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Abstract
Let X be a complete toric variety of dimensionn and1 the fan in a latticeN

associated toX. For each cone� of 1 there corresponds an orbit closureV(� ) of
the action of complex torus onX. The homology classes{[V(� )] j dim� D k} form
a set of specified generators ofHn�k(X,Q). Then anyx 2 Hn�k(X,Q) can be written
in the form

x D
X

�21X , dim�Dk

�(x, � )[V(� )].

A question occurs whether there is some canonical way to express�(x, � ). Morelli
[12] gave an answer whenX is non-singular and at least forx D Tn�k(X) the Todd
class of X. However his answer takes coefficients in the field of rational functions
of degree 0 on the Grassmann manifoldGn�kC1(N

Q

) of (n � k C 1)-planes inN
Q

.
His proof uses Baum–Bott’s residue formula for holomorphicfoliations applied to
the action of complex torus onX

On the other hand there appeared several attempts for generalizing non-singular
toric varieties in topological contexts [4, 10, 7, 11, 9, 2].Such generalized mani-
folds of dimension 2n acted on by a compactn dimensional torusT are called
by the names quasi-toric manifolds, torus manifolds, toricmanifolds, toric origami
manifolds, topological toric manifolds and so on. Similarly torus orbifold can be
considered. To a torus orbifoldX a simplicial set1X called multi-fan ofX is asso-
ciated. A question occurs whether a similar expression to Morelli’s formula holds for
torus orbifolds. It will be shown the answer is yes in this case too at least when the
rational cohomology ringH�(X)

Q

is generated byH2(X)
Q

. Under this assumption
the equivariant cohomology ring with rational coefficientsH�

T (X, Q) is isomorphic
to H�

T (1X , Q), the face ring of the multi-fan1X , and the proof is carried out on
H�

T (1X , Q) by using completely combinatorial terms.

1. Introduction

Let X be a complete toric variety of dimensionn and1X the fan associated to
X. 1X is a collection of rational convex cones inN

R

D N 
 R where N is a lattice
of rank n. For eachk-dimensional cone� in 1X , let V(� ) be the corresponding orbit
closure of dimensionn � k and [V(� )] 2 An�k(X) be its Chow class. Then the Todd
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classTn�k(X) of X can be written in the form

(1) Tn�k(X) D
X

�21X , dim�Dk

�k(� )[V(� )].

However, since the [V(� )] are not linearly independent, the coefficients�k(� ) 2 Q are
not determined uniquely. Danilov [3] asks if�k(� ) can be chosen so that it depends
only on the cone� not depending on a particular fan in which it lies.

The equality (1) has a close connection with the number #(P) of lattice points
contained in a convex lattice polytopeP in M

R

where M is the dual lattice ofN.
For a positive integer� the number #(�P) is expanded as a polynomial in� (called
Ehrhart polynomial):

#(�P) D
X

k

ak(P)�n�k.

A convex lattice polytopeP in M
R

determines a complete toric varietyX and an
invariant Cartier divisorD on X. There is a one-to-one correspondence between the
cells {� } of 1X and the faces{P

�

} of P. Then the coefficientak(P) has an expression

(2) ak(P) D
X

dim �Dk

�k(� ) vol P
�

with the same�k(� ) as in (1).
Hereafter we shall use notationH�

T ( )
Q

to meanH�

T ( )
Q and so on.
We shall restrict ourselves to the case whereX is non-singular. PutDi D [V(�i )]

for the one dimensional cone�i , and let xi 2 H2(X) denote the Poincaré dual ofDi .
The divisor D is written in the formD D

P

i di Di with positive integersdi . Put � D
P

i di xi . It is known that

ak(P) D
Z

X
e�T k(X)

and

vol P
�

D

Z

X
e� x

�

,

where T k(X) 2 H2k(X)
Q

is the k-th component of the Todd cohomology class, the
Poincaré dual ofTn�k(X), and x

�

2 H2k(X) is the Poincaré dual of [V(� )]. The co-
homology classx

�

can also be written asx
�

D

Q

j x j where the product runs over such
j that � j is an edge of� . Then the equality (2) can be rewritten as

(3)
Z

X
e�T k(X) D

X

dim �Dk

�k(� )
Z

X
e� x

�

.

The reader is referred to [5] Section 5.3 for details and Note17 there for references.
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In his paper [12] Morelli gave an answer to Danilov’s question. Let
Rat(Gn�kC1(N

Q

)))0 denote the field of rational functions of degree 0 on the
Grassmann manifold of (n � k C 1)-planes inN

Q

. For a cone� of dimensionk in
N
R

he associates a rational function�k(� ) 2 Rat(Gn�kC1(N
Q

)))0. With this �k(� ), the
right hand side of (1) belongs to

Rat(Gn�kC1(N
Q

)))0
Q An�k(X)
Q

,

and the equality (1) means that the rational function with values in An�k(X)
Q

in the
right hand side is in fact a constant function equal toTn�k(X) in An�k(X)

Q

. In other
words this means that

X

�21X , dim�Dk

�k(� )(E)[V(� )] D Tn�k(X)

for any generic (n� kC 1)-planeE in N
Q

.
Morelli gives an explicit formula for�k(� ) when the toric variety is non-singular

using Baum–Bott’s residue formula for singular foliations[1] applied to the action of
(C�)n on X. He then shows that the function�k(� ) is additive with respect to non-
singular subdivisions of the cone� . This fact leads to (1) in its general form.

