Stukow, M.
Osaka J. Math.
52 (2015), 495-514

A FINITE PRESENTATION FOR
THE HYPERELLIPTIC MAPPING CLASS GROUP OF
A NONORIENTABLE SURFACE

MicHAL STUKOW

(Received May 23, 2013, revised December 25, 2013)

Abstract

We obtain a simple presentation of the hyperelliptic maggitass groupmM"(N)
of a nonorientable surfac®l. As an application we compute the first homology
group of M"(N) with coefficients inHy(N; Z).

1. Introduction

Let Ng s be a smooth, nonorientable, compact surface of ggnwéth s boundary
components andh punctures. Ifs and/orn is zero, then we omit it from the nota-
tion. If we do not want to emphasise the numbgrss, n, we simply write N for a
surface Ny ;. Recall thatNg is a connected sum of projective planes, andNg is
obtained fromNy by removings open disks and specifying the sBt= {z, ..., z,}
of n distinguished points in the interior dfly.

Let Diff(N) be the group of all diffeomorphisnts N — N such thath is the iden-
tity on each boundary component ah@x) = X. By M(N) we denote the quotient
group of Diff(N) by the subgroup consisting of maps isotopic to the identityere we
assume that isotopies fiX and are the identity on each boundary compongt(N)
is called themapping class groupf N.

The mapping class group/l(%s) of an orientable surface is defined analogously,
but we consider only orientation preserving maps. If we udel orientation reversing
maps, we obtain the so-callexzktended mapping class groupli(%ys).

Suppose that the closed orientable surfggés embedded iR as shown in Fig. 1,
in such a way that it is invariant under reflections acrogs yz-, xz-planes. Leb: § —
S be thehyperelliptic involution i.e. the half turn about thg-axis. Thehyperelliptic
mapping class group\/lh(SJ) is defined to be the centraliser ofin M(§). In a sim-
ilar way we define theextended hyperelliptic mapping class groymhi(Sg) to be the
centraliser ofp in M*(S).
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Fig. 1. SurfaceS; embedded irR3.

1.1. Background. The hyperelliptic mapping class group turns out to be a very
interesting and important subgroup of the mapping classrdts algebraic properties
have been studied extensively—see [4, 9] and references. thdthough M"(S,) is
an infinite index subgroup aM(S§)) for g = 3, it plays surprisingly important role in
studying its algebraic properties. For example Wajnrylirapte presentation [18] of
the mapping class group1(S;) differs from the presentation of the groumh(Sg) by
adding one generator and a few relations. Another imponp&enomenon is the fact,
that every finite cyclic subgroup of maximal order M(S;) is conjugate to a subgroup
of M"(S) [14].

Homological computations play a prominent role in the tlgeof mapping class
groups. Let us mention that in the case of the hyperelliptEpping class group,
Bodigheimer, Cohen and Peim [5] computett (M"(Sy); K) with coefficients in any
field K. Kawazumi showed in [9] that if ci) # 2 then H*(M"(S); HY(S;; K)) = 0.
For the integral coefficients, Tanaka [17] showed tha(M"(S); Hi(Sy: Z)) = Z».
Let us also mention that Morita [11] showed that in the casenhefftill mapping class
group, Hi(M(S)): Hi(Sy, 2)) = Zag o,

1.2. Main results. The purpose of this paper is to extend the notion of the
hyperelliptic mapping class group to the nonorientableecasVe define this group
MN(N) in Section 2 and observe that it contains a natural subgrbtid (N) of in-
dex 2 (Remark 2.3).

Then we obtain simple presentations of these groups (Theorel and 4.4). By
analogy with the orientable case, these presentations reathdught of as the first
approximation of a presentation of the full mapping classugrM(N). In fact, for
g = 3 the hyperelliptic mapping class groupt"(N) coincide with the full mapping
class groupM(N) (see Corollary 4.3). Ifg > 4, then Paris and Szepietowski [12] ob-
tained a simple presentation @¥1(N), which can be rewritten (Proposition 3.3 and
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Theorem 3.5 of [16]) so that it has the hyperelliptic invadate as one of the gener-
ators, and the hyperelliptic relations (Theorem 4.1) appeaong defining relations.

