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Abstract

Let X be a complete toric variety of dimensionand A the fan in a latticeN
associated toX. For each cone of A there corresponds an orbit closuvéo) of
the action of complex torus oK. The homology classegV (c)] | dimo = k} form
a set of specified generators Hf,_«(X,Q). Then anyx € H,_x(X,Q) can be written
in the form

x= ) uxo)VE)
oeAy, dimo=k

A question occurs whether there is some canonical way toesgpr(x, o). Morelli
[12] gave an answer wheK is non-singular and at least for= 7, «(X) the Todd
class of X. However his answer takes coefficients in the field of rafidoactions
of degree 0 on the Grassmann manif@g_..+1(Ng) of (n — k + 1)-planes inNg.
His proof uses Baum-Bott’s residue formula for holomorpfuliations applied to
the action of complex torus oX

On the other hand there appeared several attempts for ¢gemgraron-singular
toric varieties in topological contexts [4, 10, 7, 11, 9, Zuch generalized mani-
folds of dimension B8 acted on by a compaat dimensional torusT are called
by the names quasi-toric manifolds, torus manifolds, tongnifolds, toric origami
manifolds, topological toric manifolds and so on. Simyatbrus orbifold can be
considered. To a torus orbifold a simplicial setAyx called multi-fan of X is asso-
ciated. A question occurs whether a similar expression toeMsrformula holds for
torus orbifolds. It will be shown the answer is yes in thisecéso at least when the
rational cohomology ringH*(X)q is generated byH?(X)q. Under this assumption
the equivariant cohomology ring with rational coefficiertig' (X, Q) is isomorphic
to Hf(Ax, Q), the face ring of the multi-famx, and the proof is carried out on
Hi(Ax, Q) by using completely combinatorial terms.

1. Introduction

Let X be a complete toric variety of dimensianand Ax the fan associated to
X. Ay is a collection of rational convex cones Mg = N ® R where N is a lattice
of rank n. For eachk-dimensional cone in Ay, let V(o) be the corresponding orbit
closure of dimensiom — k and [V(o)] € An_«k(X) be its Chow class. Then the Todd
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1114 A. HATTORI

class7n_k(X) of X can be written in the form

(1) TkX) = Y @)V

oAy, dimo =Kk

However, since the\[(o)] are not linearly independent, the coefficiepig(o) € Q are
not determined uniquely. Danilov [3] asks jfi(o) can be chosen so that it depends
only on the coner not depending on a particular fan in which it lies.

The equality (1) has a close connection with the numbd?)#{f lattice points
contained in a convex lattice polytope in Mg where M is the dual lattice ofN.
For a positive integen the number #(P) is expanded as a polynomial in (called
Ehrhart polynomial):

#EP) =) a(Pp" k.
k

A convex lattice polytopeP in Mg determines a complete toric variel/ and an
invariant Cartier divisorD on X. There is a one-to-one correspondence between the
cells {o} of Ax and the facegP,} of P. Then the coefficient,(P) has an expression

) a(P)= Y (o) vol P,
dimo=k
with the sameuy(o) as in (1).

Hereafter we shall use notatidr;( )o to meanH;() ® Q and so on.

We shall restrict ourselves to the case wh&rés non-singular. PuD; = [V (0j)]
for the one dimensional cong, and letx; € H?(X) denote the Poincaré dual @;.
The divisor D is written in the formD = >, diD; with positive integersd;. Puté =
> dixi. It is known that

a(P) = /X ETHX)
and

vol P, :/ eX,,
X

where T¥(X) € H%(X)q is the k-th component of the Todd cohomology class, the
Poincaré dual off,_¢(X), andx, € H%(X) is the Poincaré dual ofM(c)]. The co-
homology class, can also be written as, = [[; X; where the product runs over such
j thatoj is an edge ob. Then the equality (2) can be rewritten as

© [T 00= 3 o) [ €x.

dimo=k

The reader is referred to [5] Section 5.3 for details and Notethere for references.
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In his paper [12] Morelli gave an answer to Danilov's question Let
Ratf(Gn_k+1(Ng)))o denote the field of rational functions of degree O on the
Grassmann manifold ofn(— k + 1)-planes inNg. For a cones of dimensionk in
Nr he associates a rational functign(o) € Ra{Gn_k+1(Ng)))o. With this uk(o), the
right hand side of (1) belongs to

Ra(Gn—«+1(Ng)))o ®g An—«(X)q,

and the equality (1) means that the rational function withues in A,_i(X)q in the
right hand side is in fact a constant function equal7iax(X) in A,_k(X)g. In other
words this means that

Y. m@)E)V(©)] = Tak(X)

o€Ax, dimo=k

for any generic it — k + 1)-plane E in Ng.

