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Abstract

This paper discusses a new notion of quadratic variation @nariation for
Banach space valued processes (not necessarily semigadesh and related 1td for-
mula. If X andY take respectively values in Banach spaégsand B, and x is a
suitable subspace of the dual of the projective tensor mtoduB; and B, (denoted
by (B: &, By)*), we define the so-calleg-covariation ofX andY. If X =Y, the
x-covariation is called¢-quadratic variation. The notion gf-quadratic variation is a
natural generalization of the one introduced by Métivieltad@enail and Dinculeanu
which is too restrictive for many applications. In partaylif x is the whole space
(B; ®, B1)* then theyx-quadratic variation coincides with the quadratic vadiatof
a B;-valued semimartingale. We evaluate thecovariation of various processes for
several examples of with a particular attention to the cas® = B, = C([—7, 0])
for somer > 0 andX andY beingwindow processedf X is a real valued process,
we call window process associated withthe C([—, 0])-valued procesX := X(-)
defined byXi(y) = Xi+y, wherey € [—, 0]. The Itd6 formula introduced here is an
important instrument to establish a representation regfulark—Ocone type for a
class of path dependent random variables of type H(Xt(+)), H: C([-T,0]) - R
for not-necessarily semimartingaleé with finite quadratic variation. This represen-
tation will be linked to a functioru: [0, T] x C([—T, 0]) — R solving an infinite
dimensional partial differential equation.

1. Introduction

The present paper settles the basis for the calculus vidaregation for processes
with values in an infinite dimensional separable Banach esfgacWe introduce a new
approach to face stochastic integration for infinite dini@mel processes, based on an
original generalization of the notion of quadratic covida. This allows to discuss
stochastic calculus in a more general framework than in tesemt literature.

The extension of Itd stochastic integration theory for Hitbvalued processes dates
only from the eighties, the results of which can be found ia thonographs [20, 21, 6]
and [33] with different techniques. However the discussibrthis last approach is not
the aim of this paper. Extension to nuclear valued spacesnpler and was done in
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[17, 32]. One of the most natural but difficult situationssas when the processes are
Banach space valued.

As for the real case, a possible tool of infinite dimensiortatisastic calculus is
the concept of quadratic variation, or more generally ofatiation. The notion of co-
variation is historically defined for two real value@:j-semimartingales andY. This
notion was extended to the case of general processes by roéaliscretization tech-
niques, for instance by [14], or via regularization, in [38]. In this paper we will
follow the language of regularization; for simplicity weppose that eitheX or Y is
continuous. In the whole papér will be a fixed positive number. Every process will
be indexed by [0T], but, if it is continuous, it can be extended to the real Ifioe
convenience by setting(; = Xp if t <0 and Xy = Xy fort > T.

DEFINITION 1.1. LetX andY be two real processes such thétis continuous
andY has almost surely locally integrable paths. kot 0, we denote

b (Xspe — Xs)(Yste — Y.
[x, Y]te :/ ( S+ S)( S+ S) dS, tG [O, T],
0 €
U Xepe — X
I*(e,Y,dX)t=/ Y2t TS ds, telo, T
0 €

1. We say thatX and Y admit acovariation if lim._o[X, Y]{ exists in probability
for everyt € [0, T] and the limiting process admits a continuous version thiit lve
denoted by K, Y]. If [ X, X] exists, we say thaK has aquadratic variationand it will
also be denoted byX]. If [ X] = 0 we say thaiX is azero quadratic variation process
2. Theforward integral fé Ys d™ Xs is a continuous procesd, such that whenever it
exists, lim_o |17 (e, Y, dX); = Z; in probability for everyt € [0, T].

3. If fé Ys d~ X, exists for any 0<t < T; fOT Ys d~ X5 will symbolize theimproper
forward integral defined by lim_t fé Ys d~ Xs, whenever it exists in probability.

REMARK 1.2. 1. Lemma 3.1 in [29] allows to show that, whenew€rX] exists,
then [X, X]¢ also converges in thaniform convergence in probabilitfucp sense, see
[28, 30]. The basic results established there are stildvadire, see the following items.
2. If X (resp.A) is a finite (resp. zero) quadratic variation process, thenX] = 0,
see Proposition 1 5) of [30].

3. If Y is a bounded variation (cadlag) process, tIfélY d X, t €[0, T], exists and
equalsY; X; — YoXo — f]o,t] X dy, t € [0, T], where the latter is a pathwise Lebesgue—
Stieltjes integral. This is a consequence of items 4) andf Broposition 1 in [30].

Let (22, F, P) be a fixed probability space, equipped with a given filtnatid =
(Ft)tepo,m; fulfilling the usual conditions.
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REMARK 1.3. If Xis an (%;)-continuous semimartingale aiYds (F;)-progressively
measurable and cadlag (resp. a’m)(semimartingaleyo' Ysd~ Xs (resp. [X, Y]) coincides
with the classical Itd integrajioy_] Y d X also denoted by"(; Y d X (resp. the classical co-
variation of their local martingale parts).

The class of real finite quadratic variation processes ishhmigher than the one
of semimartingales. Typical examples of such processegq&jeDirichlet processes.
D is called (%)-Dirichlet processif it admits a decompositioD = M + A where M
is an (F;)-local martingale andA is an (F;)-adapted zero quadratic variation process.
A slight generalization of that notion is the one of weak Chiet process, which was
introduced in [11]. Another interesting example is the dgtional Brownian motion
BH:K with parametersH € ]0, 1[ andK € ]0, 1] which has finite quadratic variation if
and only if HK > 1/2, see [26]. Notice that iK = 1, thenB"'! is a fractional Brown-
ian motion with Hurst parametad €]0, 1[. If HK = 1/2 it holds [B":K]; = 21Kt; if
K # 1 this process is not even Dirichlet with respect to its owtrdfiion. One object
of this paper consists in investigating a possible usefulegdization of the notions of
covariation and quadratic variation for Banach space vhlp®cesses. Particular em-
phasis will be devoted tavindow processesvith values in the non-reflexive Banach
space of real continuous functions defined enr,[0], 0< 7 < T. To a real continu-
ous processX = (Xi)tepo, 17, One can link a natural infinite dimensional valued process
defined as follows.

DEFINITION 1.4. Let O< t < T. We call window processassociated withX,
denoted byX(-), the C([—, O])-valued process

X(+) = (Xe(- Deepo, 11 = {Xe(U) := Xeyu: U € [-7, 0], t €[0, T]}.

In the present papeW will always denote a real standard Brownian motion. The win-
dow processW(-) associated withV will be called window Brownian motion

Window processes, taking values in the non-reflexive sggaeeC([—1,0]), are, in
our opinion, an interesting object which deserves morentitte by stochastic analysis
experts. We enumerate some reasons.

1. They naturally appear in functional dependent stochatifferential equations as
delay equations.

2. Let W be a classical Wiener process. Consitiex= ¢(Wr) for some Borel non-
negativeg: R — R and letl/: [0, T] xR — R be a solution ofoil4 + (1/2)02,U = 0
with final conditionZ/(T, x) = ¢(x). By It formula one can show that that

t
(1.3) h = ho +/ £ dW,
0

where & = a,U(s, Ws) and hg = U(0, Xp). A path dependent random variallecan
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be represented as a functional of the corresponding windmeegs, i.eh = (W)
whereW = W(.), f: C([-T, 0]) - R. If u is a smooth solution of a suitable partial
differential equation, with space variable @([—T, 0]) using anC([—T, 0])-valued It6
formula, we expect to be able to exprdssas (1.3) wherehg and & depend onu.
Those considerations will extend to the case of a finite catadwariation (even non-
semimartingale)X.

3. Evenifthe underlying proces§is a semimartingale, its associated wind&ve= X(-)

is not, in any reasonable sense. Indeed if a signed Borel measure on1, 0], i.e. an
element ofB*, the real valued proces$* defined byX{" = (u,X); = f[_f,O] w(dX) Xepx

is in general not a real semimartingale, as Propositionllu&tirates. In fact even iX is

a standard Wiener process/ is not a semimartingale. For instanceuifis the sum of
Dirac measureg. = 8o + 6_,. On the other hand iK is a continuous semimartingale
vanishing at zero ang(dx) = 8o(dx) + g(x) dx whereg is a bounded Borel function
then X* is a semimartingale, see Remark 4.6, item 2.

We will introduce a notion of covariation for processes witthues in general Banach
spaces but which will be performing also for window procesSehis paper settles the the-
oretical basis for the stochastic calculus part relatethedfitst part of [8] and which par-
tially appears in [7]. LetB;, B, be two general Banach spaces. In this papéresp.Y)
will be a B; (resp.B;) valued stochastic process. It is not obvious to define afoiaple
notion of covariation (resp. quadratic variation)¥®fandY (resp. ofX). WhenX is an
H-valued martingale anB8; = B, = H is a separable Hilbert space, [6], Chapter 3 intro-
duces an operational notion of quadratic variation. [9fddtices in Definitions A.1 in
Chapter 2.15 and B.9 in Chapter 6.23 the notionserhilocally summabland locally
summable processes with respect to a given bilinear mappn® x B; see also Def-
inition C.8 in Chapter 2.9 for the definition a(lummableprocess. Similar notions ap-
pears in [22]. Those processes are very close to Banach splesl semimartingales. If
B is a Hilbert space, a semimartingale is semilocally summalfien the bilinear form
is the inner product. For previous processes, [9] definesrataral notions of quad-
ratic variation: the real quadratic variation and the terpeadratic variation. For avoid-
ing confusion with the quadratic variation of real processee will use the terminology
scalar instead ofreal. Even though [22, 9] make use of discretizations, we defime,he
for commodity, two very similar objects but in our regulation language, see Defin-
ition 1.5. Moreover, the notion below extends to the covaneabf two processeX and
Y for which we remove the assumption sémilocally summabler locally summable
Before that, we remind some properties related to tensafyats of two Banach spaces
E and F, see [31] for details. fE and F are Banach spaceg &, F (resp.E ®p F)
is a Banach space which denotes hejective (resp.Hilbert) tensor product of E and
F. We recall thatE ®, F (resp.E ®, F) is obtained by a completion of the alge-
braic tensor producE ® F equipped with the projective norma (resp. Hilbert norm
h). For a general element = Zi”:la ® ffinE® F, g € Eandf; € F, it holds
) =inf{ " lelelfile:u=>",a ® fi,a € E, fi € F}. For the definition of
the Hilbert tensor nornh the reader may refer [31], Chapter 7.4. We remind thdt if
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and F are Hilbert spaces the Hilbert tensor prod&®y, F is also Hilbert and its inner
product betweer; ® f; ande, ® f, equals(er, &)g - (f1, f2)r. Letee Eand f € F,

the symbole ® f (resp.e®?) will denote an elementary element of the algebraic tensor
productE ® F (resp.E ® E). The Banach spac&(®, F)* denotes the topological dual
of the projective tensor product equipped with the operatsm. As announced we give
now the two definitions of scalar and tensor covariation amadgatic variation.

DEFINITION 1.5. LetX (resp.Y) be aB; (resp.B;) valued stochastic process.
1. (X,Y) is said to admit ascalar covariationif the limit for ¢ | O of the sequence

[X Y]R,e — / ”XS+€ - XS||B1||YS+6 - YS”Bz ds
. o B

exists ucp. That limit will be indeed called scalar covaoiatof X andY and it will
be simply denoted by¥X, Y]®. The scalar covariationX], X]® will be called scalar
quadratic variationof X and simply denoted byX]JR.

2. (X,Y) admits atensor covariationif there exists a B; ®, B,)-valued process de-
noted by K, Y]® such that the sequence of Bochn& &, B,)-valued integrals

(1.4) X, ¥]®< = /0 Rsr —Xy) ® (Yore —¥o)

converges ucp foe | 0 (according to the strong topology) to &.(&, B,)-valued
process X, Y]%®. [X, Y]® will indeed be called tensor covariation &X(Y). The ten-
sor covariation X, X]® will be called tensor quadratic variationrand simply denoted
by [X]®.

REMARK 1.6. 1. By use of Lemma 3.1 in [29], if], Y]®€ converges, for any
t €[0,T], to Z;, whereZ is a continuous process, then the scalar covariatiorKp¥ |
exists and X, Y]® = Z.
2. If (X,Y) admits both a scalar and tensor covariation, then the termeariation
process has bounded variation and its total variation i;éed by the scalar covaria-
tion which is clearly an increasing process.
3. If (X,Y) admits a tensor covariation, then we have in particular

1 ucp

= [ (b Kore — Xe) ® (Yore — ¥a)) ds > (9, [X, Y]®),
€ Jo e—0

for every ¢ € (B1 ®, By)*, (-, -) denoting the duality betweeB; ®, B, and its dual.
4. If [X,Y]® =0, then K, Y) admits a tensor covariation which also vanishes.

Proposition 1.7. Let X be an (F;)-adapted semilocally summable process with
respect to the bilinear map@ensor product Bx B — B®, B, given by(a,b) — a®b
and (a, b) — b ® a. ThenX admits a tensor quadratic variation.
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Proposition 1.8. LetX be a Hilbert space valued continuo(i%;)-semimartingale
in the sense of22], Section 1. ThenX admits a scalar quadratic variation.

A sketch of the proof of the two propositions above are giverthie appendix. A
consequence of Proposition 1.7 and item 2 of Remark 1.6 idalfmving.

Corollary 1.9. LetX be a Banach space valued process which is semilocally sum-
mable with respect to the tensor productXlthas a scalar quadratic variatigrit admits
a tensor quadratic variation process which has boundedatem.

REMARK 1.10. The tensor quadratic variation can be linked to the @ings];
see Chapter 6 in [7] for details. Ldd be a separable Hilbert space. ¥ is an H-
valued Q-Brownian motion withTr(Q) < +oo (see [6] Section 4), theV admits a
scalar quadratic variationV[® =t Tr(Q) and a tensor quadratic variatioW [ = tq
whereq is the tensor associated to the nuclear operear

We have already observed théf(-) is not aC([—z, 0])-valued semimartingale.
Unfortunately, the window procesd/( -) associated with a real Brownian motioW,
does not even admit a scalar quadratic variation. In factlithi¢ of

(1.5)

/t ||Ws+e(‘)_Ws(')”%([_r,o]) ds, te[0,T]
0 el ’ 1

€

for € going to zero does not converge, as we will see in Propos#i@n This suggests
that whenX is a window process, the tensor quadratic variation is net ghitable
object in order to perform stochastic calculus. et(resp.Y) be a B; (resp. By)-
valued process. In Definition 3.8 we will introduce a notiohcovariation of &, Y)
(resp. quadratic variation & when X = Y) which generalizes the tensor covariation
(resp. tensor quadratic variation). This will be callgecovariation (resp.x-quadratic
variation) in reference to a topological subspacef the dual ofB; ®, B, (resp.B;®,

B, with B; = B). We will suppose in particular that

t
(1.6) 1 /O (6 (Kare — o) ® (Yope — Yo)) ds

€

converges for every € x for everyt € [0, T]. If Q were a singleton (the processes
being deterministic) angy would coincides with the whole spac®,(&®, By)* then
previous convergence is the one related to the weak statogpin (B; ®, By)**.

