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Abstract

The gonality sequencel(),>; of a curve of genug encodes, for < g, import-
ant information about the divisor theory of the curve. Mostlys very difficult to
compute this sequence. In general it grows rather modesthdé precise below)
but for curves with special moduli some “unexpected jumpstynoccur in it. We
first determine all integerg > 0 such that there is no such jump, for all curves of
genusg. Secondly, we compute the leading numbers (up te 19) in the gonal-
ity sequence of an extremal space curve, i.e. of a space ofim@ximal geometric
genus w.r.t. its degree.

1. Introduction

Let X denote a smooth irreducible projective curve of gegus 4 defined over
C. The numbergd, = d;(X) := Min{d: 3g; on X}, r =1, 2,..., form the gonality
sequenceof X (called so sincel; is the gonality of X). We say thatX satisfies the
slope inequalitiegfor its gonality sequence) il /r > d;,1/(r +1) forallr =1,2,...,
ie. if dryy —de < d /r for all r. So the slope inequalities limit the growth of the
gonality sequence, by virtue of shrinking upper bounds.

While the original interest in these inequalities came frattempts of extending
the notion of Clifford index from line bundles to vector bdesl on curves ([13]) we
consider these inequalities here as a tool for the spedificatf curves with special
moduli. In fact, if X does not satisfy the slope inequalities, i.edifr < dr1/(r + 1)
for somer, it is easy to see that thBril-Noether numberpg(d:,r) := g — (r +
1)(g — dr + r) is negative; consequently, by Brill-Noether theory ([¥), a general
curve X of genusg must satisfy the slope inequalities. But this is also true“f@ry
special” curves (w.r.t. moduli) like hyperelliptic curvése. d; = 2) or trigonal curves
(i.e. d; = 3) or bi-elliptic curves (i.e. double coverings of elliptitirves). On the other
hand ([12], 4.6), for eversg = 0 mod 3,g > 3 there are curves of gonalityy = 4
and genugy violating the slope inequalities. It seems to be a delicatgblem to de-
termine the curves violating the slope inequalities, byifigccharacteristic descriptions
for them. As is indicated in [12], good candidates are smaoiives inP" of a specific
geometric significance resp. curves whose Clifford indexiés computed by pencils
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only; to be more concrete: extremal curves®h resp. the normalizations of plane
curves with only few double points provide examples ([121.34 [2]). We will show,
as the first topic of this paper (Section 3), that these exesnplffice to answer the
Question(cf. [12], Question 5.4)What is the smallest integery gsuch that for every
integer g> go there is a curve of genus g not satisfying the slope ineqesdit

Ballico ([2]) showed thaigy exists and thaty < 31. We will prove thatgy = 14,
and we also identify the sporadic families of curves of gegus14 violating the slope
inequalities.

As our second topic we compute, in Section 4, the leading rust, do, ..., dig
of the gonality sequence of aextremal space curyeand we determine series “com-
puting” thesed; (i.e. seriesgy for r < 19). In particular, we show thats/3 < ds/4
for extremal space curves of degree at least 10; so for thasesthe violation of the
slope inequalities occurs much earlier than observed ih A23.

NoTATIONS. We basically adopt the notation of [1]; in particulargg on X is
a linear series of degre# and (projective) dimension on X. We call ag] on X very
specialif it is complete withr > 1 and if its index of speciality—d +r is at least 2;
then theg), and its dual serie$Kx — gj| are both at least pencils. (HefK x| denotes
the canonical series oK.) A g on X is calledsimpleif the rational mapX — P’
induced by it is birational onto its imag¥’; X’ is then an integral curve of degree
at mostd in P'. We call X an extremal curvein P if it has a simplegj of degree
d > 3r —1 and if X has the maximal genus among all curves admitting such arlinea
series; then they is very ample (i.e.X and X’ are isomorphic), and the gengsof
X attains Castelnuovo’s bound (cf. [12], 2).

For a non-negative real numbg&rwe denote by X] its integer part.

2. Preliminaries

The following result is an useful complement to [12], 3.2.

Proposition 2.1. Assume that X is not a smooth plane curve. Then we hawe d
r+g—-2forg—dy+2=<r <g-—d.

Proof. Forr = g —d; this is proved in [12], Remark 4.4. Lgg—d, +2=<r <
g—di. Then we haved, <dgqg, —(—dy —r) =r + g— 2. Assume thad, =
r +9—2—¢ for some integer > 0. Then detKx — gy | =29—-2—-d =g—r +¢
and dinfKx —gg | =9g—1—d +r =1+¢, i.e.diye =g—r +e. Hencedz + (¢ —1) <

e <g—(@—0d+2)+ ¢ =d, — 24 ¢, a contradiction. ]

Corollary 2.2. Assume that X is not a smooth plane curve. Then we hgirexd
d11/(r+1) forr > g—d,+2. (And we have equality here for=£ g—1 only, provided
that X is not hyperelliptig.



