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Abstract
This paper discusses a new notion of quadratic variation andcovariation for

Banach space valued processes (not necessarily semimartingales) and related Itô for-
mula. If X andY take respectively values in Banach spacesB1 and B2 and � is a
suitable subspace of the dual of the projective tensor product of B1 and B2 (denoted
by (B1 O




�

B2)�), we define the so-called� -covariation ofX andY . If X D Y , the
� -covariation is called� -quadratic variation. The notion of� -quadratic variation is a
natural generalization of the one introduced by Métivier–Pellaumail and Dinculeanu
which is too restrictive for many applications. In particular, if � is the whole space
(B1 O




�

B1)� then the� -quadratic variation coincides with the quadratic variation of
a B1-valued semimartingale. We evaluate the� -covariation of various processes for
several examples of� with a particular attention to the caseB1 D B2 D C([�� , 0])
for some� > 0 andX andY beingwindow processes. If X is a real valued process,
we call window process associated withX the C([�� , 0])-valued processX WD X( � )
defined byXt (y) D XtCy, where y 2 [�� , 0]. The Itô formula introduced here is an
important instrument to establish a representation resultof Clark–Ocone type for a
class of path dependent random variables of typeh D H (XT ( � )), H W C([�T,0])! R

for not-necessarily semimartingalesX with finite quadratic variation. This represen-
tation will be linked to a functionu W [0, T ] � C([�T, 0]) ! R solving an infinite
dimensional partial differential equation.

1. Introduction

The present paper settles the basis for the calculus via regularization for processes
with values in an infinite dimensional separable Banach space B. We introduce a new
approach to face stochastic integration for infinite dimensional processes, based on an
original generalization of the notion of quadratic covariation. This allows to discuss
stochastic calculus in a more general framework than in the present literature.

The extension of Itô stochastic integration theory for Hilbert valued processes dates
only from the eighties, the results of which can be found in the monographs [20, 21, 6]
and [33] with different techniques. However the discussionof this last approach is not
the aim of this paper. Extension to nuclear valued spaces is simpler and was done in

2010 Mathematics Subject Classification. 60G05, 60G07, 60G22, 60H05, 60H99.



730 C. DI GIROLAMI AND F. RUSSO

[17, 32]. One of the most natural but difficult situations arises when the processes are
Banach space valued.

As for the real case, a possible tool of infinite dimensional stochastic calculus is
the concept of quadratic variation, or more generally of covariation. The notion of co-
variation is historically defined for two real valued (Ft )-semimartingalesX andY. This
notion was extended to the case of general processes by meansof discretization tech-
niques, for instance by [14], or via regularization, in [28,30]. In this paper we will
follow the language of regularization; for simplicity we suppose that eitherX or Y is
continuous. In the whole paperT will be a fixed positive number. Every process will
be indexed by [0,T ], but, if it is continuous, it can be extended to the real linefor
convenience by settingXt D X0 if t < 0 and Xt D XT for t � T .

DEFINITION 1.1. Let X and Y be two real processes such thatX is continuous
and Y has almost surely locally integrable paths. For� > 0, we denote

[X, Y]�t D
Z t

0

(XsC� � Xs)(YsC� � Ys)

�

ds, t 2 [0, T ],

I �(�, Y, d X)t D

Z t

0
Ys

XsC� � Xs

�

ds, t 2 [0, T ].

1. We say thatX and Y admit a covariation if lim
�!0[X, Y]�t exists in probability

for every t 2 [0, T ] and the limiting process admits a continuous version that will be
denoted by [X,Y]. If [ X, X] exists, we say thatX has aquadratic variationand it will
also be denoted by [X]. If [ X] D 0 we say thatX is a zero quadratic variation process.
2. The forward integral

R t
0 Ys d�Xs is a continuous processZ, such that whenever it

exists, lim
�!0 I �(�, Y, d X)t D Zt in probability for everyt 2 [0, T ].

3. If
R t

0 Ys d�Xs exists for any 0� t < T ;
R T

0 Ys d�Xs will symbolize the improper

forward integral defined by limt!T
R t

0 Ys d�Xs, whenever it exists in probability.

REMARK 1.2. 1. Lemma 3.1 in [29] allows to show that, whenever [X,X] exists,
then [X, X]" also converges in theuniform convergence in probability(ucp) sense, see
[28, 30]. The basic results established there are still valid here, see the following items.
2. If X (resp. A) is a finite (resp. zero) quadratic variation process, then [A, X] D 0,
see Proposition 1 5) of [30].
3. If Y is a bounded variation (càdlàg) process, then

R t
0 Y d�X, t 2 [0, T ], exists and

equalsYt Xt � Y0X0 �
R

]0,t ] X dY, t 2 [0, T ], where the latter is a pathwise Lebesgue–
Stieltjes integral. This is a consequence of items 4) and 7) of Proposition 1 in [30].

Let (�, F , P ) be a fixed probability space, equipped with a given filtration F D
(Ft )t2[0,T ] fulfilling the usual conditions.
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REMARK 1.3. If X is an (Ft )-continuous semimartingale andY is (Ft )-progressively
measurable and càdlàg (resp. an (Ft )-semimartingale)

R

�

0 Ys d�Xs (resp. [X, Y]) coincides
with the classical Itô integral

R

]0,�] Y d X, also denoted by
R

�

0 Y d X, (resp. the classical co-
variation of their local martingale parts).

The class of real finite quadratic variation processes is much richer than the one
of semimartingales. Typical examples of such processes are(Ft )-Dirichlet processes.
D is called (Ft )-Dirichlet processif it admits a decompositionD D M C A where M
is an (Ft )-local martingale andA is an (Ft )-adapted zero quadratic variation process.
A slight generalization of that notion is the one of weak Dirichlet process, which was
introduced in [11]. Another interesting example is the bifractional Brownian motion
BH,K with parametersH 2 ]0, 1[ and K 2 ]0, 1] which has finite quadratic variation if
and only if H K � 1=2, see [26]. Notice that ifK D 1, thenBH,1 is a fractional Brown-
ian motion with Hurst parameterH 2]0, 1[. If H K D 1=2 it holds [BH,K ]t D 21�K t ; if
K ¤ 1 this process is not even Dirichlet with respect to its own filtration. One object
of this paper consists in investigating a possible useful generalization of the notions of
covariation and quadratic variation for Banach space valued processes. Particular em-
phasis will be devoted towindow processeswith values in the non-reflexive Banach
space of real continuous functions defined on [�� , 0], 0< � � T . To a real continu-
ous processX D (Xt )t2[0,T ] , one can link a natural infinite dimensional valued process
defined as follows.

DEFINITION 1.4. Let 0< � � T . We call window processassociated withX,
denoted byX( � ), the C([�� , 0])-valued process

X( � ) D (Xt ( � ))t2[0,T ] D {Xt (u) WD XtCu I u 2 [�� , 0], t 2 [0, T ]}.

In the present paper,W will always denote a real standard Brownian motion. The win-
dow processW( � ) associated withW will be called window Brownian motion.

Window processes, taking values in the non-reflexive spaceBD C([�� , 0]), are, in
our opinion, an interesting object which deserves more attention by stochastic analysis
experts. We enumerate some reasons.
1. They naturally appear in functional dependent stochastic differential equations as
delay equations.
2. Let W be a classical Wiener process. Considerh D �(WT ) for some Borel non-
negative� W R! R and letU W [0, T ] �R! R be a solution of�tUt C (1=2)�2

xxU D 0
with final conditionU (T, x) D �(x). By Itô formula one can show that that

(1.3) h D h0C

Z t

0
�s dWs,

where �s � �xU (s, Ws) and h0 D U (0, X0). A path dependent random variableh can



732 C. DI GIROLAMI AND F. RUSSO

be represented as a functional of the corresponding window process, i.e.h D f (W )
whereW D W( � ), f W C([�T, 0])! R. If u is a smooth solution of a suitable partial
differential equation, with space variable inC([�T, 0]) using anC([�T, 0])-valued Itô
formula, we expect to be able to expressh as (1.3) whereh0 and � depend onu.
Those considerations will extend to the case of a finite quadratic variation (even non-
semimartingale)X.
3. Even if the underlying processX is a semimartingale, its associated windowXD X(�)
is not, in any reasonable sense. Indeed if� is a signed Borel measure on [�� , 0], i.e. an
element ofB�, the real valued processX� defined byX�

t D h�,Xit D
R

[�� ,0] �(dx)XtCx

is in general not a real semimartingale, as Proposition 4.5 illustrates. In fact even ifX is
a standard Wiener process,X� is not a semimartingale. For instance if� is the sum of
Dirac measures� D Æ0 C Æ�� . On the other hand ifX is a continuous semimartingale
vanishing at zero and�(dx) D Æ0(dx) C g(x) dx whereg is a bounded Borel function
then X� is a semimartingale, see Remark 4.6, item 2.

We will introduce a notion of covariation for processes withvalues in general Banach
spaces but which will be performing also for window processes. This paper settles the the-
oretical basis for the stochastic calculus part related to the first part of [8] and which par-
tially appears in [7]. LetB1, B2 be two general Banach spaces. In this paperX (resp.Y )
will be a B1 (resp.B2) valued stochastic process. It is not obvious to define an exploitable
notion of covariation (resp. quadratic variation) ofX andY (resp. ofX). WhenX is an
H -valued martingale andB1 D B2 D H is a separable Hilbert space, [6], Chapter 3 intro-
duces an operational notion of quadratic variation. [9] introduces in Definitions A.1 in
Chapter 2.15 and B.9 in Chapter 6.23 the notions ofsemilocally summableand locally
summable processes with respect to a given bilinear mappingon B� B; see also Def-
inition C.8 in Chapter 2.9 for the definition ofsummableprocess. Similar notions ap-
pears in [22]. Those processes are very close to Banach spacevalued semimartingales. If
B is a Hilbert space, a semimartingale is semilocally summable when the bilinear form
is the inner product. For previous processes, [9] defines twonatural notions of quad-
ratic variation: the real quadratic variation and the tensor quadratic variation. For avoid-
ing confusion with the quadratic variation of real processes, we will use the terminology
scalar instead ofreal. Even though [22, 9] make use of discretizations, we define here,
for commodity, two very similar objects but in our regularization language, see Defin-
ition 1.5. Moreover, the notion below extends to the covariation of two processesX and
Y for which we remove the assumption ofsemilocally summableor locally summable.
Before that, we remind some properties related to tensor products of two Banach spaces
E and F , see [31] for details. IfE and F are Banach spaces,E O


�

F (resp.E O
h F)
is a Banach space which denotes theprojective(resp.Hilbert) tensor product of E and
F . We recall thatE O


�

F (resp. E O
h F) is obtained by a completion of the alge-
braic tensor productE 
 F equipped with the projective norm� (resp. Hilbert norm
h). For a general elementu D

Pn
iD1 ei 
 fi in E 
 F , ei 2 E and fi 2 F , it holds

�(u) D inf
{
Pn

iD1kei kEk fi kF W u D
Pn

iD1 ei 
 fi , ei 2 E, fi 2 F
}

. For the definition of
the Hilbert tensor normh the reader may refer [31], Chapter 7.4. We remind that ifE
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and F are Hilbert spaces the Hilbert tensor productE O
h F is also Hilbert and its inner
product betweene1
 f1 ande2
 f2 equalshe1, e2iE � h f1, f2iF . Let e 2 E and f 2 F ,
the symbole
 f (resp.e
2) will denote an elementary element of the algebraic tensor
productE
 F (resp.E
 E). The Banach space (E O


�

F)� denotes the topological dual
of the projective tensor product equipped with the operatornorm. As announced we give
now the two definitions of scalar and tensor covariation and quadratic variation.

DEFINITION 1.5. LetX (resp.Y ) be a B1 (resp. B2) valued stochastic process.
1. (X, Y ) is said to admit ascalar covariationif the limit for � # 0 of the sequence

[X, Y ]R,�
�

D

Z

�

0

kXsC� � XskB1kYsC� � YskB2

�

ds

exists ucp. That limit will be indeed called scalar covariation of X and Y and it will
be simply denoted by [X, Y ]R. The scalar covariation [X, X]R will be called scalar
quadratic variationof X and simply denoted by [X]R.
2. (X, Y ) admits atensor covariationif there exists a (B1 O
�

B2)-valued process de-
noted by [X, Y ]
 such that the sequence of Bochner (B1 O
�

B2)-valued integrals

(1.4) [X, Y ]
,�
�

D

Z

�

0

(XsC� � Xs)
 (YsC� � Ys)

�

ds

converges ucp for� # 0 (according to the strong topology) to a (B1 O
�

B2)-valued
process [X, Y ]
. [X, Y ]
 will indeed be called tensor covariation of (X, Y ). The ten-
sor covariation [X, X]
 will be called tensor quadratic variationand simply denoted
by [X]
.

REMARK 1.6. 1. By use of Lemma 3.1 in [29], if [X,Y ]R,�
�

converges, for any
t 2 [0, T ], to Zt , whereZ is a continuous process, then the scalar covariation of (X,Y )
exists and [X, Y ]R D Z.
2. If (X, Y ) admits both a scalar and tensor covariation, then the tensor covariation
process has bounded variation and its total variation is bounded by the scalar covaria-
tion which is clearly an increasing process.
3. If (X, Y ) admits a tensor covariation, then we have in particular

1

�

Z

�

0
h�, (XsC� � Xs)
 (YsC� � Ys)i ds

ucp
��!

�!0
h�, [X, Y ]
i,

for every� 2 (B1 O
�

B2)�, h � , � i denoting the duality betweenB1 O
�

B2 and its dual.
4. If [X, Y ]R D 0, then (X, Y ) admits a tensor covariation which also vanishes.

Proposition 1.7. Let X be an (Ft )-adapted semilocally summable process with
respect to the bilinear maps(tensor product) B�B! B O


�

B, given by(a,b) 7! a
b
and (a, b) 7! b
 a. ThenX admits a tensor quadratic variation.
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Proposition 1.8. LetX be a Hilbert space valued continuous(Ft )-semimartingale
in the sense of[22], Section 10.8. ThenX admits a scalar quadratic variation.

A sketch of the proof of the two propositions above are given in the appendix. A
consequence of Proposition 1.7 and item 2 of Remark 1.6 is thefollowing.

Corollary 1.9. LetX be a Banach space valued process which is semilocally sum-
mable with respect to the tensor product. IfX has a scalar quadratic variation, it admits
a tensor quadratic variation process which has bounded variation.

REMARK 1.10. The tensor quadratic variation can be linked to the oneof [6];
see Chapter 6 in [7] for details. LetH be a separable Hilbert space. IfV is an H -
valued Q-Brownian motion withTr(Q) < C1 (see [6] Section 4), thenV admits a
scalar quadratic variation [V ]Rt D t Tr(Q) and a tensor quadratic variation [V ]
t D tq
whereq is the tensor associated to the nuclear operatort Q.

We have already observed thatW( � ) is not a C([�� , 0])-valued semimartingale.
Unfortunately, the window processW( � ) associated with a real Brownian motionW,
does not even admit a scalar quadratic variation. In fact thelimit of

(1.5)
Z t

0

kWsC�( � ) �Ws( � )k2C([�� ,0])

�

ds, t 2 [0, T ],

for � going to zero does not converge, as we will see in Proposition4.7. This suggests
that whenX is a window process, the tensor quadratic variation is not the suitable
object in order to perform stochastic calculus. LetX (resp.Y ) be a B1 (resp. B2)-
valued process. In Definition 3.8 we will introduce a notion of covariation of (X, Y )
(resp. quadratic variation ofX whenX D Y ) which generalizes the tensor covariation
(resp. tensor quadratic variation). This will be called�-covariation (resp.�-quadratic
variation) in reference to a topological subspace� of the dual ofB1 O
�

B2 (resp.B1 O
�

B2 with B1 D B2). We will suppose in particular that

(1.6)
1

�

Z t

0
h�, (XsC� � Xs)
 (YsC� � Ys)i ds

converges for every� 2 � for every t 2 [0, T ]. If � were a singleton (the processes
being deterministic) and� would coincides with the whole space (B1 O
�

B2)� then
previous convergence is the one related to the weak star topology in (B1 O
�

B2)��.
Our �-covariation generalizes the concept of tensor covariation at two levels.

• First we replace the (strong) convergence of (1.4) with a weak star type topology
convergence of (1.6).
• Secondly the choice of a suitable subspace� of (B1 O
�

B2)� gives a degree of
freedom. For instance, compatibly with (1.5), a window Brownian motionX D W( � )
admits a�-quadratic variation only for strict subspaces� .
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When� equals the whole space (B1 O
�

B2)� (resp. (B1 O
�

B1)�) this will be called
global covariation(resp.global quadratic variation). This situation corresponds for us
to the elementary situation.