Our x-covariation generalizes the concept of tensor covanatibtwo levels.
e First we replace the (strong) convergence of (1.4) with akwatar type topology
convergence of (1.6).
e Secondly the choice of a suitable subspacef (B; ®, B,)* gives a degree of
freedom. For instance, compatibly with (1.5), a window Bnian motionX = W(-)
admits ay-quadratic variation only for strict subspacgs
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When x equals the whole spac®{(®, B,)* (resp. B:®, B1)*) this will be called
global covariation(resp.global quadratic variatio. This situation corresponds for us
to the elementary situatian

Let B; = B, be the finite dimensional spa®’ andX = (X%, ..., X") andY =
(Y%, ..., Y") with values inR", Corollary 3.28 says thafX( Y) admits all its mutual
brackets (i.e. X', Y1] exists for all 1<1i, j <n) if and only if X andY have a global
covariation. It is well-known that, in that caseBy(®, B,)* can be identified with
the space of matriM,.(R). If x is finite dimensional, then Proposition 3.27 gives a
simple characterization fok to have ay-quadratic variation.

Propositions 1.7, 1.8, 3.15 and Remark 1.10 will imply thaewneverX admits one
of the classical quadratic variations (in the sense of [9D2it admits a global quadratic
variation and they are essentially equal. In this paper eutzte they-covariation of
Banach space valued processes in various situations withitecydar attention for win-
dow processes associated to real finite quadratic varigiooesses, for instance semi-
martingales, Dirichlet processes, bifractional Browniaation.

The notion of covariation intervenes in Banach space vafitechastic calculus for
semimartingales, especially via Itd type formula, see $ahd [22]. An important result
of this paper is an 1t6 formula for Banach space valued psEeadmitting g -quadratic
variation, see Theorem 5.2. This generalizes the folloviamgnula, valid for real valued
processes which is stated below, see [28]. Xdbe a real finite quadratic variation pro-
cess andf € C1%([0, T] x R). Then the forward integra; dx f (s, Xs) d~ X exists and

f(t, X;) = (0, x0)+/t 3 f (s, Xs) ds
(1.7) 0

t 1 t
+/0 A f (s, xs)d*xSJFE/0 32, (s, Xx) d[X]s, tel0, T].

[14] gives a similar formula in the discretization approanktead regularization.

For that purpose, lefY (resp. X) be a B*-valued strongly measurable with
a.s. bounded paths (resp-valued continuous) procesB, denoting a separable Banach
space; we define a real valued forward-type integfgaj* (Y,d~X)g, see Definition 5.1.
We emphasize that Theorem 5.2 constitutes a generalizafitime t6 formula in [22],
Section 3.7, (see also [9]) for two reasons. First, takine: (B ®, B)*, i.e. the full
space, the integrator process€sthat we consider are more general than those in the
class considered in [22] or [9]. The second, more importaaison, is the use of a
spacey which gives a supplementary degree of freedom.

In the final Section 6, we introduce two applications of odinite dimensional sto-
chastic calculus. That section concentrates on windowgssEs, which first motivated
our general construction. In Section 6.2 we discuss an egifn of the Itdé formula to
anticipating calculus in a framework for which Malliavin calus cannot be used ne-
cessarily. In Section 6.3, we discuss the application topsesentation result oflark—
Ocone typdor not necessarily semimartingales with finite quadratigation, including
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zero quadratic variation. LeX be a continuous stochastic process with quadratic varia-
tion [X]; = o%t, o > 0. Our It6 formula is one basic ingredient to prove a Clarkez
type result for path dependent real random variables of ype t := H(Xt(-)) with

H: C([-T, 0]) — R. We are interested in natural sufficient conditions to dquose

h into the sum of a real numbedy and a forward integrayoT & d~X;. Suppose that

u e CL4[0, T[xC([-T, Q])) is a solution of an infinite dimensional partial diféetial
equation (PDE) of the type

aut )+ [ DU ) dn” + L (DU, ), 1o,) = O
w8 o+ [ outt an + G (D%t 1) 10) =0,
(T, ) = H),

1 ifx=y, x,yel[-t,0],
0 otherwise

Du(t, n)({0})8; in fact Du(t, n) (resp.D?u(t, n)) denotes the first (resp. second) order
Fréchet derivatives ofi with respect ton. A proper notion of solution for (1.8) will
be given in Definition 6.10. Of course, the integreylii‘;yO] DLu(t, n)dn” has to be
suitably defined. At this stage we only say that supposing,efch €, ), Dtu(t, )
absolutely continuous with respect to Lebesgue measureteidts Radon—Nikodym
derivative has bounded variation, thg%rlw] DLu(t,n)dn is well-defined by an integra-
tion by parts, see Notation 6.2. The tefd?u(t,n),1p,) indicates the evaluation of the
second order derivative on the increasing diagonal of thersg[-t, 0%, provided that
D2u(t, n) is a Borel signed measure onA-T, 0]>. Our Itd6 formula, i.e. Theorem 5.2,
allows in fact to get the mentioned representation abovéa Wg = u(0, Xo(-)), & =
Dlou(t, X¢(-)) := Du(t, X;(-))({0}). In Chapter 9 of [7] we construct explicitly so-
lutions of the infinite dimensional PDE (1.8) wheth has some smooth regularity in
L?([—r, O]) or when it depends (even non smoothly) on a finite numtewener
integrals.

A third application of Theorem 5.2 appears in [12]. In partée, those two au-
thors calculate and use thequadratic variation of a mild solution of a stochastic PDE
which generally is not a finite quadratic variation processhe sense of [6].

The paper is organized as follows. Section 2 contains genetations and some
preliminary results. Section 3 will be devoted to the defimitof x-covariation and
x-quadratic variation and some related propositions. 8ecti provides some explicit
calculations related to window processes. Section 5 istddvio the definition of a
forward integral for Banach space valued processes antkdeltd formula. The final
Section 6 is devoted to applications of our It6 formula to thse of window processes.

where 1p,(X, y) := { and D1u(t, n) := Du(t, n) —

2. Preliminaries

Throughout this paper we will denote by2(F, P) a fixed probability space,
equipped with a given filtratio = (F;)i>o fulfilling the usual conditions. LeK be
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a compact spaceC(K) denotes the linear space of real continuous functions etkfin
on K, equipped with the uniform norm denoted By||». M(K) will denote the dual
spaceC(K)*, i.e. the set of finite signed Borel measureskon In particular, ifa <b
are two real numbersC([a, b]) will denote the Banach linear space of real continu-
ous functions. IfE is a topological spaceBor(E) will denote its Borelo-algebra.
The topological dual (resp. bidual) space Bf will be denoted byB* (resp. B**).

If ¢ is a linear continuous functional oB, we shall denote the value af of an
elementb € B either by ¢(b) or (¢, b) or eveng: (¢, b)g. Throughout the paper the
symbols (-, -) will always denote some type of duality that will change depe
ing on the context. Lee, F, G be Banach spaced.(E; F) stands for the Banach
space of linear bounded maps frofhto F. We shall denote the space Bfvalued
bounded bilinear forms on the produ& x F by B(E, F) with the norm given by
lolls = sud|e(e f): llele < 1; || fllr < 1}. Our principal references about functional
analysis and about Banach spaces topologies are [10, 1].

T will always be a positive fixed real number. The capital Istt§, Y,Z (resp. X,

Y, Z) will generally denote Banach space (resp. real) valuedgases indexed by the
time variablet € [0, T]. A stochastic procesX will also be denoted byX;)iepo, 1. A
B-valued (respR-valued) stochastic proce3ds 2 x[0,T] — B (resp.X: @x[0,T] —
R) is said to be measurable ¥: @ x [0, T] — B (resp.X: Q x [0, T] — R) is mea-
surable with respect to the-algebrasF ® Bor([0, T]) and Bor(B) (resp.Bor(R)). We
recall thatX: @x[0,T] — B (resp.R) is said to bestrongly measurabl¢or measurable
in the Bochner senjeéf it is the limit of measurable countable valued functioris X

is measurable, cadlag ari®l is separable theX is strongly measurable. IB is finite
dimensional then a measurable procKss also strongly measurable. All the processes
indexed by [0,T] will be naturally prolonged by continuity setting; = Xo for t <0
andX; =Xyt fort > T. A sequenceX")hen Of continuousB-valued processes indexed
by [0, T], will be said to convergeicp (uniformly convergence in probabilyto a pro-
cessX if supy<,<7[X"—X]||g converges to zero in probability when— co. The space
% ([0,T]) will denote the linear space of continuous real procesisés a Fréchet space
(or F-space shortly) if equipped with the metri{X, Y) = E[sup 1| Xt — Yi| A 1]
which governs the ucp topology, see Definition 11.1.10 in][1Bor more details about
F-spaces and their properties see Section 1.1 in [10].

A fundamental property of the tensor product of Banach spaddch will be used
in the whole paper is the following. T : E x F — R is a continuous bilinear form,
there exists a unique bounded linear operdtolE ® F — R satisfying gz, r) (T, €®
fleg.r =T(E® f) = T(e f) for everyec E, f € F. We observe moreover that
there exists a canonical identification betwdgfE, F) and L(E; F*) which identifies
T with T: E — F* by T(e, f) = T(e)(f). Summarizing, there is an isometric iso-
morphism between the dual space of the projective tensaduptoand the space of
bounded bilinear forms equipped with the usual norm, i.e.

(2.1) (E ®, F)* = B(E, F) = L(E; F").
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With this identification, the action of a bounded bilinearnfoT as a bounded linear
functional onE ®, F is given by

A <T.in®yi> =T<in®Yi)=Zf(Xi.M)=ZT(Xi)(Yi)-
(E®- F)* E&.F i=1 i=1 i=1

i=1

In the sequel that identification will often be used withouplécit mention.

The importance of tensor product spaces and their dualssifiga first of all by
identification (2.1): indeed the second order Fréchet diave of a real function de-
fined on a Banach spacé belongs toB(E, E). We state a useful result involving
Hilbert tensor products and Hilbert direct sums.

Proposition 2.1. Let E and F, F, be Hilbert spaces. We consider¥ F; & F,
equipped with the Hilbert direct norm. Thend, F = (E & F1) @ (E ®p Fo).

Proof. SinceE® FF C E® F,i =1,2 we can writtE ®, FF € X ®n Y and so
(2.2) (E ®n F1) ® (E®n F2) CE®p F.

Since we handle with Hilbert norms, it is easy to show thatrtbem topology ofE &,
F1 and E &, F» is the same as the one induced By, F.

It remains to show the converse inclusion of (2.2). Thisdie8 becaus& ® F C
E ®n F1 @ E & Fo. O

We recall another important property.

M([~, OF) = (C([~, 0))*

2.3

@3 C (C([~7, 0]) &« C([-7, O]))" = B(C([~, 0]), C([~7, O])).
With every u € M([—t, 0]°) we can associate a unique operaldt € B(C([—, 0]),
C([—, 0])) defined byT*(f, g) = [,_, oo T(X)9(y) 1(dx, dy).

Let n1, n2 be two elements irC([—t, 0]). The element); ® 5, in the algebraic
tensor producC([—,0])®? will be identified with the element in C([—7,0]?) defined
by n(x, y) = n1(X)n2(y) for all x, y in [-z, 0]. So if 4 is a measure ooM([—, 0]%),
the pairing duality v—.,op) {1, 11 ® n2)c(--,0p) has to be understood as the following
pairing duality:

M. 0p) (s Me-r.0p) = /
(2.4) C

- / M (Yna(y) (. dy).
[—7,0P

n(x, y) i(dx, dy)



BANACH COVARIATION, ITO FORMULA AND APPLICATIONS 739

In the 1t6 formula forB valued processes at Section 5, naturally appear the first and
second order Fréchet derivatives of some functionals défimea general Banach space
B. When B = C([—t, Q]), the first derivative belongs ta1([—z, 0]) and second de-
rivative mostly belongs toV(([—t, 0]%). In particular in Sections 4 and 6 those spaces
and their subsets appear in relation with window proces¥és.introduce a notation
which has been already used in the introduction.

NoOTATION 2.2. 1. Ifa e R, we remind thats, will denote the Dirac measure
concentrated aa, so §y stands for the Dirac measure at zero.
2. Let u be a measure otM([—t, 0]), T > 0. u* will denote the scalar defined
by 1({0}) and u* will denote the measure defined by— u%sy. If ut is absolutely
continuous with respect to Lebesgue measure, its density&idenoted with the same
letter ™t

Let B be a Banach space arldbe a real interval, typically = [0, T] or | =
[0, T[. A function F: | x B — R, is said to be Fréchet of clasd"?(I x B), if the
following properties are fulfilled.
e F is once Fréchet continuously differentiable; the partialivchtive with respect to
t will be denoted bydF: | x B — R;
e foranytel, n— DF(t, n) is of classC! where DF: | x B — B* denotes the
Fréchet derivative with respect to the second argument;
e the second order Fréchet derivative with respect to themskaogumentD?F: | x
B — (B ®, B)* is continuous.
Similar notations are self-explained as for instanceCér(l x B).

3. Chi-covariation and Chi-quadratic variation

3.1. Notion and examples of Chi-subspaces.

DerINITION 3.1. Let E be a Banach space. A Banach spacencluded in E
will be said acontinuously embedded Banach subspefc& if the inclusion of x into
E is continuous. IfE = (B; ®, B,)* then x will be said Chi-subspaceof E).

REMARK 3.2. 1. Lety be a linear subspace oB{®, B,)* with Banach struc-
ture. x is a Chi-subspace if and only [f- [|g,¢,8,+ = Il - Ilx, where]| - [, is @ norm
related to the topology of.

2. Any continuously embedded Banach subspace of a Chi-aabdp a Chi-subspace.
3. Letys, ..., xn be Chi-subspaces such that, for anyc1 # j <n, x; N xj = {0}
where 0 is the zero ofR; ®, B,)*. Then the normed space = x1 @ --- @ xn IS a
Chi-subspace.

The last item allows to express a Chi-subspace Rf &, B)* as direct sum of
Chi-subspaces (0f8; ®, By)*). This, together with Proposition 3.17, helps to evaluate
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the x-covariations and the-quadratic variations of different processes.

Before providing the definition of the so-calleg-covariation of a couple of a
B;-valued and aB,-valued stochastic processes, we will give some exampleShof
subspaces that we will use in the paper.

ExamMpPLE 3.3. LetBs, By be two Banach spaces.
e x = (B; ®; By)*. This appears in our elementary situation anticipated @ ith
troduction, see also Proposition 3.15.

EXAMPLE 3.4. LetB; = B, = C([—t, 0]).