ALGEBRAIC CURVES VIOLATING THE SLOPE INEQUALITIES 425

Note that agy on X is very special if and only if I=r < g —d; ([12], 3.2
(b) and 4.4). Recall that the Clifford index of X gives rise to the following non-
existence statement: Ifr2~ d — y there is no very specialf; on X. We call X divi-
sorial completef also the converse of this statement is true. Obviouslyhiyeer- and
the bi-elliptic curves are divisorial complete but there also some other examples
([7]). These curves come out when the differendes-d, 1, r = 2, 3,..., are “too
long” constant:

Proposition 2.3. Let g> 9. Then the differences; d d, ; are constant for r=
2,...,[(g—d1)/2]+ 1 if and only if X is divisorial complete.

Proof. If X is divisorial complete we clearly haw —d,_; =2 forr =2,...,
g—0d;. Letg>9, and assume that. — d._; = ¢ with some constant > 0, for
r=2,...,rp:=[(g—d1)/2] + 1. This is certainly not true X is a smooth plane
curve; so we must havd, > d; + 1 whencec > 2. Assume that > 3. Sinced; <
(g+3)/2 andg > 9 we haverp > 3 unless ¢, d;) = (9, 6) in which latter casey = 2
and d; = d; + ¢ > 9 contradictingd, < 8 ([12], 3.2 (c)). Sorp > 3. In the €, r)-
plane, for given @, r) let (d’, r’) be the “dual point” defined by’ := 2g — 2 — d,
r'.=g—1-—d+r. Since the pointsd;,r), r =1,...,rg, lie on a linel with slope
1/c the dual points @), r’) lie on a linel’ with slope 1-1/c > 1/c. Forr < ry we
haved:.; = d. + ¢ > d, + 2 which, by duality, is easily seen to imply thdt = (d,)’
(ile. [Kx — gyl is a g{j;,). We apply this forr = ro — 1. Note thatd; + 2(rg — 2) is
g—2 (resp.g—3) if g—d; is even (resp. odd). So we hadg_; = di + c(ro —2) =
i +2(0—2)+(c—2)(o0—2)=2g—3+(c—2)(ro—2)>g—2 whenceip—1) =
g—1—dy,1+r0o—1=ro. Thus the point ¢, 1y, (fo — 1)) = ((c-1)", (ro — 1))
lies on bothl andl’. Since these lines meet on the lide= g — 1 we must have
(dr,—1) = g—1, and this implies thatc(—2)(ro—2) < 2, i.e. fo,c) = (3, 3),(3,4), (4, 3).
For (ro, c) = (4, 3) we haveg—d; =7, d;, = ds =d; + 3c =d; + 9 = g + 2 which,
by duality, contradictsd, = di + ¢ =g —4: |Kx — g3 4| is agg,, Similarly, for
(ro,c) = (3,4) (resp. I(p,c) = (3,3)) we haveg—d; =5 (resp.g—d; = 4), i.e.d3=g+3
(resp.d; = g + 2) contradictingd; = g —5 (resp.d; = g —4). Thus we obtairc = 2,
for g > 9. Sinced;, = d; +2(ro—1) > g—1 and at least ongy with d. < g must
compute the Clifford indexs of X (i.e. d- = y + 2r) all very specialgg on X do.
This implies thatX is divisorial complete. O

In a sense, the next proposition indicates “how specialt.{wmoduli) a curve is
which violates the slope inequalities.

Proposition 2.4. d/r < dr1/(r + 1) implies thatpg(d,, r) < —g/2.

Proof. Letis (1 < s € Z) denote the index of speciality of g (i.e.is=g—
ds +5s) and letDg := (s+ 1)ds —sds,1 (S0 Ds < 0 iff ds/s < ds;1/(S+1)). One easily



426 T. KaTO AND G. MARTENS

computes that

Ds = g —((s + 1)is — Sisy1) = pg(ds, S) + Sisy1.