Morelli gives an explicit formula foruk(o) when the toric variety is non-singular
using Baum—Bott’s residue formula for singular foliatiofi§ applied to the action of
(C*)" on X. He then shows that the functiomc(c) is additive with respect to non-
singular subdivisions of the cone. This fact leads to (1) in its general form.

One can ask a similar question about general classes otaerttie Todd class
whether it is possible to definp(x, o) € Raf{Gn_k;+1(Ng)))o for x € Ay_k(X) in a
canonical way to satisfy

(4) x= Y uxo)lVE)]

o€Ay, dimo=k

When X is non-singular, one can expect thafx, o) satisfies a formula analogous
to (3)

(5) /xe€x= > u(x,a)/xefxg

dimo =k

for any cohomology class = ) ; dixi. In this sense the formula does not explicitly re-
fer to convex polytopes. Fulton and Sturmfels [6] used Mingkiwveights to describe
intersection theory of toric varieties. For complete norgslar varieties oiQ-factorial
varieties X the Minkowski weighty,: H2"¥(X) — Q corresponding tox € H(X) is
defined byyy(y) = [, xy. Thus, if thed; are considered as variables§nthe formula
(5) is considered as describing as a linear combination of the Minkowski weights
of y, .

On the other hand topological analogues of toric varietyendiscussed by several
authors [4, 10, 7, 11, 9, 2]. Most general one would be torusfadeb[7]. To a torus
orbifold X a multi-fan Ayx is associated. Multi-fan is a generalized notion of fan. Its
cohomology reflects the cohomology of the torus orbifold.
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The purpose of the present paper is to establish the formd)lay showing an ex-
plicit formula for (x,0) when X is a torus orbifold. Moreover our proof is based on a
simple combinatorial argument carried on the associatelfi-fan Ax. Topologically
the formula concerns equivariant cohnomology classes amstorbifolds. This would
suggest that actions of compact tori equipped with some odralitions admit topo-
logical residue formulas similar to Baum—Bott’ formula.

In Section 2 we recall the definition of multi-fans and torubifolds together with
relevant facts. The definition gf(x, o) is given for multi-fans and consequently for
torus orbifolds. Theorem 3.1 states that the formula (1d&idbr any torus orbifolds.
Furthermore Corollary 3.2 ensures that the formula (2) eidlt torus orbifolds. Fi-
nally Corollary 3.3 states that (4) holds for a torus orlfoX such thatH*(X)q is
generated byH?(X)q.

2. Multi-fans and torus orbifolds

The notion of multi-fan and multi-polytope were introduced[10]. In this article
we shall be concerned only with simplicial multi-fans. S&é,[7, 8] for detalils.

Let N be a lattice of rankn. A simplicial multi-fanin N is a triple A = (£,C, w)
whereX = | |y_,Z® is an (augmented) simplicial complex® being the set ok—1
simplices,C is a map fromz® into the set ofk-dimensional strongly convex rational
polyhedral cones in the vector spablg = N ® R for eachk, andw is a mapxz™ —
Z. %O consists of a single element= the empty set. (The definition in [10] and [7]
requires additional restriction om.) We assume that any € X is contained in some
I € =M and =™ is not empty.

The mapC is required to satisfy the following condition; iJ € X is a face of
| € &, thenC(J) is a face ofC(l), and for anyl, the mapC restricted onX(l) =
{J e X |Jcl}is an isomorphism of ordered sets onto the set of face€(d). It
follows that C(l) is necessarily a simplicial cone ar@(o) = 0. A simplicial fan is
considered as a simplicial multi-fan such that the n@apn X is injective andw = 1.

For eachK € ¥ we set

Sk ={JeXT|KcJ.

It inherits the partial ordering fronk and becomes a simplicial set WheEQ((j) C
xU+KD, K is the unique element iz?). Let Nk be the minimal primitive sublattice
of N containingN N C(K), and NX the quotient lattice oN by Nx. For J € x we
define Cx (J) to be the coneC(J) projected onNK ® R. We define a function

w: KN w0 7

to be the restrictions ofv to EE'"KD. The triple Ax = (2k, Ck, w) is a multi-fan
in NK and is called theprojected multi-fanwith respect toK € . For K = o, the
projected multi-fanA, is nothing butA itself.
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A vector v € Ng will be called genericif v does not lie on any linear subspace
spanned by a cone i€(X) of dimension less than. For a generic vector we set
dy = >,y w(l), where the sum is understood to be zero if there are no such

DEFINITION. A simplicial multi-fan A = (X, C, w) is called pre-completéf the
integerd, is independent of generic vectors In this case this integer will be called
the degreeof A and will be denoted by degl. It is also called theTodd genusof
A and is denoted by Td{]. A pre-complete multi-fanA is said to becompleteif the
projected multi-fanAg is pre-complete for everK € .