This is the natural value space for all the windows of cordimiprocesses. We
list some examples of Chi-subspacesfor which some window processes haveya
covariation or ay-quadratic variation. Moreover those-covariation andy-quadratic
variation will intervene in some applications stated att®ecs. Our basic reference Chi-
subspace ofG([—7, 0] ®, C([—z, 0]))* will be the Banach spac#1([—1, 0]%) equipped
with the usual total variation norm, denoted By ||var. The inequality in item 1 of
Remark 3.2 is verified sincT" (| gg gy = SUP <1, o<1/ T*(f, 9| = [ tllvar fOr every
w € M([—t, 0]%). All the other spaces considered in the sequel of the ptesemple
will be shown to be continuously embedded Banach subspdcés$(p-t,0]?); by item 2
of Remark 3.2 they are Chi-subspaces. Here is a list.al.bttwo fixed given points in
[—7, O].

o L%([—7,0P) = L%([-7,0]) ®ﬁ is a Hilbert subspace of1([—t, 0%), equipped with
the norm derived from the usual scalar product. The Hillmrsor producLz([—r,O])é)ﬁ

will be always identified withL2([—z, 0]%), conformally to a quite canonical procedure,
see [23], Chapter 6.

e Dap(—1, 0]?) (shortly D,p) which denotes the one dimensional Hilbert space of
the multiples of the Dirac measure concentratedaab) € [z, 0], i.e.

Dap([—7, 0)
(3.1) = {n € M([—1, 01); s.t. u(dx, dy) = A 82(dx) 8p(dy) with A € R}
~ D, ®h Dy.
If 1o = 1 8a(dx) Sp(dy) then ||fvar = [A] = [l p,,-
o  Dy([—7,0])®nL%([—7,0]) and L?([—7,0])®n Da([—7,0]) whereDa([—7,0]) (shortly

D,) denotes the one-dimensional space of multiples of thecDineasure concentrated
atae[-t, 0] ie.

(3.2) Da([—7, 0]) := {u € M([—7, Q)); s.t. u(dx) = A 84(dx) with A € R}.

Da([—7, 0]) & L2([~1, 0]) (resp. L%([—t, 0]) & Da([—1, 0])) is a Hilbert subspace
of M([—z, 0”) and for a general element in this spage = A 8,(dX)p(y)dy
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(resp. i = Ag(x) dx8a(dy)), ¢ € L%([—7, 0]), we have||wllvar < Il 4l p,r.opénLzq .0)
(resp. |l L2q—r, op@npati—r.0p) = 141~ 1@l 2.
o x%[—t, 019, x° shortly, which denotes the subspace of measures defined as

x°(—7, OP) := (Do([—7, O]) & L([—7, O)&¢.

REMARK 3.5. An elementy in x°[—rt, 0]%) can be uniquely decomposed as
w =1+ ¢ ® 8g + 8o ® 3 + A8y ® 8o, Wherep, € L2([—1, 01, ¢o, ¢3 are functions
in L?([—, 0]) and A is a real number. We have({0, 0}) = A.

e Diag([—7, 0]%) (shortly Diag), will denote the subset ofM([—z, O%) defined as
follows:

Diag([—z, 0]%)

(3.3)

= (19 € M([—7, OF) s.t. u%(dx, dy) = g(x) 8y(dx) dy; g € L®([—, O])}.
Diag([—7, 0]%), equipped with the normiu9||piag(—r,0p) = l|9ll, is @ Banach space.
Let f be a function inC([—,0]%); the pairing duality (2.4) betweeh and .(dx,dy) =
g(x) 8y(dx) dy € Diag gives

cq-r.0p){ f, 1) piag(—c,0p) = /

—71,0

0
1000 3@ dy = [ 0g0 ax

A closed subspace dbiag([—t, 0]%) is given below.

NOTATION 3.6. We denote byDiagy([—, 0]?) the subspace constituted by the
measuresu® € Diag([—t, 0] for which g belongs to the spac®([—z, 0]) of the
(classes of) bounded functions [—7, 0] — R admitting a cadlag version.

3.2. Definition of x-covariation and some related results. Let B, B, and B
be three Banach spaces. In this subsection, we introduceefir@tion of y-covariation
between aB;-valued stochastic proces§ and aB,-valued stochastic proceds. We
remind that#' ([0, T]) denotes the space of continuous processes equipped heithcp
topology.

Let X (resp.Y) be B; (resp.B,) valued stochastic process. Lethe a Chi-subspace
of (B1 ®, By)* ande > 0. We denote byX, Y]¢, the following application

[X,Y]¢: x — €(0, T]) defined by

(3.4) ¢H< / < N J((xs+e—xs)®<vs+e—ys))> ds) |
0 x € X o]

where J: B; ®, B, — (B ®, By)*™ is the canonical injection between a space and
its bidual. With applicationX, Y]¢ it is possible to associate another one, denoted by
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[X,Y]¢, defined by
[X,Y](, -): [0, T] - x* such that
N ( b /0‘ < g, A1 (0) = Xs(0) ® (Yorc() — Ys(w)»>ﬁ ds)_

€

REMARK 3.7. 1. We recall thaf C (B; ®, By)* implies (By ®, B2)** C x*.
2. As indicated, (-, -),~ denotes the duality between the spgcend its dualy*.
In fact by assumptiong is an element ofy and element)((Xs, c — Xg) ® (Ysie — Ys))
naturally belongs toB; ®, By)** C x*.

3. With a slight abuse of notation, in the sequel the injectibfrom B; ®, B, to
its bidual will be omitted. The tensor produXd;. — Xs) ® (Ys+c — Ys) has to be
considered as the elemed{(Xs,. — Xs) ® (Ys1c — Ys)) which belongs toy *.

4. SupposeB; = B, = B=C([—1, 0]) and letx be a Chi-subspace.

An element of the type) = n1 ® n2, n1, n2 € B, can be either considered as an
element of the typeB ®, B C (B ®, B)** C x* or as an element o€([—z, 0%
defined byn(x, y) = n1(X)n2(y). When x is indeed a closed subspace #([z, 0]),
then the pairing betweep and x* will be compatible with the pairing duality between
M([t, 0]®) and C([—t, 0]?) given by (2.4).

DEeFINITION 3.8. LetBj, B, be two Banach spaces andbe a Chi-subspace of
(B1 ®, By)*. Let X (resp.Y) be aB; (resp. B,) valued stochastic process. We say
that X, Y) admits ayx-covariation if the following assumptions hold.
H1 For all sequenceef) it exists a subsequence,() such that

/ < Ks+ep, —Xs) @ (Ysre, — Ys) >‘
sup sup ds
ol =1

€nk
/T ||(XS+€nk - XS) ® (Y5+Enk - YS)”)(*
= Sup

enk

ds< oo a.s.

H2 (i) There exists an applicatiop — %([0, T]), denoted by X, Y], such that

(3.5) X, YI°(@) — > [X, Y1(9)

for every ¢ € x C (By ®, By)*.
(i) There is a measurable proceés,\\?{/]: Q x [0, T] — x*, such that
e for almost allw € 2, [ﬁ](a), -) is a (cadlag) bounded variation function,
o [X,Y](-,t)(¢) = [X, YI(¢)(-, 1) as. for allg € x, t € [0, T].
If (X,Y) admits ay-covariation we will call x-covariation of X andY the x*-valued
process [ﬂ])oﬁg. By abuse of notation,¥], Y] will also be calledx-covariation
and it will be sometimes confused wifX, Y].
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DEFINITION 3.9. LetX =Y be aB-valued stochastic process agdbe a Chi-
subspace of B ®, B)*. The x-covariation K, X] (or [ﬁ]) will also be denoted by
[X] and [3\{]; it will be called x-quadratic variation ofX and we will say thaiX has
a x-quadratic variation.

REMARK 3.10. 1. For every fixedp € x, the processefX, Y]( - , t)(¢) and
[X, Y](#)( - , t) are indistinguishable. In particular the*-valued proces§X, Y] is
weakly star continuous, i.4X, Y](¢) is continuous for every fixed.
2. The existence ofX, Y] guarantees thafX], Y] admits a bounded variation version
which allows to consider it as pathwise integrator.
3. The quadratic variatioﬁi] will be the object intervening in the second order term
of the Itd formula expandingF (X) for someC?2-Fréchet functionF, see Theorem 5.2.
4. In Corollaries 3.25 and 3.26 we will show that, wheneyeiis separable (most
of the cases), the condition H2 can be relaxed in a signifigaayt In fact the con-
dition H2 (i) reduces to the convergence in probability of5§3on a dense subspace
and H2 (ii) will be automatically satisfied.

REMARK 3.11. 1. A practical criterion to verify the condition H1 is

1 T
o RS SET AR ATPETES0
0

where B(e) converges in probability whea goes to zero. In fact the convergence in
probability implies the a.s. convergence of a subsequence.

2. A consequence of the condition H1 is that for al})(|{ O there exists a sub-
sequenceeg,) such that

SEHHX, Y] [[varqo,ry < 00 @.s.

In fact |I[X, Y1 lIvarory < (1/€) fy |(Xsse —Xs) ® (Yore — Ys)|l - ds, which implies that
[X, Y]¢ is a x*-valued process with bounded variation onT(Q, As a consequence, for

a x-valued continuous stochastic proc&d € [0, T], the mtegralf0 v (Zs,d[X, Y]E”k) .
is a well-defined Lebesgue—Stieltjes type integral for @@l w € Q.

REMARK 3.12. 1. To a Borel functionG: x — C([0, T]) we can associate
G: [0, T] — x* settingG(t)(¢) = G(¢)(t). By definition G: [0, T] — x* has bounded
variation if

IGIvargoTy := SUp Z 1G(ti 1) — G(t:) -

TEX0TI () =

= sup Z sup [G(#)(ti+1) — G(#)(4)]

TETOT] (1) =0 NP1x=1
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is finite, whereX 1] is the set of all possible partitions = (t;); of the interval [OT].
This quantity is thetotal variation of G. For example ifG(¢) = /5 Gs(¢) ds with
G: x — C([0, T]) Bochner integrable, then

)
1GIvaror] < / sup [Gs(@)| ds
0 Joll,=1

2. If G(¢), ¢ € x is a family of stochastic processes, it is not obvious to fingbad
versionG: [0, T] — x* of G. This will be the object of Theorem 3.23.

DEFINITION 3.13. If the x-covariation exists withy = (B; &, B,)*, we say that
(X, Y) admits aglobal covariation Analogously ifX is B-valued and they-quadratic
variation exists withy = (B&®, B)*, we say thaX admits aglobal quadratic variation

REMARK 3.14. 1. [X, Y] takes values “a priori” in By ®, By)**.
2. If [X, Y]® exists then the condition H1 follows by Remark 3.11 1.

Proposition 3.15. LetX (resp.Y) be a B-valued(resp. B-valued process such
that (X, Y) admits a scalar and tensor covariation. Th€X, Y) admits a global co-
variation. In particular the global covariation processkizs values in B®, B, and
X, Y] = [X, Y]® as.

Proof. We sety = (B; ®, By)*. Taking into account Remark 3.14 2, it will be
enough to verify the condition H2. Recalling the definitioh[X, Y]¢ at (3.4) and the
definition of injectionJ we observe that

t

(3.6) X, Y]€(#)(-,t) = / Xsye — Xs) ® (Yspe — Ys) ds.

¢,
0 (Bi1®; Bz)*< € >Bl®n Bz

Since Bochner integrability implies Pettis integrabilifpr every ¢ € (By ®, By)*, we
also have

(B1&7 Bp)* (¢, [X, Y]t®’€> B1®~ B,

3.7 t — _

(3.7) _ / < o, Kore =X5) ® (Ysre Ys)> ds.
0 (Bi1&®.Bp)* € B1®, By

(3.6) and (3.7) imply that

(3.8) X, YI(O)(- 1) = (B8, B, (¢ [X, YIP“)g6,8, @S

Concerning the validity of the condition H2 we will show that

(39) SUBLK, YT O)( 1) = (@6, 2 (1 X, V7)o, —5 O
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By (3.8) the left-hand side of (3.9) gives
SU (5,6, - (6 (X, Y = X, ¥IP) 56,5,
=

= lllle,&. ) ;SETHI[X, YIP ~[X, YIPllg,¢, 6,0

where the last quantity converges to zero in probability bgfition 1.5 item 2 of
the tensor quadratic variation; this implies (3.9). Thestnquadratic variation has
always bounded variation because of item 2 of Remark 1.6.ohclasion H2 (i) is
also verified. ]

REMARK 3.16. We observe some interesting features related to thiealgico-
variation, i.e. they-covariation wheny = (B; ®, B»)*.
1. Wheny is separable, for any € [0, T], there exists a null subsédl of 2 and
a sequenceef) such that[X, Y]é (o, t) — [X, Y](w, t) weak star foro ¢ N, see

Lemma A.1l. This confirms the relation between the global datian and the weak
star convergence in the spad; (%, B,)** as anticipated in the introduction.

2. We recall thatJ(B; ®, B,) is isometrically embedded (and weak star dense) in
(By ®, Bo)**. In particular it is the case iB; or B, has infinite dimension. If the
Banach spaceB; ®, B, is not reflexive, then B, ®, B,)** strictly containsB; &,

B,. The weak star convergence is weaker then the strong camnegnJ(B; ®, By),
required in the definition of the tensor quadratic variatisge Definition 1.5 item 2.
The global covariation is therefore truly more general tlta® tensor covariation.

3. In generalB; ®, B, is not reflexive even ifB; and B, are Hilbert spaces, see for
instance [31] at Section 4.2.

We go on with some related results about thesovariation and they-quadratic
variation.

Proposition 3.17. LetX (resp.Y) be a B-valued(resp. B-valued process and
X1, x2 be two Chi-subspaces ¢B; ®, By)* with x1 N x» = {0}. Let x = x1 @ x2.
If (X,Y) admit a yx;j-covariation [X, Y]; for i =1, 2 then they admit g-covariation
[X, Y] and it holds[X, Y](¢) = [X, Y]i(¢1) + [X, Y]a(¢2) for all ¢ € x with unique
decompositionp = ¢1 + ¢2, ¢1 € x1 and ¢, € xz.

Proof. x is a Chi-subspace because of item 3 of Remark 3.2. It will beugh
to show the result for a fixed norm in the spage We set|¢|l, = |41y, + P2l 1
and we remark thafl¢|, > ||¢ill,., i = 1, 2. The condition H1 follows immediately
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by inequality

]
/0 SUDI, (8, (Rore =X 8 (Vorc ~ Vo)) ds
Plly=

’
< / SUD |, {91, (Repe — Xe) ® (Yare — o)), | ds
0 lgally, =1

"
+ [ SUP |26z, (Xere — Xo) ® (Yore — ¥e)) | ds
0 l¢2ll,=1

The condition H2 (i) follows by linearity; in fact
t
X, YI@) = [ 017+ 62 (Kere ~Xe) @ (v — Yol ds
t
= / x (01 Kste —Xs) ® (Ysye — Ys)),; ds
0

t
+ / X2 (¢2! (XS+€ - Xs) ® (Y5+5 — YS»X; ds
0
% [X, Y]a(¢1) + [X, Y]o(e2).