As an application of obtained presentations we compute teeHomology groups
of M"(N) and M"*(N) with coefficients inH;(N; Z) (Theorems 5.3 and 5.4).

2. Definitions of M"(Ng) and M"*(Ng)

Let §;_1 be a closed oriented surface of gerus1 > 2 embedded iiR® as shown
in Fig. 1, in such a way that it is invariant under reflectiomsoasxy-, yz-, xz-planes,
and letj: §_1 — S-1 be the symmetry defined by(x, y, z) = (—x, —y, —z). Denote
by Cax(s,,)(J) the centraliser ofj in M*(S-1). The orbit space§;_1/(j) is a non-
orientable surfaceNg of genusg and it is known (Theorem 1 of [3]) that there is an
epimorphism

it Car(gn(1) = M(Ng)
with kernel kerr; = (j). In particular

M(Ng) = Cr=s,0(1)/(])-

Observe that the hyperelliptic involutioa is an element ofC .+ (s, ,)(J). Hence the
following definition makes sense.

DEFINITION. Define thehyperelliptic mapping class group1"(N) of a closed
nonorientable surfacll to be the centraliser of;(g) in the mapping class groupt(N).
We say thatr; (o) is the hyperelliptic involutionof N and by abuse of notation we write
o for (o).

In order to have a little more straightforward descriptioh go observe, that the
orbit space§;_1/(j) gives the model ofNg, where Ny is a connected sum of an ori-
entable surfac&s and a projective plane (fog odd) or a Klein bottle (forg even)—
see Fig. 2. To be more precisdly is the left half of §,; embedded inR® as in
Fig. 1 with boundary points identified by the may, ¢, z2) — (=X, —y, —2). Note that
g=2r +1 for g odd andg = 2r + 2 for g even. In such a model: Ny — Ny is
the map induced by the half turn about theaxis.

Observe that the set of fixed points @f Ny — Ng consists ofg points { ps, pz,...,
pg} and the circlep. Therefore M"(N) consists of isotopy classes of maps which
must fix the set{p;, po, ..., pg} and map the circlep to itself. Moreover, the orbit
spaceNg/(o) is the sphereigl with one boundary component correspondingpt@and
g distinguished points corresponding @1, P2, ..., pg}. Since elements th(Ng)
may not fix p point—wise, it is more convenient to treptas the distinguished puncture
pg+1, hence we will identifyNy/(o) with the sphereﬁ‘1 with g + 1 punctures. The
notation $'1 is meant to indicate that maps ﬂ’l (and their isotopies) could permute
the puncturespy, ..., pg, but must fix pg;1.
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Fig. 2. Nonorientable surfachl.

The main goal of this section is to prove the following theore
Theorem 2.1. If g = 3 then the projection j— Ng/(0) induces an epimorphism
700 MP(Ng) - M* ()
with kerm, = (o).

Proof. Consider the following diagram

Chrt(g((Js @) — Cppeqgny(i)

(o k

The left vertical map is the restriction of the projection

7Tj : CM*(%,l)(J) —> M(Ng)

to the subgroup consisting of elements which centralis@he nice thing aboutr; is
that it has a section

|j : M(Ng) —> CMi(ngl)(J)

In fact, for anyh € M(Ng) we can definej(h) to be an orientation preserving lift
of h.
The upper horizontal map is the restriction of the homomismh

7_[Q:./\/lh:l:(sg_l)_>'/\/li(§g)
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induced by the orbit projectiolg;_1 — S-1/(0). The fact that this map is a homo-
morphism was first observed by Birman and Hilden [4]. The &kmf this map is
equal to(o).

The right vertical map is again the homomorphism induced Hey arbit projec-
tion %g — ﬁg/(j). However nowj : ﬁg — %g is a reflection with a circle of fixed
points. The existence of; in such a case follows from the work of Zieschang (Prop-
osition 10.3 of [19]).

Hence there is the homomorphism

Tt ./\/lh(Ng) — Mi(ﬁ’l)
defined as the composition
Ty = Tj 0T, Olj.
Moreover,
kerm, = ker(rj o7, 0ij) = (7j o 7, oij) }(id)
= iy M) = i (D) = 1L 0)) = (o) [

REMARK 2.2. Theorem 2.1 is not true il = N,. This corresponds to the fact
that the Birman—Hilden theorem does not hold for the closegdstS = S,.