One can ask a similar question about general classes other than the Todd class
whether it is possible to define�(x, � ) 2 Rat(Gn�kC1(N

Q

)))0 for x 2 An�k(X) in a
canonical way to satisfy

(4) x D
X

�21X , dim�Dk

�(x, � )[V(� )].

When X is non-singular, one can expect that�(x, � ) satisfies a formula analogous
to (3)

(5)
Z

X
e� x D

X

dim �Dk

�(x, � )
Z

X
e� x

�

for any cohomology class� D
P

i di xi . In this sense the formula does not explicitly re-
fer to convex polytopes. Fulton and Sturmfels [6] used Minkowski weights to describe
intersection theory of toric varieties. For complete non-singular varieties orQ-factorial
varietiesX the Minkowski weight
x W H2(n�k)(X)! Q corresponding tox 2 H2k(X) is
defined by
x(y) D

R

X xy. Thus, if thedi are considered as variables in� , the formula
(5) is considered as describing
x as a linear combination of the Minkowski weights
of 
x

�

.
On the other hand topological analogues of toric variety were discussed by several

authors [4, 10, 7, 11, 9, 2]. Most general one would be torus orbifold [7]. To a torus
orbifold X a multi-fan1X is associated. Multi-fan is a generalized notion of fan. Its
cohomology reflects the cohomology of the torus orbifold.
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The purpose of the present paper is to establish the formula (5) by showing an ex-
plicit formula for �(x,� ) when X is a torus orbifold. Moreover our proof is based on a
simple combinatorial argument carried on the associated multi-fan 1X . Topologically
the formula concerns equivariant cohomology classes on torus orbifolds. This would
suggest that actions of compact tori equipped with some niceconditions admit topo-
logical residue formulas similar to Baum–Bott’ formula.

In Section 2 we recall the definition of multi-fans and torus orbifolds together with
relevant facts. The definition of�(x, � ) is given for multi-fans and consequently for
torus orbifolds. Theorem 3.1 states that the formula (1) holds for any torus orbifolds.
Furthermore Corollary 3.2 ensures that the formula (2) holds for torus orbifolds. Fi-
nally Corollary 3.3 states that (4) holds for a torus orbifolds X such thatH�(X)

Q

is
generated byH2(X)

Q

.

2. Multi-fans and torus orbifolds

The notion of multi-fan and multi-polytope were introducedin [10]. In this article
we shall be concerned only with simplicial multi-fans. See [10, 7, 8] for details.

Let N be a lattice of rankn. A simplicial multi-fan in N is a triple1D (6,C,w)
where6 D

Fn
kD06

(k) is an (augmented) simplicial complex,6(k) being the set ofk�1
simplices,C is a map from6(k) into the set ofk-dimensional strongly convex rational
polyhedral cones in the vector spaceN

R

D N
R for eachk, andw is a map6(n)
!

Z. 6(0) consists of a single elementoD the empty set. (The definition in [10] and [7]
requires additional restriction onw.) We assume that anyJ 2 6 is contained in some
I 2 6(n) and6(n) is not empty.

The mapC is required to satisfy the following condition; ifJ 2 6 is a face of
I 2 6, then C(J) is a face ofC(I ), and for anyI , the mapC restricted on6(I ) D
{J 2 6 j J � I } is an isomorphism of ordered sets onto the set of faces ofC(I ). It
follows that C(I ) is necessarily a simplicial cone andC(o) D 0. A simplicial fan is
considered as a simplicial multi-fan such that the mapC on 6 is injective andw � 1.

For eachK 2 6 we set

6K D {J 2 6 j K � J}.

It inherits the partial ordering from6 and becomes a simplicial set where6( j )
K �

6

( jCjK j). K is the unique element in6(0)
K . Let NK be the minimal primitive sublattice

of N containingN \C(K ), and NK the quotient lattice ofN by NK . For J 2 6K we
defineCK (J) to be the coneC(J) projected onNK


 R. We define a function

w W 6

(n�jK j)
K � 6

(n)
! Z

to be the restrictions ofw to 6

(n�jK j)
K . The triple1K D (6K , CK , w) is a multi-fan

in NK and is called theprojected multi-fanwith respect toK 2 6. For K D o, the
projected multi-fan1o is nothing but1 itself.
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A vector v 2 N
R

will be called generic if v does not lie on any linear subspace
spanned by a cone inC(6) of dimension less thann. For a generic vectorv we set
d
v

D

P

v2C(I ) w(I ), where the sum is understood to be zero if there are no suchI .

DEFINITION. A simplicial multi-fan1 D (6, C, w) is calledpre-completeif the
integer d

v

is independent of generic vectorsv. In this case this integer will be called
the degreeof 1 and will be denoted by deg(1). It is also called theTodd genusof
1 and is denoted by Td[1]. A pre-complete multi-fan1 is said to becompleteif the
projected multi-fan1K is pre-complete for everyK 2 6.

A multi-fan is complete if and only if the projected multi-fan 1J is pre-complete
for every J 2 6(n�1).

Like a toric variety gives rise to a fan, a torus orbifold gives rise to a complete
simplicial multi-fan, though this correspondence is not one to one. A torus orbifold is
a closed orientedorbifold with an effective action (in the sense of orbifold action) of a
compact torus of half the dimension of the orbifold with non-empty fixed point set and
with some additional conditions on the orientations of certain type of suborbifolds (pre-
cise statement will be given later. See [13] for terminologies concerning orbifolds, and
[7] for those of torus orbifolds). Cobordism invariants of torus orbifolds are encoded
in the associated multi-fans.