Let B1 D B2 be the finite dimensional spaceRn andX D (X1, : : : , Xn) andY D
(Y1, : : : , Yn) with values inRn, Corollary 3.28 says that (X, Y ) admits all its mutual
brackets (i.e. [Xi , Y j ] exists for all 1� i , j � n) if and only if X andY have a global
covariation. It is well-known that, in that case, (B1 O
�

B2)� can be identified with
the space of matrixMn�n(R). If � is finite dimensional, then Proposition 3.27 gives a
simple characterization forX to have a�-quadratic variation.

Propositions 1.7, 1.8, 3.15 and Remark 1.10 will imply that wheneverX admits one
of the classical quadratic variations (in the sense of [6, 22, 9]), it admits a global quadratic
variation and they are essentially equal. In this paper we calculate the�-covariation of
Banach space valued processes in various situations with a particular attention for win-
dow processes associated to real finite quadratic variationprocesses, for instance semi-
martingales, Dirichlet processes, bifractional Brownianmotion.

The notion of covariation intervenes in Banach space valuedstochastic calculus for
semimartingales, especially via Itô type formula, see for [9] and [22]. An important result
of this paper is an Itô formula for Banach space valued processes admitting a�-quadratic
variation, see Theorem 5.2. This generalizes the followingformula, valid for real valued
processes which is stated below, see [28]. LetX be a real finite quadratic variation pro-
cess andf 2 C1,2([0, T ] � R). Then the forward integral

R

�

0 �x f (s, Xs) d�Xs exists and

(1.7)

f (t, Xt ) D f (0, X0)C
Z t

0
�s f (s, Xs) ds

C

Z t

0
�x f (s, Xs) d�XsC

1

2

Z t

0
�

2
xx f (s, Xx) d[X]s, t 2 [0, T ].

[14] gives a similar formula in the discretization approachinstead regularization.
For that purpose, letY (resp. X) be a B�-valued strongly measurable with

a.s. bounded paths (resp.B-valued continuous) process,B denoting a separable Banach
space; we define a real valued forward-type integral

R t
0 B�

hY,d�XiB, see Definition 5.1.
We emphasize that Theorem 5.2 constitutes a generalizationof the Itô formula in [22],
Section 3.7, (see also [9]) for two reasons. First, taking� D (B O


�

B)�, i.e. the full
space, the integrator processesX that we consider are more general than those in the
class considered in [22] or [9]. The second, more important reason, is the use of a
space� which gives a supplementary degree of freedom.

In the final Section 6, we introduce two applications of our infinite dimensional sto-
chastic calculus. That section concentrates on window processes, which first motivated
our general construction. In Section 6.2 we discuss an application of the Itô formula to
anticipating calculus in a framework for which Malliavin calculus cannot be used ne-
cessarily. In Section 6.3, we discuss the application to a representation result ofClark–
Ocone typefor not necessarily semimartingales with finite quadratic variation, including
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zero quadratic variation. LetX be a continuous stochastic process with quadratic varia-
tion [X]t D �

2t , � � 0. Our Itô formula is one basic ingredient to prove a Clark–Ocone
type result for path dependent real random variables of the type h WD H (XT ( � )) with
H W C([�T, 0]) ! R. We are interested in natural sufficient conditions to decompose

h into the sum of a real numberH0 and a forward integral
R T

0 �t d�Xt . Suppose that
u 2 C1,2([0, T [�C([�T, 0])) is a solution of an infinite dimensional partial differential
equation (PDE) of the type

(1.8)

8

<

:

�tu(t, �)C “
Z

]�t,0]
D?u(t, �) d�” C

�

2

2
hD2u(t, �), 1Dt i D 0,

u(T, �) D H (�),

where 1Dt (x, y) WD

�

1 if x D y, x, y 2 [�t, 0],
0 otherwise

and D?u(t, �) WD Du(t, �) �

Du(t, �)({0})Æ0; in fact Du(t, �) (resp. D2u(t, �)) denotes the first (resp. second) order
Fréchet derivatives ofu with respect to�. A proper notion of solution for (1.8) will
be given in Definition 6.10. Of course, the integral “

R

]�t,0] D?u(t, �) d�” has to be

suitably defined. At this stage we only say that supposing, for each (t, �), D?u(t, �)
absolutely continuous with respect to Lebesgue measure andthat its Radon–Nikodym
derivative has bounded variation, then

R

]�t,0] D?u(t,�)d� is well-defined by an integra-

tion by parts, see Notation 6.2. The termhD2u(t,�),1Dt i indicates the evaluation of the
second order derivative on the increasing diagonal of the square [�t, 0]2, provided that
D2u(t, �) is a Borel signed measure on [�T, 0]2. Our Itô formula, i.e. Theorem 5.2,
allows in fact to get the mentioned representation above with H0 D u(0, X0( � )), �t D

DÆ0u(t, Xt ( � )) WD Du(t, Xt ( � ))({0}). In Chapter 9 of [7] we construct explicitly so-
lutions of the infinite dimensional PDE (1.8) whenH has some smooth regularity in
L2([�� , 0]) or when it depends (even non smoothly) on a finite number of Wiener
integrals.

A third application of Theorem 5.2 appears in [12]. In particular, those two au-
thors calculate and use the�-quadratic variation of a mild solution of a stochastic PDE
which generally is not a finite quadratic variation process in the sense of [6].

The paper is organized as follows. Section 2 contains general notations and some
preliminary results. Section 3 will be devoted to the definition of �-covariation and
�-quadratic variation and some related propositions. Section 4 provides some explicit
calculations related to window processes. Section 5 is devoted to the definition of a
forward integral for Banach space valued processes and related Itô formula. The final
Section 6 is devoted to applications of our Itô formula to thecase of window processes.

2. Preliminaries

Throughout this paper we will denote by (�, F , P ) a fixed probability space,
equipped with a given filtrationF D (Ft )t�0 fulfilling the usual conditions. LetK be
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a compact space;C(K ) denotes the linear space of real continuous functions defined
on K , equipped with the uniform norm denoted byk � k

1

. M(K ) will denote the dual
spaceC(K )�, i.e. the set of finite signed Borel measures onK . In particular, if a < b
are two real numbers,C([a, b]) will denote the Banach linear space of real continu-
ous functions. If E is a topological space,Bor(E) will denote its Borel� -algebra.
The topological dual (resp. bidual) space ofB will be denoted byB� (resp. B��).
If � is a linear continuous functional onB, we shall denote the value of� of an
elementb 2 B either by�(b) or h�, bi or even B�

h�, biB. Throughout the paper the
symbols h � , � i will always denote some type of duality that will change depend-
ing on the context. LetE, F , G be Banach spaces.L(EI F) stands for the Banach
space of linear bounded maps fromE to F . We shall denote the space ofR-valued
bounded bilinear forms on the productE � F by B(E, F) with the norm given by
k�kB D sup{j�(e, f )jW kekE � 1I k f kF � 1}. Our principal references about functional
analysis and about Banach spaces topologies are [10, 1].

T will always be a positive fixed real number. The capital letters X,Y ,Z (resp.X,
Y, Z) will generally denote Banach space (resp. real) valued processes indexed by the
time variablet 2 [0, T ]. A stochastic processX will also be denoted by (Xt )t2[0,T ] . A
B-valued (resp.R-valued) stochastic processXW �� [0, T ]! B (resp.XW �� [0, T ]!
R) is said to be measurable ifX W � � [0, T ] ! B (resp.X W � � [0, T ] ! R) is mea-
surable with respect to the� -algebrasF 
Bor([0, T ]) and Bor(B) (resp.Bor(R)). We
recall thatXW ��[0,T ]! B (resp.R) is said to bestrongly measurable(or measurable
in the Bochner sense) if it is the limit of measurable countable valued functions. If X
is measurable, càdlàg andB is separable thenX is strongly measurable. IfB is finite
dimensional then a measurable processX is also strongly measurable. All the processes
indexed by [0,T ] will be naturally prolonged by continuity settingXt D X0 for t � 0
andXt D XT for t � T . A sequence (Xn)n2N of continuousB-valued processes indexed
by [0,T ], will be said to convergeucp (uniformly convergence in probability) to a pro-
cessX if sup0�t�TkX

n
�XkB converges to zero in probability whenn!1. The space

C ([0,T ]) will denote the linear space of continuous real processes; it is a Fréchet space
(or F-space shortly) if equipped with the metricd(X, Y) D E

�

supt2[0,T ] jXt � Yt j ^ 1
�

which governs the ucp topology, see Definition II.1.10 in [10]. For more details about
F-spaces and their properties see Section II.1 in [10].

A fundamental property of the tensor product of Banach spaces which will be used
in the whole paper is the following. IfQT W E � F ! R is a continuous bilinear form,
there exists a unique bounded linear operatorT W E O
 F ! R satisfying (E O




�

F)�hT, e


f iE O




�

F D T(e
 f ) D QT(e, f ) for every e 2 E, f 2 F . We observe moreover that
there exists a canonical identification betweenB(E, F) and L(EI F�) which identifies
QT with NT W E ! F� by QT(e, f ) D NT(e)( f ). Summarizing, there is an isometric iso-
morphism between the dual space of the projective tensor product and the space of
bounded bilinear forms equipped with the usual norm, i.e.

(2.1) (E O

�

F)� � B(E, F) � L(EI F�).
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With this identification, the action of a bounded bilinear form T as a bounded linear
functional onE O


�

F is given by

(E O




�

F)�

*

T,
n
X

iD1

xi 
 yi

+

E O




�

F

D T

 

n
X

iD1

xi 
 yi

!

D

n
X

iD1

QT(xi , yi ) D
n
X

iD1

NT(xi )(yi ).

In the sequel that identification will often be used without explicit mention.
The importance of tensor product spaces and their duals is justified first of all by

identification (2.1): indeed the second order Fréchet derivative of a real function de-
fined on a Banach spaceE belongs toB(E, E). We state a useful result involving
Hilbert tensor products and Hilbert direct sums.

Proposition 2.1. Let E and F1, F2 be Hilbert spaces. We consider FD F1� F2

equipped with the Hilbert direct norm. Then EO
h F D (E O
h F1)� (E O
h F2).

Proof. SinceE
 Fi � E
 F , i D 1, 2 we can writeE
h Fi � X 
h Y and so

(2.2) (E O
h F1)� (E O
h F2) � E O
h F .

Since we handle with Hilbert norms, it is easy to show that thenorm topology ofE O
h

F1 and E O
h F2 is the same as the one induced byE O
h F .
It remains to show the converse inclusion of (2.2). This follows becauseE
 F �

E O
h F1� E O
h F2.

We recall another important property.

(2.3)
M([�� , 0]2) D (C([�� , 0]2))�

� (C([�� , 0]) O

�

C([�� , 0]))� � B(C([�� , 0]), C([�� , 0])).

With every � 2M([�� , 0]2) we can associate a unique operatorT�

2 B(C([�� , 0]),
C([�� , 0])) defined byT�( f, g) D

R

[�� ,0]2 f (x)g(y) �(dx, dy).
Let �1, �2 be two elements inC([�� , 0]). The element�1 
 �2 in the algebraic

tensor productC([�� ,0])
2 will be identified with the element� in C([�� ,0]2) defined
by �(x, y) D �1(x)�2(y) for all x, y in [�� , 0]. So if � is a measure onM([�� , 0]2),
the pairing dualityM([�� ,0]2)h�, �1
 �2iC([�� ,0]2) has to be understood as the following
pairing duality:

(2.4)
M([�� ,0]2)h�, �iC([�� ,0]2) D

Z

[�� ,0]2
�(x, y) �(dx, dy)

D

Z

[�� ,0]2
�1(x)�2(y) �(dx, dy).
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In the Itô formula for B valued processes at Section 5, naturally appear the first and
second order Fréchet derivatives of some functionals defined on a general Banach space
B. When B D C([�� , 0]), the first derivative belongs toM([�� , 0]) and second de-
rivative mostly belongs toM([�� , 0]2). In particular in Sections 4 and 6 those spaces
and their subsets appear in relation with window processes.We introduce a notation
which has been already used in the introduction.

NOTATION 2.2. 1. If a 2 R, we remind thatÆa will denote the Dirac measure
concentrated ata, so Æ0 stands for the Dirac measure at zero.
2. Let � be a measure onM([�� , 0]), � > 0. �Æ0 will denote the scalar defined
by �({0}) and�? will denote the measure defined by� � �Æ0

Æ0. If �? is absolutely
continuous with respect to Lebesgue measure, its density will be denoted with the same
letter �?.

Let B be a Banach space andI be a real interval, typicallyI D [0, T ] or I D
[0, T [. A function F W I � B ! R, is said to be Fréchet of classC1,2(I � B), if the
following properties are fulfilled.
• F is once Fréchet continuously differentiable; the partial derivative with respect to
t will be denoted by�t F W I � B! R;
• for any t 2 I , � 7! DF(t, �) is of classC1 where DF W I � B! B� denotes the
Fréchet derivative with respect to the second argument;
• the second order Fréchet derivative with respect to the second argumentD2F W I �
B! (B O


�

B)� is continuous.
Similar notations are self-explained as for instance orC1,1(I � B).

3. Chi-covariation and Chi-quadratic variation

3.1. Notion and examples of Chi-subspaces.

DEFINITION 3.1. Let E be a Banach space. A Banach space� included in E
will be said acontinuously embedded Banach subspaceof E if the inclusion of� into
E is continuous. IfE D (B1 O
�

B2)� then � will be said Chi-subspace(of E).

REMARK 3.2. 1. Let� be a linear subspace of (B1 O
�

B2)� with Banach struc-
ture. � is a Chi-subspace if and only ifk � k(B1 O
�

B2)� � k � k� , wherek � k
�

is a norm
related to the topology of� .
2. Any continuously embedded Banach subspace of a Chi-subspace is a Chi-subspace.
3. Let �1, : : : , �n be Chi-subspaces such that, for any 1� i ¤ j � n, �i \ � j D {0}

where 0 is the zero of (B1 O
�

B2)�. Then the normed space� D �1 � � � � � �n is a
Chi-subspace.

The last item allows to express a Chi-subspace of (B1 O
�

B2)� as direct sum of
Chi-subspaces (of (B1 O
�

B2)�). This, together with Proposition 3.17, helps to evaluate
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the �-covariations and the�-quadratic variations of different processes.
Before providing the definition of the so-called�-covariation of a couple of a

B1-valued and aB2-valued stochastic processes, we will give some examples ofChi-
subspaces that we will use in the paper.

EXAMPLE 3.3. Let B1, B2 be two Banach spaces.
• � D (B1 O
�

B2)�. This appears in our elementary situation anticipated in the in-
troduction, see also Proposition 3.15.

EXAMPLE 3.4. Let B1 D B2 D C([�� , 0]).
This is the natural value space for all the windows of continuous processes. We

list some examples of Chi-subspaces� for which some window processes have a�-
covariation or a�-quadratic variation. Moreover those�-covariation and�-quadratic
variation will intervene in some applications stated at Section 6. Our basic reference Chi-
subspace of (C([�� , 0] O


�

C([�� , 0]))� will be the Banach spaceM([�� , 0]2) equipped
with the usual total variation norm, denoted byk � kVar. The inequality in item 1 of
Remark 3.2 is verified sincekT�

k(B O




�

B)� D sup
k f k�1, kgk�1jT

�( f, g)j � k�kVar for every

� 2M([�� , 0]2). All the other spaces considered in the sequel of the present example
will be shown to be continuously embedded Banach subspaces of M([�� ,0]2); by item 2
of Remark 3.2 they are Chi-subspaces. Here is a list. Leta, b two fixed given points in
[�� , 0].

• L2([�� , 0]2) � L2([�� , 0]) O

2
h is a Hilbert subspace ofM([�� , 0]2), equipped with

the norm derived from the usual scalar product. The Hilbert tensor productL2([�� ,0]) O

2
h

will be always identified withL2([�� , 0]2), conformally to a quite canonical procedure,
see [23], Chapter 6.
• Da,b([�� , 0]2) (shortly Da,b) which denotes the one dimensional Hilbert space of
the multiples of the Dirac measure concentrated at (a, b) 2 [�� , 0]2, i.e.

(3.1)

Da,b([�� , 0]2)

WD {� 2M([�� , 0]2)I s.t. �(dx, dy) D � Æa(dx) Æb(dy) with � 2 R}

� Da O
h Db.

If � D � Æa(dx) Æb(dy) then k�kVar D j�j D k�kDa,b.

• Da([�� ,0]) O
h L2([�� ,0]) andL2([�� ,0]) O
hDa([�� ,0]) whereDa([�� ,0]) (shortly
Da) denotes the one-dimensional space of multiples of the Dirac measure concentrated
at a 2 [�� , 0], i.e.

(3.2) Da([�� , 0]) WD {� 2M([�� , 0])I s.t. �(dx) D � Æa(dx) with � 2 R}.