REMARK 2.3. Theorem 2.1 shows that the groymh(Ng) contains a very nat-
ural subgroup of index 2, namely

MM (Ng) = 7, (M(S).

Geometrically, the subgrouM“*(Ng) consists of these elements, which preserve the
orientation of the circlep (the circle fixed byp). As we will see later (see Remark 4.6),
it seems that the group"*(N) corresponds toM"(S), whereasM"(N) corresponds

to MM(S).

3. Presentations for groupsM(%‘l) and M*(ﬁ’l)

Let wy, wy, ..., wyg be simple arcs connecting puncturgs ..., pg+1 On a sphere
%’“ as shown in Fig. 3. Recall that to each such arcwe can associate the elem-
entary braido; which interchanges puncturgs and p;,1—see Fig. 3. The following
theorem is due to Magnus [10]. It is also proved in Chapter 42&f [
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Fig. 3. SphereSé’+1 and elementary braid; .

Theorem 3.1. If g = 1, then M(Sﬁ’“) has the presentation with generators
o1, ..., 0q and defining relations
okoj = ojox for [k—j|>1,
0j0j410] = 0j410j0j41 for j=1,...,9—1,
op--- 09710920971 ceeoq = 1,
(0102 -+ 0g)¥™t = 1.

In order to avoid unnecessary complications, from now omrassthatg > 3. Re-

call that we denote by\/l(ﬁ’l) the subgroup otM(ﬁ“) consisting of maps which
f|X pg+1.

Theorem 3.2. If g = 3, then M(S?’l) has the presentation with generators
o1, ..., 041 and defining relations
(A1) oyoj = ojo for [k—j|>1and k j <g,
(A2) 0j0j4+10] = 0j4+10j0j+1 for j =1,2,...,0—2,
(A3) (01+--0g-1)9 = L.

Proof. By Lemma 2.2 of [1],

M(S) = By/ (),

where By = M(%,,l) is the braid group org strands, and

A2 = (010 1)
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is the generator of the center &y. Since By has the presentation with generators
o1, ..., 041 and defining relations (A1), (A2), this completes the proof. ]

REMARK 3.3. Theorem 3.2 can be also algebraically deduced from réhe@.1.
Since M(S) is a subgroup of indexy + 1 in M(S*Y), for the Schreier transversal
we can take

(1, 09, 040g-1, - - ., OgOg—1 - * O1).

If we now apply Reidemeister—Schreier process, as gemsrdto M(%’l) we get

o1, ..., 0¢-1 and additionallyrs, . . ., 7y where
2.-1 -1
= 0g " " Ok+10K Oy i1 ** " Og for k=1,...,9-1,
ol for k=g.

As defining relations we get

owj =ojox for |k—j|>1 and k, j<g,

OkTj = TjOk for j £k k+1,

0j0j4+10j] = 0j4+10j0j+1 for ] =1, 2,...,9—2,
okrkﬂo[l:rk_flrkrkﬂ for k=1,2,...,9-1,
thkO'l(_l=‘Ek+1 for k=1,2,...,9-1,

7T g =1,
Og—1- 0201710102 - - - Og—1 = 1,

(0‘9710‘972 s O'll']_)g =1.

If we now remove generators, ..., ry from the above presentation, we obtain the
presentation given by Theorem 3.2. The computations argthgn but completely
straightforward.

Recall that byMi(ﬁ’l) we denote the extended mapping class group of the sphere
S that is the extension of degree 2 8f(SP"). Suppose that the spheg§’ is the
metric sphere ifR® with origin (0,0,0) and that punctures, ..., py are contained in the
xy-plane. Leto: S%”l — S%”l be the map induced by the reflection acrossxleplane.

We have the short exact sequence.