Let X be a torus orbifold. A connected component of the fix point setof a subcir-
cle of the torusT is a suborbifold. A suborbifold of this type which has codimension
two and contains at least one fixed point of the action ofT is called characteristic sub-
orbifold. By the orientation convention included in the definition of torus orbifold, a
characteristic suborbifold is equipped with a fixed orientation.

In the following, characteristic suborbifolds will be denoted byXi . In the multi-fan
1(X) D (6(X), C(X), w(X)) the simplicial complex6(X) is given by

6

(k)(X) D

8

<

:

I #I D kC 1,

 

\

i2I

Xi

!T

¤ ;

9

=

;

.

Let Si be the circle that fixes the points ofXi . Take a pointx in Xi . Take an
orbifold chart (Ux, Vx, Hx, px) aroundx in which Ux is invariant under the action ofSi

and Vx is an Euclidean ball on whichHx acts linearly and the projectionpx W Vx ! Ux

identifies Vx=Hx with Ux. Then there exist a covering groupQSi of Si and a lifting of
the action ofSi to the action of QSi on Vx (exactly its tangent space). Hereafter we
shall always take the minimal covering with the above property.

If x is a fixed point of the action ofT , Ux can be taken invariant under the action
of T and such thatp�1

x (x) is a single point. Furthermore ifx is in a characteristic
suborbifold Xi , then the vector spaceVx decomposes into a direct sumVx D Vi C

V?

i where V?

i is tangent top�1
x (Ux \ Xi ) and Vi is normal to the tangent space of
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p�1
x (Ux\Xi ) at p�1

x (x) and is endowed with an invariant complex 1-dimensional vector
space structure as follows from the definition of torus orbifolds. Then there is a unique
isomorphism'i W S1

!

QSi such that'i (z) acts by the complex multiplication ofz2 S1
�

C on Vi . 'i depends only onXi , not on particular choice ofx. Let � W QSi ! Si denote
the covering projection. The homomorphism�i D � Æ 'i W S1

! Si � T defines an
elementvi 2 Hom(S1, T) D H2(BT, Z). Then C(X)(I ) is the cone inN D H2(BT, Z)
with apex at 0 and spanned by{vi j i 2 I }.

Let 1 D (6, C, w) be a simplicial multi-fan in a latticeN. The Stanley–Reisner
ring or the face ring of the simplicial set6 is denoted byH�

T (1). It is the quotient
ring of the polynomial ringZ[xi j i 2 6(1)] by the ideal generated by

(

xK D
Y

i2K

xi K � 6(1), K � 6

)

.

When1 is the fan1X associated to a torus orbifoldX, H�

T (1X)
Q

can be identi-
fied with a subring of the equivariant cohomology ringH�

T (X)
Q

of X with respect to
the action of compact torusT acting onX (see [10]). (Hereafter we shall use notation
H�

T ( )
Q

to meanH�

T ( )
Q.)
In the sequel we shall often consider a setV consisting of non-zero edge vectors

vi for eachi 2 6(1) such thatvi 2 N\C(i ). We do not requirevi to be primitive. This
has meaning for torus orbifolds. For anyK 2 6 put VK D {vi }i2K . Let NK ,V be the
sublattice ofNK generated byVK . The quotient groupNK =NK ,V is denoted byHK ,V .

Let V D {vi }i26(1) be a set of prescribed edge vectors as before. We define a homo-
morphismM D N�

D H2
T (pt)! H2

T (1) by the formula

(6) u D
X

i26(1)

hu, vi ixi .

This extends to a homomorphismH�

T (pt) ! H�

T (1) and makesH�

T (1) a ring over
H�

T (pt) (regarded as embedded inH�

T (1)).
Since this definition depends on the setV, the H�

T (pt)-module structure ofH�

T (1)
also depends onV. To emphasize this fact we shall use the notationH�

T (1, V). When
all the vi are taken primitive, the notationH�

T (1) is used.
Fix I 2 6(n) and let{uI

i }i2I be the basis ofN�

D H2(pt) dual to {vi }i2I . Define
�

�

I W H2
T (1)

Q

! M
Q

D H2
T (pt)

Q

by

(7) �

�

I

 

X

i26(1)

di xi

!

D

X

i2I

di u
I
i .

�

�

I extends toH�

T (1)
Q

! H�

T (pt)
Q

. It is an H�

T (pt)
Q

-module map, since

�

�

I (u) D u for u 2 H�

T (pt)
Q

.
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Let S be the multiplicative set inH�

T (pt)
Q

generated by non-zero elements inH2
T (pt)

Q

.
The push-forward�

�

W H�

T (1)
Q

! S�1H�

T (pt)
Q

is defined by

(8) �

�

(x) D
X

I26(n)

�

�

I (x)

jHI j
Q

i2I uI
i

.

It is an H�

T (pt)
Q

-module map, and lowers the degrees by 2n. It is known [7] that, if
1 is a complete simplicial multi-fan, then the image of�

�

lies in H�

T (pt)
Q

.
Assume that1 is complete. Let p

�

W H�

T (1)
Q

! Q be the composition of
�

�

W H�

T (1)
Q

! H�

T (pt)
Q

and H�

T (pt)
Q

! H0
T (pt)

Q

D Q. Note that p
�

induces
R

1

W H�(1)
Q

! Q as noted in [7] whereH�(1)
Q

is the quotient ofH�

T (1)
Q

by the
ideal generated byHC

T (pt)
Q

. Note that H�(1)
Q

is defined independently ofV. If Nx
denotes the image ofx 2 H�

T (1)
Q

in H�(1)
Q

, then
R

1

Nx D p
�

(x).
If X a torus orbifold such that1X D 1 then H�

T (1)
Q

is a subring ofH�

T (X)
Q

.
From this it follows thatp

�

on H�

T (1)
Q

is the restriction ofp
�

W H�

T (X)
Q

! Q and
R

1

is the ordinary integral
R

X (see [7]).
Let K 26(k) and let1K D (6K ,CK ,wK ) be the projected multi-fan. The link LkK

of K in 6 is a simplicial complex consisting of simplicesJ such thatK [ J 2 6 and
K \ J D ;. It will be denoted by60

