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Abstract
Pseudodiagrams are knot or link diagrams where some of the crossing information

is missing. Pseudoknots are equivalence classes of pseudodiagrams, where equivalence
is generated by a natural set of Reidemeister moves. In this paper, we introduce a
Gauss-diagrammatic theory for pseudoknots which gives rise to the notion of a virtual
pseudoknot. We provide new, easily computable isotopy and homotopy invariants for
classical and virtual pseudodiagrams. We also give tables of unknotting numbers for
homotopically trivial pseudoknots and homotopy classes ofhomotopically nontrivial
pseudoknots. Since pseudoknots are closely related to singular knots, this work also
has implications for the classification of classical and virtual singular knots.

1. Introduction

Pseudodiagrams are knot or link diagrams where some of the crossing informa-
tion is missing. Where there is missing information, instead of a crossing with clearly
marked over- and under-strands, aprecrossingor double-point of the curve appears in
the diagram. Pseudodiagrams of spatial graphs, knots and links were first introduced
as potential models for biological applications by Hanaki [2]. Classical and virtual
pseudodiagrams were further studied in [5]. Henrich et al. [3] first defined pseudo-
knots as equivalence classes of pseudodiagrams up to rigid vertex isotopy and a col-
lection of natural Reidemeister moves. This collection of moves includes the classical
Reidemeister (R) moves and a number of additional pseudo-Reidemeister (PR) moves
as seen in Fig. 1.

At first glance, pseudo-Reidemeister moves two (PR2) and three (PR3), along with
rigid vertex isotopy at the double-point(s), are equivalences akin to what is seen in the
theory of singular knots. However, the inclusion of the pseudo-Reidemeister one (PR1)
move makes the theory of pseudoknots distinct.

The most familiar representation of a given knot is that of a knot diagram which
is a shadow of the knot decorated with crossing information at transverse intersection
points. An alternate and sometimes more useful presentation is a Gauss diagram which
consists of a core circle oriented counterclockwise (drawnto represent the entire curve
of the oriented knot) together with the pre-image of double-points connected by chords
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Fig. 1. Classical and Pseudo-Reidemeister moves.

Fig. 2. A knot diagram and its corresponding Gauss diagram.

along the circle. The crossing information is indicated on the chord by an arrow point-
ing from the over-strand to the under-strand and a sign on thechord specifying whether
the crossing is left or right handed. See Fig. 2.

We may extend the definition of a Gauss diagram to pseudoknotsas follows. All
classical crossings in a pseudoknot are represented in the Gauss diagram by a stand-
ard chord decorated with arrow and crossing sign. A precrossing is represented by a
bold or thicker chord. We must take care, however, to indicate the proper ‘handed-
ness’ of the precrossing. Fig. 3 indicates a general precrossing and its decorated arrow
within the Gauss diagram, and Fig. 4 gives an example of a pseudoknot and its Gauss
diagram. Notice that in the Gauss diagram, the precrossing arrow points in the same
direction as the classical arrow would point if the precrossing were resolved positively.
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Fig. 3. A precrossing and a subsection of its Gauss diagram.

Fig. 4. A pseudoknot diagram and its corresponding Gauss
diagram.

Fig. 5. Gauss diagrams of Polyak’s classical Reidemeister moves
with n D �1.
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To make use of Gauss diagrams we must understand equivalenceof Gauss dia-
grams up to classical and pseudo-Reidemeister moves. Polyak’s generating set of clas-
sical Reidemeister moves (Fig. 5 in [8]) are represented as Gauss diagram equivalences
in Fig. 5. Only the indicated chords appear in the solid arcs of the circle, and the
portions of the diagram where the circle is dotted may include the endpoints of any
collection of chords. Notice that in the R2 move, both chord arrows must point to
the same section of solid arc in the Gauss diagram, which represents the arc with two
undercrossings in the R2 knot diagram. Observe that within the R3 move, two chord
arrows will always emanate from one of the solid arcs. This represents the arc con-
taining two overcrossings in the R3 knot diagram.

A subset of the complete collection of PR moves are represented as Gauss dia-
grams in Fig. 6. Four of the eight PR3 moves are shown. The other four are related
to those pictured by switching all signs and arrows of the classical chords.