1 MEEH > MHSEH > (0) — 1.

Moreover, ooioc™! = 0;1 for i = 1,...,g— 1. Therefore Theorem 3.2 implies the
following.
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Theorem 3.4. If g = 3, then Mi(ﬁ‘l) has the presentation with generators
o1, ...,0¢-1,0 and defining relations
(B1) oxoj = gjoy for [k—j|>1and k j < g,
(BZ) 0j0j4+10j] = 0j4+10j0j+1 for j =12,..., g—2,
(B3) (01---0¢-1)? = 1,
(B4) 02 =1,
(B5) ooio = ai_l fori=1,2,...,9—1L

4. Presentations for groupsM"(Ng) and MM (Ng)

By Theorem 2.1 there is a short exact sequence.
1 (o) = MN(Ng) 25 M* (Y - 1.

Moreover, it is known that as lifts of braids,,...,o4-1 € Mi(%'l) we can take Dehn
twists ta;, ..., ta, , € M"(Ng) about circlesay, . . ., ag_1—cf. Fig. 2 (small arrows in
this picture indicate directions of twists). As a lift ef we take the symmetrg across
the xy-plane (the second lift of is the symmetryps, that is the symmetry across the
yz-plane).

To obtain a presentation for the grouﬂdh(Ng) we need to lift relations (B1)—(B5)
of Theorem 3.4. Each relation of the form

w(oy, ..., 04-1,0) =1

lifts either tow(ty,, ... 1, ,,S) =1 ortow(ty,,...,ta, ,,S) = 0. In order to determine
which of these two cases does occur it is enough to check whéth homeomorphism
w(ty, - - -, tay ,, S) changes the orientation of the circég or not. This can be easily
done and as a result we obtain the following theorem.

Theorem 4.1. If g = 3, then Mh(Ng) has the presentation with generators
ta, ..., ta,,, S, 0 and defining relations
(CL) tata; =taty for [k—j|>1and k j <g,
(C2) tyta . ta; = ta, tayta,, for j =1,2,...,9-2,

1 for g even
9 —
(C3) (tal tag—l) {Q for g Odd
(C4)s? =1,
(Co)stys=t3'for j =1,2,...,9-1,
(C6) 0*> =1,

(C7) otao =ty for j =1,2,...,9-1,
(C8) gse = s.
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Corollary 4.2. If g = 3, then

h |z, Z, for g odd
Hi(ME(Ng)) = {Zz ®Z,®Z, for g even.
Proof. Relation (C2) implies that the abelianization of treup Mh(Ng) is an
abelian group generated lty,, s, 0. Defining relations take form

oDy 1 for g even,
& o for g odd,

=1, tZ=1 ¢*=1

Hence Hi(M"(Ng)) = (ta,, S) > Z> & Z; for g odd andHi(M"(Ng)) = (ta,, S, 0) =~
Z, ® Z, ® Z, for g even. 0

The main theorem of [7] implies that the groupl(Ns) is generated by, a, and
a crosscap slide which commutes with Hence M"(N3) = M(N3) and Theorem 4.1
implies the following.

Corollary 4.3 (Birman—Chillingworth [3]) The groupM(N3) has the presenta-
tion with generators, t,,, S and defining relations
(D1) ta,ta,ta, = tatata,,
(D2) (taltazta1)4 =1,
(D3) s? =1,
(D4) stys = t;jl for j=1,2

Proof. By Theorem 4.1, the group1(Ns) is generated by, ts,, o, s with
defining relations:
(C2) ty,ta,ta, = taytata,,
(C3) (taltaz)3 =0,

(C4) s*> =1,

(C5) sys=t3* for j = 1,2,
(C6) 0* =1,

(C8) psp = s.

Using (C2), we can rewrite (C3) in the form

0 = ta,ta,ta, (taytayta,) = taytayta (tay tata,) = (taytayta,)*.

Hence we can remove from the generating set and then (C6) will transform into
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(D2). It remains to check that relations (C7) and (C8) areesfilyous. Let start
with (C7).
ta 0ty = ta, (tay ta, ta, ) (tay tay e )t
=1q (taZtaltaZ)(taltaztal)ta_ll = (ta1tazta1)(ta1tazta1) =0,
ta Oty = tay (ta, tata, ) (tay ta ta )t
=1, (taltaztal)(tazta1taz)t;21 = (taltaztal)(taltaztal) = 0.
Now we check (C8).