Da([�� , 0]) O
h L2([�� , 0]) (resp. L2([�� , 0]) O
h Da([�� , 0])) is a Hilbert subspace
of M([�� , 0]2) and for a general element in this space� D � Æa(dx)�(y) dy
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(resp.� D ��(x) dx Æa(dy)), � 2 L2([�� , 0]), we havek�kVar � k�kDa([�� ,0]) O
h L2([�� ,0])

(resp.k�kL2([�� ,0]) O
hDa([�� ,0])) D j�j � k�kL2.

• �

0([�� , 0]2), �0 shortly, which denotes the subspace of measures defined as

�

0([�� , 0]2) WD (D0([�� , 0])� L2([�� , 0])) O

2
h.

REMARK 3.5. An element� in �

0([�� , 0]2) can be uniquely decomposed as
� D �1C �2
 Æ0C Æ0
 �3C �Æ0
 Æ0, where�1 2 L2([�� , 0]2), �2, �3 are functions
in L2([�� , 0]) and� is a real number. We have�({0, 0}) D �.

• Diag([�� , 0]2) (shortly Diag), will denote the subset ofM([�� , 0]2) defined as
follows:

(3.3)
Diag([�� , 0]2)

WD {�g
2M([�� , 0]2) s.t. �g(dx, dy) D g(x) Æy(dx) dyI g 2 L1([�� , 0])}.

Diag([�� , 0]2), equipped with the normk�g
kDiag([�� ,0]2) D kgk1, is a Banach space.

Let f be a function inC([�� ,0]2); the pairing duality (2.4) betweenf and�(dx,dy)D
g(x) Æy(dx) dy 2 Diag gives

C([�� ,0]2)h f, �iDiag([�� ,0]2) D

Z

[�� ,0]2
f (x, y)g(x) Æy(dx) dyD

Z 0

��

f (x, x)g(x) dx.

A closed subspace ofDiag([�� , 0]2) is given below.

NOTATION 3.6. We denote byDiagd([�� , 0]2) the subspace constituted by the
measures�g

2 Diag([�� , 0]2) for which g belongs to the spaceD([�� , 0]) of the
(classes of) bounded functionsg W [�� , 0]! R admitting a càdlàg version.

3.2. Definition of �-covariation and some related results. Let B1, B2 and B
be three Banach spaces. In this subsection, we introduce thedefinition of �-covariation
between aB1-valued stochastic processX and a B2-valued stochastic processY . We
remind thatC ([0, T ]) denotes the space of continuous processes equipped with the ucp
topology.

Let X (resp.Y ) be B1 (resp.B2) valued stochastic process. Let� be a Chi-subspace
of (B1 O
�

B2)� and� > 0. We denote by [X, Y ]� , the following application

(3.4)

[X, Y ]� W � ! C ([0, T ]) defined by

� 7!

 

Z t

0
�

�

�,
J((XsC� � Xs)
 (YsC� � Ys))

�

�

�

�

ds

!

t2[0,T ]

,

where J W B1 O
�

B2 ! (B1 O
�

B2)�� is the canonical injection between a space and
its bidual. With application [X, Y ]� it is possible to associate another one, denoted by
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A[X, Y ]� , defined by

A[X, Y ]�(!, � ) W [0, T ] ! �

� such that

t 7!

 

� 7!

Z t

0
�

�

�,
J((XsC�(!) � Xs(!))
 (YsC�(!) � Ys(!)))

�

�

�

�

ds

!

.

REMARK 3.7. 1. We recall that� � (B1 O
�

B2)� implies (B1 O
�

B2)�� � ��.
2. As indicated,

�

h � , � i
�

� denotes the duality between the space� and its dual��.
In fact by assumption,� is an element of� and elementJ((XsC� �Xs)
 (YsC� �Ys))
naturally belongs to (B1 O
�

B2)�� � ��.
3. With a slight abuse of notation, in the sequel the injection J from B1 O
�

B2 to
its bidual will be omitted. The tensor product (XsC� � Xs) 
 (YsC� � Ys) has to be
considered as the elementJ((XsC� � Xs)
 (YsC� � Ys)) which belongs to��.
4. SupposeB1 D B2 D B D C([�� , 0]) and let� be a Chi-subspace.

An element of the type� D �1 
 �2, �1, �2 2 B, can be either considered as an
element of the typeB O


�

B � (B O

�

B)�� � �

� or as an element ofC([�� , 0]2)
defined by�(x, y) D �1(x)�2(y). When� is indeed a closed subspace ofM([� , 0]2),
then the pairing between� and�� will be compatible with the pairing duality between
M([� , 0]2) and C([�� , 0]2) given by (2.4).

DEFINITION 3.8. Let B1, B2 be two Banach spaces and� be a Chi-subspace of
(B1 O
�

B2)�. Let X (resp.Y ) be a B1 (resp. B2) valued stochastic process. We say
that (X, Y ) admits a�-covariation if the following assumptions hold.
H1 For all sequence (�n) it exists a subsequence (�nk ) such that

sup
k

Z T

0
sup

k�k

�

�1

�

�

�

�

�

�,
(XsC�nk

� Xs)
 (YsC�nk
� Ys)

�nk

�

�

�

�

�

ds

D sup
k

Z T

0

k(XsC�nk
� Xs)
 (YsC�nk

� Ys)k��

�nk

ds<1 a.s.

H2 (i) There exists an application� ! C ([0, T ]), denoted by [X, Y ], such that

(3.5) [X, Y ]�(�)
ucp
���!

�!0
C

[X, Y ](�)

for every � 2 � � (B1 O
�

B2)�.

(ii) There is a measurable processA[X, Y ] W � � [0, T ] ! �

�, such that

• for almost all! 2�,A[X, Y ](!, �) is a (càdlàg) bounded variation function,

• A[X, Y ]( � , t)(�) D [X, Y ](�)( � , t) a.s. for all� 2 � , t 2 [0, T ].
If (X, Y ) admits a�-covariation we will call�-covariation of X andY the ��-valued
process (A[X, Y ])0�t�T . By abuse of notation, [X, Y ] will also be called�-covariation

and it will be sometimes confused withA[X, Y ].
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DEFINITION 3.9. LetX D Y be a B-valued stochastic process and� be a Chi-

subspace of (B O

�

B)�. The �-covariation [X, X] (or A[X, X]) will also be denoted by
[X] and f[X]; it will be called �-quadratic variation ofX and we will say thatX has
a �-quadratic variation.

REMARK 3.10. 1. For every fixed� 2 � , the processesA[X, Y ]( � , t)(�) and

[X, Y ](�)( � , t) are indistinguishable. In particular the��-valued processA[X, Y ] is

weakly star continuous, i.e.A[X, Y ](�) is continuous for every fixed�.

2. The existence ofA[X, Y ] guarantees that [X, Y ] admits a bounded variation version
which allows to consider it as pathwise integrator.
3. The quadratic variationf[X] will be the object intervening in the second order term
of the Itô formula expandingF(X) for someC2-Fréchet functionF , see Theorem 5.2.
4. In Corollaries 3.25 and 3.26 we will show that, whenever� is separable (most
of the cases), the condition H2 can be relaxed in a significantway. In fact the con-
dition H2 (i) reduces to the convergence in probability of (3.5) on a dense subspace
and H2 (ii) will be automatically satisfied.

REMARK 3.11. 1. A practical criterion to verify the condition H1 is

1

�

Z T

0
k(XsC� � Xs)
 (YsC� � Ys)k�� ds� B(�)

where B(�) converges in probability when� goes to zero. In fact the convergence in
probability implies the a.s. convergence of a subsequence.
2. A consequence of the condition H1 is that for all (�n) # 0 there exists a sub-
sequence (�nk ) such that

sup
k
k

A[X, Y ]�nk
kVar([0,T ]) <1 a.s.

In fact kA[X, Y ]�kVar([0,T ]) � (1=�)
R T

0 k(XsC��Xs)
 (YsC��Ys)k�� ds, which implies that
A[X, Y ]� is a��-valued process with bounded variation on [0,T ]. As a consequence, for

a �-valued continuous stochastic processZ, t 2 [0,T ], the integral
R t

0 �

hZs,dA[X, Y ]
�nk
s i

�

�

is a well-defined Lebesgue–Stieltjes type integral for almost all ! 2 �.

REMARK 3.12. 1. To a Borel functionG W � ! C([0, T ]) we can associate
QGW [0, T ] ! �

� setting QG(t)(�) D G(�)(t). By definition QGW [0, T ] ! �

� has bounded
variation if

k

QGkVar([0,T ]) WD sup
�26[0,T ]

X

i j(ti )iD�

k

QG(tiC1) � QG(ti )k��

D sup
�26[0,T ]

X

i j(ti )iD�

sup
k�k

�

�1
jG(�)(tiC1) � G(�)(ti )j
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is finite, where6[0,T ] is the set of all possible partitions� D (ti )i of the interval [0,T ].
This quantity is thetotal variation of QG. For example ifG(�) D

R t
0
PGs(�) ds with

PG W � ! C([0, T ]) Bochner integrable, then

kGkVar[0,T ] �

Z T

0
sup

k�k

�

�1
j

PGs(�)j ds.

2. If G(�), � 2 � is a family of stochastic processes, it is not obvious to find agood
version QG W [0, T ] ! �

� of G. This will be the object of Theorem 3.23.

DEFINITION 3.13. If the�-covariation exists with� D (B1 O
�

B2)�, we say that
(X, Y ) admits aglobal covariation. Analogously ifX is B-valued and the�-quadratic
variation exists with� D (B O


�

B)�, we say thatX admits aglobal quadratic variation.

REMARK 3.14. 1. A[X, Y ] takes values “a priori” in (B1 O
�

B2)��.
2. If [X, Y ]R exists then the condition H1 follows by Remark 3.11 1.

Proposition 3.15. Let X (resp.Y ) be a B1-valued(resp. B2-valued) process such
that (X, Y ) admits a scalar and tensor covariation. Then(X, Y ) admits a global co-
variation. In particular the global covariation process takes values in B1 O
�

B2 and
A[X, Y ] D [X, Y ]
 a.s.

Proof. We set� D (B1 O
�

B2)�. Taking into account Remark 3.14 2, it will be
enough to verify the condition H2. Recalling the definition of [X, Y ]� at (3.4) and the
definition of injection J we observe that

(3.6) [X, Y ]�(�)( � , t) D
Z t

0 (B1 O
�

B2)�

�

�,
(XsC� � Xs)
 (YsC� � Ys)

�

�

B1 O
�

B2

ds.

Since Bochner integrability implies Pettis integrability, for every� 2 (B1 O
�

B2)�, we
also have

(3.7)
(B1 O
�

B2)�h�, [X, Y ]
,�
t iB1 O
�

B2

D

Z t

0 (B1 O
�

B2)�

�

�,
(XsC� � Xs)
 (YsC� � Ys)

�

�

B1 O
�

B2

ds.

(3.6) and (3.7) imply that

(3.8) [X, Y ]�(�)( � , t) D (B1 O
�

B2)�h�, [X, Y ]
,�
t iB1 O
�

B2
a.s.

Concerning the validity of the condition H2 we will show that

(3.9) sup
t�T
j[X, Y ]�(�)( � , t) � (B1 O
�

B2)�h�, [X, Y ]
t iB1 O
�

B2
j

P

��!

�!0
0.
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By (3.8) the left-hand side of (3.9) gives

sup
t�T
j(B1 O
�

B2)�h�, [X, Y ]
,�
t � [X, Y ]
t iB1 O
�

B2
j

� k�k(B1 O
�

B2)� sup
t�T
k[X, Y ]
,�

t � [X, Y ]
t kB1 O
�

B2
,

where the last quantity converges to zero in probability by Definition 1.5 item 2 of
the tensor quadratic variation; this implies (3.9). The tensor quadratic variation has
always bounded variation because of item 2 of Remark 1.6. In conclusion H2 (ii) is
also verified.

REMARK 3.16. We observe some interesting features related to the global co-
variation, i.e. the�-covariation when� D (B1 O
�

B2)�.
1. When� is separable, for anyt 2 [0, T ], there exists a null subsetN of � and

a sequence (�n) such thatA[X, Y ]�n(!, t) ��!
�!0
A[X, Y ](!, t) weak star for! � N, see

Lemma A.1. This confirms the relation between the global covariation and the weak
star convergence in the space (B1 O
�

B2)�� as anticipated in the introduction.
2. We recall thatJ(B1 O
�

B2) is isometrically embedded (and weak star dense) in
(B1 O
�

B2)��. In particular it is the case ifB1 or B2 has infinite dimension. If the
Banach spaceB1 O
�

B2 is not reflexive, then (B1 O
�

B2)�� strictly containsB1 O
�

B2. The weak star convergence is weaker then the strong convergence inJ(B1 O
�

B2),
required in the definition of the tensor quadratic variation, see Definition 1.5 item 2.
The global covariation is therefore truly more general thanthe tensor covariation.
3. In generalB1 O
�

B2 is not reflexive even ifB1 and B2 are Hilbert spaces, see for
instance [31] at Section 4.2.

We go on with some related results about the�-covariation and the�-quadratic
variation.

Proposition 3.17. Let X (resp.Y ) be a B1-valued (resp. B2-valued) process and
�1, �2 be two Chi-subspaces of(B1 O
�

B2)� with �1 \ �2 D {0}. Let � D �1 � �2.
If (X, Y ) admit a �i -covariation [X, Y ] i for i D 1, 2 then they admit a�-covariation
[X, Y ] and it holds [X, Y ](�) D [X, Y ]1(�1) C [X, Y ]2(�2) for all � 2 � with unique
decomposition� D �1C �2, �1 2 �1 and �2 2 �2.

Proof. � is a Chi-subspace because of item 3 of Remark 3.2. It will be enough
to show the result for a fixed norm in the space� . We setk�k

�

D k�1k�1 C k�2k�2

and we remark thatk�k
�

� k�i k�i , i D 1, 2. The condition H1 follows immediately
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by inequality

Z T

0
sup

k�k

�

�1
j

�

h�, (XsC� � Xs)
 (YsC� � Ys)i�� j ds

�

Z T

0
sup

k�1k�1�1
j

�1h�1, (XsC� � Xs)
 (YsC� � Ys)i��1 j ds

C

Z T

0
sup

k�2k�2�1
j

�2h�2, (XsC� � Xs)
 (YsC� � Ys)i��2 j ds.

The condition H2 (i) follows by linearity; in fact

[X, Y ]�(�) D
Z t

0
�

h�1C �2, (XsC� � Xs)
 (YsC� � Ys)i�� ds

D

Z t

0
�1h�1, (XsC� � Xs)
 (YsC� � Ys)i��1 ds

C

Z t

0
�2h�2, (XsC� � Xs)
 (YsC� � Ys)i��2 ds

ucp
��!

�!0
[X, Y ]1(�1)C [X, Y ]2(�2).

Concerning the condition H2 (ii), for! 2 �, t 2 [0, T ] we can obviously set
A[X, Y ](!, t)(�) DB[X, Y ]1(!, t)(�1)CB[X, Y ]2(!, t)(�2).

Proposition 3.18. Let X (resp. Y ) be a B1-valued (resp. B2-valued) stochastic
process.
1. Let �1 and �2 be two subspaces�1 � �2 � (B1 O
�

B2)�, �1 being a Banach
subspace continuously embedded into�2 and �2 a Chi-subspace. If(X, Y ) admit a
�2-covariation [X, Y ]2, then they also admit a�1-covariation [X, Y ]1 and it holds
[X, Y ]1(�) D [X, Y ]2(�) for all � 2 �1.
2. In particular if (X, Y ) admit a tensor quadratic variation, thenX and Y admit a
�-quadratic variation for any Chi-subspace� .

Proof. 1. If the condition H1 is valid for�2 then it is also verified for�1. In fact
we remark that (XsC� �Xs)
 (YsC� �Ys) is an element in (B1 O
�

B2) � (B1 O
�

B2)�� �
�

�

2 � �
�

1 . If A WD {� 2 �1I k�k�1�1} and B WD {� 2 �2I k�k�2�1}, then A � B and

clearly
R t

0 sup
�2Ajh�, (XsC� � Xs) 
 (YsC� � Ys)ij ds �

R t
0 sup

�2B jh�, (XsC� � Xs) 

(YsC� � Ys)j ds. This implies the inequalityk(XsC� � Xs)
 (YsC� � Ys)k��1 � k(XsC� �

Xs)
(YsC��Ys)k��2 and the assumption H1 follows immediately. The assumption H2 (i)

is trivially verified because, by restriction, we have [X,Y ]�(�)
ucp
��!