By assumption, we hav®, < 0; then 1<r < g— 1. By [12], 3.2 (c) we have
ir+1 > [9/(r + 2)]. Hence we obtain

- g
pg(dr, 1) r—rllrp1 = r|:|’ +2j|

We need the following numerical fact:

Claim. Letl<r <g—1 Then fg/(r +2)] = (g— 3)/2, and we have equality
here iff r =2 and g= 3 mod4, orr = (g — 3)/2

This claim shows thapy(d;, r) < —(g — 1)/2, and equality is only possible for
r=2orr =(g—3)/2. But pyg(dz, 2) = —(g — 1)/2 would imply that @, = 3g + 13,
and ifr = (g—3)/2 equality would imply thatr(+ 1)(d: —3r) = —1. Hence we obtain
pg(dr, 1) = —9g/2. O

3. The number g

In this section we determine the smallest integgrsuch that for every integer
g > go there is a curve of genug not satisfying the slope inequalities. Ballico ([2])
proved thatgy exists andgy < 31. We will show thatgy = 14.

Proposition 3.1. Let Y denote an integral plane curve of degree=d whose
singularities are$ ordinary double points. Assume thé&t< 2d — 12. Then we have
ds; > 2d — 4 for the normalization X of Y.

Proof. Letn := d3, and assume that < 2d — 5. Then thegf{ on X cannot be
cut out onY by conics. In fact, letP be a linear series of conics cutting ogi on
Y (in the sense of [4]). IfP has a base curve theh splits off a line, and sag3
is already cut out onY by lines which is impossible. LeP;, ..., P be the base
points of P (r > 0); including infinitely near points. Note that no 3 of thesans are
collinear since the line through 3 collinear points would dodase curve of’. So P
is contained in the linear serié® := |2l — P, —. .. — P,| of P2 with the assigned base
points Py, ..., P, wherel denotes the class of a line i#? ([8], V, 4), and we have
3<dm(®)=5-r ([8], V, 4.2), i.e.r < 2. SinceY has merely double points this
implies thatn > 2d — 2r > 2d — 4 (and equality holds ifir = 2 and P;, P, both are
double points ofY which can happen fo8 > 2 only). This is a contradiction.

Sincen < 2d —5 and§ < 2d — 12 we haven + § < 4(d — 4) which implies,
according to the main lemma in [4], thaf is cut out onY by a linear serie® of
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plane cubics. Sincg? is not cut out onY by lines or conicsP has no base curve.
Again, let Py, ..., P be the base points df. ThenP S P := |3 — P, —---— P,

and we have X dim(P’) =9—r ([8], V, 4.4), i.e.r <6. SinceY has merely double
points this implies thah > 3d — 2r > 3d — 12 = (2d — 4) + (d — 8), a contradiction

for d > 8. If d = 6 the plane sexti¢Y is smooth; therds = 2d — 2 = 10 ([12], 4.3).

If d =7 the plane septi¢r has, by hypothesis, at most two singular points; hence
n>3d-22-41=3d-8=13> 10= 2d — 4, again. O

Corollary 3.2. In Proposition 3.1let § > 2. Then d = 2d — 4.

Proof. X has two different base point free pencd} ,, and their sum is then a
04—, for somen > 3 (e.g., [1], Ill, ex. B-2). Hencel; < 2d—4, and so Proposition 3.1
proves the result. ]

Corollary 3.3. In Proposition 3.1let§ =1. Thend =2d — 3.

Proof. X has a base point freg; ,; then dinjgi + g3 ,| > 4. Henced; < 2d—3.
If d3 < 2d —3 we haved; + § < 3(d —3), and according to the main lemma in [4] the
gi is cut out onY by conics. But then the arguments in the first part of the pafof
Proposition 3.1 (with§ = 1) give a contradiction. ]

Corollary 3.4. For g =6, 10, 14, 15and g> 20 there exists a curve of genus g
such that d/2 < d3/3.

Proof. Forg = (d —1)(d —2)/2 andd > 5 (note that this implies the casgs=
6, 10, 15, 21) we use [12], 4.3. For the remainigg> 22 we can writeg = (d —
1)(d —2)/2—§ with suitabled > 9, 1< § <d—3 and apply Proposition 3.1 (note that
d—-3<2d-12 andd, < d). Forg = 14 resp.g = 20 we apply Corollary 3.3 (for
d =7 resp.d = 8). ]

With some effort one can extend Corollary 3.4do= 18 andg = 19; we don't
need this fact.

Theorem 3.5. (i) There is a curve of genus g violating the slope inequalities i
and only if g> 14, 0or g € {6, 9, 10, 12.
(i) More preciselya curve of genus g 14 violating the slope inequalities is an ex-
tremal curve namely

e a smooth plane curve of degréeor 6 (g = 6 resp. g= 10),

e an extremal space curve of degrée(g = 9; [12],47),

e an extremal space curve of degedg =12;d; =4,d, =8,d3 =9, dy = 12,

ds = 13, ds = 16),
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e an extremal curve of degregl in P* (g = 12; dy = 4, dp = 7, d3 = 10,
ds = 11, ds = 14, dg = 15).

