at least foufnot necessarily distingtprimes.
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Proof. a) Assume thaM =a+b+c=a+d+ e andabc=ade One has
b +c =d+ (bc/d), i.e., bd+ cd = d? + bc or b(d — ¢) = d(d — ¢), in other words,
b=d or d =c. In both cases, this contradicts the fact that the parttiare distinct.

b) If N=p', thenM = p* + p2 4 p's = p% + p% + p®= wherery = r; >rg,
s > S, > s3. Dividing by min(p"s, p%), one sum will be divisible byp while the other
is not.

¢) Using parts a) and b), it is enough to show ti\itcannot be a product of
exactly three primes. So we assume on the contrary khat pqr wherep>q >r
are primes. According to a) the only possible partitions Kbrare given byM =1+
1+ pgr = p+q+r. The contradiction follows frompqr > p® > 3p > p+q+r. [

Let M, N, x, y, z be nonzero integers satisfying the following relations:
X+y+z=M and xyz= N.

These two equations are equivalent to the following cubigaiqn Mxy—x2y —xy? =
N. We homogenize the above cubic equation to obtain the foligwequation

NZ3+ XY?+ XY —MXYZ=0

describing a planar curv€mw,ny in P§ with (X : Y : Z) = (0: 1:0) € Cim,n)(Q).
Therefore given that = N3(M3—27N) # 0, the JacobiarE,n) := JacCm,n)) of the
planar curveCyv ny is an elliptic curve defined by the following Weierstrass aipn.

Emny: Y2=MXY=NY = X3,
In fact, Cim,n) is isomorphic toEwm,ny via the following transformation:

am,ny: Comny = Euony,
(X:Y:Z)»(=NZ:—=NY:X).

An ordered triple of nonzero integersl;( d, d3) such thatd; + d, + d3 = M and
didxd; = N is sent to a point irCiu, ny(Q) and hence a point i, Ny (Q).

We will not treat triples of the formd, d, d). The reason is that the correspond-
ing cubic curvey? — 3dxy— d3y = x3 is singular. Therefore we are going to assume
throughout that the pairsM, N) = (3d, d®) are excluded.

From now on we will assume that iN = d®a, where a is cube-free, then
gcd(M, d) = 1. Otherwise the Weierstrass equation descritig ny is not minimal.
Moreover this allows us to assume that the parts of each ipartiff M with product
N are coprime.
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Corollary 2.2. Let M, N be nonzero integers such that3(W1® — 27N) # 0.
There is a one-to-one correspondence between the set afedrdigples

F'vny(Q) = {(dg, do, d3): di +do +d3 = M, did2ds = N, d € Q}
and

Emny(Q) = {(x: y:2) € PHQ): y?Z— Mxyz— NyZ = x°, xyz# 0}.
Proof. The bijection map is as follows:

Fmn(@Q) > Cun(@Q@)  — Ewmn(Q),
(di,dp,d3) > (dy:dp:1) +— (—N:—-Nd :dy),
(=Nc/a, b/a, —a?/bc) <+ (Nc: —b: —a) < (a:b:c).

We restrictx, y, z to be non-zero since we divide by them in the inverse map[]

Before we proceed with investigating the torsion subgrofighe Mordell-Weil
group of Emm,n)(Q), we need to recall the classification of torsion points dipet
curves overQ, see (Chapter VIII, 88, Theorem 7.5) in [7].

Lemma 2.3. Let E be an elliptic curve ove®. Then the torsion subgroup of
E(Q) is one of the following fifteen groups

Z/NZ, 1<N<10 or N=12 Z/2ZxZ/2NZ, 1<N <4.