K in the sequel. There is an isomorphism from
6

0

K to 6K sendingJ 2 60

K to J [ K . Let V D {vi }i26(1) be a set of prescribed edge
vectors as before. Let{uK

i }i2K be the basis ofN�

K ,V dual to VK . We consider the

polynomial ring RK generated by{xi j i 2 K [ 60

(1)
K } and the idealIK generated by

monomialsxJ D
Q

i2J xi such thatJ � 6(K ) � 60

K where6(K ) � 60

K is the join of
6(K ) and60

K . We define the equivariant cohomologyH�

T (1K ) of 1K with respect to
the torusT as the quotient ringRK =IK .

If V is a set of prescribed edge vectors,H2
T (pt) is regarded as a submodule of

H2
T (1K ) by a formula similar to (6). This defines anH�

T (pt)-module structure on
H�

T (1K ) which will be denoted byH�

T (1K , V) to specify the dependence onV. The

projection H�

T (1,V)! H�

T (1K ,V) is defined by sendingxi to xi for i 2 K [60

(1)
K and

putting xi D 0 for i � K [ 60

(1)
K . The restriction homomorphism��I W H�

T (1K , V)
Q

!

H�

T (pt)
Q

for I 2 6(n�k)
K and the push-forward�

�

W H�

T (1K ,V)
Q

! S�1H�

T (pt)
Q

are also
defined in a similar way as before.

Given � D
P

i2K[60(1)
K

di xi 2 H2
T (1K , V)

R

, di 2 R, let A�

K be the affine subspace

in the spaceM
R

defined byhu, vi i D di for i 2 K . Then we introduce a collection
FK D {Fi j i 2 60

(1)
K } of affine hyperplanes inA�

K by setting

Fi D {u j u 2 A�

K , hu, vi i D di }.

The pairPK (� ) D (1K ,FK ) will be called amulti-polytopeassociated with� ; see [8].
In caseK D o 2 6(0), PK (� ) is simply denoted byP(� ).

For � D
P

i26(1) di xi and K 2 6(k) put �K D
P

i2K[60(1)
K

di xi andP(� )K D PK (�K ).

It will be called theface of P(� ) corresponding toK .
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For I 2 6(n�k)
K , i.e. I 2 6(n) with I � K , we putuI D

T

i2I Fi D
T

i2I nK Fi \ A�

K 2

A�

K . Note thatuI is equal to��I (� ). The dual vector space (NK
R

)� of NK
R

is canonically
identified with the subspaceMKR of M

R

D H2
T (pt)

R

. It is parallel to A�

K , and uI
i lies

in MKR for I 2 6(n�k)
K and i 2 I n K . A vector v 2 NK

R

is called generic ifhuI
i , vi ¤ 0

for any I 2 6(n�k)
K and i 2 I n K . The image inNK

R

of a generic vector inN
R

is
generic. Take a generic vectorv 2 NK

R

, and define

(�1)I
WD (�1)#{ j2I nK jhuI

j ,vi>0}

and

(uI
i )C WD

�

uI
i if huI

i , vi > 0,
�uI

i if huI
i , vi < 0,

for I 2 6(n�k)
K and i 2 I n K . We denote byC�

K (I )C the cone inA�

K spanned by the
(uI

i )C, i 2 I n K , with apex atuI , and by�I its characteristic function. With these
understood, we define a function DHPK (� ) on A�

K n
S

i Fi by

DHPK (� ) D
X

I26(n�k)
K

(�1)I
w(I )�I .

As in [8] we call this function theDuistermaat–Heckman functionassociated with
PK (� ). When K D o, DHP(� ) is defined onM

R

n

S

i Fi .
The following theorem is fundamental in the sequel, cf. [8] Theorem 2.3 and [7]

Corollary 7.4.

Theorem 2.1. Let1 be a complete simplicial multi-fan. Let� D
P

i2K[60K
(1) di xi 2

H2
T (1K , V) be as above with all di integers and put�

C

D

P

i (di C �)xi with 0< � < 1.
Then

(9)
X

u2A�K\M

DHPK (�
C

)(u)tu
D

X

I26(n�k)
K

w(I )

jHI ,V j

X

h2HI ,V

�I (��I (� ), h)t �
�

I (� )

Q

i2I nK (1� �I (uI
i , h)�1t�uI

i )
,

where�I (u, h) D e2�
p

�1hu,v(h)i for u 2 N�

I ,V and v(h) is a lift of h 2 HI ,V to NI ,V .

NOTE. The left hand side of (9) is considered as an element in the group ring of
M over R or the character ringR(T)
 R considered as the Laurent polynomial ring
in t D (t1, : : : , tn). The equality shows that the right hand side, which is a rational
function of t , belongs toR(T)
 R.

� D

P

i di xi 2 H2
T (1, V) is called T-Cartier if ��I (� ) 2 M for all I 2 6(n). This

condition is equivalent touI 2 M for all I 2 6(n). In this caseP(� ) is said lattice
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multi-polytope. If � is T-Cartier, then�I (��I (� ), h) � 1. Hence the above formula (9)
for DHPK (�KC) reduces in this case to

(10)
X

u2A�K\M

DHPK (�KC)(u)tu
D

X

I26(n�k)
K

w(I )

jHI ,V j

X

h2HI ,V

t �
�

I (�K )

Q

i2I nK (1� �I (uI
i , h)�1t�uI

i )
.