A multi-fan is complete if and only if the projected multifaA ; is pre-complete
for every J € (™D,

Like a toric variety gives rise to a fan, a torus orbifold givese to a complete
simplicial multi-fan, though this correspondence is noe da one. A torus orbifold is
a closed orientedbrbifold with an effective action (in the sense of orbifoldtian) of a
compact torus of half the dimension of the orbifold with nempty fixed point set and
with some additional conditions on the orientations of @iertype of suborbifolds (pre-
cise statement will be given later. See [13] for terminoésgconcerning orbifolds, and
[7] for those of torus orbifolds). Cobordism invariants ofus orbifolds are encoded
in the associated multi-fans.

Let X be a torus orbifold. A connected component of the fix pointafedt subcir-
cle of the torusT is a suborbifold. A suborbifold of this type which has codim®n
two and contains at least one fixed point of the actiol a6 called characteristic sub-
orbifold. By the orientation convention included in the défon of torus orbifold, a
characteristic suborbifold is equipped with a fixed oriéiota

In the following, characteristic suborbifolds will be de¢ad byX;. In the multi-fan
A(X) = (Z(X), C(X), w(X)) the simplicial complexx(X) is given by

.
s®X) =41 | # =k+1, (ﬂxi> £ 0

i€l

Let S be the circle that fixes the points of;. Take a pointx in X;. Take an
orbifold chart Uy, Vi, Hx, px) aroundx in which Uy is invariant under the action ¢
and Vy is an Euclidean ball on whicliy acts linearly and the projectiopy: Vyx — Uy
identifies Vi /Hy with Uy. Then there exist a covering grodp of § and a lifting of
the action of§ to the action of§ on Vy (exactly its tangent space). Hereafter we
shall always take the minimal covering with the above prgper

If x is a fixed point of the action of , Uy can be taken invariant under the action
of T and such thatp, 1(x) is a single point. Furthermore i is in a characteristic
suborbifold X;, then the vector spac¥, decomposes into a direct suly =V, +
Vit where Vit is tangent top,}(Ux N X;) and V; is normal to the tangent space of
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P (Ux N X;) at p;1(x) and is endowed with an invariant complex 1-dimensionatarec
space structure as follows from the definition of torus aloi§. Then there is a unique
isomorphismg;: St — § such thaig; () acts by the complex multiplication afe St ¢
C on V. ¢ depends only orX;, not on particular choice of. Let x: § — S denote
the covering projection. The homomorphisn = 7 o ¢ : St — § C T defines an
elementy; € Hom(St, T) = Hy(BT, Z). ThenC(X)(l) is the cone inN = Hy(BT, Z)
with apex at 0 and spanned Hy; |i € 1}.

Let A = (¥, C, w) be a simplicial multi-fan in a latticeN. The Stanley—Reisner
ring or the face ring of the simplicial sef is denoted byH;(A). It is the quotient
ring of the polynomial ringz[x; | i € £Y] by the ideal generated by

{XK o

ieK

KcxW K¢ z}.

When A is the fanAx associated to a torus orbifold, H{(Ax)q can be identi-
fied with a subring of the equivariant cohomology ritf(X)g of X with respect to
the action of compact toru§ acting onX (see [10]). (Hereafter we shall use notation
Hi()q to meanH; () ® Q.)

In the sequel we shall often consider a ¥etonsisting of non-zero edge vectors
v for eachi € £ such thaty;, € NNC(i). We do not requirey; to be primitive. This
has meaning for torus orbifolds. For aty € £ put Vk = {vi}iek. Let Nk, be the
sublattice of N generated byy. The quotient groupNk /Nk 1 is denoted byHg .

Let V = {vi}iexw be a set of prescribed edge vectors as before. We define a homo-
morphismM = N* = HZ(pt) — H2(A) by the formula

(6) u= Z (U, Ui)Xi.

iex®

This extends to a homomorphistd;(pt) — Hf(A) and makesH;(A) a ring over
H(pt) (regarded as embedded Hh'(A)).

Since this definition depends on the 3&tthe H{(pt)-module structure oH;(A)
also depends oi¥. To emphasize this fact we shall use the notatidj(A, V). When
all the v; are taken primitive, the notatiohl;(A) is used.

Fix | € 2™ and let{u!}ic; be the basis oN* = H?(pt) dual to {vi}ic;. Define
(1 HE(A)e — Mg = Hi(pt)g by

(7) LT<Z dixi):Zdiui'.
iex@ iel

tf extends toH{(A)g — Hi(pte. It is an H{(pt)o-module map, since

(f(uy=u for ue H{(pHe.
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Let S be the multiplicative set irH{(pt)o generated by non-zero eIementsHl:f(pt)Q.
The push-forwardr, : H:(A)g — S™tH: (pt)q is defined by

4 (x)

©) mX) = Z [Hi| TTie U

lex®

It is an Hy(pt)o-module map, and lowers the degrees by & is known [7] that, if
A is a complete simplicial multi-fan, then the image 7of lies in H{ (pt)q.