Proof. (i) Assume thag > 14 org € {6, 9, 10, 12. To observe the existence of
a curve of genug not satisfying the slope inequalities we first apply Comylld.4 for
g > 20 and forg = 6, 10, 14, 15. Forg = 9, 12, 16, 18, respg = 19 we apply [12],
2.1 and 4.13, resp. [12], 4.15.

To settle the remaining cage= 17 let S denote a general K3-surface R?. Then
Pic(S) is generated by (the class of) a hyperplane seckgndeg®) = H? = 8, and
S is known to be a complete intersection of three quadrics. Xedenote a smooth
irreducible curve orS contained in the linear serig@H| of S. Then X is a complete
intersection of four quadrics iP°, of genusg = 1+ (2H)?/2 = 17 and degrea =
2H.H = 16. The Clifford indexy of X is computed byg}, := |H|x| ([6], 3.2.6);
hencey = 6. We haved; = 8 ([6], 3.2.1) andds = 16. We will show thatd; = 14
which implies thatds > 20 (since|Kx — g%| = g3;) and sods/5 < dg/6. Assume that
ds3 < 14. Then we havel; = 12 ords = 13. First, letd; = 13. Then agf3 on X is base
point free and simple, and so we have tify — g3;| > 2.5+ (3— 1) —dim|g3s + 034,
according to [1], lll, ex. B-6. Sincel; > 3 the seriegg; + g3;| has dimension (16-
13)—g =12 or (16+ 13)— g+ 1= 13. In the first case we see that qigfh—gf3| > 0.
In the latter case we havigs + 035 C |[Kx| = 2034/, i.e. dimg5s — 935 > 0, again.
Hence anygf3 on X is obtained by the projection oX into P23 with center a trisecant
line of X. Similarly, for d3 = 12 (note that ag3, on X computesy and is therefore
base point free and simple, [11]) an analogous argument sskivat thegf2 is obtained
by the projection ofX into P2 with center a quadrisecant line €. But any tri- or
quadrisecant line oK is contained in the four quadrics intersectingXnhwhence it is
a part of X which is impossible. Hence we hadg = 14 (andd; = 15).

Conversely, letg < 13, g ¢ {6, 9, 10, 12; we have to show that every curveé
of genusg satisfies the slope inequalities, then. We may assumegthat8, d; > 4
and thatX is not bi-elliptic ([12], Section 4). Hencg = 11 org = 13, and we treat
these two cases separately by brutal force (checking abilpitises for the gonality
sequence ofX without claiming that all these possibilities can actudblg realized).
To begin with, we state the

Claim. Let ¢ be a base point free and simple net on a curve X such that the in-
duced plane model Y of X of degree d lfasleas) two double points PQ (i.e. points
of multiplicity 2). Assume that P and Q are different pointsR3f or that Q is infinitely
near P e P2. Then we haveg< 2d — 4.

To prove the claim, ifP, Q are different points o2 the two projectionsy — P1
with center P resp. Q induce two different base point free penclls, L, of degree
d —2 on X such that dinfL; + L»| > 3 (e.g., [1], lll, ex. B-2). Based on this result,
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a semi-continuity argument implies: P € P2, Q is infinitely near toP on X and L
is the base point free pencil od defined byP then dim2L| > 3.

Let g =11 org = 13. ThenX is not a smooth plane curve, and dp> d; + 2.
Furthermore,X has nogZ (such a series implies tha < 10 or thatX is hyper- or
bi-elliptic or trigonal); henced, > 7. Note that by duality, it is easy to compute the
d. > g provided that alld, < g are already known. And it suffices to compude up
tor <g-—d,;+ 2, by Corollary 2.2.

Let g = 11. By Brill-Noether theory ([1], V, (1.1)) we hawé < 7, d, < 10 and
ds; < 12. Moreover,d; > 9 (a gg implies thatg < 9 or that X is hyper- or bi-elliptic),
andd; = 9 impliesd; = 4 since X—not being trigonal—is then birational equivalent
to a space nonic lying on a quadric surface ([9], 3.13); so ohthe (at most two)
rulings of the quadric induces g; on X. Keeping this in mind we obtain, fa; <5,
one of the following six possibilities for the gonality semce of X; below the table
we add some arguments.

di | do ds dy | ds | dg
14| 7 9 11| 13| 15
21 4| 8 |10o0r11|12| 14
3|5 |7 10 12| 13| 15
4| 5| 8 |10o0r11|12| 14
5/ 5| 9 |10o0r11| 13
6| 5|10 12

As to 1: By [12], 3.1 (d),|g; + 92| = 9f; = |Kx — g3|; sods = 9 whence agy,
on X would be very ample thus implying < 9, by Castelnuovo’s bound ([12], 2).