Lemma 2.4. Let Em Ny be the elliptic curve described above. One a8z C
Ef 1(Q)-

Proof. The point (Q0: 1) is a rational point on
Emn: Y2z2— Mxyz— NyZ = x3.
Indeed the subgroup generated by: @: 1) is {(0:0: 1), (0: N : 1), O}. O

We define the following se§wu,ny of classes of triples of nonzero rational numbers
as follows:

Svny ={(@ ab):a#b2a+b=M,a’=N}/~
where i, Xz, X3) ~ (Y1, Y2, Y3) if and only if x; = y; for somei, j.
Proposition 2.5. Let a, b be nonzero rational numbers such ttza+b = M and

a’b = N. Then the poin{—N : —Na: a) is a torsion point of orde6 in Eg,n)(Q).
In particular, if #§um,n) = 2, then B ,(Q) = Z/2Z x Z/6Z.
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Proof. This is direct calculation using the formulas for itidd on elliptic curves,
see p.58 in [7]. More precisely, the subgroup generated bydie (—ab, —a?b) is:

((—ab, —a®b)) = {(—ab, —ab), (0, 0), (a?, —a®), (0, a%b), (—ab, —ab?), O}.

We observe that{a?, —a®) is the image of the partitionb(a, a) and (ab, —ab?) is
the image of the partitiona( b, a) in Equ,n)(Q). ]

REMARK 2.6. In Proposition 2.5, the case&§#,ny > 2 cannot occur, since this
will contradict the fact that the number of torsion points Bpu,ny must be less than
16, see Lemma 2.3. This implies that no positive intelyercan be written in more
than two different ways a1 = x; + 2x, where x1x§ = N and xq, Xo > 0.

Proposition 2.7. Let M, N be integers such that M can be written as a sum of
three distinct positive rational numberg & d, > d;3 whose product is N. We assume
that N3(M3 — 27N) # 0. Assume moreover that (@, — ds)® # d3(d; — d2)°. Then
rank Ew,n)(Q) = 1.

Proof. We recall thata = N3(M3 — 27N) is the discriminant ofEg,n). Hence
A # 0 implies thatEgy vy is an elliptic curve.
We observe that the six rational points

Rj = (—didj, —dd?) € Emn(@), i # ],
satisfy the following identities:

Ry +Pi =0, Rj+Pc=(0,0), j#Kk

did; (0 — di)(dj —d) did?(di — di)®
(d —d;)? ©(di—dj)? )

Rj + Py = (ON), i #k zp.j=(

We claim thatP; is of infinite order for evenyi, j. Assume on the contrary thd;

is of finite order. First of all we see thd®; is not a 2-torsion, since otherwide; =
—Rj = Pji and d;d? = d?d; which impliesd, = d;, a contradiction. Therefore we
have 12 points of finite ordeR,;, 2R, i # j. Moreover, the point; and 2P; are
distinct. For the latter statement, it is easy to show thatdix pointsP; are distinct.
However, if Bj € 2S whereS= {R;, 1<i,j < 3}, then we have one of the following
possibilities: if B; = 2P then P = (0, 0); if Bj = 2Py then Pjx = (0, N); if PBj =
2P;i then P = (0, 0); if P = 2Pk then —dj = d(d; —dj)(dk —dj)/(di —dk)2 and
observing the signs of both sides of the equality implieg,k) € {(1, 2, 3), (3, 2, 1),
moreover—d? = d(d; —d;)*/(di —dk)* but this implies i, j, k) € {(2,1,3),(2,3,1), a
contradiction; if Bj = 2P;, then—d; = di(dk —di)(d; —di)/(dk —dj)2 hence ( j, k) €
{(2,3,1), (2 1, 3), moreover—d, = d(dk — d)3/(dk — d;)® but this implies { j, k) €
{(3,1, 2), (1, 3, 2), a contradiction.
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Now if 2R; = 2R then 2@; + Pk) = O, a contradiction; if B; = 2P, then
2(P|j + PkJ) = O; if 2P|j € {2Pji, 2Py, 2ij} then dl(dz — dg)3 = d3(d1 - d2)3 which
is ruled out by our assumption. None of these 12 points is atpafi the subgroup
{0, (0,0), (O,N)}. Therefore we have fifteen points of finite order, three ofrthmake
up a subgroup of order three. According to the classificatiborsion points on el-
liptic curves, Lemma 2.3, this is a contradiction. O

Proposition 2.7 provides an easy method to construct iellipirves with posi-
tive rank.