Let H��

T ( ) denote the completed equivariant cohomology ring. The Chern char-
acter ch sendsR(T) 
 R to H��

T (pt)
R

by ch(tu) D eu. The image of (10) by ch is
given by

(11)
X

u2A�K\M

DHPK (�KC)(u)eu
D

X

I26(n�k)
K

w(I )

jHI ,V j

X

h2HI ,V

e�
�

I (�K )

Q

i2I nK (1� �I (uI
i , h)�1e�uI

i )
.

Assume that� D
P

i di xi 2 H2
T (1, V) is T-Cartier. The number #(P(� )K ) is de-

fined by

#(P(� )K ) D
X

u2A�K\M

DHPK (�KC)(u).

It is obtained from (11) by settingu D 0, that is, it is equal to the image of (11) by
H��

T (pt)
Q

! H0
T (pt)

Q

.
The equivariant Todd classTT (1, V) is defined in such a way that

�

�

(e�TT (1, V)) D
X

u2M

DHP(�
C

)(u)eu

for � T-Cartier. In order to give the definition we need some notations.
For simplicity identify the set6(1) with {1,2,: : : ,m} and consider a homomorphism

�W R

m
D R

6

(1)
! N

R

sendingaD (a1,a2,:::,am) to
P

i26(1) ai vi . For K 2 6(k) we define

QGK ,V D {a j �(a) 2 N and a j D 0 for j � K }

and defineGK ,V to be the image ofQGK ,V in QT D Rm
=Z

m. It will be written GK for
simplicity. The homomorphism� restricted on QGK ,V induces an isomorphism

�K W GK � HK ,V � T D N
R

=N.

Put

G
1

D

[

I26(n)

G I � QT

and

DG
1

D

[

I26(n)

G I � G I � G
1

� G
1

.
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Let v(g) D aD (a1, a2, : : : , am) 2 Rm be a representative ofg 2 QT . The factorai

will be denoted byvi (g). It is determined modulo integers. Ifg 2 G I , then vi (g) is
necessarily a rational number. Define a homomorphism�i W QT ! C

� by

�i (g) D e2�
p

�1vi (g).

Let g 2 G I and h D �I (g) 2 HI ,V . Then �(v(g)) 2 NI is a representative ofh in
NI which will be denoted byv(h). Then, for g 2 G I and i 2 I ,

vi (g) � huI
i , v(h)i mod Z,

and

�i (g) D e2�
p

�1huI
i ,v(h)i

D �I (u
I
i , h).

Let 1 be a complete simplicial multi-fan. Define

TT (1, V) D
X

g2G
1

Y

i26(1)

xi

1� �i (g)e�xi
2 H��

T (1, V)
Q

.

Proposition 2.2. Let 1 be a complete simplicial multi-fan. Assume that� 2
H2

T (1, V) is T -Cartier. Then

�

�

(e�TT (1, V)) D
X

u2M

DHP(�
C

)(u)eu.

Consequently

p
�

(e�TT (1, V)) D #(P(� )).

Proof (cf. [7] Section 8). Letg 2 G
1

and I 2 6(n). If g � G I , then there is an
elementi � I such that�i (g) ¤ 1; so

xi

1� �i (g)e�xi
D (1� �i (g))�1xi C higher degree terms

for such i . Hencei �I (xi =(1� �i (g)e�xi )) D 0. Therefore, only elementsg in G I con-
tribute to ��I (TT (1, V)). Now supposeg 2 G I . Then�i (g) D 1 for i � I , so ��I (xi =(1�
�i (g)e�xi )) D 1 for suchi . Finally, since��I (xi ) D uI

i for i 2 I , we have

�

�

I (TT (1, V)) D
X

g2G I

Y

i2I

uI
i

1� �i (g)e�uI
i

.
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This together with (11) shows that

�

�

(e�TT (1, V)) D �
�

0

�e�
X

g2G
1

m
Y

iD1

xi

1� �i (g)e�xi

1

A

D

X

I26(n)

w(I )e�
�

I (� )

jHI ,V j

X

g2G I

1
Q

i2I (1� �i (g)e�uI
i )

D

X

u2M

DHP(�
C

)(u)eu.

More generally, forK 2 6(k), defineTT (1, V)K by

TT (1, V)K D
X

g2G
1K

Y

i260(1)
K

xi

1� �i (g)e�xi
2 H��

T (1, V)
Q

.

Then the same proof as for Proposition 2.2 yields

Proposition 2.3. Let 1 be a complete simplicial multi-fan. Assume that� 2
H2

T (1, V) is T -Cartier. Then

�

�

(e� xKTT (1, V)K ) D
X

u2A�K\M

DHPK (�KC)(u)eu.

for K 2 6(k), where xK D
Q

i2K xi . Consequently

p
�

(e� xKTT (1, V)K ) D #(P(� )K ).

The latticeM\A�

K defines a volume elementdVK on A�

K . For� D
P

i2K[60K
(1) di xi 2

H2
T (1K , V)

R

, the volume volPK (� ) of PK (� ) is defined by

vol PK (� ) D
Z

A�K

DHPK (� ) dV�

K .

Proposition 2.4. For � D
P

i26(1) di xi 2 H2
T (1, V)

R

1

jHK ,V j
vol P(� )K D p

�

(e� xK ).