Concerning the condition H2 (i), forw € @, t € [0, T] we can obviously set
(X, Y](o, t)(¢) = [X, Y]a(, t)(¢1) + [X, Y]a(w, t)(#2). [

Proposition 3.18. Let X (resp.Y) be a B-valued (resp. B-valued stochastic
process.
1. Let x; and x» be two subspaceg; C x» C (B1 ®: By)*, x1 being a Banach
subspace continuously embedded into and x, a Chi-subspace. I{X, Y) admit a
x2-covariation [X, Y],, then they also admit g¢;-covariation [X, Y], and it holds
[X, Y]1(¢) = [X, Y]a(¢) for all ¢ € x1.
2. In particular if (X, Y) admit a tensor quadratic variatignthenX and Y admit a
x-quadratic variation for any Chi-subspace.

Proof. 1. If the condition H1 is valid fog, then it is also verified for;. In fact
we remark thatXs,. —Xs) ® (Ys;c — Ys) is an element inB; ®, By) C (By ®, By)*™* C
X3 C x1- If A= {¢ € x1: [|¢ <1} and B := {¢ € x2: ||#]l4,<1}, then A C B and
clearly /7 SUpcal (¢, (Xsre — Xs) ® (Ysre — Yo))| dS < [ SURg (9, (Ksre — Xo) ®
(Ysie — Ys)| ds. This implies the inequality| (Xsie — Xs) ® (Ysie — Ys)ll,; < [[(Xste —
Xs) ® (Yste —Ys)[l; and the assumption H1 follows immediately. The assumptidr(iH

is trivially verified because, by restriction, we hawg ¥]¢(¢) ir(} [X,Y]2(¢) for all ¢ €

x1. We define X, Y]1(¢) = [X, Y]a(¢), V¢ € x1 and[X, Y]1(@,t)(#) = [X, Y]2(,t)(),
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forallw € 2,t €[0,T], ¢ € x1. The condition H2 (ii) follows because gives [0,T] —
x1 we have|G(t) — G(9)[l; < IG(t) —G(S)ll,;, VO<s=<t=T.
2. It follows from item 1 and Proposition 3.15. O

We continue with some general properties of gheovariation.

Lemma 3.19. LetX (resp.Y) be a B-valued (resp. B-valued stochastic pro-
cess andy be a Chi-subspace. Suppose tIQZa/te)foT||(XS+E —Xs) ® (Yore — Ys)| - ds
converges td in probability whene goes to zero.

1. Then(X,Y) admits a zeroy-covariation.
2. If x =(B; ®, By)*, then (X, Y) admits a zero scalar and tensor covariation.

Proof. Concerning item 1 the condition H1 is verified becaasd&remark 3.11
item 1. We verify H2 (i) directly. For every fixegh € x we have

€

t
X, YI()(1)] = ‘ /O <¢,
X

T
</
0

(XSJre - XS) ® (YSJre - YS)> dS
x*

ds.

€

<¢’ (XSJre - XS) ® (YSJre - YS)>

X

So we obtain
1 T
sup [[X, Y@ < 9], = [ |(Xere - Xo) ® (Yose — Yol dS — O
te[0,T] € Jo e—0

in probability by the hypothesis. Since the condition H2 iolds trivially, we can con-
clude for the first result. Concerning item 2 the scalar datian vanishes by hypoth-
esis, which also forces the tensor covariation to be zem,Remark 1.6, item 4. []

3.3. Technical issues.

3.3.1. Convergence of infinite dimensional Stieltjes integls. We state now
an important technical result which will be used in the probthe I1td formula appear-
ing in Theorem 5.2.

Proposition 3.20. Let x be a separable Banach spaca sequence & y —
#([0, T]) of linear continuous maps and measurable random fi¢ifls Q@ x [0, T] —
x* such thatF"(-,t)(¢) = F"¢)(-,t) a.s. Vt € [0, T], ¢ € x. We suppose the
following.

i) For every nt— F"(-,t) is a.s. of bounded variation and for alhy) there is a
subsequencény;) such thatsup, (| E ™ lvarqo,T) < o0 a.s.
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i) There is a linear continuous map :F¢ — €([0, T]) such that for all te [0, T]
and for everyp € x F"(¢)(-,t) = F(¢)(-,t) in probability.

i) There is measurable random fielfi: @ x [0, T] — x* of such that forw
a.s.F(w, -): [0, T] = x* has bounded variation ané (-,t)(¢) = F(¢)(-,t) a.s.Vt €
[0, T] and ¢ € x.

iv) F"(¢)(0)= 0 for every¢ € x.

Then for every & [0, T] and every continuous process: I x [0, T] — x

t t
/ X(H(-,s),dlf“(-,s))x*—>/ (H(-,8),dF(-,9)),- in probability.
0 0
Proof. See Appendix A. ]

Corollary 3.21. Let B, B, be two Banach spaces and be a Chi-subspace of
(B; ®: By)*. LetX and Y be two stochastic processes with values respectively,in B
and B such that(X, Y) admits ay-covariation andH) be a continuous measurable
processH: Q2 x [0, T] — V whereV is a closed separable subspace yof Then for
every te [0, T],

t ——
[t 9, dE T 9,

(3.10) t

— | (H(-,s),d[X,Y](-,8)),~ in probability.
0

e—0

Proof. By item 2 in Remark 3.2/ is a Chi-subspace. By Proposition 3.1X, )
admits aV-covariation X, Y]y, and [X, Y]y (¢) = [X, Y](¢) for all ¢ € V; in the sequel
of the proof, K, Y]y, will be still denoted by X, Y]. Since the ucp convergence implies
the convergence in probability for everye [0, T], by Proposition 3.20 and definition of
V-covariation, it follows

t . P t .
[ o9, T 9 [ o 9, AR 9
0 €~ 0

Since the pairing duality between and x* is compatible with the one betwedhand
V*, the result (3.10) is now established. ]

3.3.2. Weaker conditions for the existence of the-covariation. An import-
ant and useful theorem which helps to find sufficient condgifor the existence of the
x-quadratic variation of a Banach space valued process éndielow. It will be a con-
sequence of a Banach—Steinhaus type result for Frécheespsee Theorem 11.1.18,
p.55 in [10]. We start with a remark.
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REMARK 3.22. 1. Let¥") be a sequence of random elements with values in a
Banach spaceB, || - ||g) such that sud/Y"||g < Z a.s. for some real positive random
variableZ. Then ™) is bounded in the F-space of random elements equipped with the
convergence in probability which is governed by the med(X, Y) = E[|X - Y|z A 1].

In fact by Lebesgue dominated convergence theorem it felllnw, .o E[yZ A 1] = 0.

2. In particular takingB = C([0, T]) a sequence of continuous process¥$)(such
that sup||lY"||o < Z a.s. is bounded for the usual metric #([0, T]) equipped with
the topology related to the ucp convergence.

Theorem 3.23. Let F": x — %([0, T]) be a sequence of linear continuous maps
such that P(¢)(0) = 0 a.s. and there isF": Q x [0, T] — x* having a.s. bounded
variation. We formulate the following assumptions.

) F"o)(-,t) = F"(-,t)(¢) as.Vt €[0, T], ¢ € x.

i) V¢ ex, t— F(-, t)(¢)is cadlag.

1)} SuPn”IEn”Var([O,T]) < o0 a.s.

iv) There is a subsef C x such thatSpar{S) = x and a linear application F S —
% ([0, T]) such that F(¢) — F(¢) ucp for everygp € S.

1) Suppose thaj is separable.

Then there is a linear and continuous extension y— ¢([0, T]) and there is a
measurable random fiel&: Q x [0, T] — x* such thatF(-,t)(¢) = F(¢)(-,t) a.s. for
every te [0, T]. Moreover the following properties hold.

a) For every¢ € x, F"(¢) i d F (o).

In particular for every te [0, T], ¢ € x, F™"®)(-,1) 5 F(¢)(w, t).
b) F has bounded variation and+#> F(-,t) is weakly star continuous a.s.
2) Suppose the existence of a measurdhlé2x[0,T] — x* such that a.s. &> F(-,t)
has bounded variation and is weakly star cadlag such that

F(-,t)(®) = F@@)(-,t) as. Vte[0,T], Vo € S.
Then pointa) still follows.
REMARK 3.24. In point 2) we do not necessarily suppgsdo be separable.
Proof. See Appendix A. ]
Important implications of Theorem 3.23 are Corollariesb3ahd 3.26, which give

us easier conditions for the existence of fneovariation as anticipated in Remark 3.10
item 4.

1This notion plays a role in Banach—Steinhaus theorem in [1L6] E be a Fréchet spaceBE;space
shortly. A subseC of E is calledboundedif for all ¢ > 0 it exists§. such that for all O< o < §,,
aC is included in the open baB(0, ¢) := {e € E; d(0, €) < €}.
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Corollary 3.25. Let B, and B be Banach spaceX (resp.Y) be a B-valued
(resp. B-valued stochastic process ang be a separable Chi-subspace (@ ®, B,)*.
We suppose the following.

HO' There isS C x such thatSparS) = y.
H1 For every sequencén) | O there is a subsequende,,) such that

(Xs+enk - Xs) ® (YS+enk - YS)

€n,

)| ds < 4o0.

sup[ sup
II¢HX<1

H2 There is7T: x — €([0, T]) such that[X, Y]¢(¢)(t) — T (¢)(t) ucp for all ¢ € S.
Then (X, Y) admits ax-covariation and the applicatiofiX, Y] is equal to7.

Kk

Proof. The condition H1 is verified by assumption. The cdodg H2 (i) and (ii)
follow by Theorem 3.23 setting"(¢)( -, t) = [X, Y]*(¢)(t) and F" = [X, Y]* for a
suitable sequence). 0

In the caseX =Y and B = B; = B, we can further relax the hypotheses.

Corollary 3.26. Let B be a Banach spac& a be B-valued stochastic processes
and x be a separable Chi-subspace. We suppose the following.
HO” There are subset§, SP of x such thatSpar{S) = x, SparfS) = Spar(SP) and
SP is constituted bypositive definiteelementsp in the sense thaf{¢, b ® b) > 0 for
all b € B.
H1 For every sequencés,) | O there is a subsequende,, ) such that

/ (Xwnk — Xs)®?
sup sup _—
gl <1 | €n o

H2" There isT: x — %([0,T]) such that{X]¢(¢)(t) — T (¢)(t) in probability for every
¢ € S and for every te [0, T].
ThenX admits ay-quadratic variation and applicatiorX] is equal to7.

ds < +oo.

Proof. We verify the conditions of Corollary 3.25. The cdiatis HO and H1 are
verified by assumption. We observe that, for everg SP, [X]¢(¢) is an increasing
process. By linearity, it follows that for any € SP, [X]¢(¢)(t) converges in probability
to 7(¢)(t) for anyt € [0, T]. Lemma 3.1 in [29] implies that]¢(¢) converges ucp for
every ¢ € SP and therefore inS. The condition H2 of Corollary 3.25 is now verified.

O

When x is finite dimensional the notion ofy-quadratic variation becomes
very natural.
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Proposition 3.27. Let x = Spari¢1, ..., ¢n}, 1,...,¢n € (B ®, B)* of positive
type and linearly independenX has a x-quadratic variation if and only if there are
continuous processes' Zuch that[X]¢(¢i) converges in probability to Zfor ¢ going
to zero for all te [0, T] and i=1,...,n.

Proof. We only need to show that the condition is sufficiehg tonverse impli-
cation resulting immediately. We verify the hypotheses afrdllary 3.26 takingS =
{¢1, ..., én}. Without restriction to generality we can suppo$s ||(gg, s = 1, for
1 <i =< n. The conditions HO and HZ are straightforward. It remains to verify H1.
Since x is finite dimensional it can be equipped with the nofg||, = Zi”:l|a4-| if
¢ = 7" ,a¢ with a € R. For ¢ such that|¢|, = >_,la| <1 we have

1 (7 1T
o RS SECTECED SE g RCYRCANES SESIEE
i=1
a7 )
= - i (Xspe —Xs d
I R

becausep; are of positive type. Previous expression is smaller or letiumn

n

n 1 T
> [0 e = X2 = Y05 40)
i=1

i=1

becausela| < 1 for 1 <i < n. Taking the supremum ovef¢|, < 1 and using the
hypothesis of convergence in probability of the quantd§}jif(¢;) for 1 <i =< n, the
result follows. O

Corollary 3.28. Let B, = B, = R". X admits all its mutual brackets if and only
if X admits a global quadratic variation.

4. Calculations related to window processes

In this section we consideK and Y as real continuous processes as usual pro-
longed by continuity andX(-) and Y(-) their associated window processes. We set
B = C([—r, 0]). We will proceed to the evaluation of somecovariations (respy-
quadratic variations) for window processkg-) and Y(-) (resp. for proces(-)) with
values inB = C([—z, 0]). We start with some examples gf-covariation calculated
directly through the definition.

Proposition 4.1. Let X and Y be two real valued processes with Holder contin-
uous paths of parameterg and § such thaty 4+ & > 1. Then(X(-), Y(-)) admits
a zero scalar and tensor covariation. In particul&X(-), Y(-)) admit a zero global
covariation.
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Proof. By Remark 1.6 item 4 and Proposition 3.15 we only needhow that
(X(-),Y(-)) admit a zero scalar covariation, i.e. the convergencesto in probability
of following quantity.

1 T
z / [ Xste(+) = Xs()llBl Yste(-) — Ys(-)llg ds
0
4.1

-
=~ / SUP |Xstute — Xstul SUP |Ysiyie — Ysiu| ds.
€ Jo ue[-7,0] ve[—1,0]

Since X (resp.Y) is a.s.y-Holder continuous (respi-Holder continuous), there is a
non-negative finite random variable such that the right-hand side of (4.1) is bounded
by a sequence of random variablg¢e) defined byZ(¢) := ¢”*~1ZT. This implies
that (4.1) converges to zero a.s. for+ § > 1. ]

REMARK 4.2. As a consequence of previous proposition every windovegss
X(-) associated with a continuous process with Holder contisysaths of parameter
y > 1/2 admits zero real, tensor and global quadratic variation.

REMARK 4.3. LetB" (resp. B":K) be a real fractional Brownian motion with
parametersH € 10, 1] (resp. real bifractional Brownian motion with paraers H €
10,1[, K €]0, 1]), see [26] and [16] for elementary facts about thedufional Brownian
motion. As immediate consequences of Proposition 4.1 waimlbhe following results.
1) The fractional window Brownian motioB" (-) with H > 1/2 admits a zero scalar,
tensor and global quadratic variation.

2) The bifractional window Brownian motioB™:K(.) with KH > 1/2 admits a zero
scalar, tensor and global quadratic variation.

3) We recall that the paths of a Brownian motid¥ are a priori only a.s. Holder
continuous of parameter < 1/2 so that we can not use Proposition 4.1.

Propositions 4.5 and 4.7 show that the stochastic calcubweloped by [6], [9]
and [22] cannot be applied fa&X being a window Brownian motioW( ).

DEFINITION 4.4. LetB be a Banach space aidbe aB-valued stochastic pro-
cess. We say tha&X is a Pettis semimartingaldf, for every ¢ € B*, (¢, X;) is a real
semimartingale.