Assume thatA is complete. Letp.: H{(A)g — Q be the composition of
e Hi(A)g — Hi(pto and Hi(pto — H$(pt)Q = Q. Note that p, induces
Jy: H*(A)g — Q as noted in [7] whereH*(A)q is the quotient ofH;(A)q by the
ideal generated by, (pt)o. Note thatH*(A)q is defined independently of. If X
denotes the image of € Hf(A)g in H*(A)q, then [, X = p.(X).

If X a torus orbifold such thatnx = A then H{(A)q is a subring ofH{(X)q.
From this it follows thatp, on Hf(A)q is the restriction ofp,: Hf(X)o — Q and [,
is the ordinary integrayx (see [7]).

Let K € ©® and letAx = (Zk,Ck,wk) be the projected multi-fan. The link LK
of K in X is a simplicial complex consisting of simplicessuch thatk U J € ¥ and
KnNJ=4. Itwill be denoted byXj in the sequel. There is an isomorphism from
¥k to kg sendingd € ¥’k to JUK. LetV = {vi}icsw be a set of prescribed edge
vectors as before. Le{tuiK}ieK be the basis ofNy ,, dual to Vx. We consider the
polynomial ring R generated by(x; | i € K U =’} and the idealZx generated by
monomialsx; = [];.; % such thatd ¢ X(K) = =i where £(K) = X} is the join of
%(K) and ). We define the equivariant cohomolodis (Ak) of Ak with respect to
the torusT as the quotient rindRk /Zk .

If V is a set of prescribed edge vectoHTz(pt) is regarded as a submodule of
H2(Ak) by a formula similar to (6). This defines aH- (pt)-module structure on
Hf(Ax) which will be denoted byH# (A, V) to specify the dependence an The
projection Hf(A,V) — H¥(Ak,V) is defined by sending; to x; for i € K UE’(K” and
putting x; =0 fori ¢ K U 2/(K1). The restriction homomorphisny: Hy(Ak, V) —
H{(pt)g for | € Ef{“k) and the push-forwarer,: Hi(Ak,V)q — S 1H{(pt)g are also
defined in a similar way as before.

Given & = ZieKuz*Kl) dixi € HTZ(AK, V)r, di € R, let Ag be the affine subspace
in the spaceMg defined by(u, v;) = d, for i € K. Then we introduce a collection
Fc ={F |i € 2P} of affine hyperplanes irA% by setting

Fi={u|ue AT<, (u, vi) =di}.

The pairPg (§) = (A, Fx) will be called amulti-polytopeassociated witlf; see [8].
In caseK = o0 e =@, Py (&) is simply denoted byP().

Foré =Y swdix andK € 2® put & = Yiekusw dixi andP(E)x = Pk (Ex).
It will be called theface of P(&) corresponding tK.
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Forl e ¢, i.e.1 € 20 with | 5K, we putu; = o Fi = Nk Fi NAY €
A%. Note thatu, is equal to:}(¢). The dual vector spaceNK)* of N is canonically
identified with the subspacMkg of Mg = H2(pt)g. It is parallel to Aj, andu! lies
in Mg for | € 0™ andi € I \ K. A vectorv e NX is called generic if{u!, v) # 0
forany | € Ef?‘k) andi € | \ K. The image inNX of a generic vector inNg is
generic. Take a generic vectore NX, and define

(_1)| — (_1)#{j€| \K\(u:,u)>0}

and

. ui' if (Uil, v) > 0,
(Ui|)Jr = {_uil if (U], v) <0,

for | € Ef{"k) andi € | \ K. We denote byCf ()" the cone inAj spanned by the
(uh*, i eI\ K, with apex atu;, and by¢, its characteristic function. With these
understood, we define a function Bl{s) on A \ U, Fi by

DHpey = 3, (=1)'w(l).

n—K
|E):(K )

As in [8] we call this function theDuistermaat—Heckman functioassociated with
Pk (§). WhenK = o, DHp() is defined onMg \ |, F.

The following theorem is fundamental in the sequel, cf. [8ledrem 2.3 and [7]
Corollary 7.4.

Theorem 2.1. Let A be a complete simplicial multi-fan. Lét=3 ;x5 wdiX €

H2(Ak, V) be as above with all;dintegers and put, = >, (di +€)x with0 < e < 1.
Then

9 D DHpe)ut'= ) w(l) 3 0 (), i ®

_1+—uy?
ueALNM les§™® Hivl herry 1lienk (1= xi (U, h)~t)

where x| (u, h) = ev-2®) for u e N, and v(h) is a lift of he H;y to Niy.