As to 2: |[Kx — @3] = g7, (S0 ds < ds < 12). Assume that there is g on X.
Then (see aboveX is birationally equivalent to a space nonfcon a quadric surface;
if Y is singular we obtain @2 on X contradictingd, = 8. SoY is a smooth space
curve of genus 11 on a quadric which is impossible since 11 psirae number ([8],
IV, 6.4.1).

As to 3: Recall thatds = 9 would imply d; = 4. So our claim (withd = 7)
implies d3 = 10.

If d; =6 ord; =7 there are no difficulties to compute the possible gonaléty s
qguences. Again, in all these cases the slope inequalitesatisfied.

Let g = 13. By Brill-Noether theory we have; < 8, d, < 11 andd; < 13. More-
over, d; > 10 andd, > 12 (ags or g7, implies, by Castelnuovo’s bound, thgt< 12,
or that X is hyper- or bi-elliptic or trigonal).
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We have, ford; < 6, the following possibilities for the gonality sequence Xf
below the table we add some arguments.

dp | oy ds ds ds | ds | d7 | ds
114 8 10 12 or 13| 14| 16 | 18
2|1 4] 8 11 12 or 13| 15| 16 | 18
3|48 12 14 15| 16 | 18
4 | 5|7 10 12 14|16 | 17 | 19
5|5 8 10 13 14| 16 | 18
6 | 5| 8 11 13 15| 16 | 18
715]9 11 13 15| 17
8| 5|9 120r13 14 15| 17
91| 5|10 11 13 16
10| 5 | 10| 12 or 13 14 16
11|/ 6 | 8 11 12 or 13| 15| 16 | 18
12| 6 | 8 12 14 15| 16 | 18
13| 6| 9 11 12 or 13| 15 | 17
14| 6 | 9 | 12 or 13 14 15| 17
15| 6 | 10 11 13 16
16| 6 | 10| 12 or 13 14 16
17| 6 | 11| 12 or 13 15

Astol, 2,3 ¢ =4) Hered, <2d; =8 andd; < 3d; =12. A g% induces a
o7, = |gi + 97| ([12], 3.1 (d)), a contradiction. And; < 11 means thatl, < 13 (since
gils = |KX - g§1|)-

As to 4: Note that ding?| > 5 and dimg? + g2| > 4 ([12], 3.1 (d)).

As to 5, 6: Ford, =5, d, > 8 we haved; > 12, according to [15], Theorem 1.
For d, = 8 we have|gl + 92| = 9f; = |Kx — g3;|; sods = 13, d3 < 11.

As to 7, 8: As befored, > 12. If d3 = 10 thend, = 9 implies thatX is a smooth
space curve of degree 10; fgr= 13 it lies on a quadric surface ([9], 3.13) which is
impossible since 13 is a prime number.

As to 9, 10: As befored, > 12. Clearly,d, < 2d; = 10.

As to 11, 12: SinceX has Clifford index 4 it cannot have gi”o ([21]). Hence
we haved; > 11. We claim thatd; = 13 is impossible. Assume that@ on X (we
are in the caseal, = 8) is not simple. Then it is easy to see that it induces a double
covering X — Y upon a smooth plane quarti¢. So X has infinitely many base point
free pencils of degree 6. Taking two different of these pendi;, L, say, we have
dim|L; + L,| > 3 whenced; < 12. Assume that @g on X is simple. Sinced; = 6,

X is birational equivalent to a plane octic with 8 double psinApplying our Claim
we see thatl; <16—4 = 12.
As to 13, 14: As beforeg; > 11.
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As to 15: Sinceds = 16 it is important in this case that; > 12. But ag;‘2 on
X is very ample (sincal; = 11) whenceX is a smooth curve of degree 12 Bf; as
such it has a trisecant line ([14], Lemma 4), and the pragectvith center this line
gives us agg on X contradictingd, = 10.

If dp =7 ord; = 8 there are no difficulties to compute the possible gonalty s
guences. Again, the slope inequalities are satisfied.

(i) The assertions (fog = 6, 9, 10, 12) follow from analogous considerations as
in the proof of (i); we omit the detalils. ]

4. Extremal space curves

In this section,X denotes arextremal space curvef degreed. We want to com-
pute the first members of the gonality sequenceXof(By Theorem 3.5 we may as-
sume thad > 10.) X has genug = [((d—2)/2)’] and lies on a unique quadric surface;
if this quadric surface is smootK is of type @/2,d/2) resp. (@ —1)/2, d + 1)/2)
on it if d is even resp. odd ([8], IV, 6.4, 6.4.1). We hade= [d/2], d, =d—1 and
d; =d ([12], 4.8, 4.10).