SQS = s(taltaztal)zs = (ta_llta_zlt_l)z = (taltaztal)_z = (taltagtal)z = Q D

ap

By restricting homomorphism,: M"(Ng) — M=(S'") to the subgroupv"*(Ng)
we obtain the exact sequence

1 (0) — M™(Ng) = M(S$H) — L.
Now if we lift the presentation from Theorem 3.2, we get théofeing.

Theorem 4.4. If g > 3, then M"*(Ng) has the presentation with generators
ta, ..., ta,,, 0 @nd defining relations
(E1) taty, =ty for [k—j|>1and kj <g,
(E2) tata ,ta, = ta ,tajta,, for j =1,2,...,9-2,

1 for g even
- 9 =
(E3) (ta1 tagfl) {Q for g odd
(E4) 0* =1,

(E5) otajo =ty for j=1,2,...,9—1

Corollary 4.5. If g = 3, then

Zog- for g odd
h+ — J#2(0-1)g
M (Ng)) = {Z(g_l)g ®7Z, for g even.

Proof. Relation (E2) implies that the abelianization of treup M"*(Ng) is an
abelian group generated lty,, 0. Defining relations take form:

{0~ _ 1 for g even,
a o for g odd,
0’=1.

Hence Hi (MM (Ng)) = (ta,) = Zog-1)g for g odd and Hy(M"(Ng)) = (ta,, 0) =~
Zg-1)g @ Z> for g even.

O
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REMARK 4.6. To put Corollaries 4.2 and 4.5 into perspective, rettadt in the
oriented case (Theorem 8 of [4]),

M)
= (tal, e, tang, 0| taktaj = taj ta., taj taﬁltaj = taj+1taj taj+1’
(taltaz T t329+1)29+2 =1, Q= taltaZ T t329+1t629+1 T taztail

0®>=1,0ta0=t,), where j=1,2,...,2g, [k—j| > 1.

The presentation for the grou,p/l“i(sg) is obtained from the above presentation by
adding one generat@ and three relations:

=1, sts=t', osg=s.

ConsequentlyH; (M"*(Sy)) = Z, & Z, and

h | Zsgy> for g even,
Hi(M(S)) = {ZggM for g odd.

This suggests that algebraically the grong"+(N) corresponds taM"(S), whereas
MP(N) corresponds toM"*(S).

5. Computing Hi(M"™(Ng); H1(Ng; Z)) and H1(M"(Ng); H1(Ng; Z))

5.1. Homology of groups. Let us briefly review how to compute the first hom-
ology of a group with twisted coefficients. Our expositiodldas [6, 17].

For a given groupG and G-module M (that is ZG-module) we define théar
resolution which is a chain complexG,(G)) of G-modules, whereC,(G) is the free
G-module generated by symbol§;[| --- | hy], hi € G. For n = 0, Cy(G) is the
free module generated by the empty bracket.[Our interest will restrict to groups
C,(G), C1(G), Cy(G) for which the boundary operatdy: C,(G) — C,,_1(G) is defined
by formulas:

02([h1]h2]) = hy[hz] — [h1hz] + [hy],
a(h) =h[-1-T-].
The homology ofG with coefficients inM is defined as the homology groups of

the chain complex@,(G) ® M), where the chain complexes are tensored &@r. In
particular, H1(G; M) is the first homology group of the complex

C(G) e M 22 cie) e M 22 cy(G) @ M.

For simplicity, we denoté ® id = 8 henceforth.
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Fig. 4. SurfaceNy as a sphere with crosscaps.

If the group G has a presentatio® = (X | R), denote by
(X)=(x]®m|xe X, meM)CCyG)® M.

Then, using the formula fof,, one can show thaHi(G; M) is a quotient of(X) N
kerd;.

The kernel of this quotient corresponds to relationgGinthat is elements oR).
To be more precise, if € R has the formx;---xx = y1---y, andm € M, thenr gives
the relation (inH.(G; M))

k n
(5.1) r@m: le---xi,l[xi]®m=Zy1---yi,1[yi]®m.
i=1 i=1
Then
Hi(G; M) = (X) Nkerd1/(R),
where
R={f@m|reR meM}.