We arrive at a key observation at this point in the discussion. While every pseudo-
knot can be represented by this extended class of Gauss diagrams, not all Gauss dia-
grams are realizable as pseudoknots. In particular, there are many classical Gauss dia-
grams that fail to describe actual knots. For ordinary Gaussdiagrams, this observation
prompted Kauffman to introduce the theory of virtual knots [7]. Here, we define the
parallel theory of virtual pseudoknots.

A virtual pseudoknotis an equivalence class of pseudo-Gauss diagrams, with equiva-
lence generated by the set of Gauss-diagrammatic Reidemeister moves. Just as with or-
dinary virtual knots, virtual pseudoknots can be represented as pseudodiagrams where a
new type of virtual crossing is allowed. (Virtual pseudodiagrams were studied extensively
in [5].) We note that equivalent virtual pseudoknot diagrams are related by classical and
pseudo-Reidemeister moves as well as thevirtual detour move. The virtual detour move
allows the replacement of any strand in the diagram that contains only virtual crossings
by any other strand starting and ending at the same points that also only contains virtual
crossings. Note that the virtual detour move has no effect onthe Gauss diagram of the
virtual pseudoknot since virtual crossings do not appear inthese diagrams.

2. An isotopy invariant

We are now armed with the background needed to define our primary invariant,
a powerful tool for distinguishing virtual pseudoknots in general and classical pseudo-
knots in particular.

DEFINITION 1. Consider a Gauss diagram,P, of a virtual pseudoknot. Define a
map I(P) as follows.
1. Replace with chords all arrows inP that are associated to precrossings. (I.e., delete
all arrowheads on precrossing arrows.) These chords will becalledprechords.
2. Decorate each prechordc with the integer valuei (c), wherei (c) is the sum of the
signs of the classical arrows that intersectc.
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Fig. 6. Gauss diagrams of the pseudo-Reidemeister moves.

3. Delete all classical arrows.
4. Delete any prechordsc that have adjacent endpoints andi (c) D 0.
The codomain ofI is the set of all chord diagrams such that each chord is decorated
with an integer. We refer to this set asZC.

To illustrate this definition, we include an example of a virtual pseudoknotP and
its corresponding decorated chord diagramI(P) in Fig. 7.

Theorem 1. The mapI is an invariant of virtual pseudoknots.

Proof. Let us consider how each Gauss-diagrammatic Reidemeister move on a
Gauss diagramP affects the corresponding value ofI in ZC.
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Fig. 7. A Gauss diagram for a virtual pseudoknot and its image
under the mapI.

In terms of classical moves, R1 adds or deletes a classical arrow that doesn’t inter-
sect any precrossing arrow, so R1 doesn’t change the value ofI. R2 adds or deletes
two classical arrows such that, for any given precrossing arrow a, the two classical ar-
rows either both intersecta or both fail to intersecta. Since the two arrows introduced
or deleted in an R2 move have opposite signs, the decoration on each prechord inI(P)
is unchanged by this move. Classical R3 moves on Gauss diagrams do not change the
signs of any classical arrows, nor do they change the intersection of a classical arrow
with a precrossing arrow.

Let us turn our attention now to the effects of pseudo-Reidemeister moves on the
Gauss diagramP. Note that the PR1 move adds or deletes a precrossing arrow with
adjacent endpoints. In the computation ofI, the corresponding chord hasi (c) D 0.
Hence, this chord is deleted in the process of computingI. It follows that the values
of I before and after a PR1 move are identical.

In a PR2 move, we notice that all intersections of arrows withthe prechord are
preserved, as are all signs of intersecting classical arrows. Thus, no PR2 move will
alter thei (c) value on this prechord. Furthermore, if the prechord involved in this move
had adjacent endpoints inI before the PR2 move, it has adjacent endpoints inI after
the PR2 move. In either situation, the prechord would be deleted if it has a value of
i (c) D 0 both before and after the PR2 move has been performed.

There are three types of changes that can occur to the precrossing arrowa involved
in a PR3 move. After the move is performed, either (a)a intersects two more classical
arrows that have opposite signs, (b)a intersects two fewer classical arrows that have
opposite signs, or (c)a loses one classical arrow intersection but gains another classical
arrow intersection where both arrows have the same sign. In all three cases, the value
of I after the move is performed is the same as the value ofI before the move. Hence,
I is invariant under PR3.