We remark that ifX is a B-valued semimartingale in the sense of Section 1.17,
[22], then it is also a Pettis semimartingale.
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Proposition 4.5. The ([—z, 0])-valued window Brownian \\¢ ) motion is not a
Pettis semimartingale.

Proof. It is enough to show that the existence of an elementB* = M([—z,0])
such that{u, Wi (+)) = f[_t‘O]V\/t(x)u(d X) is not a semimartingale with respect to any fil-
tration. We will proceed by contradiction: we suppose M4t ) is a Pettis semimartin-
gale, so that in particular if we take = 8o + §_., the procesgdo + §_-, Wi(+)) =
W + Wi, := X; is a semimartingale with respect to some filtratigh)( Let (%)
be the natural filtration generated by the real Brownian amiV. Now W; + W,
is (Ft)-adapted, so by Stricker’s theorem (see Theorem 4, p.525)),[X is a semi-
martingale with respect to filtration/). We recall that a f;)-weak Dirichletis the
sum of a local martingalé and a proces®# which is adapted andA, N] = O for
any continuous t;)-local martingaleN; A is called the §)-martingale orthogonal pro-
cess. On the other hanilV(_,);> is a strongly predictable process with respectf9)(
see Definition 3.5 in [5]. By Proposition 4.11 in [4], it folls that M_.)>, iS an
(Ft)-martingale orthogonal process. Singéis an (F;)-martingale, the procesk; =
W + Wi_, is an (F;)-weak Dirichlet process. By uniqueness of the decompwsitor
(Ft)-weak Dirichlet processesW_;);>; has to be a bounded variation process. This
generates a contradiction becau®é_(;);>. is not a zero quadratic variation process. In
conclusion{u, W (-)), t € [0, T] is not a semimartingale. L]

REMARK 4.6. 1. ProcessX defined by X; = W, + W,_, is an example of
(Ft)-weak Dirichlet process with finite quadratic variation ieh is not an {)-
Dirichlet process.

2. Let X be a semimartingale and be a signed Borel measure oAT,0]. We define
the real valued process* by X} := f[_T’O] Xigx die(x). If w(dx) = y do(dx) +g(x)dx,
y € R andg being a bounded Borel function or-T, 0], then X* is a semimartingale
such thatX{ = y X, + fo G(y—t)d Xy, t € [0, T], and §(x) = — [ g(y)dy, x € [-T,0].

Proposition 4.7. If W is a classical Brownian motigrthen W-) does not admit
a scalar quadratic variation. In particular W-) does not admit a global quadratic
variation.

Proof. We can prove that

€

(42 /OT§||Wu+e(')—Wu(')||édUZTAZ(E)In(l), where = 2¢

and (A(¢)) is a family of non negative r.v. such that limy A(¢) = 1 a.s. In fact the
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left-hand side of (4.2) gives

T1 ) T )
/ = Sup [Wye — Wx|“du > / = sup [Wye — W|“du
0 € xelo,u] T/2 € xe[o,u]

T1
= [ 2 s Wi - WiPdu
T/2 € xe[0,T/2—€]

T
= 5 sup  [Wicee — Wil2
€ xe[0,T /2—e]

Clearly we haveW; = /(T /2)Byx,r where B is another standard Brownian motion.
Previous expression gives

T2 2

-
—  sup |Byio@m —Bagrl?= - Sup [ByiaT — Byl
4e ye[0,T/2—€] ye[0,1—2¢/T]

We chooset = 2¢/T. Previous expression givekIn(1/¢)A%(€) where

Ale) = (SURE[O,1—€]|BX+6 - Bx|)
- J2em(@je) )

According to Theorem 1.1 in [2], li;m,o A(e) = 1 a.s. and the result is established.

Below we will see thatwW(-), even if it does not admit a global quadratic vari-
ation, it admits ay-quadratic variation for several Chi-subspages More generally
we can state a significant existence resultye€ovariation for finite quadratic variation
processes with the help of Corollaries 3.25 and 3.26. WenertiiatD,([—, 0]) and
Dap([—T, 0]) were defined at (3.2) and (3.1).

Proposition 4.8. Let X and Y be two real continuous processes with finite quad-
ratic variation and0 < ¢t < T. Let a b two given points if—z, 0]. The following
properties hold true.

1. (X(-), Y(+)) admits a zeroy-covariation where x = L?([—z, O]?).

2. (X(-),Y(-)) admits a zerox-covariation wherey equals [?([—t,0])®n Da([—T,0])
or Da([—7, 0]) ®n L*([—7, 0]),

If moreover the covariatiofX.. 4, Y.1p] exists the following statement is valid.

3. (X(-),Y(-)) admits ax-covariation where x = D, p([—7, 0]%), and it equals

[X(-), YCOI() = n({a, bY[X v, Yorp], Vi € x.

Proof. The proof will be similar in all the three cases. As timred in Ex-
ample 3.4, all the involved sets are Chi-subspaces, which moreover are separable.

Let {ej}jen be a topological basis fot?([—z, 0]); {8} is clearly a basis for
Da([—7, 0]). Then{e ® €j}i jen is a basis ofL2([—z, 0]%), {€j ® 8a}jen iS a basis
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of L?([—1, 0]) ®, Da([—17, 0]) and {85 ® 8y} is a basis ofDap([—7, 0%). The results
will follow using Corollary 3.26. To verify the condition Hve consider

1 T
Ale) = ;fo SUp [, (@, (Ksre(+) = Xs(+)) ® (Yspe(-) = Ys(-))) - ds

loll, =1

for all the Chi-subspaces mentioned above. In all the thiteations we will show the
existence of a family of random variabl¢8(¢)} converging in probability to some

random variableB, such thatA(e) < B(¢) a.s. By Remark 3.11 1 this will imply the
assumption H1.

1. Supposex = L%([—t, 0]?). By Cauchy—Schwarz inequality we have
Ale)

1 T
S_/ sup  [1B1E2r.op) 1 Xse ()= Xs(llLzqr.0p- [ Yore(-) = Ys()lIL2(r,0p A
€ J0 ol 2q_rop=L

T s S
%/O \//O (Xu+e—xu)2du\//o YVyre—Y,)2 dv ds<T B(e)

where

(4.3) Be) \/ /OT (xu+ee— X /OT (Yv+ee— o

which converges in probability to/[ X]+[Y]+.
2. We proceed similarly foy = L2([—z, 0]) &, Da([—7, 0]).

We considerp of the form¢ = ¢ ® 8,, where is an element ol.2([—z, 0]). We
first observe

181l r.opinm, = IllLqrop - [8allp, = /[ deras
VI
Then

1 T
Ale) = — / sup
€ Jo 1

I8Nl 2q- 0pep Da =

(Xste(a) = Xs(a)) /[ . O](YS+6(X) — Ys(x))$(x) dx| ds

T
< } / sup {(\/(Xs+e(a) — Xs(a))?)
0

€ l¢l<1
. (||<5|| L2([—,0]) \// (Ysre(X) — Ys(X))? dx)} ds
[-7,0]

T [(Xsre(@) — Xs(@))? (Ys+e(X) = Ys(x))?
5/0 \/ - \// y - dx ds< /T B(e)
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where B(e) is the same family of r.v. defined in (4.3). The caBg(—z, 0]) ®n
L?([—t, 0]) can be handled symmetrically.

3. The last case ig = Dap([—7, 0]?). A general elemeny which belongs toy
admits a representatiop = Ad(,), With norm equals td|¢|p,, = |A|. We have

1 T

Ae) = - / Sup n(Xsare — Xsra)(Yorbre — Yorn)| ds
€ Jo |gllp,,=1

(4.4)

IA

1 T
o [ 10 = Xer )i — Yern) ds
0

using again Cauchy—Schwarz inequality, previous quargitgounded by

\//OT (Xs+a+ee— Xs+a)? ds\//: (Y”b“é—_Y”b)z dv < B(e).

We verify now the conditions HOand HZ'.

1. A general element ifie ®e;j}i jen is difference of two positive definite elem-
ents in the setSP = (e ®2, (& + ej)®2}i,jeN. We also defineS = {& ® €j}i jen. The
fact thatSpaniS) = Spar{SP) implies HJ'. To conclude we need to show the validity
of the condition H2. For this we have to verify

(4.5) X(), Yl (e @ €)(t) —> 0

in probability for anyi, j € N. Clearly we can supposgs }ien € C([—t, 0]). We fix
w € Q, outside some null set, fixed but omitted. We have

t,.
[X(-), YOI @ &)(t) =/0 wds

where

0
yi(s. €) = f( &(Y)(Xssyse — Xory) dy

—T)V(-S)
and

0
y(s €) = /( & ()(Yarxse — Your) X

—7)Vv(-S)

Without restriction of generality, in the purpose not to @&arge notations, we can
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suppose from now on that = T. For everys € [0, T], we have
0 €
sl = | [ (= —e )Xoy dy+ [ ey—Xeiy dy
—S

—S+e€
(4.6) —/ ej(y—€)Xsty dy

S

0
Sé(/ |éj(y)|dY+2||ei||oo) sup | Xs|.
-T se[0,T]

Fort € [0, T], this implies that

t T
/ dsi/
0 0
0 0
STG(/ |é,-(y)|dy+2||e,-||oo)(/ |e(y)|dy+2||a||m)<sup|xs|>< sup w)
T -T s€[0,T] uel0,T]

which trivially converges a.s. to zero whengoes to zero which yields (4.5).
2. A generic element ife; ® 8a}jen is difference of two positive definite elem-
ents of type{e;®2, 5.2, (€] + 8a)®?}jen. This shows HO. It remains to show that

Vi (S, E)VI (S, 6)
€

Vi (31 G)VI (31 6)
€

ds

[X(-), Y()I(g) ® 8a)(t) = O

in probability for everyj € N. In fact the left-hand side equals

t
yi(s, €
/ ](6 )(Xs+a+e — Xsya) ds.
0

Using estimate (4.6), we obtain

t

/
0 . a.s.

< T(/ 1€ ()| dy + 2| &; Iloo)< sup IXsl)wY(e) —>0
-T s€[0,T] €=0

wherewy (¢) is the usual (random in this case) continuity modulus, sorésult follows.

3. An elements, ® 8 is difference of two positive definite elements, §- 8p)®?
and 8, ®2 +8p®>2. So that the condition HOis fulfilled. Concerning the condition K2
we have

(YS+a+€ - YS+a)

t
[XC) YOG 00 = ¢ [ (avaee = Xera) Yornse = Youn) 85
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This converges toX.;a, Y.1p] Which exists by hypothesis.
This finally concludes the proof of Proposition 4.8. 0

Corollary 4.9. Let X and Y be two real continuous processes such[tKat[Y]
and [X, Y] exist and a is a given point ifi—z, 0]. Then (X(-), Y(-)) admits a
x°([—7, 0J%)-covariation which equals

[XC) YC)N) = 1({0, ONIX, Y], Yu e x°

Proof. Using Proposition 2.1, it follows that®([—t,0]%) can be decomposed into
the finite direct sum decompositioh?([—z, 0]?) & L?(—t, 0]) ®n Do([—7, O]) ®
Do([—7, 0]) ®n L2([—7, O]) ® Dy o[—7, O]). The results follow immediately applying
Propositions 3.17 and 4.8. ]

When x = Dy o([—7, 0]%) the existence of g-covariation for , Y) holds even
under weaker hypotheses.

Proposition 4.10. Let X, Y be continuous processes such th4t Y] exists and
for every sequencée,) | O, it exists a subsequende,,) such that

1 T
@.7) sup— / Xsar, — Xs| - [Yoren — Ys| ds < +00.
k fnk 0

Then
1) the real covariation procesfX, Y] has bounded variation and
2) X(-) and Y(-) admit a Do o[-, 0]?)-covariation and[X( - ), Y( - )]i(n) =

Proof. 1) The processes andY take values irB = R and the (separable) space
x = (B ®, B)* coincides withR. Taking into account Corollary 3.25X(Y) admits
therefore a global covariation which coincides with thesslaal covariation X, Y] de-
fined in Definition 1.1 and in particularq, Y] has bounded variation.

2) The proof is again very similar to the one of Propositio. 4The only rele-
vant difference consists in the way of checking the validifythe condition H1. This
will be verified identically until (4.4); the successive steill follow by (4.7). ]

Before mentioning some examples, we give some informatbmutathe covariation
structure of bifractional Brownian motion.

Proposition 4.11. Let B™"X be a bifractional Brownian motion with H K= 1/2.
Then[BHX]; = 24Xt and [BT, BT\1 =0 for a# b e [-7, 0].
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REMARK 4.12. e If K =1, thenH = 1/2 andB"X is a Brownian motion.
e In the caseK # 1 we recall that the bifractional Brownian motid™ K is not a
semimartingale, see Proposition 6 from [26].

Proof of Proposition 4.11. Proposition 1 in [26] says ti@t X has finite quad-
ratic variation which is equal tog™K], = 2'-Xt. By Proposition 1 and Theorem 2
in [19] there are two constants and 8 depending orK, a centered Gaussian process
XH:K with absolutely continuous trajectories on @[ and a standard Brownian mo-
tion W such thate X™K 4+ BHX = gw. Then

(4.8) fr X+ B, e X! + BT = BAWira, W],

Using the bilinearity of the covariation, we expand the-teihd side in (4.8) into the
sum of four terms

(4.9) PIXEE XK 4 o B, X+ o XK, BT + (B, BMX.

Since XX has bounded variation then the first three terms of (4.9)sbablecause
of point 6) of Proposition 1 in [30]. On the other hand the tipand side of (4.8) is
equal to zero fora # b since W is a semimartingale, see Example 4.13, item 1. We
conclude that B\, BT 1 =0 if a # b. O

ExamMPLE 4.13. We list some examples of processédor which X(-) admits
a x-quadratic variation through Proposition 4.8 and Corglldr9 and it is explicitly
given by the quadratic variation structur¥][of the real process.
1. All continuous real semimartingales (for instance Brownian motion). In facs
is a finite quadratic variation process; moreov8r {, S.,] = 0 for a # b, as it easily
follows by Corollary 3.11 in [5].
2. Let BHX pe a bifractional Brownian motion with parametess and K and such
that HK = 1/2. As shown in Proposition 4.11B"X satisfies the hypotheses of the
Corollary 4.9.
3. Let D be a real continuous#)-Dirichlet process with decompositioD = M +
A, M local martingale andA zero quadratic variation process. Thén satisfies the
hypotheses of Corollary 4.9. In facD] = [M] and [D.;4, D..p] = 0 for a # b.

We go on evaluating othey-covariations.
Proposition 4.14. Let V and Z be two real absolutely continuous processes such
that V', Z’ € L2([0,T]) w-a.s. Then(V(-), Z(-)) has zero scalar and tensor covariation.

In particular (V(-), Z(-)) admits a zero global covariation.

Proof. Similarly to the proof of Proposition 4.1, by Remark tem 4 and Prop-
osition 3.15 we only need to show that (- ), Z(-)) admits a zero scalar covariation,
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i.e. the convergence to zero in probability of the quantity

T1
(4.10) /O ZIVsre () = Vs()llell Zsre(+) = Zs(+)lle ds.