Lemma 4.1. Letv e N. If v < (d—2)/2 we havedim|vg3| = v(v +2), dy12) =
vd, and if v < [(d — 2)/2] we have Q((”jj) = |vgd| for the unique web Hon X.

Proof. The uniqueness of thg and the claim forv < [(d — 2)/2] follows from
[12], 2.3. Letv = [(d — 2)/2]. Thenv(v + 2) > g and so ([12], 3.2 (@)Hvw+2) =
v(v +2) + g = vd, and |vgd| is non-special of dimensiond — g = v(v + 2). ]

If the quadric surface containin& is not smooth (i.e. is a quadric cone) then,
according to [10],X is doubly covered by a smooth plane cu®eof the same degree
d; in that case we can try to relate the divisor theory@f([5]) to that of X. To do
so we recall from [5] the following notion:

DEFINITION. A base point free and very specig] on a smooth plane curve
of degreed is calledtrivial if it is some multiple of the unique nt—:q;g minus some
points which impose independent linear conditions, i.ewé haveg), = |xg3 — E|
for 4 € N and an effective divisoE of C such thatr = dim|wg3| — degE). (Note
that the latter condition implies th¢pg§| is special sincey], is; in particular, we have

p <d—3 and dimugg| = u(u + 3)/2.)

Proposition 4.2. Let X denote an extremal space curve of degree d lying on a
guadric cone. Let &> 21, and forv € N let r(v) := [v(v + 4)/4]. Assume that < 7.
Then we have,gy = [vd/2], and for r(v—1) <r <r(v) we have g= d)—((v)—r)

(v = 2). (Furthermore this remains true for d= 10, 11, 12,resp. d= 13, 14, 15, 16,
resp. d= 17, 18, 19, 20if v < 4, resp.v < 5, resp.v < 6.)
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Proof. By [10], there is a smooth plane cur@ of degreed having an auto-
morphismo of order 2 such that the quotient cur@/(o) is isomorphic toX. Let
m: C — X be the resulting double covering. Using affine coordinates;an be de-
fined by &, y) — (x, —y) and by (x, y) = (X, y?) where, by [10],C is defined by
the affine equation

v+ ar()y*? + a(x) Yy + -+ am(x) = 0
if d =2m is even, resp. by
XY+ a ()Y + ap(X)yd 4+ 4+ an(x) =0

if d=2m+1 is odd. Herea;(x) denotes a polynomial of degree at mogtfdr even
d, resp. of degree at mostj 2- 1 for odd d, and an(x) is separable of degree.

o hasd fixed pointsP,..., P4 lying on the liney = 0 (thus being defined by the
d zeroes ofan(x)), and for oddd there is still another fixed poinP,, corresponding
to X # o0, Y = oo.

Forv e N let V™ be the vector space of (inhomogeneous) polynomials, y of
degree at most and V" (resp.V{") be the subspace &f") consisting ofo-invariant
(resp. o-anti-invariant) polynomials. Leg(v) := dim(V{"). Since V{") is isomorphic
to V&Y we havee(v) + e(v — 1) = dim(V™) = (v + 1)(v + 2)/2 whencee(v) =
[((v + 2)/2)?]. Note thate(v) — 1 is the number (v) defined in the statement of the
proposition, and note that(v) —[v/2] =r(v—21)+1 (v > 2).

Since theo-invariant part of|vg3| = 953”3)/ ? can be pushed forward to 9{53)/2]
on X we haved, () < [vd/2], and sod;)-; < [vd/2]—j for j =0,1,...,[v/2]. If
we can show that we have equality here for= [v/2] (i.e. drp—1)+1 = Crp)—y2) =
[vd/2] —[v/2]) then we have equality for alj =0, 1,..., [v/2]. For doing so, let

o[- [)

and we consider the seri¢s*(gy )| on C in the following claims.

Claim 1. Letr be as above. If & 10andv < d/2 then|z*(gy )| is very special.

To see this, observe thatr*(gy)| is a gggjg on C (¢ > 0) of degree & <
2([vd/2]—[v/2]) <vd—v + 1 (where 8, = vd —v + 1 is only possible ifd is even
andv is odd). This series has index of specialﬁ&(|rr*(ggr)|) =g(C)—2d +r+¢>
(d—1)d —2)/2—2d; +r; plugging in for 2, andr one easily computes that

4h(|7*(gh))) = 2d(d — 3) — 4vd + v? + 6v + 1,
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and sincev? + 6v > 12v — 9 we obtain
h*(J7*(gy)l) = (d —3)(d — 2v)/2—2.