NoTE. The left hand side of (9) is considered as an element in thepgring of
M over R or the character rind*(T) ® R considered as the Laurent polynomial ring
int=(t, ..., t). The equality shows that the right hand side, which is aonat
function oft, belongs toR(T) ® R.

£ =3 dx € HZA,V) is called T-Cartier if (f(¢) € M for all | € =™, This
condition is equivalent tay, € M for all 1 € =™, In this caseP(&) is said lattice
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multi-polytope. If £ is T-Cartier, theny, (¢} (), h) = 1. Hence the above formula (9)
for DHp, () reduces in this case to

£ &)

(10) > DHpet' = > |w(|)

— I :
ueA; NM lex(¥ Hivl heH 1 [lienk@ = (uj, h)~Ht=4)

Let Hf*() denote the completed equivariant cohomology ring. Ther@tchar-
acter ch sendR(T) ® R to H{*(pt)r by ch¢") = €. The image of (10) by ch is
given by

HES)
(11) Z DH'[)K@K”(U)EUZ Z |w(l) ¢

I m—lo Uy’
ueA; NM ez Hivl herry ienk (3= x1 (Ui, h) temu)

Assume thatt = ) . dix € HTZ(A, V) is T-Cartier. The number #(¢)k) is de-
fined by

#(P(S)K) = Z DHPK(5K+)(U)'

ueAgNM

It is obtained from (11) by setting = 0, that is, it is equal to the image of (11) by

Hi*(phe — HP(Pt)-
The equivariant Todd clasgr (A, V) is defined in such a way that

(€T (A, V) = ) DHpg,)(u)e"

ueM

for & T-Cartier. In order to give the definition we need some notetio
For simplicity identify the se=™® with {1,2,...,m} and consider a homomorphism
n: R™ = R™ — N sendinga = (a,ay,....am) t0 Y swavi. ForK € =® we define

Gy ={a|n(@ e N anda; =0 for j ¢ K}

and defineGy , to be the image o5k, in T = R™/Z™. It will be written G for
simplicity. The homomorphismy restricted onGK,V induces an isomorphism

nk: Gk = Hky € T = Ng/N.
Put
Ga=|J G cT
lexm
and
DGa = | GI xG| CGaxGa.

lex®
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Letv(g) =a=(a,ay, ---, am) € R™ be a representative af € T. The factora,
will be denoted byv;(g). It is determined modulo integers. f € G,, thenv;(Q) is
necessarily a rational number. Define a homomorphjgmT — C* by

xi(@) = & 1,

Let g € G, andh = n,(g) € Hi,y. Thenn(v(g)) € N, is a representative df in
N; which will be denoted by(h). Then, forg € G, andi €I,

ui(g) = {uj, v(h)) modz,

and
xi(g) = YR O) — 5wl h).

Let A be a complete simplicial multi-fan. Define

(A V) = ) ]‘[ —x.(g)e - € Hi*(A, V).

geGa iex®

Proposition 2.2. Let A be a complete simplicial multi-fan. Assume thate
H2(A, V) is T-Cartier. Then

T (€ Tr(A, V) = Y DHpe,)(u)e.

ueM

Consequently
PETT(A, V) = #(P(§)).

Proof (cf. [7] Section 8). Lege G, and| € ™. If g ¢ G, then there is an
elementi ¢ | such thaty;(g) # 1; so

Xi

1- x(ge™ (1 xi(9)'x + higher degree terms
— ,

for suchi. Hencei[(x /(1 — xi(9)e ™)) = 0. Therefore, only elementg in G, con-
tribute to (77 (A, V)). Now supposeg € G,. Then xi(g) =1 fori ¢ I, sof(xi/(1—
xi(g)e™)) = 1 for suchi. Finally, sincecf(x) = u! for i € I, we have

anW—ZH

geG, el '(g)e_UI .
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This together with (11) shows that

(ET(A V) = .| & 3
T (ETT(A, V) n< g%gl_m(g)exi)
5 w(l)ei® 1

ez Fvl 5 Tha @ - xi (@e™)
= Y DHpe(U)e". .

ueM

More generally, fork € =®, define7r(A, V) by

Tr (A, V)k = Z 1_[ #ig)e,xi € Hi*(A, V)o.

9€Gag jex® !
Then the same proof as for Proposition 2.2 yields

Proposition 2.3. Let A be a complete simplicial multi-fan. Assume thate
HZ(A, V) is T-Cartier. Then

T(€XTH(A, V)k) = Y DHpy ) ()",

ueAgNM
for K € =0, where % = [];.« Xi- Consequently
P& Xk TT (A, V)K) = #(P(§)k).