5.2. Action of Mh(Ng) on Hi(Ng; Z). Letcy,...,cq be one-sided circles indi-
cated in Fig. 4. In this figure surfaddy is represented as the sphere wifftrosscaps
(the shaded disks represent crosscaps, hence their istarie to be removed and then
the antipodal points on each boundary component are to bwifidd). The same set
of circles is also indicated in Fig. 2—for a method of tramsfey circles between two
models of Ny see Section 3 of [15].

Recall thatH;(Ng: Z) as aZ-module is generated by; = [c4], ..., yg = [cg] with
respect to the single relation

201+ y2+- +yg) =0.

There is aZy-valued intersection paring, ) on Hi(Ng; Z) defined as the symmetric
bilinear form (with values irz,) satisfying(y:,y;) = &8; for 1<i,j < g. The mapping
class groupM(Ng) acts onHi(Ng; Z) via automorphisms which preseryg ), hence
there is a representation

¥+ M(Ng) — 1s0(H1(Ng: Z)).
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In fact it is known that this representation is surjectiveee-§13, 8].
Since we have very simple geometric definitionstpfs, o € M“(Ng) it is straight-
forward to check that

0 1
U(ta) = |i—1@|:_1 Z]EBlg_i—l,
2 -1
W(t;1)= Ii_1€B|:1 0 ]@Ig—i—lu
-1 2 -2 2 (-1)9-2]
0 1 -2 2 (-1)0-2
0 0 -1 2 (-1)0-2
¥e=|0 0 0 1 (-19-2 |
| 0 0 0 0 ... (=101
V(o) = —lg,
where | is the identity matrix of rankk.
The above matrices are written with respect to the gengratat ¢, y», .. ., ¥g)-

Note thatH;(Ng; Z) is not free, hence one has to be careful with matrices—tvio di
ferent matrices may represent the same element.

5.3. Computing (X) Nnker ;. Observe that ifG = M"(Ng), M = Hi(Ng; Z)
and h € G then

[ @y) =h-D- 10y =[-1® Wh) *—lgy.
If we identify Co(G) ® M with M by the map [] ® m — m, this formula takes form
3 ® vj) = (W) = 1g)y.

Let us denoted] ® yj, [S] ® ¥j, [ta] ® y; respectively byp;, s; andt;;. Using the
above formula, we obtain

91(0j) = —2yj,

=~y =2} w for | odd,
al(s')_{—ﬁl(sjl) for | even,

B htvia for j=i,
01(ti,j)) = y-—¥ — v+ for j=i+1,
0 otherwise.

Proposition 5.1. Let g= 3 and G= M""(Ng) then (X) N kerd; is the abelian
group which admits the presentation with generators
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(F1) ti,;, where i=1,...,g—-1and j=1,...,i—-1,i+2,...,9,
(F2) tj,; +tjj+1, where j=1,...,9-1,
(F3) Z; +0j + 0j+1, Where j=1,...,9-1,
2t11+ 233+ - + 2tg_2g-2 — 0g for g odd
(F4)
2ty 1+ 233+ -+ 2tg_14-1 for g even
and relations

ry:0=2tj1+---+ 2@ +tj42) +---+2tjg forj=1,...,9-1,
22114+ 01+ 02) + -+ 2(Ag-29-2 + 0g-2 + 0g-1)

[ = 2(21'1 + 2t3,3 + et 2tg,2,972 — Qg) for g odd
1221+ 01+ 02) + +2(2g1.9-1 + 0g-1 + 0g)
=211+ 233+ -+ 2g_14-1) for g even.

Proof. By Theorem 4.4(X) is generated byt ; and ¢;. Using formulas for
51(ti’j) and 51(Qj) it is straightforward to check that elements (F1)—(F4) el@ments
of kerd;. Moreover,

214+ 2o+ 2y g =[ta] @201 + -+ +yg) =0,

hencery, is indeed a relation. Similarly we check that is a relation.

Observe that using relatiomg andr, we can substitute fort2y and 2, respect-
ively, hence each element ifX) can be written as a linear combination B, 0j,
where each ofy g, to g, ..., 1514, 01 has the coefficient 0 or 1. Moreover, for a given
x € (X) C C1(G)® H1(Ng: Z) such a combination is unique. Hence for the rest of the
proof we assume that linear combinationstgf, o; satisfy this condition.