Proof. We shall give a proof only for the case where� is T-Cartier. The general
case can be reduced to this case, cf. [7], Lemma 8.6. By Proposition 2.3

#(P(� )K ) D p
�

(e� xKTT (1, V)K ).
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The highest degree term with respect to{di } in the right hand side is nothing but
vol P(� )K and is equal to

p
�

�

�

n�k

(n� k)!
xK

�

X

g2G
1K

0

�

Y

i260(1)
K

xi

1� �i (g)e�xi

1

A

0

,

where the suffix 0 means taking 0-th degree term. But

0

�

Y

i260(1)
K

xi

1� �i (g)e�xi

1

A

0

D

�

1 if g 2 GK ,
0 if g � GK .

Hence

vol P(� )K D jGK jp�

�

�

n�k

(n� k)!
xK

�

D jHK ,V jp�(e
� xK ).

3. Statement of main results

Assume that 1� k. For J 2 6(k) let MJ be the annihilator ofNJ and put!J D

u1^: : :^un�k 2
Vn�k M �

Vn�k M
Q

where{u1, : : : , un�k} is an oriented basis ofMJ .

Define f J(xi ) 2
Vn�kC1 M

Q

by

f J(xi ) D �
�

I (xi ) ^ !J with J � I 2 6(n).

f J(xi ) is well-defined independently ofI containing J. Let S�
�

Vn�kC1 M
Q

�

be the

symmetric algebra over
Vn�kC1 M

Q

. f J
W H2

T (1)
Q

!

Vn�kC1 M
Q

extends to

f J
W H�

T (1)
Q

! S�
�

Vn�kC1 M
Q

�

. For x D
Q

i x�i
i 2 H2k

T (1)
Q

we put

f J(x) D ( f J(xi ))
�i .

The definition of f J depends on the orientations chosen, butf J(x)= f J(xJ) does
not. It belongs to the fraction field of the symmetric algebraS�

�

Vn�kC1 M
Q

�

and has

degree 0. Hence it can be considered as an element ofRat
�

P

�

Vn�kC1 N
Q

��

0, the field

of rational functions of degree 0 onP
�

Vn�kC1 N
Q

�

. Let �� W Rat(P
�

Vn�kC1 N
Q

)
�

0!

Rat(Gn�kC1(N
Q

))0 be the induced homomorphism of the Plücker embedding

� W Gn�kC1(N
Q

) ! P

�

Vn�kC1 N
Q

�

. The image��( f J(x)= f J(xJ)) will be denoted
by �(x, J).

Our first main result is stated in the following

Theorem 3.1. Let1 be a complete simplicial multi-fan and x2 H2k
T (1,V)

Q

. For
any � 2 H2

T (1)
Q

we have

p
�

(e� x) D
X

J26(k)

�(x, J)p
�

(e� xJ) in Rat(Gn�kC1(N
Q

))0.
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Corollary 3.2. Let 1 be a complete simplicial multi-fan in a lattice of rank n.
Assume that� 2 H2

T (1, V) is T -Cartier. Set

#(P(�� )) D
n
X

kD0

ak(� )�n�k.

Then we have

ak(� ) D
X

J26(k)

�k(J) vol P(� )J

with

�k(J) D
1

jHJ,V j
�

�

0

�

X

h2HJ,V

Y

j2J

1

1� �(uJ
j , h)e� f J (x j )

1

A

0

in Rat(Gn�kC1(N
C

))0.

NOTE. It can be proved without difficulty that�k(J) does not depend on the
choice ofV. Hence one has only to consider the case where all thevi are primitive.

For the following corollary we need to put an additional condition on the multi-
fan 1.

Corollary 3.3. Let 1 be a multi-fan. Assume that there is a torus orbifold X
such that1 is isomorphic to1X and H�(X)

Q

is generated by H2(X)
Q

. Then for x2
H2k

T (1)
Q

the following equality holds.

Nx D
X

J26(k)

�(x, J) NxJ in Rat(Gn�kC1(N
Q

))0
Q H2k(1)
Q

,

where Nx is the image of x2 H�

T (1)
Q

in H�(1)
Q

.

REMARK 3.1. If H�(X)
Q

is generated byH2(X)
Q

, then H�

T (1X)
Q

D H�

T (X)
Q

.
cf. [10], [11].

REMARK 3.2. When1 is the fan associated to a convex lattice polytopeP and
� D D, the Cartier divisor associated toP, we know (see, e.g. [5]) that

�0(o) D 1, a0(� ) D vol P(� ), �1(i ) D
1

2
, a1(� ) D

1

2

X

i26(1)

vol P(� )i .

This is also true for simplicial multi-fans andT-Cartier � .
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As to an we have

an(� ) D Td[1].

In fact an(� ) D p
�

(TT (1,V)) D (�
�

(TT (1,V)))0. Thus the above equality follows from
the following rigidity property:

Theorem 3.4. Let 1 be a complete simplicial multi-fan. Then

�

�

(TT (1, V)) D (�
�

(TT (1, V)))0 D Td[1].

See [7] Theorem 7.2 and its proof. Note that Td[1] D 1 for any complete simpli-
cial fan1.

The explicit formula for�
�

(TT (1, V)) is given by

�

�

(TT (1, V)) D
X

I26(n)

w(I )

jHI ,V j

X

h2HI ,V

Y

i2I

1

1� �I (uI
i , h)e�uI

i

.

This does not depend on the choice ofV and is in fact equal to Td[1].
Let 1 be a (not necessarily complete) simplicial fan in a lattice of rank n. Set

TdT (1) D
X

I26(n)

1

jHI j

X

h2HI

Y

i2I

1

1� �I (uI
i , h)e�uI

i

2 S�1H��

T (pt)
Q

.