Hence for 2 < d we see thah'(jz*(g},)|) > 1 if d > 10.

Claim 2. Let r be as above. Ifz*(gy)| is a trivial series on C then . d=
[vd/2] —[v/2] (as wanted.

To prove the claim, letz*(gy )| = lngZ — E| for an effective divisorE of C and
someu = d—3 such that +& = dim|z*(gy )| = n(u+3)/2—degE). The (incomplete)
linear subseries *(gy ) + E of |rg3| with base locusE is cut out onC by o-invariant
polynomials passing througk; since its moving partr*(gy ) is o-invariant so is its
fixed partE, i.e. o (E) = E.

Let VW(E) denote the subspace ¥f*) consisting of polynomials of degree at most
w which pass througl, and IetVe(“)(E) (resp.Vé")(E)) be theo-invariant (respo -anti-
invariant) subspace of “(E). Sinceo (E) = E we haveV(E) = V{Y(E) & VI (E);
hence dimyd“(E)) = r + 1 and dimy{”(E)) = e. We clearly haveVé(E) c V&,
ie. [(v+1)/2°] +1=r +1<e()=[((«+ 2)/2)? which implies thatv < .

Let Q be a point inE. Theno(Q) € E. Assume thatQ is a fixed point ofo.
If Qe {Py,..., Py}, since the tangent line t€ at Q is o-invariant, the intersection
multiplicity of it and C at Q is even; so 8 C E. If d is odd thenQ = P, is possible,
too. By the equation ofC for odd d it is easy to see: IfQ = P, and degE) =
nd — 2d; is even then @ C E, again, and ifQ = P,, and degE) is odd we even
have QY C E — Q.

Now, take a pointQ; € E (resp.Q; € E — P, iff deg(E) is odd), and letQ, :=
o(Q1). Since |ngZ — E| is trivial so is |1g3 — (E — Q1 — Q)| which implies that
dim(ugi — (E— Q1 — Q2))) =r + ¢ + 2. On the other hand, since(Q1) = 7(Q2)
and V{Y(E) is isomorphic toV# Y(E) we have dimyd(E — Q1 — Qz)) <r + 2 and
dim(V{¢(E — Q1 — Qy)) < & + 1. Hence we obtain ditg)(E — Q1 — Qo)) =r + 2.

Repeating this process until we have exhausted the poinEs (resp. inE — P,,)
we havee(u) =r + 1+ [deg(E)/2] = e(v) — [v/2] + [(nd — 2d)/2], i.e.

r(u) —r(v) = [M—;}—B]—dr.

If v =pu we obtaind, = [vd/2] — [v/2], as wanted. So assume that< pu.
Note that

+4 v(v + 4 2244 —v)+1
r(p,)—r(u)z[“(““‘l )}_[ ( . )}SM 4w )+1
So we haved: > [ud/2] —[v/2] — (1 — v)(x + v + 4) + 1)/4. It suffices to show
that the right hand side of this inequality is at leasti [2] — [v/2], i.e. to show that
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[1d/2]—[vd/2] = (u —v)(e + v +4)+1)/4. But [ud/2]—[vd/2] > ((n —v)d - 1)/2,
and we have ({ —v)d —1)/2 > ((u — v)(n + v + 4) + 1)/4 since this latter inequality
just means thaty( — v)(2d —4 — v — u) > 3 which is true forv < u < d —3. This
proves the claim.

The next claim proves the proposition.

Claim 3. Letr be as aboveand assume that <4 for 10<d <12, v <5 for
13<d=<16,v=<6for 17<d <20,andv <7 ford > 21 Then d =[vd/2]—[v/2].

In fact, our assumptions on imply that v < d/2, and so Claim 1 implies that
|7*(gq )| is very special. Write our = [((v + 1)/2)?] in the formr = (x + 1)(Xx +
2)/2 — p with non-negative integers and g < x. If we then have deg(*(gy)) =
2d, < d(r) := (x + 3)(d — 3) — B then, according to the main result in [5], the series
|7*(gg )| is even trivial.