�!0
[X,Y ]2(�) for all � 2

�1. We define [X,Y ]1(�)D [X,Y ]2(�), 8� 2 �1 andB[X, Y ]1(!, t)(�)DB[X, Y ]2(!, t)(�),
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for all ! 2�, t 2 [0,T ], � 2 �1. The condition H2 (ii) follows because givenGW [0,T ]!
�1 we havekG(t) � G(s)k

�

�

1
� kG(t) � G(s)k

�

�

2
, 80� s� t � T .

2. It follows from item 1 and Proposition 3.15.

We continue with some general properties of the�-covariation.

Lemma 3.19. Let X (resp. Y ) be a B1-valued (resp. B2-valued) stochastic pro-

cess and� be a Chi-subspace. Suppose that(1=�)
R T

0 k(XsC� �Xs)
 (YsC� �Ys)k�� ds
converges to0 in probability when� goes to zero.
1. Then (X, Y ) admits a zero�-covariation.
2. If � D (B1 O
�

B2)�, then (X, Y ) admits a zero scalar and tensor covariation.

Proof. Concerning item 1 the condition H1 is verified becauseof Remark 3.11
item 1. We verify H2 (i) directly. For every fixed� 2 � we have

j[X, Y ]�(�)(t)j D

�

�

�

�

�

Z t

0
�

�

�,
(XsC� � Xs)
 (YsC� � Ys)

�

�

�

�

ds

�

�

�

�

�

�

Z T

0

�

�

�

�

�

�

�

�,
(XsC� � Xs)
 (YsC� � Ys)

�

�

�

�

�

�

�

�

�

ds.

So we obtain

sup
t2[0,T ]

j[X, Y ]�(�)(t)j � k�k
�

1

�

Z T

0
k(XsC� � Xs)
 (YsC� � Ys)k�� ds��!

�!0
0

in probability by the hypothesis. Since the condition H2 (ii) holds trivially, we can con-
clude for the first result. Concerning item 2 the scalar covariation vanishes by hypoth-
esis, which also forces the tensor covariation to be zero, see Remark 1.6, item 4.

3.3. Technical issues.

3.3.1. Convergence of infinite dimensional Stieltjes integrals. We state now
an important technical result which will be used in the proofof the Itô formula appear-
ing in Theorem 5.2.

Proposition 3.20. Let � be a separable Banach space, a sequence Fn W � !
C ([0, T ]) of linear continuous maps and measurable random fieldsQFn

W �� [0, T ] !
�

� such that QFn( � , t)(�) D Fn(�)( � , t) a.s. 8t 2 [0, T ], � 2 � . We suppose the
following.
i) For every n, t 7! QFn( � , t) is a.s. of bounded variation and for all(nk) there is a
subsequence(nk j ) such thatsupj k

QFnk j
kVar([0,T ]) <1 a.s.
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ii) There is a linear continuous map FW � ! C ([0, T ]) such that for all t2 [0, T ]
and for every� 2 � Fn(�)( � , t)! F(�)( � , t) in probability.
iii) There is measurable random fieldQF W � � [0, T ] ! �

� of such that for!
a.s. QF(!, � )W [0, T ] ! �

� has bounded variation andQF( � , t)(�) D F(�)( � , t) a.s.8t 2
[0, T ] and � 2 � .
iv) Fn(�)(0)D 0 for every� 2 � .
Then for every t2 [0, T ] and every continuous process HW � � [0, T ] ! �

Z t

0
�

hH ( � , s), d QFn( � , s)i
�

�

!

Z t

0
�

hH ( � , s), d QF( � , s)i
�

� in probability.

Proof. See Appendix A.

Corollary 3.21. Let B1, B2 be two Banach spaces and� be a Chi-subspace of
(B1 O
�

B2)�. Let X and Y be two stochastic processes with values respectively in B1

and B2 such that(X, Y ) admits a�-covariation andH) be a continuous measurable
processH W � � [0, T ] ! V whereV is a closed separable subspace of� . Then, for
every t2 [0, T ],

(3.10)

Z t

0
�

hH( � , s), dA[X, Y ]�( � , s)i
�

�

��!

�!0

Z t

0
�

hH( � , s), dA[X, Y ]( � , s)i
�

� in probability.

Proof. By item 2 in Remark 3.2,V is a Chi-subspace. By Proposition 3.18, (X,Y )
admits aV-covariation [X, Y ]V and [X, Y ]V (�) D [X, Y ](�) for all � 2 V; in the sequel
of the proof, [X,Y ]V will be still denoted by [X,Y ]. Since the ucp convergence implies
the convergence in probability for everyt 2 [0, T ], by Proposition 3.20 and definition of
V-covariation, it follows

Z t

0
VhH( � , s), dA[X, Y ]�( � , s)iV�

P

��!

�!0

Z t

0
VhH( � , s), dA[X, Y ]( � , s)iV� .

Since the pairing duality between� and�� is compatible with the one betweenV and
V�, the result (3.10) is now established.

3.3.2. Weaker conditions for the existence of the�-covariation. An import-
ant and useful theorem which helps to find sufficient conditions for the existence of the
�-quadratic variation of a Banach space valued process is given below. It will be a con-
sequence of a Banach–Steinhaus type result for Fréchet spaces, see Theorem II.1.18,
p. 55 in [10]. We start with a remark.
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REMARK 3.22. 1. Let (Yn) be a sequence of random elements with values in a
Banach space (B, k � kB) such that supnkY

n
kB � Z a.s. for some real positive random

variableZ. Then (Yn) is bounded1 in the F-space of random elements equipped with the
convergence in probability which is governed by the metricd(X,Y ) D E[kX�YkB^1].
In fact by Lebesgue dominated convergence theorem it follows lim


!0 E[
 Z ^ 1] D 0.
2. In particular takingB D C([0, T ]) a sequence of continuous processes (Y

n) such
that supnkY

n
k

1

� Z a.s. is bounded for the usual metric inC ([0, T ]) equipped with
the topology related to the ucp convergence.

Theorem 3.23. Let Fn
W � ! C ([0, T ]) be a sequence of linear continuous maps

such that Fn(�)(0) D 0 a.s. and there is QFn
W � � [0, T ] ! �

� having a.s. bounded
variation. We formulate the following assumptions.
i) Fn(�)( � , t) D QFn( � , t)(�) a.s.8t 2 [0, T ], � 2 � .
ii) 8� 2 � , t 7! QFn( � , t)(�) is càdlàg.
iii) supnk

QFn
kVar([0,T ]) <1 a.s.

iv) There is a subsetS � � such thatSpan(S) D � and a linear application FW S !
C ([0, T ]) such that Fn(�)! F(�) ucp for every� 2 S.
1) Suppose that� is separable.

Then there is a linear and continuous extension FW � ! C ([0, T ]) and there is a
measurable random fieldQF W �� [0, T ]! �

� such that QF( � , t)(�) D F(�)( � , t) a.s. for
every t2 [0, T ]. Moreover the following properties hold.

a) For every� 2 � , Fn(�)
ucp
��! F(�).

In particular for every t2 [0, T ], � 2 � , Fn(�)( � , t)
P

�! F(�)(!, t).
b) QF has bounded variation and t7! QF( � , t) is weakly star continuous a.s.

2) Suppose the existence of a measurableQFW ��[0,T ]! �

� such that a.s. t7! QF(�,t)
has bounded variation and is weakly star càdlàg such that

QF( � , t)(�) D F(�)( � , t) a.s. 8t 2 [0, T ], 8� 2 S.

Then pointa) still follows.

REMARK 3.24. In point 2) we do not necessarily suppose� to be separable.

Proof. See Appendix A.

Important implications of Theorem 3.23 are Corollaries 3.25 and 3.26, which give
us easier conditions for the existence of the�-covariation as anticipated in Remark 3.10
item 4.

1This notion plays a role in Banach–Steinhaus theorem in [10]. Let E be a Fréchet spaces,F-space
shortly. A subsetC of E is calledboundedif for all � > 0 it existsÆ

�

such that for all 0< � � Æ

�

,
�C is included in the open ballB(0, �) WD {e2 EI d(0, e) < �}.
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Corollary 3.25. Let B1 and B2 be Banach spaces, X (resp. Y ) be a B1-valued
(resp. B2-valued) stochastic process and� be a separable Chi-subspace of(B1 O
�

B2)�.
We suppose the following.
H00 There isS � � such thatSpan(S) D � .
H1 For every sequence(�n) # 0 there is a subsequence(�nk ) such that

sup
k

Z T

0
sup

k�k

�

�1

�

�

�

�

�

h�,
(XsC�nk

� Xs)
 (YsC�nk
� Ys)

�nk

i

�

�

�

�

�

�

ds< C1.

H20 There isT W � ! C ([0, T ]) such that[X, Y ]�(�)(t)! T (�)(t) ucp for all � 2 S.
Then (X, Y ) admits a�-covariation and the application[X, Y ] is equal toT .

Proof. The condition H1 is verified by assumption. The conditions H2 (i) and (ii)

follow by Theorem 3.23 settingFn(�)( � , t) D [X, Y ]�n(�)(t) and QFn
D

A[X, Y ]�n for a
suitable sequence (�n).

In the caseX D Y and B D B1 D B2 we can further relax the hypotheses.

Corollary 3.26. Let B be a Banach space, X a be B-valued stochastic processes
and � be a separable Chi-subspace. We suppose the following.
H000 There are subsetsS, S p of � such thatSpan(S) D � , Span(S) D Span(S p) and
S p is constituted bypositive definiteelements� in the sense thath�, b
 bi � 0 for
all b 2 B.
H1 For every sequence(�n) # 0 there is a subsequence(�nk ) such that

sup
k

Z T

0
sup

k�k

�

�1

�

�

�

�

�

�

�

*

�,
(XsC�nk

� Xs)
2

�nk

+

�

�

�

�

�

�

�

�

ds< C1.

H200 There isT W � ! C ([0,T ]) such that[X]�(�)(t)! T (�)(t) in probability for every
� 2 S and for every t2 [0, T ].
ThenX admits a�-quadratic variation and application[X] is equal toT .

Proof. We verify the conditions of Corollary 3.25. The conditions H00 and H1 are
verified by assumption. We observe that, for every� 2 S p, [X]�(�) is an increasing
process. By linearity, it follows that for any� 2 S p, [X]�(�)(t) converges in probability
to T (�)(t) for any t 2 [0, T ]. Lemma 3.1 in [29] implies that [X]�(�) converges ucp for
every� 2 S p and therefore inS. The condition H20 of Corollary 3.25 is now verified.

When � is finite dimensional the notion of�-quadratic variation becomes
very natural.
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Proposition 3.27. Let � D Span{�1, : : : , �n}, �1, : : : , �n 2 (B O

�

B)� of positive
type and linearly independent.X has a�-quadratic variation if and only if there are
continuous processes Zi such that[X]�t (�i ) converges in probability to Zit for � going
to zero for all t2 [0, T ] and i D 1, : : : , n.

Proof. We only need to show that the condition is sufficient, the converse impli-
cation resulting immediately. We verify the hypotheses of Corollary 3.26 takingS D
{�1, : : : , �n}. Without restriction to generality we can supposek�i k(B O




�

B)� D 1, for
1 � i � n. The conditions H000 and H200 are straightforward. It remains to verify H1.
Since � is finite dimensional it can be equipped with the normk�k

�

D

Pn
iD1jai j if

� D

Pn
iD1 ai�i with ai 2 R. For � such thatk�k

�

D

Pn
iD1jai j � 1 we have

1

�

Z T

0
jh�, XsC� � Xs)


2
ij ds�

n
X

iD1

1

�

Z T

0
jhai�i , (XsC� � Xs)


2
ij ds

D

n
X

iD1

jai j

�

Z T

0
h�i , (XsC� � Xs)


2
i ds,

because�i are of positive type. Previous expression is smaller or equal than

n
X

iD1

1

�

Z T

0
h�i , (XsC� � Xs)


2
i D

n
X

iD1

[X]�T (�i )

becausejai j � 1 for 1� i � n. Taking the supremum overk�k
�

� 1 and using the
hypothesis of convergence in probability of the quantity [X]�T (�i ) for 1 � i � n, the
result follows.

Corollary 3.28. Let B1 D B2 D R
n. X admits all its mutual brackets if and only

if X admits a global quadratic variation.

4. Calculations related to window processes

In this section we considerX and Y as real continuous processes as usual pro-
longed by continuity andX( � ) and Y( � ) their associated window processes. We set
B D C([�� , 0]). We will proceed to the evaluation of some�-covariations (resp.�-
quadratic variations) for window processesX( � ) andY( � ) (resp. for processX( � )) with
values in B D C([�� , 0]). We start with some examples of�-covariation calculated
directly through the definition.

Proposition 4.1. Let X and Y be two real valued processes with Hölder contin-
uous paths of parameters
 and Æ such that
 C Æ > 1. Then (X( � ), Y( � )) admits
a zero scalar and tensor covariation. In particular(X( � ), Y( � )) admit a zero global
covariation.
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Proof. By Remark 1.6 item 4 and Proposition 3.15 we only need to show that
(X( � ), Y( � )) admit a zero scalar covariation, i.e. the convergence to zero in probability
of following quantity.

(4.1)

1

�

Z T

0
kXsC�( � ) � Xs( � )kBkYsC�( � ) � Ys( � )kB ds

D

1

�

Z T

0
sup

u2[�� ,0]
jXsCuC� � XsCuj sup

v2[�� ,0]
jYsCvC� � YsCvj ds.

Since X (resp.Y) is a.s.
 -Hölder continuous (resp.Æ-Hölder continuous), there is a
non-negative finite random variableZ such that the right-hand side of (4.1) is bounded
by a sequence of random variablesZ(�) defined byZ(�) WD �


CÆ�1ZT. This implies
that (4.1) converges to zero a.s. for
 C Æ > 1.

REMARK 4.2. As a consequence of previous proposition every window process
X( � ) associated with a continuous process with Hölder continuous paths of parameter

 > 1=2 admits zero real, tensor and global quadratic variation.

REMARK 4.3. Let BH (resp. BH,K ) be a real fractional Brownian motion with
parametersH 2 ]0, 1[ (resp. real bifractional Brownian motion with parameters H 2
]0, 1[, K 2 ]0, 1]), see [26] and [16] for elementary facts about the bifractional Brownian
motion. As immediate consequences of Proposition 4.1 we obtain the following results.
1) The fractional window Brownian motionBH ( �) with H > 1=2 admits a zero scalar,
tensor and global quadratic variation.
2) The bifractional window Brownian motionBH,K ( � ) with K H > 1=2 admits a zero
scalar, tensor and global quadratic variation.
3) We recall that the paths of a Brownian motionW are a priori only a.s. Hölder
continuous of parameter
 < 1=2 so that we can not use Proposition 4.1.

Propositions 4.5 and 4.7 show that the stochastic calculus developed by [6], [9]
and [22] cannot be applied forX being a window Brownian motionW( � ).

DEFINITION 4.4. Let B be a Banach space andX be a B-valued stochastic pro-
cess. We say thatX is a Pettis semimartingaleif, for every � 2 B�, h�, Xti is a real
semimartingale.

We remark that ifX is a B-valued semimartingale in the sense of Section 1.17,
[22], then it is also a Pettis semimartingale.
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Proposition 4.5. The C([�� , 0])-valued window Brownian W( � ) motion is not a
Pettis semimartingale.

Proof. It is enough to show that the existence of an element� in B�

DM([�� ,0])
such thath�,Wt ( � )i D

R

[�� ,0] Wt (x)�(dx) is not a semimartingale with respect to any fil-
tration. We will proceed by contradiction: we suppose thatW( � ) is a Pettis semimartin-
gale, so that in particular if we take� D Æ0 C Æ�� , the processhÆ0 C Æ�� , Wt ( � )i D
Wt C Wt�� WD Xt is a semimartingale with respect to some filtration (Gt ). Let (Ft )
be the natural filtration generated by the real Brownian motion W. Now Wt C Wt��

is (Ft )-adapted, so by Stricker’s theorem (see Theorem 4, p. 53 in [25]), X is a semi-
martingale with respect to filtration (Ft ). We recall that a (Ft )-weak Dirichlet is the
sum of a local martingaleM and a processA which is adapted and [A, N] D 0 for
any continuous (Ft )-local martingaleN; A is called the (Ft )-martingale orthogonal pro-
cess. On the other hand (Wt�� )t�� is a strongly predictable process with respect to (Ft ),
see Definition 3.5 in [5]. By Proposition 4.11 in [4], it follows that (Wt�� )t�� is an
(Ft )-martingale orthogonal process. SinceW is an (Ft )-martingale, the processXt D

Wt CWt�� is an (Ft )-weak Dirichlet process. By uniqueness of the decomposition for
(Ft )-weak Dirichlet processes, (Wt�� )t�� has to be a bounded variation process. This
generates a contradiction because (Wt�� )t�� is not a zero quadratic variation process. In
conclusionh�, Wt ( � )i, t 2 [0, T ] is not a semimartingale.