For a simplexI let 6(I ) be the simplicial complex consisting of all faces ofI . For a
fan 1(I ) D (6(I ), C), TdT (1(I )) is denoted by TdT (I ).

Theorem 3.5. TdT (I ) is additive with respect to simplicial subdivisions of the
cone C(I ). Namely, if 1 is the fan determined by a simplicial subdivison of C(I ),
then the following equality holds

TdT (1) D TdT (I ).

For the proof it is sufficient to assume that1(I ) and1 are non-singular. In such
a form a proof is given in [12]. The following corollary ensures that�k(J) can be
defined for general polyhedral cones as pointed out by Morelliin [12].

Corollary 3.6. Let 1(J) D (6(J), C) be a fan in a lattice N of rank n where
J is a simplex of dimension k� 1. Then�k(J) 2 Rat(Gn�kC1(N

Q

))0 is additive with
respect to simplicial subdivisions of C(J).



ON A MORELLI TYPE EXPRESSION 1127

4. Proof of Theorem 3.1 and Corollary 3.3

Proof of Theorem 3.1.
For a primitive sublatticeE of N of rank n � k C 1 let wE 2

Vn�kC1 N be a

representative of�(E) 2 P
�

Vn�kC1 N
Q

�

. The equality in Theorem 3.1 is equivalent to
the condition that

p
�

(e� x) D
X

J26(k)

f J(x)

f J(xJ)
(wE)p

�

(e� xJ) holds for every generic E.

Let E be a generic primitive sublattice inN of rank n � k C 1. The intersection
E\ NJ has rank one for eachJ 2 6(k). Take a non-zero vectorvE,J in E\ NJ . (One
can choosevE,J to be the unique primitive vector contained inE \ C(J). But any
non-zero vector will suffice for the later use.) Forx 2 H2k

T (1) and J 2 6(k) the value
of ��I (x) evaluated onvE,J for I 2 6(n) containing J depends only on��J(x) so that it
will be denoted by��J(x)(vE,J). Similarly we shall simply writehuJ

j , vE,Ji instead of

huI
j , vE,Ji.

Lemma 4.1. Put f J
j D uJ

j ^ !J . Then

ah f J
j , wEi D hu

J
j , vE,Ji,

where a is a non-zero constant depending only onvE,J .

Proof. Take an oriented basisu1,: : : ,un�k of MJ . Take also a basisw1,: : : ,wn�kC1

of E and writevE,J D
P

l clwl . Then, sincehui , vE,Ji D 0,

n�kC1
X

lD1

cl hui , wl i D 0, for i D 1, : : : , n� k.

The matrix (ai l ) D (hui , wl i) has rankn� k and we get

(c1, : : : , cn�kC1) D a(A1, : : : , An�kC1), a ¤ 0,

where

Al D (�1)l�1 det

0

B

�

a11 � � � 
a1 l � � � a1 n�kC1
...

...
...

an�k 1 � � � 1an�k l � � � an�k n�kC1

1

C

A

.
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Then

huJ
j , vE,Ji D

n�kC1
X

lD1

cl hu
J
j , wl i

D a
n�kC1
X

lD1

huJ
j , wl iAl

D a det

0

B

B

B

�

huJ
j , w1i � � � huJ

j , wn�kC1i

hu1, w1i � � � hu1, wn�kC1i

...
...

hun�k, w1i � � � hun�k, wn�kC1i

1

C

C

C

A

D ah f J
j , wEi

where f J
j D uJ

j ^ u1 ^ � � � ^ un�k andwE D w1 ^ � � � ^ wn�kC1.

REMARK 4.1. Let X be a torus orbifold of dimension 2n and1 the associated
multifan. Let T D Tn be the compact torus acting onX. E\NJ determines a subcircle
T1

E,J of T . Then T1
E,J pointwise fixes an invariant complex suborbifoldXJ . Some of

its covering acts on the normal vector space of an Euclidean covering of an invariant
neighborhood at each generic point inXJ . Then the numbershuJ

j , vE,Ji are weights of
this action.

Lemma 4.1 implies that

f J(x)

f J(xJ)
(wE) D

�

�

J(x)
Q

j2J uJ
j

(vE,J).

Then the equality in Theorem 3.1 holds if and only if

(12) p
�

(e� x) D
X

J26(k)

a
�

�

J(x)
Q

j2J uJ
j

(vE,J)p
�

(e� xJ)

holds for every genericE.
The following lemma is easy to prove, cf. e.g. [7] Lemma 8.1.

Lemma 4.2. The vector space H2k
T (1)

Q

is spanned by elements of the form

u1 � � � uk1xJk1
, Jk1 2 6

(k�k1), ui 2 M
Q

,

with 0� k1 � k � 1.
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NOTE. For x D u1 � � � uk1xJk1
, Jk1 2 6

(k�k1), with k1 � 1,

p
�

(e� x) D 0.

In view of this lemma we proceed by induction onk1 for x D u1 � � � uk1xJk1
.

For x D xJ0 with J0 2 6
(k), the left hand side of (12) is equal top

�

(e� xJ0). Since
i �J(x) D 0 unlessJ D J0 and i �J(x)=

Q

j2J uJ
j D 1 for J D J0, the right hand side is

also equal top
�

(e� xJ0). Hence (12) holds withx of the form x D xJ0 for J0 2 6
(k).