Suppose thah € (X) Nkerd;. We will show thath can be uniquely expressed as
a linear combination of generators (F1)—(F4).

First observe thah = h; + h,, whereh; is a combination of generators (F1)—(F2),
and h, does not contain generators of type (F1) nor elemgnts;. Moreover,h; and
h, are uniquely determined bly.

Next we decomposé, = hz + hys, wherehs is a combination of generators (F3)
and h, does not contairp; for j < g. As before,hz and h, are uniquely determined
by h2.

Elementh,s has the form

g-1
hy = Zajtj,j + agq,
=1

for some integers, a1, . . ., ag—1. Hence

0=01(ha) = a1 + (01 + @2)y2 + - - - + (otg—2 + otg-1)vg—1 + (g1 — 20) g
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If g is odd this implies that
ar=0az=-=0og2=2K o=as=---=0ag1=0, a=-k,
for somek € Z. For g even we get
ar=az3=--=0g1=2K o=a=a4=-=0ag=0.
In each of these casdg, is a multiple of the generator (F4). ]
By an analogous argument we get

Proposition 5.2. Let g= 3 and G = M"(Ng) then (X) N kerd; is the abelian
group which admits the presentation with generatqisl)—(F4),
(F5) sj + sj_1, where j is even
(F6) s; —01—02—"-+-—0j, wWhere j is odd.
The defining relations arey, r, and

+2(—01—02—+-—0g) for g odd

{0=2(Sz+sl)+2(54+83)+---+2(sg1+sgz)
I's
0=2(+s)+2(s+s)+--+2(5+5-1) for g even.

5.4. Rewriting relations. Using formula (5.1) we rewrite relations (E1)—(E5) as
relations in Hy(M"*(Ng); Hi(Ng; Z)).

Relation (E1) is symmetric with respect toand j, hence we can assume that
j + 1 < k. This relation gives

rIEEJlI) 0= ([ta] + talta] — [ta] — ta [ta]) ®
=ti +[ta] ® w(ta;l)yl —tji —[ta]l ® I/I(Ia_il)M

0 it £k K+ +1,
=tk + ket if i=kori=k+1,
tj+tjrr if i=jori=j+1

Relation (E2) gives

E2
M7 0= ([ta] + taylta ] + ty ta[ta)]
- [taj+1] - taj+1[taj] - tai+1taj [taj+1]) ® Vi

G — b, it i#j,]+1]+2
Gj+2 — L+, if i=j+2,
() + 205 +t;41) i,

()=t +ti+0) — G jer Ftjpaj2) 0f T =]+ 1.
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In the above formula+) denotes some expression homologous to 0 by previously ob-
tained relations. Carefully checking relatio and r(EZ) we conclude that gener-
ators (F1) generate a cyclic group, and generators (F2)rgume cyclic group of order
at most 2.

We next turn to the relation (E5). It gives

rE9: 0 = (lo] + olta,] — [ta)] — ta [0]) ® ¥

o, it AL+,
=2~ 0 —0j+1 it =]
(Qj +Qi+1+2tj,j)—2(tjyj +tj,j+1) if i=j+1

These relations imply that generators (F3) are homoldgitavial, and generators (F1)
generate at mosZ,.
We now turn to the most difficult relation, namely (E3). Thedation gives

g-1 g-1
ri(E3)3 0= (tay - - tag—l)ktal o, [ta] ® i —coi
k=0 n=1
g-1 g-1
=) Mal ®V(ta - ta )" Y Vlta - ta,) 1 —c0i
n=1 k=0
g-1

tan]®YnZ

=1

3

Wheree = 0 for g even,e = 1 for g odd, andY, = ¢(ts, - - -ta, ,) 1. Using the matrix
formula for v (t; 1), we obtain

—Yi-1 if 2<i<n,
YnM= Yi if i>n,
2+ 4 2+ i T =1,

In particular
Yg% = (1%,
where we subtract indexes modujp Therefore we have
(ES) :0= Z[tan] ® Y Z( %k — £Qi-
n=1