Since we have verified invariance for R1, R2, R3, PR1, PR2, andPR3, we can
conclude thatI is indeed an invariant of virtual pseudoknots.
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Corollary 2. The mapI is an invariant of(classical) pseudoknots.

3. A homotopy invariant

At this point, we return to an interesting question that was posed for pseudoknots
in [3]. If we allow crossing changes in the classical crossings, to what extent do the
precrossings obstruct the unknotting of a pseudoknot? We say that two (virtual) pseudo-
knots arehomotopicor crossing change equivalentif any (virtual) pseudodiagrams of
these two (virtual) pseudoknots are related by a sequence ofPR-moves and crossing
changes in the classical crossings. So our question can be reframed as follows: when
are two (virtual) pseudoknots homotopic?

In terms of Gauss diagrams, the crossing change move changesboth the direction
of a classical arrow as well as its sign. In [3], it was proven that there exist non-
trivial homotopy classes of pseudoknots. But how many homotopy classes exist? Us-
ing the invariantI as inspiration, we define a related homotopy invariant,Ih, of virtual
pseudoknots. This new invariant allows us to distinguish many pseudoknot and virtual
pseudoknot homotopy classes.

DEFINITION 2. Consider a Gauss diagram,P, of a virtual pseudoknot. Define a
map Ih(P) as follows.
1. Replace all arrows inP that are associated to precrossings with prechords.
2. Decorate each prechordc with the Z2 value p(c), where p(c) is the parity of the
number of classical arrows that intersectc.
3. Delete all classical arrows.
4. Delete any prechordsc that have adjacent endpoints andp(c) D 0.
The codomain ofIh is the set of all chord diagrams such that each chord is decorated
with a 0 or 1. We refer to this set asZ2C.

Once again, we illustrate this definition with an example of avirtual pseudoknot
P and its corresponding decorated chord diagramIh(P) in Fig. 8.

Theorem 3. The mapIh is a homotopy invariant of virtual pseudoknots.

Proof. First, we recall that the crossing change move changes the sign and ar-
row direction of a classical chord in a Gauss diagram. So let us consider the Gauss-
diagrammatic Reidemeister moves that we obtain if we ignoreboth sign and arrow dec-
orations on all classical chords. We claim thatIh is invariant under this much more
flexible set of moves.

We begin by noting that no classical Gauss-diagrammatic Reidemeister moves
change the parity of the number of classical chords that intersect a given precross-
ing arrow. In particular, R1 and R3 do not change the number ofintersecting clas-
sical chords, while R2 may change the number of intersectingclassical chords by 2.
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Fig. 8. A Gauss diagram for a virtual pseudoknot and its image
under the mapIh.

Since the only classical information recorded inIh is the parity of intersections with
precrossing arrows, classical moves do not change the valueof the function.

Next, we note that all PR2 moves preserve the number of classical chords that
intersect a given precrossing arrow. On the other hand, one type of PR3 move pre-
serves the number of classical chord intersections of the precrossing arrow involved in
the move, while the other type changes the intersection number of this arrow by 2. In
either case, parity is preserved. Condition 4 in the definition of Ih guarantees invari-
ance under PR1. Hence, all PR moves on Gauss diagrams preserve Ih.

Corollary 4. The mapIh is a homotopy invariant of(classical) pseudoknots.

REMARK 1. We note that the class of (virtual) pseudoknots is a quotient of the
class of (virtual) singular knots, so the invariants presented in this paper give rise to
invariants of (virtual) singular knots as well.

4. Unknotting numbers and pseudoknot homotopy

For classical knots, crossing change is an unknotting operation. One of the most
difficult problems in knot theory is the computation of unknotting numbers. We re-
view the classical unknotting theory, then extend these ideas to homotopically trivial
pseudoknots. We also provide a table of unknotting numbers for homotopically trivial
pseudoknots and homotopy classes for homotopically nontrivial pseudoknots.