Assuming that (12) holds forx of the form u1 � � � uk1xJk1
with Jk1 2 6

(k�k1), we

shall prove that it also holds forx D u1 � � � uk1uk1C1xJk1C1 with Jk1C1 2 6
(k�(k1C1)). Put

K D Jk1C1.
CASE a). uk1C1 belongs toMKQ, that is,huk1C1,vi i D 0 for all i 2 K . In this case

uk1C1 D
X

i26(1)
nK

huk1C1, vi ixi

since huk1C1, vi i D 0 for all i 2 K . For i � K , xi xJk1C1 is either of the formxJ i with

J i
2 6

(k�k1) or equal to 0. Thus, forx D u1 � � � uk1xi xJk1C1 with i � K , the equal-
ity (12) holds by induction assumption, and it also holds forx D u1 � � � uk1uk1C1xJk1C1

by linearity.
CASE b). General case. We need the following

Lemma 4.3. For K 26(k�k1) with k1 � 1, the composition homomorphism MKQ �

M
Q

! E�

Q

is surjective.

The proof will be given later. By this lemma, there exists an element u 2 MKQ

such that

huk1C1, vE,Ji D hu, vE,Ji for all J 2 6(k).

Note that h��J(u), vE,Ji D hu, vE,Ji for any u 2 M
Q

. Then, in (12) for x D u1 � � �

uk1uk1C1xJk1C1 with Jk1C1 2 6
(k�(k1C1)), we have

�

�

J(x)(vE,J) D

 

k1
Y

iD1

hui , vE,Ji

!

huk1C1, vE,Ji

D

 

k1
Y

iD1

hui , vE,Ji

!

hu, vE,Ji.

Hence if we putx0 D u1 � � � uk1uxJk1C1, the right hand side of (12) is equal to

X

J26(k)

�

�

J(x0)
Q

j2J uJ
j

(vE,J)p
�

(e� xJ).
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This last expression is equal top
�

(e� x0) since x0 belongs to Case a). Furthermore
p
�

(e� x0) D 0 and p
�

(e� x) D 0 by Note after Lemma 4.2. Thus both side of (12) for
x D u1 � � � uk1uk1C1xJk1C1 are equal to 0. This completes the proof of Theorem except
for the proof of Lemma 4.3.

Proof of Lemma 4.3. Take a simplexI 2 6(n) which containsK and a simplex
K 0

2 6

(k�1) such thatK � K 0

� I . Such aK 0 exists sincek� k1 � k� 1. Then there
are exactlyn� kC1 simplicesJ1, : : : , Jn�kC1

2 6

(k) such thatK 0

� J i
� I . It is easy

to see that the vectorsvE,J1, : : : , vE,Jn�kC1 are linearly independent so that they span
E
Q

. Moreover MK 0

Q

detects these vectors, that is,MK 0

Q

! M
Q

! E�

Q

is surjective.
Since M 0

K � MK � M, MKQ ! E�

Q

is surjective.

Proof of Corollay 3.2. By Proposition 2.3

#(P(�� )) D p
�

(e��TT (1, V)) D
n
X

kD0

ak(� )�n�k.

Put x D (TT (1, V))k 2 H2k
T (1, V)

Q

. By Theorem 3.1 and Proposition 2.4

ak(� ) D
X

J26(k)

�

�

�

f J(x)

f J(xJ)

�

vol P(� )J

jHJ,V j
.

Thus it suffices to show that

f J(x)

f J(xJ)
D

0

�

X

h2HJ,V

Y

j2J

1

1� �(uJ
j , h)e� f J (x j )

1

A

0

,

or

f J(x) D

0

�

X

h2HJ,V

Y

j2J

f J(x j )

1� �(uJ
j , h)e� f J (x j )

1

A

k

.

Let g 2 G
1

. If g � GJ , then there is an elementi � J such that�i (g) ¤ 1, and,
for such i ,

f J

�

xi

1� �i (g)e�xi

�

D f J((1� �i (g))�1xi C higher degree terms)D 0,

since f J(xi ) D 0. Thus

f J

 

Y

i26(1)

xi

1� �i (g)e�xi

!

D 0
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for g � GJ .
If g 2 GJ , then�i (g) D 1 for i � J. Thus

f J

�

xi

1� �i (g)e�xi

�

D f J

�

1C
1

2
xi C higher degree terms

�

D 1

for g 2 GJ , i � J. It follows that

f J

0

�

X

g2G
1

Y

i26(1)

xi

1� �i (g)e�xi

1

A

D

X

g2GJ

Y

i2J

f J(xi )

1� �i (g)e� f J (xi )
.

This implies

f J(TT (1, V)k) D

0

�

X

h2HJ,V

Y

j2J

f J(x j )

1� �J(uJ
j , h)e� f J (x j )

1

A

k

.

This finishes the proof of Corollary 3.2.

Proof of Corollary 3.3. Putx0 D
P

J26(k) �(x, J)xJ . Then

p
�

(e� x0) D
X

J26(k)

�(x, J)p
�

(e� xJ) D p
�

(e� x)

by Theorem 3.1. It follows thatp
�

(e� (x0 � x)) D 0. Thus, in order to prove Corol-
lary 3.3, it suffices to show thatp

�

(e� y) D 0, 8� 2 H2
T (1)

Q

, implies that p�(y) D
0. By the assumption1 is isomorphic to1X where X is a torus orbifold such that
H�(X)

Q

is generated byH2(X)
Q

. For suchX we know thatH�

T (1)
Q

D H�

T (X)
Q

and
H�(1)

Q

D H�(X)
Q

by Remark 3.1. In particularH�(1)
Q

satisfies the Poincaré dual-
ity. It follows that p

�

(e� y) D 0 for all � implies that p
�

(y) D 0.
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