In order to simplify computations we replace relations:

rErE r{€3
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with relations:

riEa) + réES), réES) + r§E3), o réEi) + réEg), réES)_

R
Let us begin withr (&3,

g-1 g-1
0= Tta] ® Yo > (~1)vg-k — £0g

n=1 k=0
g-1 g—n-1 g-2

= [ta] ® ( Z (_1)k)’g—k + Z (_1)k+13/g—k—1
n=1 k=0 k=g-n

+ (=19 2y 4+ 2pns + Vn)) — £0g-

Since all generators of type (F1) are homologous to a singlegtor, say, and 2 =
0, the above relation can be rewritten as

g-1
rE:0=(g— 1@ -2t + D _[ta] ® (1" sz + (1)) — e

n=1
If g is even, this gives the relation

rF9:0=(—ty1+t2) + (~too—toad) + -+ + (~tg19-1 + tg_1)
=1+t —(2+1t23) + -+ (tg-1,9-1 + tg-19)
—2Mt11+t33+ -+ tgfl,gfl)-

If g is odd, we have
réES)i 0= (1t +(a+t3) + -+ (tg191+1t19)—0g

=—(ty,1+t12) + (o2 +t23) —- - - + (tg—1,g-1 + tg-1,g)
+ 201+ tz3+ - +tg_2g-0) —0g.

In both cases relation{¥) implies that generator (F4) is superfluous.

Now we concentrate on the relatiofF> + r(E?

i+1-
g-1 g-1
rE 41 0=3 ] @ Yo D (10« + vi410) — (o + @i 41)
n=1 k=0

g-1
=) [ta,] ® Ya(is1 + (=1)¥ 1yi41) — e(oi + 0i+1)-

n=1
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If g is even, this relation is trivial, and ifj is odd it gives

g-1
i 4 r80:0=23 "Tta ] ® Ya(ri+1) — (01 + i 41)
n=1
=2(tyivr 4+ g —tigei — o —tg-1i) — (0i + 0it+1)

= (%) + 2(ti;i +tii+1) — (2 + o + 0ita):

Hence this relation gives no new information.

Relation (E4) gives no new information, hence we proved tilwing theorem.

Theorem 5.3. If g = 3, then
Hi(M"™ (Ng): Hy(Ng: Z)) = Z, & Z>.

5.5. Computing Hi(M"(Ng); H1(Ng; Z)). If G = M"(Ng), then by Propos-
ition 5.2 the kernel(X) N kerd, has two more types of generators: (F5), (F6), and
by Theorem 4.1 there are three additional relations: (G@%),((C8).

i 0=[sl®@y +s[s]®n =5 +[s] ® Y

=2(—1)‘(sl+32+---+s_1+L2_1)|s).

This (inductively) implies that each generator of type (Faps order at most 2.

r®: 0= (o] + ols] —[s] — sla]) ® i = oi —25 —[0] ® Y (I
=0 —25 — (-1) (201 + 202 + - - - + 20i_1 + 0i)

_ {_Z(Si —01—""—0i) for i odd,
—2(5_1+S)+2(5_1—01—---—0j—1) for i even.

This implies that generator (F6) has also order at most 2.
r(“9: 0 = (ta] + ta [S] + ta S[ta,] — [S]) ® %
=t + [l @ v (ty Yy + [ta] ® ()t )y —s.
If i # ] andi # j + 1, then
(C9). o — i(of. . it .
r: 0= (1) (2,1 + -+ 2,20 + A+ (—1))t),

which gives no new information. lf = j ori = j + 1 and | is odd, then

ri(c5): 0= () £ [(sj + sj+1) + (tj,; +tj,j+0]
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where as usual«) denotes homologically trivial element. This relation imp that
generators (F5) are superfluous.

Finally, if i = j ori = j+1 andj is even then

ri(C5)3 O=()£[(Sj+1—01—---—0j+1) = (S-1—o1—---—¢j-1)l-

This implies that all generators of type (F6) are homologcuence we proved the
following.

Theorem 5.4. If g = 3, then

Hi(M"(Ng); Hi(Ng; Z)) = Z» @ Zo & Z».
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