4.1. Unknotting classical knots.

DEFINITION 3. Theunknotting number u(K ) of a knot K is the minimal number
of crossing changes required to obtain the unknot from the knot K , where the mini-
mum is taken over all diagrams ofK .



INVARIANTS OF CLASSICAL AND V IRTUAL PSEUDOKNOTS 417

Fig. 9. The Nakanishi–Bleiler example: (a) the minimal projec-
tion of the knot 5 1 4 that requires at least three crossing changes
to be unknotted; (b) the minimal projection of the knot 3 1 2
with the unknotting number 1; (c) non-minimal projection ofthe
knot 5 1 4 from which we obtain the correct unknotting number
u(5 1 4)D 2.

There are two equivalent approaches for obtaining the unknotting number of a
knot K :
1. According to theclassical definition, one is allowed to make a planar isotopy after
each crossing change and then continue the unknotting process with the newly obtained
projection, until the unknot is obtained.
2. Thestandard definitionrequires all crossing changes to be done simultaneously in
a fixed projection.

Unfortunately, both definitions are unsuitable for calculations, since there are in-
finitely many projections of any knot. From the well known example of the knot 108
(or 5 1 4 in Conway notation), given by Y. Nakanishi [9] and S. Bleiler [10], the un-
knotting number is not always realizable in a minimal crossing projection. We recall
that the rational knot 514 has only one minimal projection (Fig. 9 (a)). In the minimal
projection diagram of 5 1 4, unknotting requires at least three crossing changes (in the
crossings denoted by circles).

On the other hand, making a crossing change in the middle point of the diagram
(Fig. 9 (b)) followed by the reduction 5�1 4D 3 1 2, we obtain the minimal projection
of the knot 312. This projection can be unknotted by a single crossing change. Hence,
in the case of unknotting according the classical definition, we obtain the correct un-
knotting number of 2 using only minimal projections. The unknotting number can also
be obtained from the non-minimal projection of the knot 5 1 4 (Fig. 9 (c)) using the
standard definition.

The Nakanishi–Bleiler example motivated the definition of the JB-unknotting
number which is easy to compute due to the algorithmic natureof its definition.
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DEFINITION 4. For a given crossingv of a diagramD representing knotK , let
D
v

denote the knot diagram obtained fromD by changing the crossingv.
a) The unknotting numberOu(D) of a knot diagramD is the minimum number of
crossing changes required in the diagram to obtain the unknot.
b) The JB-unknotting number uJB(D) of a diagramD is defined recursively in the
following manner:

1. uJB(D) D 0 if and only if D represents the unknot.
2. uJB(D) D 1C minD

v

uJB(D
v

) where the minimum is taken over all minimal
diagrams of the knotK represented byD

v

.
c) The JB-unknotting number uJB(K ) of a knot K uJB(K ) D minD uJB(D) where the
minimum is taken over all minimal diagramsD representingK .

J.A. Bernhard [12] in 1994 and independently S. Jablan [11, 6] in 1995 conjectured:

CONJECTURE 1 (Bernhard–Jablan conjecture). For every knotK we have that
u(K ) D uJB(K ).

This means that we take all (n-crossing) minimal projections of a knot, make a sin-
gle crossing change in every crossing to obtainn new knot diagrams, and then minimize
all the projections obtained. The same algorithm is appliedto the first, second,: : : kth

generation of the knots obtained. TheJB-unknotting number is the minimum number
of stepsk in this recursive unknotting process.Note that even if the Bernhard–Jablan
conjecture is false, uJB(K ) is the best known lower bound for unknotting numbers.

4.2. Unknotting homotopically trivial pseudoknots. The Nakanishi–Bleiler ex-
ample can be directly transferred to pseudoknots. Considerthe motivating example of
the pseudoknot (i , 1, 1, 1, 1) 1 (1, 1, 1, 1), i.e., the pseudoknot derived from the knot 108
(or 5 1 4), where one crossing in the first twist 5 is replaced bya precrossing. (See [4]
for more on the Conway notation of pseudoknots.) Just as withour original knot 5 1 4,
the fixed diagram (i , 1, 1, 1, 1) 1 (1, 1, 1, 1) requires at least three crossing changes to be
unknotted. On the other hand, the diagram (i , 1, 1, 1, 1)�1 (1, 1, 1, 1) obtained by one
crossing change reduces to (i , 1, 1) 1 (1, 1), and the next crossing change (i , 1, 1)�1 (1, 1)
yields the unknot.