The latticeM N Ay defines a volume elemedd/k on Ay . Foré =3¢z wdiXi €
HZ(Ak, V)g, the volume volPx (£) of Pk (&) is defined by

vol PK(E) = / DHpK(g) dVlzk
Ak

Proposition 2.4. For £ = Y _sw diX € HZ(A, V)g

Fi ol vol P(E)k = px(€ Xk).

Proof. We shall give a proof only for the case whérés T-Cartier. The general
case can be reduced to this case, cf. [7], Lemma 8.6. By Pitapog.3

#(PE)K) = Pl Xk Tr (A, V)K).
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The highest degree term with respect {4} in the right hand side is nothing but
vol P(§)x and is equal to

gnk Xi
p*((n—k)!XK) 2 (H 1—Xi(g)eXi)’
0

. 1)
9€Gay \iexy

where the suffix 0 means taking O-th degree term. But

II X __{l if ge Gy,
L (1) 1—xi (g)e_x' 1o if g ¢ Gk.
TeXy 0

Hence
n—k

vol P(&)x = |GK|D*((:_—k)!XK) = [Hk v | P(EXk). [

3. Statement of main results

Assume that < k. For J € ©® let M; be the annihilator ofN; and putw; =
UA. .. Aln_k € A" M c A" Mg where{u, ..., uy—} is an oriented basis df;.
Define fI(x) € A" Mg by

fI) =i (x)Awy with Jclex®,

fJ(x) is well-defined independently of containingJ. Let S*(A" " Mg) be the
symmetric algebra overA\"*™ Mg.  f7: HZ(A)g — A""!'Mg extends to
f9: Hi(A)g — S*(A™ " Mg). Forx = [T; X € H¥(A)q we put

(%) = (f70q))".

The definition of f depends on the orientations chosen, bd(x)/f7(x;) does
not. It belongs to the fraction field of the symmetric algesrd/\" “** Mg) and has
degree 0. Hence it can be considered as an elemeRatP (A" ! Ng)),, the field
of rational functions of degree 0 dB(A" ' Ng). Let v*: RafP(A" " No)), —
RafGn_k+1(Ng))o be the induced homomorphism of the Pliicker embedding
v: Gnoki1(Ng) — P(A" "' Ng). The imagev*(f2(x)/f?(x;)) will be denoted

by u(x, J).
Our first main result is stated in the following

Theorem 3.1. Let A be a complete simplicial multi-fan ands<HT2k(A,V)Q. For
any & € H2(A)q we have

P(€X) = Y u(x, IP.(Exy) I Ra(Gnir1(Ng)o.

Jex®
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Corollary 3.2. Let A be a complete simplicial multi-fan in a lattice of rank n.
Assume that € H2(A, V) is T-Cartier. Set

#HPWE) = 3 aEn™ k.

k=0
Then we have
a&) = Y m(J)vol P(€);
Jes®
with

heH;y jed

uk(J) = (Z 1_[1 X(UJ h)e—fJ(x))
0

in RatGn—k+1(Nc))o.

NOTE. It can be proved without difficulty thati(J) does not depend on the
choice of V. Hence one has only to consider the case where albitrere primitive.

For the following corollary we need to put an additional cibiod on the multi-
fan A.

Corollary 3.3. Let A be a multi-fan. Assume that there is a torus orbifold X
such thatA is isomorphic toAy and H*(X)q is generated by B(X)q. Then for xe
HTZK(A)Q the following equality holds.

X= Y u(x )X in RaGnii1(Ng)o ®g H*(A)q,
Jex®

where X is the image of x H{(A)q in H*(A)q.

REMARK 3.1. If H*(X)q is generated byH?(X)q, then Hf(Ax)g = Hi(X)q-
cf. [10], [11].

REMARK 3.2. WhenA is the fan associated to a convex lattice polytdpend
& = D, the Cartier divisor associated ®, we know (see, e.g. [5]) that

po© =1, (&) =Vl PE), wal) =3, aE)=3 I VoI PE).

|eE<1)

This is also true for simplicial multi-fans an@l-Cartier &.
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As to a, we have
an(§) = Td[A].