Theorem 2.8. Let M, N be integers such that M can be written as a sum of
three positive rational numbers; & d, > d3 whose product is N. Assume moreover
that N3(M3 — 27N) # 0 and d(dz — d3)® # ds(d; — d2)3. The Mordell-Weil group of
the elliptic curve v n): y> — Mxy— Ny = x® satisfies fu n)(Q) = Z" x Ef}f y(Q),

r > 1, where

Z/31 if #Sm.ny =0,
E’(((K/T,N)(Q) = Z/6Z |f #SM,N) = 1,

Proof. We recall that there is a bijection between orderagides of nonzero ra-
tional numbers adding up t and having producN, and rational points orEgw,ny,
see Corollary 2.2. Moreover Proposition 2.7 implies thadif+ d, + d3 = M and
didod; = N wheredy, dy, d3 are distinct nonzero rational numbers, therdid;, —d; djz)
is a point of infinite order iNnExw, ny(Q). Therefore according to Corollary 2.2 and
Proposition 2.7, the only points of finite ordex (y : z) are the ones corresponding
to triples of the form 4, a, b), a # b, where 2+ b = M anda?b = N, or the ones
with at least one of the entries being zero. In other words, fthite points are lying
either in Su,ny or the subgroud O, (0, 0), (0,N)} respectively. Now the statement of
the theorem follows from Lemma 2.4 and Proposition 2.5. ]

3. A family of elliptic curves with rank at least 2

In Theorem 2.8, we proved that if an integkr is the sum of three distinct posi-
tive rational numbers whose product i, then there is a corresponding elliptic curve
Em,n) oOf positive rank. In what follows, we study the arithmetic tiese elliptic
curves and introduce further conditions on the given intege increase the rank of
the corresponding elliptic curves. For this purpose, we pgsdtive integers which have
more than one partition into three distinct parts such thatgroduct of these parts are
equal in each partition.
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We consider the following system of Diophantine equations:

X+Y+Z=U+V+W,

@)
XYZ=UVW.

In 82 of [2], a complete solution of the following system isufl.

X+y+zZ=U+v+ w,

X+ Y+ 22 =0+ 0% + vl

&)

Using the following transformations

X z u
X
Z=X+Y—-2Z, w=U+V-W, |Z= ery, W=U;U,

we transform the latter system (2) of equations into theofeithg system

(3) X+Y+Z=U+V+W,
(4) (X+Y+2)P2-24XYZ=(U +V +W)>-24UVW.

Therefore, equation (3) reduces equation (4Xt§ Z= UV W.

We obtain a complete solution of system (1) using the transditions above and
the complete solution of (2) found in Theorem 1 of [2]. Theusion is given in terms
of quadratic polynomials in four parameters such that eafarpeter appearing in the
solution is of first degree, more explicitly, the solution (@) is

X=pr+s), Y=q(p+5s), Z=r(q+59),

(5)
U=q(r +s), V=r(p+s), W=p(g+s)

wherep, g, r, S are parameters.

Theorem 3.1. Let M and N be given by parametrizatiqd). Then the points
P=(-N:=NX:Y)and Q= (-N:—-NU:V) are two independent points ingn
over Q(p, g, 1, s). In particular, Eqv,ny has rank at leas® over Q(p, g, 1, S).

Proof. To show thaEmwm, Ny has rank at least 2, we need to specialgeq, r, s
in the above parametrization so that the specializatiorP pfQ are independent over
Q. This holds because the specialization map is a homomanphButting p = 1,
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g=2,r=3,s=4yieldsx =7, y=10,z=18,u = 14, v = 15, w = 6, and
the pointsP, Q are specialized t0o«{126,—882) and £84,—1176) on the elliptic curve
E@s.1260) The height-pairing matrix associated to these points loiszero determinant
1.70464760105805-. This means thaP, Q are independent i, ny overQ(p,q,r,s).
O

In the following example a different family of parametriciga(M, N) given in
terms of one parametey is introduced such thaEg,n) has rank at least 2 oved(q).

EXAMPLE 3.2. Letk > 2 be an integer. We definp as follows:

q2kfl+1
qg+1 °

Now we defineMy as follows:

Mg = 1+ po? + g%

=p+a+ag*

where the product of the parts in each of the above partitidridy is Ny = pg®+i. A
specialization argument yields that the pointspg®*?, —p?q%*3), (—q+t1, —q%+?)
are independent irEg, N, over Q(g), and the curvesEg, n,) have rank at least 2
over Q(q).