REMARK 4.6. 1. ProcessX defined by Xt D Wt C Wt�� is an example of
(Ft )-weak Dirichlet process with finite quadratic variation which is not an (Ft )-
Dirichlet process.
2. Let X be a semimartingale and� be a signed Borel measure on [�T,0]. We define
the real valued processX� by X�

t WD
R

[�T,0] XtCx d�(x). If �(dx)D 
 Æ0(dx)Cg(x)dx,

 2 R and g being a bounded Borel function on [�T, 0], then X� is a semimartingale

such thatX�

t D 
 XtC
R t

0 Qg(y� t)d Xy, t 2 [0, T ], and Qg(x)D �
R 0

x g(y)dy, x 2 [�T, 0].

Proposition 4.7. If W is a classical Brownian motion, then W( � ) does not admit
a scalar quadratic variation. In particular W( � ) does not admit a global quadratic
variation.

Proof. We can prove that

(4.2)
Z T

0

1

�

kWuC�( � ) �Wu( � )k2B du� T A2(Q�) ln

�

1

Q�

�

, where Q� D
2�

T

and (A(�)) is a family of non negative r.v. such that lim
�!0 A(�) D 1 a.s. In fact the
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left-hand side of (4.2) gives

Z T

0

1

�

sup
x2[0,u]

jWxC� �Wxj
2 du�

Z T

T=2

1

�

sup
x2[0,u]

jWxC� �Wxj
2 du

�

Z T

T=2

1

�

sup
x2[0,T=2��]

jWxC� �Wxj
2 du

D

T

2�
sup

x2[0,T=2��]
jWxC� �Wxj

2.

Clearly we haveWt D
p

(T=2)B2t=T where B is another standard Brownian motion.
Previous expression gives

T2

4�
sup

x2[0,T=2��]
jB(xC�)(2=T) � B2x=T j

2
D

T2

4�
sup

y2[0,1�2�=T ]
jByC2�=T � Byj

2.

We chooseQ� D 2�=T . Previous expression givesT ln(1=Q�)A2(Q�) where

A(�) D

�

supx2[0,1��]jBxC� � Bxj
p

2� ln(1=�)

�

.

According to Theorem 1.1 in [2], lim
�!0 A(�)D 1 a.s. and the result is established.

Below we will see thatW( � ), even if it does not admit a global quadratic vari-
ation, it admits a�-quadratic variation for several Chi-subspaces� . More generally
we can state a significant existence result of�-covariation for finite quadratic variation
processes with the help of Corollaries 3.25 and 3.26. We remind thatDa([�� , 0]) and
Da,b([�� , 0]2) were defined at (3.2) and (3.1).

Proposition 4.8. Let X and Y be two real continuous processes with finite quad-
ratic variation and 0 < � � T . Let a, b two given points in[�� , 0]. The following
properties hold true.
1. (X( � ), Y( � )) admits a zero�-covariation, where� D L2([�� , 0]2).
2. (X( �),Y( �)) admits a zero�-covariation where� equals L2([�� ,0]) O
hDa([�� ,0])
or Da([�� , 0]) O
h L2([�� , 0]).
If moreover the covariation[X

�Ca, Y
�Cb] exists, the following statement is valid.

3. (X( � ), Y( � )) admits a�-covariation, where� D Da,b([�� , 0]2), and it equals

[X( � ), Y( � )](�) D �({a, b})[X
�Ca, Y

�Cb], 8� 2 � .

Proof. The proof will be similar in all the three cases. As mentioned in Ex-
ample 3.4, all the involved sets� are Chi-subspaces, which moreover are separable.

Let {ej } j2N be a topological basis forL2([�� , 0]); {Æa} is clearly a basis for
Da([�� , 0]). Then {ei 
 ej }i , j2N is a basis ofL2([�� , 0]2), {ej 
 Æa} j2N is a basis
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of L2([�� , 0]) O
h Da([�� , 0]) and {Æa 
 Æb} is a basis ofDa,b([�� , 0]2). The results
will follow using Corollary 3.26. To verify the condition H1we consider

A(�) WD
1

�

Z T

0
sup

k�k

�

�1
j

�

h�, (XsC�( � ) � Xs( � ))
 (YsC�( � ) � Ys( � ))i�� j ds

for all the Chi-subspaces mentioned above. In all the three situations we will show the
existence of a family of random variables{B(�)} converging in probability to some
random variableB, such thatA(�) � B(�) a.s. By Remark 3.11 1 this will imply the
assumption H1.

1. Suppose� D L2([�� , 0]2). By Cauchy–Schwarz inequality we have

A(�)

�

1

�

Z T

0
sup

k�kL2([�� ,0]2)�1
k�k

2
L2([�� ,0]2) �kXsC�( �)�Xs( �)kL2([�� ,0]) �kYsC�( �)�Ys( �)kL2([�� ,0]) ds

�

1

�

Z T

0

s

Z s

0
(XuC��Xu)2 du

s

Z s

0
(Y

vC�

�Y
v

)2 dv ds�T B(�)

where

(4.3) B(�) D

s

Z T

0

(XuC� � Xu)2

�

du
Z T

0

(Y
vC�

� Y
v

)2

�

dv

which converges in probability to
p

[X]T [Y]T .
2. We proceed similarly for� D L2([�� , 0]) O
h Da([�� , 0]).
We consider� of the form� D

Q

�
 Æa, where Q� is an element ofL2([�� , 0]). We
first observe

k�kL2([�� ,0]) O
hDa
D k

Q

�kL2([�� ,0]) � kÆakDa D

s

Z

[�� ,0]

Q

�(s)2 ds.

Then

A(�) D
1

�

Z T

0
sup

k�kL2([�� ,0]) O
hDa
�1

�

�

�

�

(XsC�(a) � Xs(a))
Z

[�� ,0]
(YsC�(x) � Ys(x)) Q�(x) dx

�

�

�

�

ds

�

1

�

Z T

0
sup
k�k�1

(

(
p

(XsC�(a) � Xs(a))2)

�

 

k

Q

�kL2([�� ,0])

s

Z

[�� ,0]
(YsC�(x) � Ys(x))2 dx

!)

ds

�

Z T

0

r

(XsC�(a) � Xs(a))2

�

s

Z

[�T,0]

(YsC�(x) � Ys(x))2

�

dx ds�
p

T B(�)
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where B(�) is the same family of r.v. defined in (4.3). The caseDa([�� , 0]) O
h

L2([�� , 0]) can be handled symmetrically.
3. The last case is� D Da,b([�� , 0]2). A general element� which belongs to�

admits a representation� D �Æ(a,b), with norm equals tok�kDa,b D j�j. We have

(4.4)

A(�) D
1

�

Z T

0
sup

k�kDa,b�1
j�(XsCaC� � XsCa)(YsCbC� � YsCb)j ds

�

1

�

Z T

0
j(XsCaC� � XsCa)(YsCbC� � YsCb)j dsI

using again Cauchy–Schwarz inequality, previous quantityis bounded by

s

Z T

0

(XsCaC� � XsCa)2

�

ds

s

Z T

0

(Y
vCbC� � Y

vCb)2

�

dv � B(�).

We verify now the conditions H000 and H200.
1. A general element in{ei 
ej }i , j2N is difference of two positive definite elem-

ents in the setS p
D {ei


2, (ei C ej )
2}i , j2N . We also defineS D {ei 
 ej }i , j2N . The
fact thatSpan(S) D Span(S p) implies H000. To conclude we need to show the validity
of the condition H200. For this we have to verify

(4.5) [X( � ), Y( � )]�(ei 
 ej )(t) ��!
�!0

0

in probability for anyi , j 2 N. Clearly we can suppose{ei }i2N 2 C1([�� , 0]). We fix
! 2 �, outside some null set, fixed but omitted. We have

[X( � ), Y( � )]�(ei 
 ej )(t) D
Z t

0


 j (s, �)
i (s, �)

�

ds

where


 j (s, �) D
Z 0

(�� )_(�s)
ej (y)(XsCyC� � XsCy) dy

and


i (s, �) D
Z 0

(�� )_(�s)
ei (x)(YsCxC� � YsCx) dx.

Without restriction of generality, in the purpose not to overcharge notations, we can
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suppose from now on that� D T . For everys 2 [0, T ], we have

(4.6)

j
 j (s, �)j D

�

�

�

�

�

Z 0

�s
(ej (y��)�ej (y))XsCy dyC

Z

�

0
ej (y��)XsCy dy

�

Z

�sC�

�s
ej (y��)XsCy dy

�

�

�

�

�

� �

�

Z 0

�T
j Pej (y)j dyC2kej k1

�

sup
s2[0,T ]

jXsj.

For t 2 [0, T ], this implies that

Z t

0

�

�

�

�


 j (s, �)
i (s, �)

�

�

�

�

�

ds�
Z T

0

�

�

�

�


 j (s, �)
i (s, �)

�

�

�

�

�

ds

� T�

�

Z 0

�T
j Pej (y)j dyC 2kej k1

��

Z 0

�T
j Pei (y)j dyC 2kei k1

�

 

sup
s2[0,T ]

jXsj

! 

sup
u2[0,T ]

jYuj

!

which trivially converges a.s. to zero when� goes to zero which yields (4.5).
2. A generic element in{ej 
 Æa} j2N is difference of two positive definite elem-

ents of type{ej

2, Æa


2, (ej C Æa)
2} j2N . This shows H000. It remains to show that

[X( � ), Y( � )]�(ej 
 Æa)(t)! 0

in probability for every j 2 N. In fact the left-hand side equals

Z t

0


 j (s, �)

�

(XsCaC� � XsCa) ds.

Using estimate (4.6), we obtain

Z t

0

�

�

�

�


 j (s, �)

�

(YsCaC� � YsCa)

�

�

�

�

ds

� T

�

Z 0

�T
j Pej (y)j dyC 2kej k1

�

 

sup
s2[0,T ]

jXsj

!

$Y(�)
a.s.
��!

�!0
0

where$Y(�) is the usual (random in this case) continuity modulus, so the result follows.
3. An elementÆa
 Æb is difference of two positive definite elements (ÆaC Æb)
2

and Æa

2
CÆb


2. So that the condition H000 is fulfilled. Concerning the condition H200

we have

[X( � ), Y( � )]�(Æa 
 Æb)(t) D
1

�

Z t

0
(XsCaC� � XsCa)(YsCbC� � YsCb) ds.



758 C. DI GIROLAMI AND F. RUSSO

This converges to [X
�Ca, Y

�Cb] which exists by hypothesis.
This finally concludes the proof of Proposition 4.8.

Corollary 4.9. Let X and Y be two real continuous processes such that[X], [Y]
and [X, Y] exist and a is a given point in[�� , 0]. Then (X( � ), Y( � )) admits a
�

0([�� , 0]2)-covariation which equals

[X( � ), Y( � )](�) D �({0, 0})[X, Y], 8� 2 �0.

Proof. Using Proposition 2.1, it follows that�0([�� ,0]2) can be decomposed into
the finite direct sum decompositionL2([�� , 0]2) � L2([�� , 0]) O
h D0([�� , 0]) �
D0([�� , 0]) O
h L2([�� , 0])� D0,0([�� , 0]2). The results follow immediately applying
Propositions 3.17 and 4.8.

When � D D0,0([�� , 0]2) the existence of a�-covariation for (X, Y) holds even
under weaker hypotheses.

Proposition 4.10. Let X, Y be continuous processes such that[X, Y] exists and
for every sequence(�n) # 0, it exists a subsequence(�nk ) such that

(4.7) sup
k

1

�nk

Z T

0

�

�XsC�nk
� Xs

�

�

�

�

�YsC�nk
� Ys

�

� ds< C1.

Then
1) the real covariation process[X, Y] has bounded variation and
2) X( � ) and Y( � ) admit a D0,0([�� , 0]2)-covariation and [X( � ), Y( � )]t (�) D
�({0, 0})[X, Y]t .

Proof. 1) The processesX andY take values inBD R and the (separable) space
� D (B O


�

B)� coincides withR. Taking into account Corollary 3.25, (X, Y) admits
therefore a global covariation which coincides with the classical covariation [X, Y] de-
fined in Definition 1.1 and in particular [X, Y] has bounded variation.

2) The proof is again very similar to the one of Proposition 4.8. The only rele-
vant difference consists in the way of checking the validityof the condition H1. This
will be verified identically until (4.4); the successive step will follow by (4.7).

Before mentioning some examples, we give some information about the covariation
structure of bifractional Brownian motion.

Proposition 4.11. Let BH,K be a bifractional Brownian motion with H KD 1=2.
Then [BH,K ]t D 21�K t and [BH,K

�Ca , BH,K
�Cb ] D 0 for a ¤ b 2 [�� , 0].
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REMARK 4.12. • If K D 1, then H D 1=2 and BH,K is a Brownian motion.
• In the caseK ¤ 1 we recall that the bifractional Brownian motionBH,K is not a
semimartingale, see Proposition 6 from [26].

Proof of Proposition 4.11. Proposition 1 in [26] says thatBH,K has finite quad-
ratic variation which is equal to [BH,K ]t D 21�K t . By Proposition 1 and Theorem 2
in [19] there are two constants� and� depending onK , a centered Gaussian process
XH,K with absolutely continuous trajectories on [0,C1[ and a standard Brownian mo-
tion W such that�XH,K

C BH,K
D �W. Then

(4.8) [�XH,K
�Ca C BH,K

�Ca , �XH,K
�Cb C BH,K

�Cb ] D �2[W
�Ca, W

�Cb].

Using the bilinearity of the covariation, we expand the left-hand side in (4.8) into the
sum of four terms

(4.9) �

2[XH,K
�Ca , XH,K

�Cb ] C �[BH,K
�Ca , XH,K

�Cb ] C �[XH,K
�Ca , BH,K

�Cb ] C [BH,K
�Ca , BH,K

�Cb ].

Since XH,K has bounded variation then the first three terms of (4.9) vanish because
of point 6) of Proposition 1 in [30]. On the other hand the right-hand side of (4.8) is
equal to zero fora ¤ b since W is a semimartingale, see Example 4.13, item 1. We
conclude that [BH,K

�Ca , BH,K
�Cb ] D 0 if a ¤ b.

EXAMPLE 4.13. We list some examples of processesX for which X( � ) admits
a �-quadratic variation through Proposition 4.8 and Corollary 4.9 and it is explicitly
given by the quadratic variation structure [X] of the real processX.
1. All continuous real semimartingalesS (for instance Brownian motion). In factS
is a finite quadratic variation process; moreover [S

�Ca, S
�Cb] D 0 for a ¤ b, as it easily

follows by Corollary 3.11 in [5].
2. Let BH,K be a bifractional Brownian motion with parametersH and K and such
that H K D 1=2. As shown in Proposition 4.11,BH,K satisfies the hypotheses of the
Corollary 4.9.
3. Let D be a real continuous (Ft )-Dirichlet process with decompositionD D M C
A, M local martingale andA zero quadratic variation process. ThenD satisfies the
hypotheses of Corollary 4.9. In fact [D] D [M] and [D

�Ca, D
�Cb] D 0 for a ¤ b.

We go on evaluating other�-covariations.

Proposition 4.14. Let V and Z be two real absolutely continuous processes such
that V0, Z0

2 L2([0,T ]) !-a.s. Then(V( � ), Z( � )) has zero scalar and tensor covariation.
In particular (V( � ), Z( � )) admits a zero global covariation.

Proof. Similarly to the proof of Proposition 4.1, by Remark 1.6 item 4 and Prop-
osition 3.15 we only need to show that (V( � ), Z( � )) admits a zero scalar covariation,
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i.e. the convergence to zero in probability of the quantity

(4.10)
Z T

0

1

�

kVsC�( � ) � Vs( � )kBkZsC�( � ) � Zs( � )kB ds.

By Cauchy–Schwarz, (4.10) is bounded by

(4.11)

s

Z T

0

1

�

sup
x2[�� ,0]

jVsC�(x) � Vs(x)j2 ds �

s

Z T

0

1

�

sup
x2[�� ,0]

jZuC�(x) � Zu(x)j2 du,

which will be shown to converge even a.s. to zero. The square of the first square root
in (4.11) equals

Z T

0

1

�

sup
x2[�� ,0]

�

�

�

�

Z sCxC�

sCx
V 0(y) dy

�

�

�

�

2

ds

�

Z T

0

1

�

max
x2[�� ,0]

Z sCxC�

sCx
V 0(y)2 dy ds� T$R

�

0(V 02)(y) dy(�)
a.s.
��!

�!0
0,

since$R

�

0(V 02)(y) dy(�) denotes the modulus of continuity of the a.s. continuous function

t 7!
R t

0 (V 02)(y) dy. The square of the second square root in (4.11) can be treatedanal-
ogously and the result is finally established.

If X is a finite quadratic variation processes thenXD X( � ) admits aDiag([�� , 0]2)-
quadratic variation, whereDiag([�� ,0]2) was defined in (3.3). This is the object of Prop-
osition 4.15.