By Cauchy—-Schwarz, (4.10) is bounded by

(4.11) \/ [0T3 sup |vs+e(x)—vs<x)|2ds-\/ /O i SUP (741 = Zu()P du

€ xe[-1,0] € xe[-1,0

which will be shown to converge even a.s. to zero. The squitheofirst square root
in (4.11) equals

I
— sup
0 € xe[-1,0]

< T1 max S+X+e€ V/( )zd ds<T ) as. 0
- w [y €) — 0,
— Jo € xe[-1.,0] S+X y y - Jo(VA)(y) dy €50

S+X+e 2
/ V'(y)dy| ds

S+X

since @ (v2)y)ay(€) denotes the modulus of continuity of the a.s. continuoustion

t— fOt(V’Z)(y)dy. The square of the second square root in (4.11) can be traatdd
ogously and the result is finally established. ]

If X is a finite quadratic variation processes tfee= X(-) admits aDiag([—, 0]%)-
quadratic variation, wherBiag([—t,0]%) was defined in (3.3). This is the object of Prop-
osition 4.15.

Proposition 4.15. LetO< <t <T. Let X and Y be two real continuous processes

such that[ X, Y] exists and(4.7) is verified. Ther(X(-),Y(-)) admits a Diag[—t, 0]%)-
covariation. Moreover we have

P taT
[XC 0 V() = /0 g=X)[X, Y xdx, t €0, T],

where . is a generic element in Digf7, 0]?) of the typeu(dx,dy) = g(x) Sy(dx)dy,
with associated g in ©([—, 0]).

REMARK 4.16. Taking into account the usual conventioh Y]; = O fort < 0, the
process(fé” 9(—X)[X, Y]t-xdX),_, .7 can also be written &y g(—X)[ X, Y]t—xdX)q_, -

Proof of Proposition 4.15. We recall that, for a generic edatmu, we have
ltllpiag = lI9lloc-
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First we verify the condition H1. We can write

1 T
—/O SUP (1, (Xere(+) — Xe(+)) ® (Yare(-) — Ya(- )] s

€ Hﬂ”Dlagfl
1 T

< - sup
€Jo Jglost

- (ose = X0 =%,
= [ s |

The condition H1 is verified because of Hypothesis (4.7).
It remains to prove the condition H2. Using Fubini’s theoreme write

0
/ 9O (Kse(X) = Xs(X))(Yse(X) = Ys(x)) dx

ds

g(x —s) dx| ds.

t
[XC-) YOI () = 21/0 ((dx, dy), (Kste(+) = Xs(+)) ® (Ysye () = Ys(+))) ds

1 t
. f f (Xsie(X) = Xs00)(Yore (x) = Ys()g(x) dx ds
€ Jo J[-1,0]

_ /O 9(x) (Xs+x+e Xsx)(Ystxte = Ysix)
(-tv(-1) €

0 t+Xx _ —
:/( g(X)A (XS+6 XS)(YSJre YS) dS dX

—t)v(-1) €

tAT t—Xx _ _
— / g(—X)/ (Xs+e XS)(YS+6 YS) dS dX
0 0 €

To conclude the proof of H2 (i) it remains to show that

tat t—x _ _
( / o(=x) / (Xste = X)(Ysre = ¥s) 4 dx)
0 0 € te[0,T]

tAT
—">([ 90X, Vs dx)
=0 \Jo te[0,T]
i.e.

(412) Su%/t/\r (g(—X) /I—X (Xs+e - XS)(YSJre - YS) dS— [X, Y]’[X) dX
t<T [JO 0

ds dx

€

The left-hand side of (4.12) is bounded by

T X (Xere — Xo)(Ysre — Ye
a1 sup / Kotre = X)Vsre =¥8) 4oy vy, | dx
te[0,T] 0 €
X € Y €
< Tlgle sup / Kare 2 XNere =) s 1x, vy |
te[0,T]

P
— 0.
€—>

761
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Since X andY admit a covariation, previous expression converges to. ZEngs shows

the condition H2 (i).
Concerning the condition H2 (ii), we have

tAT
m«xvcmwr=A 9(=X)[X, Y]y dx

t
/M4Wthx05wn
0

/ g(—=x)[X, Y]ixdx, T <t<T.
0

Previous expression has an obvious modificatm/)] which has finite variation
with values iny*. The total variation is in fact easily dominated yi§|[x,v]x| dx. O

A useful proposition related to Proposition 4.15 is the dafing. We recall that
D([—, 0]) denotes the space of cadlag functions equipped withuttirm norm and
Diagy([—7, 0]?) was introduced in Notation 3.6.

Proposition 4.17. Let X be a finite quadratic variation process. Let (B, T] —
x := Diagy([—7, 0]%), cadlag. We have

/OT (G(8), dIX(s) - = /O (/XT q(s, —x)[X]ds_X) dx

_ /O (/OT_X 95+ X, —X) d[X]S) dx,

where Gs) = g(s,x)dy(dx)dy for some bounded Borel function [@, T] x[-7,0] = R
and [X]qs_x represents the measure differential associated with tkeeasing function
S = [X]stx-

(4.13)

Proof. We remark that — g(t, -) is left continuous from [0T] to D([—r, 0])
equipped with thd| - || horm. By item 2 in Remark 3.2, Proposition 3.18 item 2 and
Proposition 4.15X( -) admits ax-quadratic variation. The proof will be established
fixing w € Q. We first suppose that

N-1
(4.14) G(S) = D Al 4..1(8) + Aolo)(9)

i=0
where, for some positive integdd e N, 0=ty <--- <ty =T; Ag, ..., Ay € x; In
particular there ar@y, ..., ay € Dq([—7, 0]) with

(4.15) A (dx, dy) = & (x) dy(dx)dy for all i<{0,..., N}.
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Then (4.13) holds by use of Proposition 4.15.
To treat the general case we approach a gen@rdly a sequence@") of type
(4.14), i.e.

N-1

Gn(s) = Z Ain]llti,ti+1](s) + Ag]l{o}(S)

i=0

where A" = G(;), 0<i <(N—-1), 0=t <--- <ty =T is an element of sub-
divisions of [0,T] indexed byn whose mesh goes to zero whandiverges to infinity.
Let af,...,ay € D([—7,0]) related toAy, ..., Ay through relation (4.15). Consequently
we have

@) [ LGS, dXT),- = / r ( / s —x)[X]dH) dx

with g"(s, X) = iN:’Ol a"(X)1j;.4.,,1(S) + a5. In particulara® = g(t;, -).
By assumption, for everg € [0, T] we have

lim sup |g"(s, x) —g(s, x)| = 0.
]

n—-+400 xe[-7,0

Consequently, for everx € [0, 7], by Lebesgue dominated convergence theorem,

n—+o00

)
im [ (65, —%) — 9(S, —X)[Xlaex = O.

Moreover

)
/ (6"(s, —x) — g(s, —x)[ X]asx

< (sgmg“noo + ||g||oo)[X]T.

Again by Lebesgue dominated convergence theorem, the-hieghd side of (4.16) con-
verges to the right-hand side of (4.13) and the result fallow ]

REMARK 4.18. If [X]is absolutely continuous with respect to Lebesgue, the-ide
tities (4.13) are still valid withy = Diag([—t, 0]?).

5. It6 formula

We need now to formulate the definition of the forward typesgmal for B-valued
integrator andB*-valued integrand, wher8 is a separable Banach space.

DEFINITION 5.1. Let &i)teo, 1] (respectively Yi)iepo,11) be aB-valued (respect-
ively a B*-valued) stochastic process. We supp&edo be continuous an& to be
strongly measurable such thﬁfHYSHB* ds < 400 a.s. For every fixed € [0, T] we
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define thedefinite forward integral ofY with respect taX denoted byfg B+ (Ys,d"Xq) g
as the following limit in probability:

t t
. Xeye — X
/B*(Ys, d Xs)g := I|m/ Yo, =2 7°) ds.
0 e—>0 Jg B* € B

We say that thdorward stochastic integral o¥ with respect toX exists if the process

t
([ B* (Ys' d_xs> B)
0 te[0,T]

admits a continuous version. In the sequel indiBand B* will often be omitted.

We are now able to state an Itd6 formula for stochastic prasesgsth values in a
general separable Banach space.

Theorem 5.2. Let x be a Chi-subspace an¥ a B-valued continuous process
admitting a x-quadratic variation. Let F [0, T] x B — R Fréchet of class &2 such
that D?F(t,n) € x forallt € [0, T] andn € C([—T,0]) and D’F: [0, T x B — x is
continuous.

Then for every & [0, T] the forward integral

t
/O 5 (DF(s, Xo), d Xo)s

exists and the following formula holds.

F(t,X,) = F(O,XO)+/t *F(s, Xs)ds+/t g (DF(s, Xo), d Xs)g
(5.1) 0 0

1 t 2 ~
+§/0 2(D?F(s, Xs), d[X]s) -

REMARK 5.3. The statement of Theorem 5.2 induces some operationahents.
The Chi-subspacg of (B®, B)* constitutes a degree of freedom in the statement of 1t
formula. In order to find the suitable expansion foft, X;) we may proceed as follows.

e Let F:[0, T] x B— R of classC*%J0, T] x B) we compute the second order
derivative D2F if it exists.

e We look for the existence of a Chi-subspagcdor which the range oD?F: [0, T] x

B — (B ®, B)* is included inx and it is continuous with respect to the topologyof

e We verify thatX admits ay-quadratic variation.

We observe that wheneveX admits a global quadratic variation, i.e. )aquadratic
variation with x = (B ®, B)*, the condition onF to be checked is that it belongs
to C12([0, T] x B). WhenX is a semimartingale (or more generally a semilocally
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summableB-valued process with respect to the tensor product) thedntita a tensor
quadratic variation and in particular previous result galizes the classical Ité formula
in [22], Section 3.7.

Proof of Theorem 5.2. We observe that the quantity

(5.2) loe, 1) = [0‘ F(s+ ¢, Xsyo) — F(5, Xs)

€

ds, te[o,T]

converges ucp foe — 0 to F(t, X;) — F(0, Xp) since F(s, Xs))s>0 IS continuous. At
the same time, (5.2) can be written as the sum of the two terms:

! F ;X € -F ,X €
I]_(G,t) :/ (S+E S+E) (S S+ ) ds
0

and

Y F(S, Xepe) — F(s, Xo)
€

ds, €>0,te][0,T].

(5.3) o(e, ) = /O

We prove that

(5.4) l(e, -)9/' B F (s, Xs) ds
0
ucp. In fact
t
(5.5) l1(e, t) =/ 0tF(s, Xsre)ds+ Ry(e, 1), te][0,T],
0
where
Ri(e, t) = /tfl(atF(s + ae, Xgie) — 0 F(S, Xsye))dads, te][0,T].
0J0

For fixed w € 2 we denote byV(w) := {Xi(w); t € [0, T]} and
(5.6) U = U(w) = conv(V()),

i.e. the set/ is the closed convex hull of the compact sub®¥éb) of B. For x € ,
we have

sup |Ru(e, t)] < Taft ¥ (e),
te[0,T]

wherew % "¥(€) is the continuity modulus i of the applicatiord; F: [0,T]xB — R

restricted to [OT] x /. From the continuity of theé);F as function from [0T] x B to
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R, it follows that the restriction on [0[] x ¢/ is uniformly continuous ands[%:"" is
a positive, increasing function dR* converging to 0 when the argument converges to
zero. In particular we have proved thRi(e, -) — 0 ucp ase — 0.
On the other hand the first term in (5.5) can be rewritten as

t
/ & F (s, Xs) ds+ Rafe, 1)
0

where Ry(¢, t) — 0 ucp arguing similarly as foR;(¢, t) and so the convergence (5.4)
is established.

We fix nowt € [0, T]. The second addenth(e, t) in (5.3), can be approximated
by Taylor's expansion and it can be written as the sum of thieviing three terms:

t Xoie — X
|21(€v t) = / <DF(SI Xs)a ¥> dsv
0 B* B

= [ (o, O XIS

X?"F
I23(e, 1)

= /t [/1a <D2F(s, (1— o)Xgse + aXs) — D?F(s, Xo), w> da:| ds.
0 0 X x*

€
Since D?F: [0, T] x B — x is continuous and separable, we observe that the process

H defined byHs = D?F(s, Xs) takes values in a separable closed subspacs .
Applying Corollary 3.21, it yields

1 [t —
loo(e, t) lo> 5[ ((D?F(s, Xg), d[X]s),- for every tel0, T].
€—> O

We analyze nowl,3(e, t) and we show that,s(e, t) L{; 0. In fact we have

[123(€, )]

1 rtrt
= E /f a|X(D2F(S| (1—0()Xs+g + QXS) — DZF(S’ XS)! (XS+6 _Xs)®2)x*| da ds
0J0

1t 1
=z // a||D?F (s, (1 — @)Xspe + aXs) — D?F(S, Xo) |l ||(Xspe — Xo)®?| + da ds
0Jo
t et — X)®2
= wgip () | sup <¢>, M> ds,
0 lgl,=1 €
where w.&%?xu(q is the continuity modulus of the applicatidb?F: [0, T] x B — x

restricted to [0,T] x U wherel/ is the same random compact set introduced in (5.6).
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Again D2F on [0,T] x is uniformly continuous andy[Doz'PX“ is a positive, increasing
function onR* converging to 0 when the argument converges to zero. Takitm i
account the condition H1 in the definition ¢f-quadratic variation,l,3(e, t) — 0 in
probability whene goes to zero.

Sincelg(e, t), 11(e€,1), l22(€,t) and l,3(e,t) converge in probability for every fixed
t € [0, T], it follows that I,1(¢, t) converges in probability whea — 0. Therefore the
forward integral

/t 5 (DF (5, Xs), d Xo)e
0

exists by definition. This in particular implies the 1t6 fouta (5.1). 0

6. Applications of 1t6 formula for window processes

6.1. Some conventions. The scope of this section is to illustrate some applica-
tions of our Banach space valued It6 formula to window preess In this sectiod™
denotes the classical Malliavin gradient and?(L>([0, T])) (shortly D*?) denotes the
classical Malliavin—Sobolev space, related to the case wkés a classical Brownian
motion. For more information the reader may consult foranse [24]. On the other
hand D will denote the Fréchet differentiation operator for fuontls defined onB.

We go on fixing some notations. Let07 < T, we setB = C([—t, 0]).

NOTATION 6.1. LetB = C([—7, 0]) and | be a real interval. Considef: | x
B — R of classC%Y(l x B). Then, for eacht € | andn € B, u = Du(t, n) is a
(signed) measure on-fr, 0]. We will simply denoteD*u(t, n) (resp. D%u(t, n)) the
quantity which, according to Notation 2.2, should dau(t, n))* (resp. Ou(t, n))%).
We remark that, for any € | andn € B, D®F(t,n) = DF(t, 7)({0}) and D*F(t,n) =
DF(t, n) — D%F(t, n)do.