We conclude our investigation with the following tables in which we provide JB-
unknotting numbers for homotopically trivial pseudoknots. The notation used is con-
sistent with the pseudoknot tables that can be downloaded from the address:

http://www.mi.sanu.ac.rs/vismath/pseudotabsigned1.pdf

In the tables referenced above, pseudoknots are given by their ordering numbers,
Conway symbols, and signed WeRe-sets.
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In the case of classical knots, there is only one homotopy class: the homotopy
class of the unknot. Thus, unknotting numbers are always finite. Since there exist non-
trivial homotopy classes of pseudoknots, there are pseudoknots with finite and infinite
unknotting numbers in the table below. For the pseudoknots with at most 7 crossings
and finiteuJB, we provide theirJB-unknotting numbers in Table 1. For the remaining
pseudoknots from the tables we determined their homotopy classes.

4.3. Homotopy classes of pseudoknots.All pseudoknots with at most 7 cross-
ings are divided into 53 homotopy classes. The first pseudoknot in the list that has a
new homotopy class is taken to be the representative of the class. The first 26 classes
consist from more than one pseudoknot, and the remaining 27 classes contain only one
pseudoknot with at most 7 crossings. Their list is the following:
1) 31.1 D (i , i , i ), 51.3, 52.7, 62.5, 62.7, 63.4, 63.6, 71.5, 72.13, 73.11, 73.8, 74.17,
74.18, 75.10, 75.19, 75.29, 75.37, 75.5, 75.7, 76.43, 76.46, 76.54, 76.62;
2) 31.2D (i ,i ,1), 41.4, 51.4, 52.10, 52.8, 61.11, 62.10, 62.11, 62.13, 62.20, 62.23, 62.24,
63.10, 63.13, 63.14, 63.16, 63.8, 71.6, 72.14, 72.16, 73.12, 73.15, 74.19, 74.20, 74.21,
75.13, 75.14, 75.17, 75.20, 75.30, 75.38, 75.40, 76.33, 76.34, 76.37, 76.44, 76.47, 76.48,
76.51, 76.55, 76.56, 76.59, 76.63, 76.64, 76.67, 77.31, 77.33, 77.34, 77.35, 77.36;
3) 41.1D (i , i ) (i , i ), 61.7, 62.14, 74.14, 76.6, 76.8, 77.20, 77.5, 77.7;
4) 41.2D (i , i ) (i , 1), 52.5, 61.10, 61.8, 62.15, 62.16, 62.19, 62.22, 63.15, 72.11, 73.14,
74.12, 74.13, 74.15, 75.27, 75.33, 75.34, 76.11, 76.12, 76.14, 76.21, 76.25, 76.26, 76.29,
76.36, 76.39, 76.40, 77.11, 77.14, 77.15, 77.18, 77.24, 77.25, 77.27, 77.29, 77.32, 77.9;
5) 51.1D (i , i , i , i , i ), 71.3, 73.4, 75.8;
6) 51.2D (i , i , i , i , 1), 62.6, 63.9, 71.4, 73.5, 73.7, 75.18, 75.9;
7) 52.1D (i , i , i ) (i , i ), 72.7, 73.9, 74.4, 75.21, 76.15;
8) 52.2D (i , i , i ) (i , 1), 61.5, 72.8, 73.13, 74.5, 74.7, 75.22, 75.23, 76.16, 76.17, 76.28;
9) 52.3D (i ,i ,1)(i ,i ), 62.12, 63.5, 72.10, 73.10, 74.10, 74.11, 75.26, 75.32, 76.20, 76.38,
77.17;
10) 61.3D (i , i , i , 1) (i , i ), 74.6, 76.7, 77.10;
11) 61.2D (i , i , i , i ) (i , 1), 72.5;
12) 62.2D (i , i , i ) (i ) (i , 1), 75.6;
13) 62.3D (i , i , i ) (1) (i , i ), 73.6;
14) 62.4D (i , i , 1) (i ) (i , i ), 76.13, 77.6;
15) 62.8D (i , i , 1)(i )(i , 1), 62.9, 75.16, 77.26, 77.28;
16) 63.2D (i , i ) (i ) (i ) (i , 1), 76.30;
17) 63.3D (i , i ) (i ) (1) (i , i ), 75.15;
18) 63.7D (i , i ) (1) (i ) (i , 1), 76.35
19) 63.7D (i , i ) (1) (i ) (i , 1), 76.3563.11D (i , 1) (i ) (i ) (i , 1), 63.12, 76.31, 76.32, 77.30;
20) 74.10D (i , i , 1) (i ) (i , i , 1), 74.9, 77.16;
21) 75.9D (i , i , i ) (1, 1) (i , 1), 75.10, 76.24;
22) 75.11D (i , i , 1) (i , i ) (i , 1), 75.12, 76.27;
23) 76.10D (i , i ) (i , 1) (i ) (i , 1), 76.9, 77.8;
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Table 1. uJB numbers for homotopically trivial pseudoknots.