Proposition 4.15. Let 0< � � T . Let X and Y be two real continuous processes
such that[X,Y] exists and(4.7) is verified. Then(X( � ),Y( � )) admits a Diag([�� , 0]2)-
covariation. Moreover we have

E[X( � ), Y( � )]t (�) D
Z t^�

0
g(�x)[X, Y]t�x dx, t 2 [0, T ],

where� is a generic element in Diag([�� , 0]2) of the type�(dx, dy) D g(x) Æy(dx)dy,
with associated g in L1([�� , 0]).

REMARK 4.16. Taking into account the usual convention [X,Y]t D 0 for t < 0, the
process

�R t^�
0 g(�x)[X,Y]t�x dx

�

0�t�T can also be written as
�R

�

0 g(�x)[X,Y]t�x dx
�

0�t�T .

Proof of Proposition 4.15. We recall that, for a generic element �, we have
k�kDiag D kgk1.
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First we verify the condition H1. We can write

1

�

Z T

0
sup

k�kDiag�1
kh�, (XsC�( � ) � Xs( � ))
 (YsC�( � ) � Ys( � ))ik ds

�

1

�

Z T

0
sup

kgk
1

�1

�

�

�

�

Z 0

�T
g(x)(XsC�(x) � Xs(x))(YsC�(x) � Ys(x)) dx

�

�

�

�

ds

D

Z T

0
sup

kgk
1

�1

�

�

�

�

Z s

0

(XxC� � Xx)(YxC� � Yx)

�

g(x � s) dx

�

�

�

�

ds.

The condition H1 is verified because of Hypothesis (4.7).
It remains to prove the condition H2. Using Fubini’s theorem, we write

[X( � ), Y( � )]�t (�) D
1

�

Z t

0
h�(dx, dy), (XsC�( � ) � Xs( � ))
 (YsC�( � ) � Ys( � ))i ds

D

1

�

Z t

0

Z

[�� ,0]
(XsC�(x) � Xs(x))(YsC�(x) � Ys(x))g(x) dx ds

D

Z 0

(�t)_(�� )
g(x)

Z t

�x

(XsCxC� � XsCx)(YsCxC� � YsCx)

�

ds dx

D

Z 0

(�t)_(�� )
g(x)

Z tCx

0

(XsC� � Xs)(YsC� � Ys)

�

ds dx

D

Z t^�

0
g(�x)

Z t�x

0

(XsC� � Xs)(YsC� � Ys)

�

ds dx.

To conclude the proof of H2 (i) it remains to show that

�

Z t^�

0
g(�x)

Z t�x

0

(XsC� � Xs)(YsC� � Ys)

�

ds dx

�

t2[0,T ]

ucp
��!

�!0

�

Z t^�

0
g(�x)[X, Y]t�x dx

�

t2[0,T ]

,

i.e.

(4.12) sup
t�T

�

�

�

�

Z t^�

0

�

g(�x)
Z t�x

0

(XsC� � Xs)(YsC� � Ys)

�

ds� [X, Y]t�x

�

dx

�

�

�

�

P

��!

�!0
0.

The left-hand side of (4.12) is bounded by

Z T

0
jg(�x)j sup

t2[0,T ]

�

�

�

�

Z t�x

0

(XsC� � Xs)(YsC� � Ys)

�

ds� [X, Y]t�x

�

�

�

�

dx

� Tkgk
1

sup
t2[0,T ]

�

�

�

�

Z t

0

(XsC� � Xs)(YsC� � Ys)

�

ds� [X, Y]t

�

�

�

�

.
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Since X and Y admit a covariation, previous expression converges to zero. This shows
the condition H2 (i).

Concerning the condition H2 (ii), we have

[X( � ), Y( � )]t (�) D
Z t^�

0
g(�x)[X, Y]t�x dx

D

8

�

�

<

�

�

:

Z t

0
g(�x)[X, Y]t�x dx, 0� t � � ,

Z

�

0
g(�x)[X, Y]t�x dx, � < t � T .

Previous expression has an obvious modificationE[X( � ), Y( � )] which has finite variation

with values in��. The total variation is in fact easily dominated by
R T

0 j[X, Y]xjdx.

A useful proposition related to Proposition 4.15 is the following. We recall that
D([�� , 0]) denotes the space of càdlàg functions equipped with theuniform norm and
Diagd([�� , 0]2) was introduced in Notation 3.6.

Proposition 4.17. Let X be a finite quadratic variation process. Let GW [0, T ]!
� WD Diagd([�� , 0]2), càdlàg. We have

(4.13)

Z T

0
�

hG(s), dB[X( � )]si�� D

Z

�

0

�

Z T

x
g(s, �x)[X]ds�x

�

dx

D

Z

�

0

�

Z T�x

0
g(sC x, �x) d[X]s

�

dx,

where G(s)D g(s,x)Æy(dx)dy for some bounded Borel function gW [0,T ]� [�� ,0]! R

and [X]ds�x represents the measure differential associated with the increasing function
s 7! [X]sCx.

Proof. We remark thatt 7! g(t, � ) is left continuous from [0,T ] to D([�� , 0])
equipped with thek � k

1

norm. By item 2 in Remark 3.2, Proposition 3.18 item 2 and
Proposition 4.15,X( � ) admits a�-quadratic variation. The proof will be established
fixing ! 2 �. We first suppose that

(4.14) G(s) D
N�1
X

iD0

Ai 1]ti ,tiC1](s)C A01{0}(s),

where, for some positive integerN 2 N, 0D t0 < � � � < tN D T ; A0, : : : , AN 2 � ; in
particular there area0, : : : , aN 2 Dd([�� , 0]) with

(4.15) Ai (dx, dy) D ai (x) Æy(dx) dy for all i 2 {0, : : : , N}.
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Then (4.13) holds by use of Proposition 4.15.
To treat the general case we approach a generalG by a sequence (Gn) of type

(4.14), i.e.

Gn(s) D
N�1
X

iD0

An
i 1]ti ,tiC1](s)C An

01{0}(s)

where An
i D G(ti ), 0 � i � (N � 1), 0D t0 < � � � < tN D T is an element of sub-

divisions of [0,T ] indexed byn whose mesh goes to zero whenn diverges to infinity.
Let an

0 , : : : ,an
N 2 D([�� , 0]) related toAn

0, : : : , An
N through relation (4.15). Consequently

we have

(4.16)
Z T

0
�

hGn(s), dB[X( � )]si�� D

Z

�

0

�

Z T

x
gn(s, �x)[X]ds�x

�

dx

with gn(s, x) D
PN�1

iD0 an
i (x)1]ti ,tiC1](s)C an

0 . In particularan
i D g(ti , � ).

By assumption, for everys 2 [0, T ] we have

lim
n!C1

sup
x2[�� ,0]

jgn(s, x) � g(s, x)j D 0.

Consequently, for everyx 2 [0, � ], by Lebesgue dominated convergence theorem,

lim
n!C1

Z T

x
(gn(s, �x) � g(s, �x))[X]ds�x D 0.

Moreover

�

�

�

�

Z T

x
(gn(s, �x) � g(s, �x))[X]ds�x

�

�

�

�

�

�

sup
n
kgn
k

1

C kgk
1

�

[X]T .

Again by Lebesgue dominated convergence theorem, the right-hand side of (4.16) con-
verges to the right-hand side of (4.13) and the result follows.

REMARK 4.18. If [X] is absolutely continuous with respect to Lebesgue, the iden-
tities (4.13) are still valid with� D Diag([�� , 0]2).

5. Itô formula

We need now to formulate the definition of the forward type integral for B-valued
integrator andB�-valued integrand, whereB is a separable Banach space.

DEFINITION 5.1. Let (Xt )t2[0,T ] (respectively (Yt )t2[0,T ]) be a B-valued (respect-
ively a B�-valued) stochastic process. We supposeX to be continuous andY to be

strongly measurable such that
R T

0 kYskB� ds< C1 a.s. For every fixedt 2 [0, T ] we



764 C. DI GIROLAMI AND F. RUSSO

define thedefinite forward integral ofY with respect toX denoted by
R t

0 B�

hYs,d�XsiB

as the following limit in probability:

Z t

0
B�

hYs, d�XsiB WD lim
�!0

Z t

0 B�

�

Ys,
XsC� � Xs

�

�

B

ds.

We say that theforward stochastic integral ofY with respect toX exists if the process

�

Z t

0
B�

hYs, d�XsiB

�

t2[0,T ]

admits a continuous version. In the sequel indicesB and B� will often be omitted.

We are now able to state an Itô formula for stochastic processes with values in a
general separable Banach space.

Theorem 5.2. Let � be a Chi-subspace andX a B-valued continuous process
admitting a�-quadratic variation. Let FW [0, T ] � B! R Fréchet of class C1,2 such
that D2F(t, �) 2 � for all t 2 [0, T ] and � 2 C([�T, 0]) and D2F W [0, T ] � B! � is
continuous.

Then for every t2 [0, T ] the forward integral

Z t

0
B�

hDF(s, Xs), d�XsiB

exists and the following formula holds.

(5.1)

F(t, Xt ) D F(0,X0)C
Z t

0
�t F(s, Xs) dsC

Z t

0
B�

hDF(s, Xs), d�XsiB

C

1

2

Z t

0
�

hD2F(s, Xs), df[X]si�� .

REMARK 5.3. The statement of Theorem 5.2 induces some operational comments.
The Chi-subspace� of (B O


�

B)� constitutes a degree of freedom in the statement of Itô
formula. In order to find the suitable expansion forF(t,Xt ) we may proceed as follows.
• Let F W [0, T ] � B ! R of classC1,1([0, T ] � B) we compute the second order
derivative D2F if it exists.
• We look for the existence of a Chi-subspace� for which the range ofD2F W [0,T ]�
B! (B O


�

B)� is included in� and it is continuous with respect to the topology of� .
• We verify thatX admits a�-quadratic variation.
We observe that wheneverX admits a global quadratic variation, i.e. a�-quadratic
variation with � D (B O


�

B)�, the condition onF to be checked is that it belongs
to C1,2([0, T ] � B). When X is a semimartingale (or more generally a semilocally
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summableB-valued process with respect to the tensor product) then it admits a tensor
quadratic variation and in particular previous result generalizes the classical Itô formula
in [22], Section 3.7.

Proof of Theorem 5.2. We observe that the quantity

(5.2) I0(�, t) D
Z t

0

F(sC �, XsC�) � F(s, Xs)

�

ds, t 2 [0, T ],

converges ucp for� ! 0 to F(t, Xt ) � F(0,X0) since (F(s, Xs))s�0 is continuous. At
the same time, (5.2) can be written as the sum of the two terms:

I1(�, t) D
Z t

0

F(sC �, XsC�) � F(s, XsC�)

�

ds

and

(5.3) I2(�, t) D
Z t

0

F(s, XsC�) � F(s, Xs)

�

ds, � > 0, t 2 [0, T ].

We prove that

(5.4) I1(�, � )!
Z

�

0
�t F(s, Xs) ds

ucp. In fact

(5.5) I1(�, t) D
Z t

0
�t F(s, XsC�) dsC R1(�, t), t 2 [0, T ],

where

R1(�, t) D
Z t

0

Z 1

0
(�t F(sC ��, XsC�) � �t F(s, XsC�)) d� ds, t 2 [0, T ].

For fixed! 2 � we denote byV(!) WD {Xt (!)I t 2 [0, T ]} and

(5.6) U D U (!) D conv(V(!)),

i.e. the setU is the closed convex hull of the compact subsetV(!) of B. For x 2 �,
we have

sup
t2[0,T ]

jR1(�, t)j � T$ [0,T ]�U
�t F (�),

where$ [0,T ]�U
�t F (�) is the continuity modulus in� of the application�t FW [0,T ]�B! R

restricted to [0,T ] � U . From the continuity of the�t F as function from [0,T ] � B to
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R, it follows that the restriction on [0,T ] �U is uniformly continuous and$ [0,T ]�U
�t F is

a positive, increasing function onRC converging to 0 when the argument converges to
zero. In particular we have proved thatR1(�, � )! 0 ucp as� ! 0.

On the other hand the first term in (5.5) can be rewritten as

Z t

0
�t F(s, Xs) dsC R2(�, t)

where R2(�, t)! 0 ucp arguing similarly as forR1(�, t) and so the convergence (5.4)
is established.

We fix now t 2 [0, T ]. The second addendI2(�, t) in (5.3), can be approximated
by Taylor’s expansion and it can be written as the sum of the following three terms:

I21(�, t) D
Z t

0 B�

�

DF(s, Xs),
XsC� � Xs

�

�

B

ds,

I22(�, t) D
1

2

Z t

0
�

�

D2F(s, Xs),
(XsC� � Xs)
2

�

�

�

�

ds,

I23(�, t)

D

Z t

0

"

Z 1

0
�

�

�

D2F(s, (1� �)XsC� C �Xs) � D2F(s, Xs),
(XsC� � Xs)
2

�

�

�

�

d�

#

ds.

Since D2F W [0,T ]�B! � is continuous andB separable, we observe that the process
H defined byHs D D2F(s, Xs) takes values in a separable closed subspaceV of � .
Applying Corollary 3.21, it yields

I22(�, t)
P

��!

�!0

1

2

Z t

0
�

hD2F(s, Xs), df[X]si�� for every t 2 [0, T ].

We analyze nowI23(�, t) and we show thatI23(�, t)
P

��!

�!0
0. In fact we have

jI23(�, t)j

�

1

�

Z t

0

Z 1

0
�j

�

hD2F(s, (1� �)XsC� C �Xs) � D2F(s, Xs), (XsC� � Xs)

2
i

�

�

j d� ds

�

1

�

Z t

0

Z 1

0
�kD2F(s, (1� �)XsC� C �Xs) � D2F(s, Xs)k�k(XsC� � Xs)


2
k

�

� d� ds

� $

[0,T ]�U
D2F (�)

Z t

0
sup

k�k

�

�1

�

�

�

�

�

�,
(XsC� � Xs)
2

�

�

�

�

�

�

ds,

where$ [0,T ]�U
D2F (�) is the continuity modulus of the applicationD2F W [0, T ] � B! �

restricted to [0,T ] � U whereU is the same random compact set introduced in (5.6).
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Again D2F on [0,T ]�U is uniformly continuous and$ [0,T ]�U
D2F is a positive, increasing

function onRC converging to 0 when the argument converges to zero. Taking into
account the condition H1 in the definition of�-quadratic variation,I23(�, t) ! 0 in
probability when� goes to zero.

Since I0(�, t), I1(�, t), I22(�, t) and I23(�, t) converge in probability for every fixed
t 2 [0, T ], it follows that I21(�, t) converges in probability when� ! 0. Therefore the
forward integral

Z t

0
B�

hDF(s, Xs), d�XsiB

exists by definition. This in particular implies the Itô formula (5.1).

6. Applications of Itô formula for window processes

6.1. Some conventions. The scope of this section is to illustrate some applica-
tions of our Banach space valued Itô formula to window processes. In this sectionDm

denotes the classical Malliavin gradient andD1,2(L2([0, T ])) (shortly D1,2) denotes the
classical Malliavin–Sobolev space, related to the case whenX is a classical Brownian
motion. For more information the reader may consult for instance [24]. On the other
hand D will denote the Fréchet differentiation operator for functionals defined onB.
We go on fixing some notations. Let 0< � � T , we setB D C([�� , 0]).

NOTATION 6.1. Let B D C([�� , 0]) and I be a real interval. ConsiderF W I �
B ! R of class C0,1(I � B). Then, for eacht 2 I and � 2 B, � D Du(t, �) is a
(signed) measure on [�� , 0]. We will simply denoteD?u(t, �) (resp. DÆ0u(t, �)) the
quantity which, according to Notation 2.2, should be (Du(t, �))? (resp. (Du(t, �))Æ0).
We remark that, for anyt 2 I and� 2 B, DÆ0 F(t,�) D DF(t,�)({0}) and D?F(t,�) D
DF(t, �) � DÆ0 F(t, �)Æ0.

We go on fixing further conventions. LetF W [0, T ] � B ! R Fréchet of class
C1,2([0, T [�B)\C0([0, T ] � B). We remind that the first order Fréchet derivativeDF
defined on [0,T [ � B takes values inB�

�M([�� , 0]). For all (t, �) 2 [0, T [ � B, we
will denote by DdxF(t, �) the measure defined by

M([�� ,0])hDF(t, �), hiC([�� ,0]) D DF(t, �)(h)

D

Z

[�� ,0]
h(x)DdxF(t, �) for every h 2 C([�� , 0]).