We go on fixing further conventions. Let: [0, T] x B — R Fréchet of class
cL[o, T[xB) N CO([0, T] x B). We remind that the first order Fréchet derivaté
defined on [OT[ x B takes values iB* =~ M([—, 0]). For all ¢,n) €[0, T[ x B, we
will denote by DyxF(t, n) the measure defined by

M(—r,0)(DF(t, n), h)c-r.0p = DF(t, n)(h)
= / h(x)DgxF(t, n) for every h e C([—t, Q]).
[-7.0]
We remark that the second order Fréchet derivabfé defined on [0T] x B takes
values inL(B;B*) = B(B, B) = (B®, B)*. Recalling (2.3), ifD?F(t,n) € M([—t,0)

for all (t, n) € [0, T] x B (which will happen in most of the treated cases), we will
denote with D, 4 F(t, ) the measure onz, OF such that following duality holds
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for all g € C([—t, 0])

M(—r.0p) (DF(t, n), 9)c(r.0p) = D?F(t, n)(g) = /

[,

_9(% Y)DGy yF (8, ).

We conclude the subsection with a notation which concermarionistic integrals
of real functions.

NOTATION 6.2. Letg, n:[a, b] > R be cadlag. We extend to the real line
settingg(x) = 0 for x < a and g(x) = g(b) for x > b.

If g has bounded variation, arml< c < d < b, we setf]w] 1dg = g(d) — g(c)
and f[c,d] 1dg = g(d) — g(c-). Consequentlyf[ayb] 1dg = g(b) since g(a—) vanishes.
Conformally to this convention, i§: [a,b] — R has bounded variation and [a, b] —
R, is continuous, we denote

[ g dn = g(dyn(d) — gE)n(c) - [ 1 dg
e d] ]e,d]
and

g dy = g(d)n(d) — gc)n(c—) — [ 7 da.
] [c.d]

[cd
For instancefy, ; 9 dn = g(b)n(b) — fi,y 1 dO-

6.2. About anticipative integration with respect to finite quadratic variation
process. This section aims at giving one application of calculus végularization
for window processes to anticipative calculus in a situatio which neither 1t6 nor
Malliavin—Skorohod calculus can be applied. Our methode pl®duce, as secondary
effect, some identities involving path-dependent It6 oot®kod integrals with forward
integrals. LetX be a real finite quadratic variation process such gt= 0 a.s. and
prolonged as usual by continuity to the real line. One mttivais to express, for
T € [0, T],

6.1) /OTT (/yw 9%, Xy) dx) d Xy,

for some smooth enough: R? — R.

REMARK 6.3. 1. We observe that, even whehis a semimartingale, previous
forward integral is not an Itd integral since the integraadhnticipating (non adapted).
If X is a Brownian motion, it can be expressed with the help of &kod integral.

2. We observe that (6.1) equals

T-1 0
(6.2) /0 ( I(Xyer Xy)dx) d=X,.

-7
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In the perspective of evaluating (6.2), we considerR? — R of class C2(R?)
such thatf(x, y) = foy g(X, 20dz In particularg = 3, f. For this purpose, we start
expanding

0
f(Xxtt, Xe—r)dX

-7

through our Banach spadé-valued 1t6 formula. We obtain the following.

Proposition 6.4. Let f: R? - R be a function of class € We have

0

.
f (Xxsts Xer) dx = 7 (0, 0)+/ (/
-7 0 y
T-1 0
+ / (/ 82f(xy+)(+tv Xy) dX) d_Xy
0 -
1 T—1 0
+ 5/0 (/ 32, f (Xytz4c, Xy)dz) d[X]y

1 0 T
+ é / (/ alzlf(xter, Xtr)[x]dt+x) dx,
- —X

provided that at least one of the two forward integrals abewésts.

(y+7)AT

01 f (Xy, Xir) d) d-Xy

(6.3)

REMARK 6.5. If X is an (F;)-semimartingale the forward integral

T (Y+17)AT
(6.4) / ( / 81 f (Xy, Xi_r) dt) d=X,
0 y

coincides with the Itd integral

T (y+1)AT
[ ([ o1 T (Xy, Xi=¢) dt) dXy.
0 y

Proof of Proposition 6.4. We will apply Theorem 5.2 t6(X{( - )) where
F: C([—7, 0]) — R is the functional defined by () = for f (n(x), n(—7)) dx which

is of classC?(B). Below we express the first derivative as

0

DaxF () = 91 f (n(x), n(=1))1{—r,01(X) dX+/ 92 f(n(2), n(—7)) dz5_-(dx)

and the second derivative as

Dczix,dyF(n)
= 321 F (0 (X), n(—1))11,0/(X) 8y(dx) dy+ 05, f (7(X), n(—7)) 8 (AX) [ +,0(y) dy

0
+03, f ((X), (=) 1j-r,01(X) dX S (dy) + / 33, f (n(2), n(=7)) dz5_(dX) 5 (dY)-

-7
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The second order Fréchet derivati®¥F () belongs toy with x := Diag ®D_, ®n
L?® L? ®, D_, ® D_._,. Since X is a finite quadratic variation process, Propos-
itions 4.8, 4.15 and 3.17 imply thaX( - ) admits ay-quadratic variation. We apply
now Theorem 5.2 td=(Xr(-)). The forward integral appearing in the It6 formula

)
|1:=/0 (DFCX (), dXe(-))

exists and it is given byl;; + 11, where

. T 0 Xt+x+e - xt+X
I = lim A (X, Xemg) =20 dx it
=0 Jo -

Trro Xt rie — X
l12 = lim / (/ 32 f (X, xtf)dx)udt,
E—)O 0 — €

T

and

provided that previous limits in probability exist. We have

| I Tro Xt+X+E - XH—X
11 = lim 1 F (Kr Kig) mo2XHe — X gy dt
0 J(=1)Vv(-t)

e—0 €

. Tt Xype — X
= I|m/ / 1 f(Xy, Xp_) Y dy dt
0 J(t—1)v(0) €

e—>0

By Fubini’s theorem, previous limit equals (6.4), providéldat previous forward
limit exists.
We go on specifyingl1».

(T r° Xicrqe — Xie
I12=I|m0/ (/ 3 f (Xisx, xt_,)dx)udt

T €

T—1 0 X . — X
=Iim/ (/ azf(xyw,,xy)dx)M dy
0 — €

e—0 r

T-1 0
-/ ( [ 2t X)) dx) d-xy,
0 -7

provided that previous forward integral exists.
We evaluate now the integrals involving the second ordeivalire of F, i.e.

1

T ——
©5) 3 | A (DPFOGC), ATXCTR) -

We remind thatD?F () takes values iry := Diag®D_, @ L2@®L2®@nD_, ®D_, ..
The term (6.5) splits into a sum of four terms. Since by Prajmrs4.8 item 2, X(-)
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has zeraD_, ®, L? and L2®p, D_,-quadratic variation, the only non vanishing integrals
are the two termd,; and I, given respectively by th&®_,. . and theDiag-quadratic
variation. Again by Proposition 4.8 item 3, expression J&Bcomesl,; + 1, where

1 T-t p0 1 T P
=g [ [ e X)X 2= [ 0ue(G). AT
0 -1 0

and G(t) = g(t, X) 8y(dx) dy, with g(t, x) = 32, f (Xt1x, Xi—c). SincedZ, f is a contin-
uous function, Proposition 4.17 can be applied and we get

1 0 T
l2 = > [ (/ alzlf(XHXa Xtr)[x]dt+x) dx.
-t \J—x

In conclusion we obtain (6.3). ]

Corollary 6.6. Let X be an(F)-semimartingale and gR?> — R of class
CZYR x R). Then setting f(x, y) = /; 9(x, 2) dz the forward integral

T—1 0
/(; (/ g(xy+t+x, Xy) dX) d7Xy

exists and it can be explicitly given usitf§.3) and the relationa, f = g.

Proof. The first forward integral in the right-hand side of36exists and it is an
It6 integral. We apply successively Proposition 6.4. 0

Corollary 6.7. Let X=W be a classical Wiener procgsé € C?(R?). We have
the following identity.

0
f (WX-H! Vvt—‘[) dx

-7

T (y+7)AT
=1 f(0, 0)+/ (/ 91 F(Wy, W) dt) dwy
0 y

T—1 0 T—1 0
+/ (/ 3 F (Wygxros Wy)dx) 5Wy+/ (/ 82, F (Wi r 42, V\/t)dz) dt
0 —T 0 —T

1 T-1 0 1 0 T
+§/0 (/ 3222f(Wy+z+r, Wy)dz) dy+§/ (/ Blzlf(V\/tH, Wi_,) dt) dx.
ot —7 \J—x

REMARK 6.8. If Y € DY2(L2([0, T])), D™Y represents the Malliavin derivative
and fot Ys W, t € [0, T], is the Skorohod integral. We recall that, by [27] and [30]

(6.6) /O t Yed W = /O t Ys 8Ws + (Tr~ D™Y)(t)
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where

(Tr~ DMY)(t) = LmO/Ot (/:ﬁ DY dr) ds in L3(Q).

€

Proof of Corollary 6.7. It follows from Proposition 6.4 ptided we prove that

T—1 0
/ (/ 82 f (Wy+X+‘L'! Wy) dX) d7Wy
0 -7

equals

T-1 0 T-1 0
f ([ azf(vvy+x+,,wy)dx) 3Wy+/ (/ azzlf(V\/t+,+Z,V\/t)dz) dt.
0 -7 0 -1

This follows by Remark 6.8 with

0
YS = / 32 f (WS+T+Zl WS) dZ

T

In fact, forr >'s, DMYs = [°

32, f (Wstc12, We) dz and so

t t 0
67) (T D"W)(t):lj@/ D,mvsds:/ (/ aglf(wsﬂﬂ,ws)dz) ds.
0 0 —

T

Combining (6.7) with (6.6) fot = T — ¢ the result is now established. O

REMARK 6.9. Another example of exploitation of Proposition 6.4sas whenX
is a Gaussian centered process with covariaR(®t) = E[XsX;] such thatd?R/(3sdt)
is a signed finite measune. We say in this case that the covarianceXohas a meas-
ure structure, see [18]. We remind that in this caéds a finite quadratic variation
process andX]; = n({(s, s) | s € [0, t]}). With some slight technical assumptions, the
following relation holds:

t t
(6.8) /st*Xs=/ YS(SXS+/ D™ Ys dyu(r, S).
0 0 [0,t]2

This allows to show the existence of both the forward intlsgia the statement of
Proposition 6.4 using (6.8).

6.3. Infinite dimensional partial differential equation and Clark—Ocone type
results. As motivated in the introduction, just after the definitiohvandow processes,
one natural application consists in obtainingckrk—Ocone type formuléor real finite
quadratic variation processes. L¥tbe a continuous process such thxt K], = 0%t
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for someo > 0. and we assume agaly = 0 for simplicity. Consideth = ¢(X+) and
let 24: [0, T] x R — R be a solution ofd4; + (62/2)dxx4 = 0 with final condition
U(T, x) = ¢(x) for some real Borel non-negative functign By It6 formula (1.7), we
get that

t
6.9) h = ho + / £ d X,
0

where & = 9,U(s, Xs) and hg = U(0, Xo), see also [4] and references therein. The
integral in (6.9) is indeed an improper forward integral.hlis a path dependent ran-
dom variable, we can express it as a functional of the cooredipg window process,
i.e. h= f(X) whereX = X(-), for f: B—- R and B = C([—T, 0]) throughout this
section. The idea consists in looking for solutian®f a suitableB-valued partial dif-
ferential equation which allows to formulate as (6.9) wherehy and & depend onu.
The proof should be again an Ité type formula, this time faygasses taking values If
h belongs toD*2, then Hy = E[h] and & = E[Dh|F]. This statement is the classical
Clark—Ocone formula

In this subsection we sat = T and thereforeB = C([—T, 0]).

DEFINITION 6.10. LetH: C([-T,0]) - R be a Borel functional and: [0, T] x
B — R of classCY¥([0, T[xB) n C°(0, T] x B). u is said to be a solution of (the
infinite dimensional PDE)

(6.10) au(t, 17)+/[t’

u(T, n)=H()

2
Du(t, n) dn(x)+ %(Dzu(t, n,1p,)=0 for te[0, T,
0]

if the following conditions hold.

i) D= u(t,n) is absolutely continuous with respect to Lebesgue measutdts Radon—
Nikodym derivative, still denoted by +— Dj-u(t, ), has bounded variation for arye
[0, T[, n € B;

i) D>2u(t, n) is a Borel signed measure oaT, 0] for all t € [0, T] and 5 € B;

iii) u solves (6.10) wherq[_w] Diu(t, n) dn(x) in the sense of Notation 6.2, setting
a=-T,c=-t,d=b=0andg: [-T,0] - R being the cadlag version of— Diu.
(D2u(t, ), 1p,) indicates the evaluation of the second order derivativehendiagonal
Dt ={(s,9) [s€[-t, O]}

Theorem 6.11. Let H: B — R be a Borel functional and u[0, T] x B — R be
a solution to(6.10) We sety := x°([—T, 0]?) @ Diag([—T, 0J%), (shortly x° @ Diag).
We suppose the following.
) (t, )~ [Du(t, Milev = [Dgu(t, )| + Ji_r oI Drult, ) dx = [Dgu(t, n)| +
| DLu(t, n)|lvar is bounded or{0, T] x K for each compact K of B.
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i) D2u(t,n) € x for every te [0, T], n € B and that map(t, n) — D>2u(t, n) is
continuous from0, T] x B to y.
Let X be a continuous process wit]; = o°t, 0 > 0, and X = 0.

Then the random variable b= H(X+1(-)) admits the following representation

.
(6.11) h=u(T, X:(-)) = Ho—l—/o £ d~ Xy

with Hp = u(0, Xo(-)), & = D%u(s, Xs(-)) and fOT & d~ X; is an improper forward
integral.

Proof. Sinceu € C°([0, T] x B), H = u(T, -) is automatically continuous. By
Propositions 4.9, 4.15 and 3.1%(-) admits ay-quadratic variation which is the sum
of the x°-quadratic variation and thBiag-quadratic variation. Applying Theorem 5.2
to u(t, X¢(-)) for t < T we obtain

t
u(t, X,(-)) = U(0, Xof -)) +/0 Biu(s, Xs(-)) ds
t
(6.12) —i—/o Mm(-T.0p{Du(s, Xs(-)), d™Xs(-)cq-T.0p

1 XN
*3 /o L (D2U(s, Xs( ), dIX()s) -

By the assumption i) it is possible to show thffg MT.op{Dru(s, Xs( - ),
d~Xs(-))cqT,0p €xists and equalgy (fH’O] DLu(s, n)dn)|,—x.) ds. We omit the tech-

nicalities. Consequently, by subtractioﬁ; D%u(s, Xs(-)) d~Xs exists fort € [0, T[.
The 1td expansion (6.12) gives

(6.13) u(t, X¢(-)) =u(0, Xo(-)) + /Ot D%u(s, Xs(-))d Xs + /Ot Lu(s, Xs(-))ds

where

Lu(t, n) = du(t, n) +/

2
Du(t, ) dn + = (D2u(t, n), 1p,),
1-t,0] 2

for t € [0, T[, n € B. By hypothesisCu(t, n) = 0, so (6.13) gives
t
(6.14) u(t, X¢(-)) = u(0, Xo(-)) +/O D%u(s, Xs(-)) d™ Xs.