In fact a, (&) = p« (77 (A, V)) = (. (T7(A, V)))o. Thus the above equality follows from
the following rigidity property:

Theorem 3.4. Let A be a complete simplicial multi-fan. Then
T (Tr (A, V) = (m (T (A, V)))o = Td[A].
See [7] Theorem 7.2 and its proof. Note that A§i= 1 for any complete simpli-

cial fan A.
The explicit formula form,(77(A, V)) is given by

_ w(l)
N*(ﬁ(A V)) Z IH Z l_[ 1- 4 (U| , h)e*“' :

lexm |V| heH, y i€l

This does not depend on the choiceldfand is in fact equal to Td{].
Let A be a (not necessarily complete) simplicial fan in a lattiteamk n. Set

Tdr(A) = Z ZHW € S'Hi*(pYe-

Iez(") heH. iel

For a simplex! let (1) be the simplicial complex consisting of all faces laf For a
fan A(1) = (2(1), C), Tdr(A(l)) is denoted by T¢(l).

Theorem 3.5. Tdy(l) is additive with respect to simplicial subdivisions of the
cone (I). Namely if A is the fan determined by a simplicial subdivison ofl
then the following equality holds

Tdr(A) = Tdr(1).

For the proof it is sufficient to assume tha{(l) and A are non-singular. In such
a form a proof is given in [12]. The following corollary engsrthatu(J) can be
defined for general polyhedral cones as pointed out by Mairel[iL2].

Corollary 3.6. Let A(J) = (2(J), C) be a fan in a lattice N of rank n where
J is a simplex of dimension k 1. Thenux(J) € Rat(Gn_k+1(Ng))o is additive with
respect to simplicial subdivisions of(C).
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4. Proof of Theorem 3.1 and Corollary 3.3

Proof of Theorem 3.1.

For a primitive sublatticeE of N of rank n — k + 1 let wg € /\“_k+1 N be a
representative ob(E) € ]P’(/\”_k+l Ng). The equality in Theorem 3.1 is equivalent to
the condition that

J
P, (e5X) = Z 09 (we)ps(€°x3) holds for every generic E.
sem F7040)

Let E be a generic primitive sublattice iN of rank n —k + 1. The intersection
E NN; has rank one for eaclh € X, Take a non-zero vectarg ; in ENNj. (One
can choosevg ; to be the unique primitive vector contained BN C(J). But any
non-zero vector will suffice for the later use.) Pore H#(A) and J € =X the value
of (}(x) evaluated orvg ; for | € =™ containingJ depends only on%(x) so that it
will be denoted byt (x)(ve,s). Similarly we shall simply write(uf, vg,g) instead of

(U}, UE,J)'

Lemma 4.1. Put fjJ = ujJ A wj. Then

a( fjJ1 wE) = (ui]v UE,J),
where a is a non-zero constant depending onlyvery.

Proof. Take an oriented bagis,...,u,_x of M;. Take also a basisy,...,wn_k+1
of E and writevg ;3 = >, qw. Then, sinceu;, vg 3) =0,

n—k+1

Z ag(u,w)=0, for i=1,...,n—k.
I=1

The matrix &) = ((ui, wy)) has rankn —k and we get

(Cll DR Cn7k+1) = a(All DR Ah*k{»l); a # 0;
where

a1 ag - A n—k+1
A = (—1)det ;
An—k1 -°° An—kl °°  Sn-kn-k+1
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Then
n—k+1
J
(u] ) UE,J) = Z C|(UJ l w|>
=1
n—k+1
J
=1
(uiji wl) e (uijv wn7k+l)
(U, wy) -+ (U1, Wnekt1)
= adet )
(Unk, w1) -+ (Un—k» Wnk+1)
= a( fij wE)
where fjJ = ujJ AULA -+~ AlUpk and wg = w1 A -+ A Wn—kq1. O

REMARK 4.1. Let X be a torus orbifold of dimensionn2and A the associated
multifan. LetT = T" be the compact torus acting o ENN; determines a subcircle
Tg, of T. ThenTg ; pointwise fixes an invariant complex suborbifokl;. Some of
its covering acts on the normal vector space of an Euclidesering of an invariant
neighborhood at each generic pointXy. Then the numbergu?, v ;) are weights of
this action.

Lemma 4.1 implies that

fI(x) 15(x)
m(wE) = m(vm)-
Then the equality in Theorem 3.1 holds if and only if
13(x) .
(12) P(E€X) = Y a=L""=(vE, 1) P« (€ X))

Jex® Hje.] uj

holds for every generi&.
The following lemma is easy to prove, cf. e.g. [7] Lemma 8.1.

Lemma 4.2. The vector space F(A)q is spanned by elements of the form
Upe - UXy,  Jg € €9, U e My,

with 0 < k; <k -1
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NOTE. Forx =us---UgXy,, J € sk=k) with k; > 1,
p«(€°x) = 0.

In view of this lemma we proceed by induction &p for x =uy--- Uiy X3, -

For x = x3, with Jp € =®, the left hand side of (12) is equal fo.(€°x3,). Since
i5(x) = 0 unlessJ = Jp andij(x)/ ]"[J-EJ uf =1 for J = Jp, the right hand side is
also equal top,(efx3). Hence (12) holds withx of the formx = x;, for Jp € =®.