K Conway notation uJB

31.3 (i , 1, 1) 1
41.3 (i , i ) (1, 1) 1
41.5 (i , 1) (1, 1) 1
51.5 (i , 1, 1, 1, 1) 2
52.4 (i , i , i ) (1, 1) 1
52.6 (i , i , 1) (1, 1) 1
52.9 (i , 1, 1) (1, 1) 1
52.11 (1, 1, 1) (i , 1) 2
61.4 (i , i , i , i ) (1, 1) 1
61.6 (i , i , i , 1) (1, 1) 1
61.9 (i , i , 1, 1) (1, 1) 1
61.12 (i , 1, 1, 1) (1, 1) 1
61.13 (1, 1, 1, 1) (i , i ) 2
61.14 (1, 1, 1, 1) (i , 1) 2
62.17 (i , 1, 1) (i ) (1, 1) 2
62.18 (i , 1, 1) (i ) (�1,�1) 2
62.21 (i , 1, 1) (1) (1, 1) 1
62.25 (1, 1, 1) (i ) (1, 1) 2
62.26 (1, 1, 1) (i ) (�1,�1) 2
62.27 (1, 1, 1) (1) (i , i ) 2
62.28 (1, 1, 1) (1) (i , 1) 2
63.17 (i , 1) (1) (i ) (1, 1) 2
63.18 (i , 1) (1) (1) (1, 1) 1
63.19 (1, 1) (i ) (i ) (1, 1) 2
63.20 (1, 1) (i ) (i ) (�1,�1) 2
63.21 (1, 1) (i ) (1) (1, 1) 2
71.7 (i , 1, 1, 1, 1, 1, 1) 3
72.4 (i , i , i , i , i ) (1, 1) 1
72.6 (i , i , i , i , 1) (1, 1) 1
72.9 (i , i , i , 1, 1) (1, 1) 1
72.12 (i , i , 1, 1, 1) (1, 1) 1
72.15 (i , 1, 1, 1, 1) (1, 1) 1
72.17 (1, 1, 1, 1, 1) (i , 1) 3
73.16 (i , 1, 1, 1) (1, 1, 1) 3
73.17 (1, 1, 1, 1) (i , i , i ) 2
73.18 (1, 1, 1, 1) (i , i , 1) 2
73.18 (1, 1, 1, 1) (i , 1, 1) 2
74.8 (i , i , i ) (1) (1, 1, 1) 2
74.16 (i , i , 1) (1) (1, 1, 1) 2