We remark that the second order Fréchet derivativeD2F defined on [0,T ] � B takes
values inL(BIB�)� B(B, B)� (B O


�

B)�. Recalling (2.3), ifD2F(t,�) 2M([�� ,0]2)
for all (t, �) 2 [0, T ] � B (which will happen in most of the treated cases), we will
denote with D2

dx dyF(t, �) the measure on [�� , 0]2 such that following duality holds
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for all g 2 C([�� , 0]2)

M([�� ,0]2)hD
2F(t, �), giC([�� ,0]2) D D2F(t, �)(g) D

Z

[�� ,0]2
g(x, y)D2

dx dyF(t, �).

We conclude the subsection with a notation which concerns deterministic integrals
of real functions.

NOTATION 6.2. Let g, � W [a, b] ! R be càdlàg. We extendg to the real line
setting g(x) D 0 for x < a and g(x) D g(b) for x � b.

If g has bounded variation, anda � c < d � b, we set
R

]c,d] 1 dg D g(d) � g(c)

and
R

[c,d] 1 dgD g(d) � g(c�). Consequently
R

[a,b] 1 dgD g(b) since g(a�) vanishes.
Conformally to this convention, ifgW [a,b]! R has bounded variation and�W [a,b]!
R, is continuous, we denote

Z

]c,d]
g d� D g(d)�(d) � g(c)�(c) �

Z

]c,d]
� dg

and
Z

[c,d]
g d� D g(d)�(d) � g(c�)�(c�) �

Z

[c,d]
� dg.

For instance
R

[a,b] g d� D g(b)�(b) �
R

[a,b] � dg.

6.2. About anticipative integration with respect to finite quadratic variation
process. This section aims at giving one application of calculus via regularization
for window processes to anticipative calculus in a situation in which neither Itô nor
Malliavin–Skorohod calculus can be applied. Our methods also produce, as secondary
effect, some identities involving path-dependent Itô or Skorohod integrals with forward
integrals. LetX be a real finite quadratic variation process such thatX0 D 0 a.s. and
prolonged as usual by continuity to the real line. One motivation is to express, for
� 2 [0, T ],

(6.1)
Z T��

0

�

Z yC�

y
g(Xx, Xy) dx

�

d�Xy,

for some smooth enoughg W R2
! R.

REMARK 6.3. 1. We observe that, even whenX is a semimartingale, previous
forward integral is not an Itô integral since the integrand is anticipating (non adapted).
If X is a Brownian motion, it can be expressed with the help of Skorohod integral.
2. We observe that (6.1) equals

(6.2)
Z T��

0

�

Z 0

��

g(XyC�Cx, Xy) dx

�

d�Xy.
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In the perspective of evaluating (6.2), we considerf W R2
! R of class C2(R2)

such that f (x, y) D
R y

0 g(x, z) dz. In particular g D �2 f . For this purpose, we start
expanding

Z 0

��

f (XxCt , Xt�� )dx

through our Banach spaceB-valued Itô formula. We obtain the following.

Proposition 6.4. Let f W R2
! R be a function of class C2. We have

(6.3)

Z 0

��

f (XxCt , Xt�� ) dx D � f (0, 0)C
Z T

0

�

Z (yC� )^T

y
�1 f (Xy, Xt�� ) d

�

d�Xy

C

Z T��

0

�

Z 0

��

�2 f (XyCxC� , Xy) dx

�

d�Xy

C

1

2

Z T��

0

�

Z 0

��

�

2
22 f (XyCzC� , Xy) dz

�

d[X]y

C

1

2

Z 0

��

�

Z T

�x
�

2
11 f (XtCx, Xt�� )[X]dtCx

�

dx,

provided that at least one of the two forward integrals aboveexists.

REMARK 6.5. If X is an (Ft )-semimartingale the forward integral

(6.4)
Z T

0

�

Z (yC� )^T

y
�1 f (Xy, Xt�� ) dt

�

d�Xy

coincides with the Itô integral
Z T

0

�

Z (yC� )^T

y
�1 f (Xy, Xt�� ) dt

�

d Xy.

Proof of Proposition 6.4. We will apply Theorem 5.2 toF(Xt ( � )) where

F W C([�� , 0])! R is the functional defined byF(�) D
R 0
��

f (�(x), �(�� )) dx which
is of classC2(B). Below we express the first derivative as

DdxF(�) D �1 f (�(x), �(�� ))1[�� ,0](x) dxC
Z 0

��

�2 f (�(z), �(�� )) dzÆ
��

(dx)

and the second derivative as

D2
dx,dyF(�)

D�

2
11 f (�(x), �(�� ))1[�� ,0](x) Æy(dx) dyC�2

21 f (�(x), �(�� )) Æ
��

(dx)1[�� ,0](y) dy

C�

2
12 f (�(x), �(�� ))1[�� ,0](x) dx Æ

��

(dy)C
Z 0

��

�

2
22 f (�(z), �(�� )) dzÆ

��

(dx) Æ
��

(dy).
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The second order Fréchet derivativeD2F(�) belongs to� with � WD Diag�D
��


h

L2
� L2


h D
��

� D
�� ,�� . Since X is a finite quadratic variation process, Propos-

itions 4.8, 4.15 and 3.17 imply thatX( � ) admits a�-quadratic variation. We apply
now Theorem 5.2 toF(XT ( � )). The forward integral appearing in the Itô formula

I1 WD

Z T

0
hDF(Xt ( � )), d�Xt ( � )i

exists and it is given byI11C I12 where

I11D lim
�!0

Z T

0

Z 0

��

�1 f (XtCx, Xt�� )
XtCxC� � XtCx

�

dx dt

and

I12D lim
�!0

Z T

0

�

Z 0

��

�2 f (XtCx, Xt�� ) dx

�

Xt��C� � Xt��

�

dt,

provided that previous limits in probability exist. We have

I11D lim
�!0

Z T

0

Z 0

(�� )_(�t)
�1 f (XtCx, Xt�� )

XtCxC� � XtCx

�

dx dt

D lim
�!0

Z T

0

Z t

(t�� )_(0)
�1 f (Xy, Xt�� )

XyC� � Xy

�

dy dt.

By Fubini’s theorem, previous limit equals (6.4), providedthat previous forward
limit exists.

We go on specifyingI12.

I12D lim
�!0

Z T

�

�

Z 0

��

�2 f (XtCx, Xt�� ) dx

�

Xt��C� � Xt��

�

dt

D lim
�!0

Z T��

0

�

Z 0

��

�2 f (XyCxC� , Xy) dx

�

XyC� � Xy

�

dy

D

Z T��

0

�

Z 0

��

�2 f (XyCxC� , Xy) dx

�

d�Xy,

provided that previous forward integral exists.
We evaluate now the integrals involving the second order derivative of F , i.e.

(6.5)
1

2

Z T

0
�

hD2F(Xt ( � )), dB[X( � )]ti�� .

We remind thatD2F(�) takes values in� WD Diag�D
��


h L2
� L2


h D��

�D
�� ,�� .

The term (6.5) splits into a sum of four terms. Since by Proposition 4.8 item 2,X( � )
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has zeroD
��


h L2 and L2

hD��

-quadratic variation, the only non vanishing integrals
are the two termsI21 and I22 given respectively by theD

�� ,�� and theDiag-quadratic
variation. Again by Proposition 4.8 item 3, expression (6.5) becomesI21C I22 where

I21D
1

2

Z T��

0

Z 0

��

�

2
22 f (XyCzC� , Xy) dz d[X]y, I22D

1

2

Z T

0
DiaghG(t), dB[X( � )]tiDiag�

and G(t) D g(t, x) Æy(dx) dy, with g(t, x) D �2
11 f (XtCx, Xt�� ). Since�2

11 f is a contin-
uous function, Proposition 4.17 can be applied and we get

I22D
1

2

Z 0

��

�

Z T

�x
�

2
11 f (XtCx, Xt�� )[X]dtCx

�

dx.

In conclusion we obtain (6.3).

Corollary 6.6. Let X be an (Ft )-semimartingale and gW R2
! R of class

C2,1(R � R). Then, setting f(x, y) D
R y

0 g(x, z) dz, the forward integral

Z T��

0

�

Z 0

��

g(XyC�Cx, Xy) dx

�

d�Xy

exists and it can be explicitly given using(6.3) and the relation�2 f D g.

Proof. The first forward integral in the right-hand side of (6.3) exists and it is an
Itô integral. We apply successively Proposition 6.4.

Corollary 6.7. Let XD W be a classical Wiener process, f 2 C2(R2). We have
the following identity.

Z 0

��

f (WxCt , Wt�� ) dx

D � f (0, 0)C
Z T

0

�

Z (yC� )^T

y
�1 f (Wy, Wt�� ) dt

�

dWy

C

Z T��

0

�

Z 0

��

�2 f (WyCxC� , Wy)dx

�

ÆWyC

Z T��

0

�

Z 0

��

�

2
21 f (WtC�Cz, Wt ) dz

�

dt

C

1

2

Z T��

0

�

Z 0

��

�

2
22 f (WyCzC� , Wy) dz

�

dyC
1

2

Z 0

��

�

Z T

�x
�

2
11 f (WtCx, Wt�� ) dt

�

dx.

REMARK 6.8. If Y 2 D1,2(L2([0, T ])), DmY represents the Malliavin derivative
and

R t
0 Ys ÆWs, t 2 [0, T ], is the Skorohod integral. We recall that, by [27] and [30]

(6.6)
Z t

0
Ys d�Ws D

Z t

0
Ys ÆWsC (Tr� DmY)(t)
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where

(Tr� DmY)(t) D lim
�!0

Z t

0

�

Z sC�

s

Dm
r Ys

�

dr

�

ds in L2(�).

Proof of Corollary 6.7. It follows from Proposition 6.4 provided we prove that

Z T��

0

�

Z 0

��

�2 f (WyCxC� , Wy) dx

�

d�Wy

equals

Z T��

0

�

Z 0

��

�2 f (WyCxC� , Wy) dx

�

ÆWy C

Z T��

0

�

Z 0

��

�

2
21 f (WtC�Cz, Wt ) dz

�

dt.

This follows by Remark 6.8 with

Ys D

Z 0

��

�2 f (WsC�Cz, Ws) dz.

In fact, for r > s, Dm
r Ys D

R 0
r�s�� �

2
21 f (WsC�Cz, Ws) dz and so

(6.7) (Tr� DmY)(t) D lim
r#s

Z t

0
Dm

r Ys dsD
Z t

0

�

Z 0

��

�

2
21 f (WsC�Cz, Ws) dz

�

ds.

Combining (6.7) with (6.6) fort D T � � the result is now established.

REMARK 6.9. Another example of exploitation of Proposition 6.4 arises whenX
is a Gaussian centered process with covarianceR(s, t)D E[XsXt ] such that�2R=(�s�t)
is a signed finite measure�. We say in this case that the covariance ofX has a meas-
ure structure, see [18]. We remind that in this caseX is a finite quadratic variation
process and [X]t D �({(s, s) j s 2 [0, t ]}). With some slight technical assumptions, the
following relation holds:

(6.8)
Z t

0
Ys d�Xs D

Z t

0
Ys ÆXsC

Z

[0,t ]2
Dm

rCYs d�(r, s).

This allows to show the existence of both the forward integrals in the statement of
Proposition 6.4 using (6.8).

6.3. Infinite dimensional partial differential equation and Clark–Ocone type
results. As motivated in the introduction, just after the definition of window processes,
one natural application consists in obtaining aClark–Ocone type formulafor real finite
quadratic variation processes. LetX be a continuous process such that [X, X]t � �

2t
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for some� � 0. and we assume againX0 D 0 for simplicity. Considerh D �(XT ) and
let U W [0, T ] � R ! R be a solution of�tUt C (� 2

=2)�xxU D 0 with final condition
U (T, x) D �(x) for some real Borel non-negative function�. By Itô formula (1.7), we
get that

(6.9) h D h0C

Z t

0
�s d�Xs,

where �s � �xU (s, Xs) and h0 D U (0, X0), see also [4] and references therein. The
integral in (6.9) is indeed an improper forward integral. Ifh is a path dependent ran-
dom variable, we can express it as a functional of the corresponding window process,
i.e. h D f (X) whereX D X( � ), for f W B ! R and B D C([�T, 0]) throughout this
section. The idea consists in looking for solutionsu of a suitableB-valued partial dif-
ferential equation which allows to formulateh as (6.9) whereh0 and � depend onu.
The proof should be again an Itô type formula, this time for processes taking values If
h belongs toD1,2, then H0 D E[h] and �t D E[Dm

t hjFt ]. This statement is the classical
Clark–Ocone formula.

In this subsection we set� D T and thereforeB D C([�T, 0]).

DEFINITION 6.10. Let H W C([�T, 0])! R be a Borel functional anduW [0, T ]�
B ! R of classC1,2([0, T [�B) \ C0([0, T ] � B). u is said to be a solution of (the
infinite dimensional PDE)

(6.10)

8

�

<

�

:

�tu(t, �)C
Z

[�t,0]
D?

x u(t, �) d�(x)C
�

2

2
hD2u(t, �), 1Dt iD0 for t 2 [0, T [,

u(T, �)D H (�)

if the following conditions hold.
i) D?u(t,�) is absolutely continuous with respect to Lebesgue measureand its Radon–
Nikodym derivative, still denoted byx 7! D?

x u(t, �), has bounded variation for anyt 2
[0, T [, � 2 B;
ii) D2u(t, �) is a Borel signed measure on [�T, 0]2 for all t 2 [0, T ] and � 2 B;
iii) u solves (6.10) where

R

[�t,0] D?

x u(t, �) d�(x) in the sense of Notation 6.2, setting

aD�T , cD �t , d D bD 0 andgW [�T,0]! R being the càdlàg version ofx 7! D?

x u.
hD2u(t, �), 1Dt i indicates the evaluation of the second order derivative on the diagonal
Dt D {(s, s) j s 2 [�t, 0]}.

Theorem 6.11. Let H W B! R be a Borel functional and uW [0, T ] � B! R be
a solution to(6.10). We set� WD �0([�T, 0]2)� Diag([�T, 0]2), (shortly �0

� Diag).
We suppose the following.
i) (t, �) 7! kD?u(t, �)kBV WD jD?

0 u(t, �)j C
R

[�T,0]jD
?

x u(t, �)j dx D jD?

0 u(t, �)j C

kD?u(t, �)kVar is bounded on[0, T ] � K for each compact K of B.
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ii) D2u(t, �) 2 � for every t 2 [0, T ], � 2 B and that map(t, �) 7! D2u(t, �) is
continuous from[0, T ] � B to � .
Let X be a continuous process with[X]t D �

2t , � � 0, and X0 D 0.
Then the random variable hWD H (XT ( � )) admits the following representation

(6.11) h D u(T, XT ( � )) D H0C

Z T

0
�t d�Xt

with H0 D u(0, X0( � )), �t D DÆ0u(s, Xs( � )) and
R T

0 �t d�Xt is an improper forward
integral.

Proof. Sinceu 2 C0([0, T ] � B), H D u(T, � ) is automatically continuous. By
Propositions 4.9, 4.15 and 3.17X( � ) admits a�-quadratic variation which is the sum
of the �0-quadratic variation and theDiag-quadratic variation. Applying Theorem 5.2
to u(t, Xt ( � )) for t < T we obtain

(6.12)

u(t, Xt ( � )) D u(0, X0( � ))C
Z t

0
�tu(s, Xs( � )) ds

C

Z t

0
M([�T,0])hDu(s, Xs( � )), d�Xs( � )iC([�T,0])

C

1

2

Z t

0
�

hD2u(s, Xs( � )), dB[X( � )]si�� .

By the assumption i) it is possible to show that
R t

0 M([�T,0])hD?u(s, Xs( � )),

d�Xs( � )iC([�T,0]) exists and equals
R t

0

�R

]�s,0] D?u(s,�)d�
�

j

�DXs(�) ds. We omit the tech-

nicalities. Consequently, by subtraction,
R t

0 DÆ0u(s, Xs( � )) d�Xs exists for t 2 [0, T [.
The Itô expansion (6.12) gives

(6.13) u(t, Xt ( � )) D u(0, X0( � ))C
Z t

0
DÆ0u(s, Xs( � )) d�XsC

Z t

0
Lu(s, Xs( � )) ds

where

Lu(t, �) D �tu(t, �)C
Z

]�t,0]
D?u(t, �) d�C

�

2

2
hD2u(t, �), 1Dt i,

for t 2 [0, T [, � 2 B. By hypothesisLu(t, �) D 0, so (6.13) gives

(6.14) u(t, Xt ( � )) D u(0, X0( � ))C
Z t

0
DÆ0u(s, Xs( � )) d�Xs.

Now for every fixed!, since u 2 C0([0, T ] � B) and X is continuous, we have
limt!T u(t, Xt ( � )) D u(T, XT ( � )), which equalsH (XT ( � )) by (6.10). This forces
the right-hand side of (6.14) to converge, so that the resultfollows.