Assuming that (12) holds fox of the formuy -- - uk, x5, Wwith J, € »k—k) we
shall prove that it also holds for = uy - - - Uk, Uk, 11X3, ., With Jq 11 € sk=ta+1)  pyt
K= Jk1+1-

CASE @). Uuk,+1 belongs toMkgq, that is, (U, +1,vi) = 0 for all i € K. In this case

i1 = D (Ut vi)X

iexM\K
since (Uk,+1, vi) = 0 for all i € K. Fori ¢ K, XXy, ., is either of the formx; with
J' e £k or equal to 0. Thus, fox = us---uX Xy ., With i ¢ K, the equal-
ity (12) holds by induction assumption, and it also holds %o#= Uy - - - Ui, Uk, +1X3,
by linearity.

CAseE b). General case. We need the following

Lemma 4.3. For K € &%) with k; > 1, the composition homomorphismyl C
Mq — Eg is surjective.

The proof will be given later. By this lemma, there exists aeneentu € Mg
such that
(U1, vEJ) = (U, vg,3) forall Jex®.

Note that (:5(u), ve ) = (u, vg,3) for any u € Mg. Then, in (12) forx = uz---
Uk, Uk, 41X5,,, With J 11 € s k=ta+1) we have

kq

(X)) (ve9) = <H(Ui, vE,J)) (Uk+1, vE,3)

i=1

kg
= <H(ui, vE,J))(U, UE,J)-

i=1

Hence if we putx’ = uy - -- Ui UXy, ,, the right hand side of (12) is equal to

Z M(UE,J)p*(eEXJ)-

Jex® HjeJ uj
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This last expression is equal tp,(efx’) since x’ belongs to Case a). Furthermore
p.(ex’) = 0 and p,(€x) = 0 by Note after Lemma 4.2. Thus both side of (12) for
X = Up -+ U U +1Xg,,, are equal to 0. This completes the proof of Theorem except
for the proof of Lemma 4.3.

Proof of Lemma 4.3. Take a simpldxe =™ which containsK and a simplex
K’ e &1 such thatKk c K’ c I. Such aK’ exists sincek — k; < k— 1. Then there
are exactlyn —k + 1 simplicesJ?, ..., J"**1 e ©® such thatk’ c J' c I. It is easy

to see that the vectorsg ji, ..., vg o« are linearly independent so that they span
Eq. Moreover Mk q detects these vectors, that Bl — Mg — Eg is surjective.
Since My C M C M, Mkq — Ej is surjective. Ul

Proof of Corollay 3.2. By Proposition 2.3

#PWE) = P Tr(A, V) =Y a@)v" ™.

k=0

Putx = (T1(A, V) € H¥(A, V)q. By Theorem 3.1 and Proposition 2.4

J
ak(é) — Z l)*( f (X) )VOI P(é)J

P fI(x3) ) [Havl

Thus it suffices to show that

f‘](XJ) (Z l_[ 1— X(UJ h)e—fJ(xJ)) !

heH;y jed 0

or

) = GS))
f (X) o (hgv 111 1—x(u]], h)e,fj(xj) k.

Let g € Ga. If g ¢ G;, then there is an element¢ J such thaty;(g) # 1, and,
for suchi,

f‘](+(ig)e)q) = f9((1 - xi(9))"*x + higher degree terms} 0,
— Al

since fY(x) = 0. Thus

J Xi _
f (.H W)—O

iex@
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for g ¢ G;.
If ge Gy, thenyi(g) =1 fori ¢ J. Thus

T STPRE S )
f (1— Xi (g)e_x') =1 (1+ 5% *+ higher degree tern)s_ 1

for ge Gy, i ¢ J. It follows that

fI(x)
2 e ) = X Nisgero

geGa ies® geG; ied
This implies
PEe = X 1t
heHyy jed xa(uj, hye= ) )
This finishes the proof of Corollary 3.2. ]

Proof of Corollary 3.3. Puk’ =), _s0 (X, J)X3. Then

P(EX) = D nu(x, )P xs) = pu(X)

Jex®

by Theorem 3.1. It follows thap,(€(x' — X)) = 0. Thus, in order to prove Corol-
lary 3.3, it suffices to show thap.(€'y) = 0, V& € H2(A)q, implies that p*(y) =
0. By the assumptiom\ is isomorphic toAx where X is a torus orbifold such that
H*(X)q is generated byH?(X)q. For suchX we know thatH;(A)q = Hi(X)o and
H*(A)g = H*(X)g by Remark 3.1. In particulaH*(A)q satisfies the Poincaré dual-
ity. It follows that p.(€fy) = 0 for all & implies thatp,(y) = 0. ]
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