K Conway notation uJB

74.22 (i , 1, 1) (1) (1, 1, 1) 2
74.23 (1, 1, 1) (i ) (1, 1, 1) 3
74.24 (1, 1, 1) (i ) (�1,�1,�1) 2
75.24 (i , 1, 1) (i , i ) (1, 1) 2
75.25 (i , 1, 1) (i , i ) (�1,�1) 2
75.28 (i , 1, 1) (i , 1) (1, 1) 2
75.31 (i , 1, 1) (1, 1) (1, 1) 2
75.35 (1, 1, 1) (i , i ) (1, 1) 2
75.36 (1, 1, 1) (i , i ) (�1,�1) 2
75.39 (1, 1, 1) (i , 1) (1, 1) 2
75.41 (1, 1, 1) (1, 1) (i , 1) 3
76.18 (i , i ) (1, 1) (i ) (1, 1) 2
76.19 (i , i ) (1, 1) (i ) (�1,�1) 2
76.22 (i , i ) (1, 1) (1) (1, 1) 1
76.41 (i , 1) (1, 1) (i ) (1, 1) 2
76.42 (i , 1) (1, 1) (i ) (�1,�1) 2
76.45 (i , 1) (1, 1) (1) (1, 1) 1
76.49 (1, 1) (i , i ) (i ) (1, 1) 2
76.50 (1, 1) (i , i ) (i ) (�1,�1) 2
76.52 (1, 1) (i , i ) (1) (i , 1) 2
76.53 (1, 1) (i , i ) (1) (1, 1) 2
76.57 (1, 1) (i , 1) (i ) (1, 1) 2
76.58 (1, 1) (i , 1) (i ) (�1,�1) 2
76.60 (1, 1) (i , 1) (1) (i , 1) 2
76.61 (1, 1) (i , 1) (1) (1, 1) 2
76.65 (1, 1) (1, 1) (i ) (1, 1) 2
76.66 (1, 1) (1, 1) (i ) (�1,�1) 2
76.68 (1, 1) (1, 1) (1) (i , 1) 2
77.19 (i , i ) (1) (1) (i ) (1, 1) 2
77.21 (i , i ) (1) (1) (1) (1, 1) 1
77.37 (i , 1) (1) (1) (i ) (1, 1) 2
77.38 (i , 1) (1) (1) (1) (1, 1) 1
77.39 (1, 1) (i ) (i ) (i ) (1, 1) 2
77.40 (1, 1) (i ) (i ) (i ) (�1,�1) 2
77.41 (1, 1) (i ) (i ) (1) (1, 1) 2
77.42 (1, 1) (i ) (i ) (�1) (�1,�1) 2
77.43 (1, 1) (i ) (1) (i ) (1, 1) 2
77.44 (1, 1) (i ) (1) (1) (1, 1) 2
77.45 (1, 1) (1) (i ) (1) (1, 1) 2
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24) 76.23D (i , 1) (i , i ) (i ) (i , 1), 76.24;
25) 77.12D (i , i ) (1) (i ) (i ) (i , 1), 77.13;
26) 77.22D (i , 1) (i ) (i ) (i ) (i , 1), 77.23;
27)–53) 61.1D (i , i , i , i ) (i , i ),
62.1D (i , i , i ) (i ) (i , i ),
63.1D (i , i ) (i ) (i ) (i , i ),
71.1D (i , i , i , i , i , i , i ),
71.2D (i , i , i , i , i , i , 1),
72.1D (i , i , i , i , i ) (i , i ),
72.2D (i , i , i , i , i ) (i , 1),
72.3D (i , i , i , i , 1) (i , i ),
73.1D (i , i , i , i ) (i , i , i ),
73.2D (i , i , i , i ) (i , i , 1),
73.3D (i , i , i , 1) (i , i , i ),
74.1D (i , i , i ) (i ) (i , i , i ),
74.2D (i , i , i ) (i ) (i , i , 1),
74.3D (i , i , i ) (1) (i , i , i ),
75.1D (i , i , i ) (i , i ) (i , i ),
75.2D (i , i , i ) (i , i ) (i , 1),
75.3D (i , i , i ) (i , 1) (i , i ),
75.4D (i , i , 1) (i , i ) (i , i ),
76.1D (i , i ) (i , i ) (i ) (i , i ),
76.2D (i , i ) (i , i ) (i ) (i , 1),
76.3D (i , i ) (i , i ) (1) (i , i ),
76.4D (i , i ) (i , 1) (i ) (i , i ),
76.5D (i , 1) (i , i ) (i ) (i , i ),
77.1D (i , i ) (i ) (i ) (i ) (i , i ),
77.2D (i , i ) (i ) (i ) (i ) (i , 1),
77.3D (i , i ) (i ) (i ) (1) (i , i ),
77.4D (i , i ) (i ) (1) (i ) (i , i ),
77.6D (i , i ) (i ) (i ) (1) (i , 1).
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