Now for every fixedw, sinceu € C°([0, T] x B) and X is continuous, we have
lime_t u(t, X¢(+)) = u(T, X7(-)), which equalsH(Xt(-)) by (6.10). This forces
the right-hand side of (6.14) to converge, so that the resiitiws. ]
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REMARK 6.12. Previous theorem also applies in the case 0, i.e. [X] = 0.
To this purpose we observe the following.
1. Let

(6.15) h= f(/oT p1(8)d™ Xs, ..., /OT on(s) d_XS),

with ¢ € C?([0, T]) and f € C?(R"). We observe that the integraI)%T @i (s)d=Xs,

1 <i <n are defined because eaghhas bounded variation, see item 3 of Remark 1.2.
In that case the PDE in (6.10) simplifies in‘im+f[71’0] DLu(t,n)dn =0 and it is easy

to provide a solutioru in the sense of Definition 6.10. That [0, T]xC([-T,0]) = R

is given by

u(t, n) = f ( [“0] oS+ 0 dn(s). ... /m] on(s+1) dn(s)),

adopting the same conventions as in Notation 6.2.

2. SinceD%u(t,n) =Y ,9 f (f[_t'O] pi(s+t)dn(s),..., f[—t,O] gn(s+t)dn(s))ei(t),
by Theorem 6.11, we obtain representation (6.11) with= f(0,...,0) and& =
D%u(t, X¢(-)) The assumptions of Theorem 6.11 can be easily checkedy®uimit
the details. We remind only that(-) admits x°-quadratic variation.

3. In the cases = 0, representation (6.11) can be also established via ancappl
tion of the finite dimensional 1t6 formula for finite quad@tvariation processes, see
Proposition 2.4 in [15].

4. The caser # 0 with the same r.vh given by (6.15) but withf only continu-
ous with linear growth (ifX = W ando = 1 even in the weaker conditiofi with
polynomial growth) was treated in Section 9.9 of [7].

REMARK 6.13. 1. Theorem 6.11 is only one significant result related gen-
eralized Clark—Ocone type formula. In order to obtain marecise results, one needs
to provide solutions to infinite dimensional PDEs of the tyeB). The natural prob-
lem consists in constructing indeed solutions of (1.8). &darge class of random vari-
ablesh, Chapter 9 of [7] provides solutions of 6.10 at least whiij [=t, i.e.oc = 1.

2. Theorem 6.11, among others, generalizes Theorem 7.1]cdn® it expands its
proof to the case whenX[J; = o%t, 0 > 0.

REMARK 6.14. 1. The assumptionX]; = 0%t is not crucial. With some more
work it is possible to obtain similar representations eviehX]; = fé a’(s, Xs) ds for
a large class of continuows: [0, T] x R — R.

2. A simple example of non-semimartingal¥ verifying the property K]; =
fya%(s,Xs)ds is the following. Leta: [0, T]xR — R be a function of clas€%([0, T]x
R) which is Lipschitz in the second variable. Lgtbe a non-semimartingale verifying
[B]: =t. A simple example is given by the sum of a classical Wienecgse and an
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independent fractional Brownian motidd™ with 1/2 < H < 3/4. Obviously B]; =t
and B is not a semimartingale according to [3]. Lét: [0, T] x R — R such that
¥(t, X) = foX a(t, v(t, y))dy. Suchy exists and it is unique sinca is Lipschitz. We
set X¢ = ¥ (t, Bt). By the stability theorem for finite quadratic variationopesses, see
e.g. [13] Remark 3, sincg is of classC([0, T] x R) we get

2
(X = /O t (%(s, ﬂs)) d[pls = /0 a2(s, (s, ) ds— /O "a2s, X ds, te[o, T]

This shows the desired property.

3. Under some light technical assumptions on functiorusing 1td forum la 1.7, it
is possible to show the existence pf [0, T] x R — R continuous such thad~ X; =
a(t, Xo)d g + y(t, X;)dt. For this type of calculations, the reader can consult [29].

A. Appendix: Proofs of some technical results

Sketch of the proof of Proposition 1.7. L&t (resp.Y) be anH-valued bounded
variation (resp. continuous) process. Proceeding as far va@lued processes, see for
instance [30], Proposition 1.7) b), one can show thétY) has a zero scalar covari-
ation. A semilocally summable process is the sum of a locslisnmable process and
a bounded variation process. Therefore, without resbrictf generality, we can sup-
pose thatX is locally summable with respect to the tensor products. &alization
we can suppose th& is summable with respect to the tensor products and bounded.
Let s € [0, T] and consider the following identity

(A-l) X?je - ng =Xs® (Xs+e - Xs) + (XS+5 - Xs) ®Xs + (Xs+e - Xs)®2-

Dividing (A.1) by € and integrating from O ta in the Bochner sense we obtain

lo(t, €) = I1(t, €) + Ig(t,e)-q-/: (XS“Z—XW“

where

tx® _x® ' X ® (Xepe — X
lo(t, €) :/ % ds, I1(t, €) :/ s ® (Xot s) ds,
0 0

€

t f—

Io(t, €) = / RKs+e j§5) ®Xs 4s
0

Let t € [0, T]. Obviously we get lim_o lo(t, €) = X&° —X&.
By an elementary Fubini argument we can show that

t u
Il(t,e)=/ (;/ Xsds)®qu.
0 U—e
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Since (Ye) fu”_e Xsds — X, for everyu € [0, T] and w € Q and X being bounded,
Theorem 1 in Section 12.A of [9] allows to show thia(t, €) — f; Xs ® dXs in prob-

ability. Similarly one shows thaty(t, €) — fé dXs ® Xs. In conclusionX admits a
tensor quadratic variation which equals

t t
X?Z—/ XS®dXS—/ dXs ® Xe. O
0 0

Sketch of the proof of Proposition 1.8. Lét be the Hilbert values space &.

Let V (resp.Y) be anH-valued bounded variation (resp. continuous) processhott
restriction of generality we can suppose tiatis an (%;)-local martingale. After lo-
calization one can suppose thH#tis an (F;)-square integrable martingale. Proceeding
similarly as for the proof of Proposition 1.7, using Remarkhk) of Chapter 6.23 of
[9], it is possible to show that

1 t t

o [ e =l ds— il -2 [ (e, 0l

€ Jo €—>0 0
The analogous of the bilinear forms considered in Proposili.7 proof will be theH
inner product. O]

Before writing the proof of Proposition 3.20 we need a tecAhiemma. In the
sequel the indicey and x* in the duality, will often be omitted.

Lemma A.1l. Lette [0, T]. There is a subsequence @f) still denoted by the
same symbol and a null subset N @f such that

F™(w, 1)(¢) —kooe Fw, t)(@) for every ¢ € x and ¢ N.

Proof. LetS be a dense countable subset af By a diagonalization principle
for extracting subsequences, there is a subsequanged null subsetN of Q such
that for allw ¢ Q,

Foolw, 1)(9) = lim F™(w, 1)(9)
—+00

exists forany ¢ € S, ¢ N and Vte[0, T].

(A.2)

By construction, for every € [0, T], ¢ € S

F(-,0)(@) = F@)(-, 1) = Fu(-, 1)) as.

Lett € [0, T] be fixed. Sincep € S countable, a slight modification of the null skt,
yields that for everyw ¢ N,

F(o, t)(¢) = Fo(o, t)(¢), Vo €S.



778 C. D GIROLAMI AND F. Russo

At this point (A.2) becomes

(A.3) F(w, t)(¢) = kﬂT F™(w, t)(¢), forevery wé¢N, ¢ €S.

It remains to show that (A.3) still holds fap € x. Therefore we fix¢ € x, w ¢ N.
Let € > 0 and¢. € S such that||¢ — ¢, <e. We can write

|F (@, 1)(¢) — F™(w, t)(¢)|
< [F(w, 1)@ — ¢)| + [F(o, t)(pe) — F™(w, )(@)| + [F™(w, t)(¢e — 8)|
< IF(@, Ol ll¢ — pell, + sgpnﬁ“k(w, Ol lp — el

+ |F(@, 1)(¢e) — F™(, t)(¢e)|.

Taking the limsup_, , . in previous expression and using (A.3) yields

|meupl F(o, 1)(@) = F™(@, )(@)] < IF (@, )], + Stllillf"k(w, ivarory€.

Sincee > 0 is arbitrary, the result follows. ]

Proof of Proposition 3.20. Lete [0, T] be fixed. We denote

t t
I (n)(w) :=/0 (H(w, s), dF"(w, s))—/o (H(w, s), dF (o, S)).

Let § > 0 and a subdivision of [@] given by 0=ty <t; <--- <ty =t whose mesh
is smaller thans. Let (nk) be a sequence diverging to infinity. We need to exhibit a
subsequenceng;) such that

(A.4) I()@) >0 as.

Lemma A.1 implies the existence of a null g8t a subsequenceny) such that

[F™ (0, 4)(#) — F(e, t)(¢)] —— 0
(A.5) NG
V¢ € x and for every | € {0,..., m}.

Let w ¢ N. We have

[T (N )(@)] =

]

tica

/t (H(w, s), dF™i (w, s)) — (H(w, s), dF (@, s)))
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m
=2
i=1

/ti (H(w, s) — H(w, ti_1) + H(w, t_1), dF™i (w, S))

ti—a

—[ti (H(w, 8) — H(®, ti 1) + H(®, ti_1), dF (w, S))

ti1

= l(ng ) (@) + T2(ng ) (@) + 13(ni; ) (@),

where
m 4 ~
1)@ = Y[ (H@9) - H@. 42, dF™ (0, 9)
im1 1t
< WH(w,)(8) S?Fﬂ F™ (@)l varfo.11,
m ti 5 5
120)0) = Y- | [ (H@, 9~ H @42, dF(0,9)| = o1 (6)] F@)haror
im1 1t
m t; . .
e )e) = 3| [ (H, 42, 6E™ 0,9~ Flw, 9|

i=1

=

ZHH(w, ti_1), F™ (@, t) — F(o, ) — F™ (0, ti_1) + F(o, ti_1))|

i=1
[F™ (H(@, ti-))(@, ) = F(H(@, 1))@, t)]

i=1

+ I (H(, b )@ 1) = F(H@, t 1))@, 1)
i=1

The notationwy . indicates the modulus of continuity fad and it is a random vari-
able; in fact it depends om in the sense that

DH(w,)(8) = sup [[H(w, s) — H(w, )| ,.

[s—t|<8
By (A.5) applied to¢ = H(w, ti_;) we obtain

lim sup{1 (Nk; )(w)| = (Sum F™ () lvaror) + |l 'f(w)||Var[o,T])wH(w,-)(5)-
j

j—o0

Sinceé > 0 is arbitrary andH is uniformly continuous on [G] so thatw(,,)(8) — 0
a.s. fors — 0, then limsup_ . [l (n)(-)| = 0 a.s. This concludes (A.4) and the proof
of Proposition 3.20. O

Proof of Theorem 3.23. a) We recall th&([0, T]) is an F-space. Letp €
x. Clearly F"(¢)(-,t)) and F"(-,t)(¢)) are indistinguishable processes and so
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(F"(¢)(-, 1)) is a continuous process. So it follows
IF"(@) e = sup [FM@)(t)] = sup [F"(-, t)(¢)|
te[0,T] te[0,T]

< sup [F"(-, O)ll,+llpll, < sudlF Ivaory ¢l < +o0
te[0,T] n

a.s. by the hypothesis. By Remark 3.22 2 and 3 it follows that get{F"(¢)} is a
bounded subset of thE-space%’ ([0, T]) for every fixed¢ € x.

We can apply the Banach—Steinhaus Theorem 11.1.18, p.530hdnd pointiv),
which imply the existence of: x — ¢([0,T]) linear and continuous such thaf'(¢) —
F(¢) ucp for everyp € x. So a) is established in both situations 1) and 2).

b) It remains to show the rest in situation 1), i.e. whens separable.

b.1) We first prove the existence of a suitable versibnof F such that
F(w, -): [0, T] = x* is weakly star continuous a.s.

Since x is separable, we consider a dense countable subsety. Point a) im-

plies that for a fixedp € D there is a subsequencey) such thatF"™(¢)(w, -) —>C([0’TD

F(¢)(w, -) a.s. SinceD is countable there is a null s&t and a further subsequence
still denoted by ifx) such that

(A.6) E(w, )6) ~2 E4)w, -), Yo eD, Vo ¢ N.

For w ¢ N, we setF(w, t)(¢) = F(¢)(w,t), V¢ € S, t € [0, T]. By a slight abuse of
notation the sequencé™ can be seen as applications

F™(w, -): x = C([0, T])
which are linear continuous maps verifying the following.
e F™(w, -)¢) — F(w, -)(¢) in C(0, T]) for all ¢ € D, because of (A.6).
e For every¢ € x, we have
supsupF"™(w, t)(#)| = supsup sup [F™(w, )(@)lll¢], < supsup|F™(w, )[[¢],
k t<T k t<T [¢], <1 k t<T

< Sgnllf”k(w. Nvaro,p @1l < +o0.

Banach-Steinhaus theorem implies the existence of a lireeetom continuous map
F(w, -): x — C([0, T])
extending previous map (w, -) from D to x with values onC([0, T]). Moreover

E%(w, )(#) =% F(w, -)(@), Vo ex YoiN
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and for everyw ¢ N the application
Flw, -): [0, T] = x*, t+> F(o,t)

is weakly star continuousE is measurable fronf2 x [0, T] to x* being limit of mea-
surable processes.

b.2) We prove now that thg *-valued proces$ has bounded variation.

Let w ¢ N fixed again. Let )M, be a subdivision of [0T] and let¢ € x. Since
the functions

FUbs o (Flti) = FO)@), F™4: ¢ — (F™ (1) — F(1))(@)
belong to x*, Banach—Steinhaus theorem says

sup |(F(tisa) = FE@) = IIF“4 - < liminf [ E™bb ],
= liminf sup|(F™(ti+1) — F™(t))(@)]-

k=00 jp)<1

Taking the sum over =0,..., (M —1) we get

M-1 M—1
> sup|(F(tisa) = F))@) = Y liminf sup|(F™(ti1) — F™(t))(9)|
i—o o<1 iz %™ lgl=1
M-1 N .
<sup)  sup|(F™(ti41) — F™(t))(¢)|
k g lell<t

< SEHI F™|var(o.T)»

where the second inequality is justified by the relation kg + liminf b <
sup@” + b").
Taking the sup over all subdivisior; ., we obtain

IFlvargo,ry < SURKIF™ Ivarory < +00.
This shows finally the fact thaf(w, -): [0, T] — x* has bounded variation. O
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