Now assume thatl, < [vd/2] —[v/2], i.e. 2 <vd—v —1if d is even andv is
odd, and & < vd —v — 2 for the other parities ofl andv. Then it turns out (by our
hypotheses ol andv) that &I < d(r). (In fact, we note that =1, 2,4, 6, 9, 12, 16
forv=1,...,7, and one computed(l) = 3d — 9, d(2) = 4d — 13, d(4) = 5d — 17,
d(6) = 5d — 15, d(9) = 6d — 19, d(12) = 7d — 24, d(16) = 8d — 29.) By [5], we
consequently see that *(gg )| is trivial (r < 16). But then Claim 2 implies that, =
[vd/2] —[v/2], a contradiction. O

Recall thatr (v) = [v(v + 4)/4] and that, by Lemma 4.1, dimg3| = v(v + 2) =
r(2v) for v < (d — 2)/2. Here we add

Lemma 4.3. dimjvg3 + gél| =r(2v+1)if v <(d —2)/2. In particular, dr,) <
((u—1)/2)d + dy = [pd/2] for odd < d — 1.

Proof. If v =[(d —2)/2] then |vg] + gjl| is non-special, and the claim follows
from the Riemann—Roch theorem. So lek [(d — 2)/2]. First, let X lie on a smooth
guadric surface. Since this surface has two ruliXghas a pencil of degrea; different
from our chosergj1 resp. a base point free peng’j1+1 if d=2d; resp.d =2d; + 1.

Call this pencilL; we then havegg‘ = Igé1 + L|. By the base point free pencil trick
([2], . ex. B-4),

2dimjvgd + g, | < dim|(vgd + g,) + L| + dim|(vg3 + g5) — L,

and

2dimjvgd — g3, | < dim|(vg$ — gi) + L| + dim|(vg3 — g3) — LI.

Observe thafvgd + g§, + L| = |(v + 1)gil, Ived — g3, — LI = [(v — 1)g§| and
degdvg} + g3, — L| < vd. But |vg} — g + L| has degreevd resp.vd + 1 if d is
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even resp. odd. Legy , = [vg3—g] + L| for odd d. By Lemma 4.1 we know that
r <r(2v)+1. Assume that =r(2v)+1. Then, for someP € X, |g,4,,—P| = ng”) =
lvg3|, by Lemma 4.1, which implies thaKx —vgZ| has the base poirf; but we have
|Kx —((d—5)/2)g3| = g, and so the serielx —vg3| = |(((d—5)/2)g3 +93,)—vel =
|((d —5)/2—v)g3 + g5, | is base point free. Hence we hawes< r(2v).

Now Lemma 4.1 gives us

2dimlvgd + 9§ | <r(2v +2)+ (r(2v) - 1)
=W4+DP+3)+vv+2)—1=22+6v+2=2r(2v + 1),
2dimvgd — g3, | <1 (2v) +r(2v —2)
=W +2)+@-1Dr+1D)=22+2v—-1=2r(2v—1)+1,

i.e. dimvg} + g} | <r(2v+1) and dimvg} —gj | <r(2v —1).

On the other hand, it follows that dimg$ + gj | > 2 dimjvgd| —dim|vgd —gj | >
2r(2v) —r(2v —1) =2v(v +2)— (V> +v—-1)=1v2+3v +1=r(2v + 1), and this
proves our claim.

Let X lie on a quadric cone. TherX has a uniquegjl, and |2g§1| = gg
resp. |2g5, + P| = g3 for some pointP € X if d = 2d; resp.d = 2d; + 1. Since
X is a specialization of an extremal space curve of degreen a smooth quadric
surface we have dimg3 + gj | = r(2v + 1), by semi-continuity. On the other hand,

2dimvg + g3 | < dim|(vgd + g3) + 93, | + dim|(va§ + 93) — g5,

and [vg3 + g, + 93| is [(v+1)g3| resp.|(v + 1)g3 — P| if d is even resp. odd. Hence
we have

2dimpgd + g3l <+ D +3)+vv+2)=2r(2v + 1) + 1,

dimvgd + g3, <r(2v + 1). O

An extremal space curve on a smooth quadric surface is aigatien of an ex-
tremal space curve of the same degree on a quadric cone, amtuthbers in the go-
nality sequence can only grow by generization ([12], 3.4gnék our previous results
in this section imply the

Theorem 4.4. The claims ofProposition 4.2hold for any extremal space curve
X of degree d.

Corollary 4.5. Let d> 10. Then d/3 < ds/4 and &/8 < dg/9, and if d > 10
we also have €/5 < dg/6.
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In [3], Ballico already observed, in a broader context, ttai3 < ds/4 for d > 0.

QUESTIONS How far does the pattern in the gonality sequenceXofobserved
in its first part) continue to hold? And can Corollary 4.5 bexgrlized to an extremal
curve of degreed > 0 in P'; in particular, do we havel /r < d11/(r +1) (r > 4)?
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