BANACH COVARIATION , ITÔ FORMULA AND APPLICATIONS 775

REMARK 6.12. Previous theorem also applies in the case� D 0, i.e. [X] D 0.
To this purpose we observe the following.
1. Let

(6.15) h D f

�

Z T

0
'1(s) d�Xs, : : : ,

Z T

0
'n(s) d�Xs

�

,

with 'i 2 C2([0, T ]) and f 2 C2(Rn). We observe that the integrals
R T

0 'i (s) d�Xs,
1� i � n are defined because each'i has bounded variation, see item 3 of Remark 1.2.
In that case the PDE in (6.10) simplifies into�tuC

R

[�t,0] D
?u(t,�)d�D 0 and it is easy

to provide a solutionu in the sense of Definition 6.10. ThatuW [0,T ]�C([�T,0])! R

is given by

u(t, �) D f

�

Z

[�t,0]
'1(sC t) d�(s), : : : ,

Z

[�t,0]
'n(sC t) d�(s)

�

,

adopting the same conventions as in Notation 6.2.
2. SinceDÆ0u(t, �) D

Pn
iD1 �i f

�R

[�t,0] '1(sC t) d�(s), : : : ,
R

[�t,0] 'n(sC t) d�(s)
�

'i (t),
by Theorem 6.11, we obtain representation (6.11) withH0 D f (0, : : : , 0) and �t D

DÆ0u(t, Xt ( � )) The assumptions of Theorem 6.11 can be easily checked, butwe omit
the details. We remind only thatX( � ) admits�0-quadratic variation.
3. In the case� D 0, representation (6.11) can be also established via an applica-
tion of the finite dimensional Itô formula for finite quadratic variation processes, see
Proposition 2.4 in [15].
4. The case� ¤ 0 with the same r.v.h given by (6.15) but with f only continu-
ous with linear growth (ifX D W and � D 1 even in the weaker conditionf with
polynomial growth) was treated in Section 9.9 of [7].

REMARK 6.13. 1. Theorem 6.11 is only one significant result related to a gen-
eralized Clark–Ocone type formula. In order to obtain more precise results, one needs
to provide solutions to infinite dimensional PDEs of the type(1.8). The natural prob-
lem consists in constructing indeed solutions of (1.8). Fora large class of random vari-
ablesh, Chapter 9 of [7] provides solutions of 6.10 at least when [X]t D t , i.e. � D 1.
2. Theorem 6.11, among others, generalizes Theorem 7.1 of [8] and it expands its
proof to the case when [X]t D �

2t , � � 0.

REMARK 6.14. 1. The assumption [X]t D �
2t is not crucial. With some more

work it is possible to obtain similar representations even if [ X]t D
R t

0 a2(s, Xs) ds for
a large class of continuousa W [0, T ] � R! R.
2. A simple example of non-semimartingaleX verifying the property [X]t D
R t

0 a2(s,Xs)ds is the following. LetaW [0,T ]�R! R be a function of classC1,0([0,T ]�
R) which is Lipschitz in the second variable. Let� be a non-semimartingale verifying
[�]t D t . A simple example is given by the sum of a classical Wiener process and an
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independent fractional Brownian motionBH with 1=2< H � 3=4. Obviously [�]t D t
and � is not a semimartingale according to [3]. Let W [0, T ] � R ! R such that
 (t, x) D

R x
0 a(t,  (t, y)) dy. Such exists and it is unique sincea is Lipschitz. We

set Xt D  (t, �t ). By the stability theorem for finite quadratic variation processes, see
e.g. [13] Remark 3, since is of classC1([0, T ] � R) we get

[X]t D

Z t

0

�

� 

�x
(s, �s)

�2

d[�]s D

Z t

0
a2(s,  (s, �s)) dsD

Z t

0
a2(s, Xs) ds, t 2 [0, T ].

This shows the desired property.
3. Under some light technical assumptions on functiona, using Itô forum la 1.7, it
is possible to show the existence of
 W [0, T ] � R! R continuous such thatd�Xt D

a(t, Xt ) d��t C 
 (t, Xt )dt. For this type of calculations, the reader can consult [29].

A. Appendix: Proofs of some technical results

Sketch of the proof of Proposition 1.7. LetV (resp.Y ) be anH -valued bounded
variation (resp. continuous) process. Proceeding as for real valued processes, see for
instance [30], Proposition 1.7) b), one can show that (V , Y ) has a zero scalar covari-
ation. A semilocally summable process is the sum of a locallysummable process and
a bounded variation process. Therefore, without restriction of generality, we can sup-
pose thatX is locally summable with respect to the tensor products. By localization
we can suppose thatX is summable with respect to the tensor products and bounded.
Let s 2 [0, T ] and consider the following identity

(A.1) X




2

sC� � X



2

s D Xs
 (XsC� � Xs)C (XsC� � Xs)
 XsC (XsC� � Xs)

2.

Dividing (A.1) by � and integrating from 0 tot in the Bochner sense we obtain

I0(t, �) D I1(t, �)C I2(t, �)C
Z t

0

(XsC� � Xs)
2

�

ds

where

I0(t, �) D
Z t

0

X




2

sC� � X



2

s

�

ds, I1(t, �) D
Z t

0

Xs
 (XsC� � Xs)

�

ds,

I2(t, �) D
Z t

0

(XsC� � Xs)
 Xs

�

ds.

Let t 2 [0, T ]. Obviously we get lim
�!0 I0(t, �) D X


2

t � X



2

0 .
By an elementary Fubini argument we can show that

I1(t, �) D
Z t

0

�

1

�

Z u

u��
Xs ds

�


 dXu.
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Since (1=�)
R u

u�� Xs ds! Xu for every u 2 [0, T ] and ! 2 � and X being bounded,

Theorem 1 in Section 12.A of [9] allows to show thatI1(t, �)!
R t

0 Xs
 dXs in prob-

ability. Similarly one shows thatI2(t, �) !
R t

0 dXs 
 Xs. In conclusionX admits a
tensor quadratic variation which equals

X




2

t �

Z t

0
Xs
 dXs �

Z t

0
dXs
 Xs.

Sketch of the proof of Proposition 1.8. LetH be the Hilbert values space ofX.
Let V (resp.Y ) be anH -valued bounded variation (resp. continuous) process. Without
restriction of generality we can suppose thatX is an (Ft )-local martingale. After lo-
calization one can suppose thatX is an (Ft )-square integrable martingale. Proceeding
similarly as for the proof of Proposition 1.7, using Remark 14.b) of Chapter 6.23 of
[9], it is possible to show that

1

�

Z t

0
kXsC� � Xsk

2
H ds��!

�!0
kXtk

2
H � 2

Z t

0
hXs, dXsiH .

The analogous of the bilinear forms considered in Proposition 1.7 proof will be theH
inner product.

Before writing the proof of Proposition 3.20 we need a technical lemma. In the
sequel the indices� and �� in the duality, will often be omitted.

Lemma A.1. Let t 2 [0, T ]. There is a subsequence of(nk) still denoted by the
same symbol and a null subset N of� such that

QFnk (!, t)(�)!k!1

QF(!, t)(�) for every � 2 � and ! � N.

Proof. Let S be a dense countable subset of� . By a diagonalization principle
for extracting subsequences, there is a subsequence (nk), a null subsetN of � such
that for all ! � �,

(A.2)
QF
1

(!, t)(�) WD lim
k!C1

QFnk (!, t)(�)

exists for any � 2 S, ! � N and 8t 2 [0, T ].

By construction, for everyt 2 [0, T ], � 2 S

QF( � , t)(�) D F(�)( � , t) D QF
1

( � , t)(�) a.s.

Let t 2 [0, T ] be fixed. Since� 2 S countable, a slight modification of the null setN,
yields that for every! � N,

QF(!, t)(�) D QF
1

(!, t)(�), 8� 2 S.
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At this point (A.2) becomes

(A.3) QF(!, t)(�) D lim
k!C1

QFnk (!, t)(�), for every ! � N, � 2 S.

It remains to show that (A.3) still holds for� 2 � . Therefore we fix� 2 � , ! � N.
Let � > 0 and�

�

2 S such thatk� � �
�

k

�

� �. We can write

j

QF(!, t)(�) � QFnk (!, t)(�)j

� j

QF(!, t)(� � �
�

)j C j QF(!, t)(�
�

) � QFnk (!, t)(�
�

)j C j QFnk (!, t)(�
�

� �)j

� k

QF(!, t)k
�

�

k� � �

�

k

�

C sup
k
k

QFnk (!, t)k
�

�

k� � �

�

k

�

C j

QF(!, t)(�
�

) � QFnk (!, t)(�
�

)j.

Taking the lim supk!C1

in previous expression and using (A.3) yields

lim sup
k!C1

j

QF(!, t)(�) � QFnk (!, t)(�)j � k QF(!, t)k
�

�

� C sup
k
k

QFnk (!, � )kVar[0,T ]�.

Since� > 0 is arbitrary, the result follows.

Proof of Proposition 3.20. Lett 2 [0, T ] be fixed. We denote

I (n)(!) WD
Z t

0
hH (!, s), d QFn(!, s)i �

Z t

0
hH (!, s), d QF(!, s)i.

Let Æ > 0 and a subdivision of [0,t ] given by 0D t0 < t1 < � � � < tm D t whose mesh
is smaller thanÆ. Let (nk) be a sequence diverging to infinity. We need to exhibit a
subsequence (nk j ) such that

(A.4) I (nk j )(!)! 0 a.s.

Lemma A.1 implies the existence of a null setN, a subsequence (nk j ) such that

(A.5)
j

QFnk j (!, tl )(�) � QF(!, tl )(�)j ����!
j!C1

0

8� 2 � and for every l 2 {0, : : : , m}.

Let ! � N. We have

jI (nk j )(!)j D

�

�

�

�

�

m
X

iD1

�

Z ti

ti�1

hH (!, s), d QFnk j (!, s)i � hH (!, s), d QF(!, s)i

�

�

�

�

�

�
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�

m
X

iD1

�

�

�

�

Z ti

ti�1

hH (!, s) � H (!, ti�1)C H (!, ti�1), d QFnk j (!, s)i

�

Z ti

ti�1

hH (!, s) � H (!, ti�1)C H (!, ti�1), d QF(!, s)i

�

�

�

�

� I1(nk j )(!)C I2(nk j )(!)C I3(nk j )(!),

where

I1(nk j )(!) D
m
X

iD1

�

�

�

�

Z ti

ti�1

hH (!, s) � H (!, ti�1), d QFnk j (!, s)i

�

�

�

�

� $H (!,�)(Æ) sup
j
k

QFnk j (!)kVar[0,T ] ,

I2(nk j )(!) D
m
X

iD1

�

�

�

�

Z ti

ti�1

hH (!, s) � H (!, ti�1), d QF(!, s)i

�

�

�

�

� $H (!,�)(Æ)k QF(!)kVar[0,T ] ,

I3(nk j )(!) D
m
X

iD1

�

�

�

�

Z ti

ti�1

hH (!, ti�1), d( QFnk j (!, s) � QF(!, s))i

�

�

�

�

D

m
X

iD1

jhH (!, ti�1), QFnk j (!, ti ) � QF(!, ti ) � QF
nk j (!, ti�1)C QF(!, ti�1)ij

�

m
X

iD1

jFnk j (H (!, ti�1))(!, ti ) � F(H (!, ti�1))(!, ti )j

C

m
X

iD1

jFnk j (H (!, ti�1))(!, ti�1) � F(H (!, ti�1))(!, ti�1)j.

The notation$H (!,�) indicates the modulus of continuity forH and it is a random vari-
able; in fact it depends on! in the sense that

$H (!,�)(Æ) D sup
js�t j�Æ

kH (!, s) � H (!, t)k
�

.

By (A.5) applied to� D H (!, ti�1) we obtain

lim sup
j!1

jI (nk j )(!)j �

 

sup
j
k

QFnk j (!)kVar[0,T ] C k QF(!)kVar[0,T ]

!

$H (!,�)(Æ).

SinceÆ > 0 is arbitrary andH is uniformly continuous on [0,t ] so that$H (!,�)(Æ)! 0
a.s. forÆ! 0, then lim supj!1

jI (nk j )( � )j D 0 a.s. This concludes (A.4) and the proof
of Proposition 3.20.

Proof of Theorem 3.23. a) We recall thatC ([0, T ]) is an F-space. Let� 2
� . Clearly (Fn(�)( � , t))t and ( QFn( � , t)(�))t are indistinguishable processes and so
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( QFn(�)( � , t))t is a continuous process. So it follows

kFn(�)k
1

D sup
t2[0,T ]

jFn(�)(t)j D sup
t2[0,T ]

j

QFn( � , t)(�)j

� sup
t2[0,T ]

k

QFn( � , t)k
�

�

k�k

�

� sup
n
k

QFn
kVar([0,T ])k�k� < C1

a.s. by the hypothesis. By Remark 3.22 2 and 3 it follows that the set{Fn(�)} is a
bounded subset of theF-spaceC ([0, T ]) for every fixed� 2 � .

We can apply the Banach–Steinhaus Theorem II.1.18, p. 55 in [10] and pointiv),
which imply the existence ofFW � ! C ([0,T ]) linear and continuous such thatFn(�)!
F(�) ucp for every� 2 � . So a) is established in both situations 1) and 2).

b) It remains to show the rest in situation 1), i.e. when� is separable.
b.1) We first prove the existence of a suitable versionQF of F such that

QF(!, � ) W [0, T ] ! �

� is weakly star continuous! a.s.
Since� is separable, we consider a dense countable subsetD � � . Point a) im-

plies that for a fixed� 2 D there is a subsequence (nk) such thatFnk (�)(!, � )
C([0,T ])
�����!

F(�)(!, � ) a.s. SinceD is countable there is a null setN and a further subsequence
still denoted by (nk) such that

(A.6) QFnk (!, � )(�)
C([0,T ])
�����! F(�)(!, � ), 8� 2 D, 8! � N.

For ! � N, we set QF(!, t)(�) D F(�)(!, t), 8� 2 S, t 2 [0, T ]. By a slight abuse of
notation the sequenceQFnk can be seen as applications

QFnk (!, � ) W � ! C([0, T ])

which are linear continuous maps verifying the following.
• QFnk (!, � )(�)! QF(!, � )(�) in C([0, T ]) for all � 2 D, because of (A.6).
• For every� 2 � , we have

sup
k

sup
t�T
j

QFnk (!, t)(�)j � sup
k

sup
t�T

sup
k�k

�

�1
j

QFnk (!, t)(�)jk�k
�

� sup
k

sup
t�T
k

QFnk (!, t)kk�k
�

� sup
k
k

QFnk (!, � )kVar([0,T ])k�k� < C1.

Banach–Steinhaus theorem implies the existence of a linearrandom continuous map

QF(!, � ) W � ! C([0, T ])

extending previous mapQF(!, � ) from D to � with values onC([0, T ]). Moreover

QFnk (!, � )(�)
C([0,T ])
�����!

QF(!, � )(�), 8� 2 � , 8! � N
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and for every! � N the application

QF(!, � ) W [0, T ] ! �

�, t 7! QF(!, t)

is weakly star continuous.QF is measurable from�� [0, T ] to �� being limit of mea-
surable processes.

b.2) We prove now that the��-valued processQF has bounded variation.
Let ! � N fixed again. Let (ti )M

iD0 be a subdivision of [0,T ] and let� 2 � . Since
the functions

F ti ,tiC1
W � ! ( QF(tiC1) � QF(ti ))(�), Fnk,ti ,tiC1

W � ! ( QFnk (tiC1) � QFnk (ti ))(�)

belong to��, Banach–Steinhaus theorem says

sup
k�k�1
j( QF(tiC1) � QF(ti ))(�)j D kF ti ,tiC1

k

�

�

� lim inf
k!1

kFnk,ti ,tiC1
k

�

�

D lim inf
k!1

sup
k�k�1
j( QFnk (tiC1) � QFnk (ti ))(�)j.

Taking the sum overi D 0, : : : , (M � 1) we get

M�1
X

iD0

sup
k�k�1
j( QF(tiC1) � QF(ti ))(�)j �

M�1
X

iD0

lim inf
k!1

sup
k�k�1
j( QFnk (tiC1) � QFnk (ti ))(�)j

� sup
k

M�1
X

iD0

sup
k�k�1
j( QFnk (tiC1) � QFnk (ti ))(�)j

� sup
k
k

QFnk
kVar([0,T ]) ,

where the second inequality is justified by the relation lim inf an
i C lim inf bn

i �

sup(an
i C bn

i ).
Taking the sup over all subdivision (ti )M

iD0 we obtain

k

QFkVar([0,T ]) � supkk QF
nk
kVar([0,T ]) < C1.

This shows finally the fact thatQF(!, � ) W [0, T ] ! �

� has bounded variation.
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