4. A family of elliptic curves with rank at least 3

As it has been illustrated, there is an infinite number of gaif positive integers
(M, N), whereM can be written in two different ways as a sum of three distpui-
tive integers with the same produdt, and such that for each such pair the corres-
ponding elliptic curve has rank at least two ov@r The latter statement holds due to
the fact that the specialization homomorphism is injectateinfinitely many families
of parameters. This suggests that if the number of parstieith the same product
increases, then the rank of the corresponding elliptic eumight get larger.

We start by finding infinite number of integer solutions to foowing Diophan-
tine system:

Xi+Y1+Z1=Xo+Y2+2Zo=X3+ Y3+ Z3,

X1Y1Z1 = X2¥2Zp = X3Y3Z3.

(6)

Given positive integers, q, r, s, we are looking for pairs of positive integers
(M, N) such thatM has at least three partitions into three parts with equatiysb
N and pgrs| N. More accurately we findv, z which make the triples gw, gs, rz),
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(parw,s,z) and @, grs, p2) solutions to the system. It is an elementary linear algebra
exercise to show that

qr—gp—ar+p+q—r
w = \
par? — p?qr + p>—p—r +1
_pA—grw+(q—1)s
r—1 '

Z =

Thus we can generate infinite number of integer solutionsi¢osystem (6) by clearing
denominators. More precisely the following parametrizagicgolve system (6):
p, q,
s=pqrl—p’qr+p>—p—-r +1,
w=qr’—gp—ar+p+q-r,
z= pg’r? — pg’r — par + p+q— 1.

@)

Theorem 4.1. Let M and N be given by parametrizatidi@d). The points P =
(=prwz, —p?rw?z), P = (—sz —s%z) and R = (—pwz, —pw?z) are three independent
points in Em,ny overQ(p,q,r). In particular, Egv,ny has rank at leas8 overQ(p,q,r).

Proof. By specializingp=2,q=2,r =3,s=12, w =9, z= 39, we get the
following partition of 159:

159=18+24+4117=108+12+39=9+ 72+ 78.

The pointsP, are specialized t02106,—37908), (-468,—5616) and {702,—6318)
on the elliptic curvey? — 15Ky — 50544y = x3. The determinant of the height ma-
trix associated to these points is 4.55758994382846 This means thaP;, P, P
are independent. ]

We can obtain parametric solutions to the system (6) by sglivo homogeneous
linear equations, and consequently we reach an infinitelyaofipositive integers that
have three distinct partitions with the same product. Thiessgers provide us with a
family of elliptic curves of rank at least 3.

5. Elliptic curves with higher rank

The task of finding positive integers with large number oftiians into triples
whose parts have equal products seems a hard problem. Ithtadargest number of
such partitions of a given integer up to the knowledge of théhars is 13. The integer
17116 has 13 different partitions with produc®#527211.13.19, see D16 in [3].

We showed that positive integers that have two or threetjarsi with equal prod-
ucts can yield elliptic curves with rank at least two or thregpectively. We may ex-
pect that the higher the number of partitions we can produitie @gual products, the
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higher the rank of the corresponding elliptic curve that va& construct. Therefore if
we manage to find integers with arbitrary number of such fiams, then we should
predict that the corresponding elliptic curves will haveitary large ranks.

For example the partitionsx, yi, z) of M = 17116 with productN =
210.3%.2.8.72.11.13.19 are:

(1512, 7700, 7904), (1520, 7280, 8316), (1540, 6840, 8736),
(1596, 6160, 9360), (1716, 5320, 10080), (1755, 5120, 10241
(1760, 5096, 10260), (1792, 4950, 10374), (2016, 4180, @092
(2128, 3900, 11088), (2200, 3744, 11172), (2548, 3168, )40
(2736, 2940, 11440).

The elliptic curve
E:y?— 17116y — 2193°527211.13.19 = x°

has Mordell-Weil groupE(Q) =~ Z/3Z xZ", n > 6, where the points{N : —NX : y;),
i <6, are independent.
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