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Abstract
In this paper we consider a symplectic basis of the first cohomology group and

the sigma functions for algebraic curves expressed by a canonical form using a finite
sequence (a1, : : : , at ) of positive integers whose greatest common divisor is equal to
one (Miura [13]). The idea is to express a non-singular algebraic curve by affine
equations oft variables whose orders at infinity are (a1, : : : , at ). We construct a
symplectic basis of the first cohomology group and the sigma functions for telescopic
curves, i.e., the curves such that the number of defining equations is exactlyt � 1 in
the Miura canonical form. The largest class of curves for which such construction
has been obtained thus far is (n, s)-curves ([4] [15]), which are telescopic because
they are expressed in the Miura canonical form witht D 2, a1 D n, anda2 D s, and
the number of defining equations is one.

1. Introduction

Recently the theory of Abelian functions is attracting increasing interest in math-
ematical physics and applied mathematics. In particular the sigma functions for alge-
braic curves have been studied actively. In this paper we construct sigma functions
explicitly for a class of algebraic curves for which such construction has not been ob-
tained thus far.

Let C be a compact Riemann surface of genusg and H1(C,C) the first cohomology
group, which is defined by the linear space of second kind differentials modulo mero-
morphic exact forms. We say a meromorphic differential onC to be second kind if it is
locally exact.

We consider a basis ofH1(C, C) consisting of dim
C

H1(C, C) D 2g elements
(cf. [11], pp. 29–31, Theorems 8.1 and 8.2). In particular, in order to construct sigma
functions explicitly, we wish to construct a basis (symplectic basis) {dui , dri }

g
iD1 of

H1(C, C) such that
1. dui is holomorphic onC for eachi , and
2. dui Æ du j D dri Æ dr j D 0 anddui Æ dr j D Æi j for eachi , j ,
where the operatorÆ is the intersection form onH1(C, C) defined by

� Æ �

0

D

X

p

Res

�

Z p

�

�

�

0(p)
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for second kind differentials�, �0 (the summation is over all the singular points of�
and �0, and Res means taking a residue at a point).

In order to express defining equations ofC, we use a canonical form for express-
ing non-singular algebraic curves introduced by Miura [13].Given a finite sequence
(a1, : : : , at ) of positive integers whose greatest common divisor is equal to one, Miura
[13] introduced a non-singular algebraic curve determinedby the sequence (a1, : : : , at ).
The idea is to express a non-singular algebraic curve by affine equations oft variables
whose orders at infinity are (a1, : : : ,at ). Any non-singular algebraic curve is birationally
equivalent to a curve expressed in the Miura canonical form (cf. [13]).

Klein [9] [10] extended the elliptic sigma functions to the case of hyperelliptic
curves of genusg, which are expressed in the Miura canonical form witht D 2, a1D 2,
and a2 D 2gC 1. Bukhshtaber et al. [4] and Nakayashiki [15] extended Klein’s sigma
functions to the case of more general plane algebraic curvescalled (n, s)-curves, which
are expressed in the Miura canonical form witht D 2, a1 D n, and a2 D s. In this
paper we give an explicit construction of sigma functions for telescopic curves, i.e.,
the curves such that the number of defining equations is exactly t � 1 in the Miura ca-
nonical form. The telescopic curves contain the (n, s)-curves as special cases. Recently
Matsutani [12] constructed sigma functions for (3,4,5)-curves, which are not telescopic.

The plan of this paper is as follows. In Section 2 we recall thedefinition of the
Miura canonical form. In Section 3 we construct the holomorphic 1-forms {dui }

g
iD1 for

the telescopic curves. In Section 4 we construct the second kind differentials{dri }
g
iD1

for the telescopic curves and show that the set{dui , dri }
g
iD1 is a symplectic basis of

the first cohomology group. In Section 5 we construct sigma functions for the tele-
scopic curves.

Throughout this paper,N, N
C

, Z, andC denote the set of non-negative integers,
positive integers, integers, and complex numbers, respectively.

2. Miura canonical form

Miura [13] introduced a canonical form of defining equations for any non-singular
algebraic curve. Here we recall the definition of the Miura canonical form.

Let t � 2, a1, : : : , at positive integers such that GCD{a1, : : : , at } D 1, At D

(a1, : : : , at ) 2 N t
C

, and hAti D a1NC� � �CatN, assuming that the order ofa1, : : : , at is

fixed. For the map9 W N t
! hAti defined by9((m1, : : : , mt )) D

Pt
iD1 ai mi , we define

the order< in N t so thatM < M 0 for M D (m1, : : : , mt ) and M 0

D (m0

1, : : : , m0

t ) if
1. 9(M) < 9(M 0) or
2. 9(M) D 9(M 0) and m1 D m0

1, : : : , mi�1 D m0

i�1, mi > m0

i for somei (1� i � t).
Let M(a) be the minimum element with respect to the order< in N t satisfying9(M)D
a 2 hAti. We defineB(At ) � N t and V(At ) � N t

n B(At ) by

B(At ) D {M(a) j a 2 hAti}
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and

V(At )

D {L 2 N t
n B(At ) j L D M C N, M 2 N t

n B(At ), N 2 N t
) N D (0, : : : , 0)},

respectively.
HereafterC[X] WD C[X1, : : : , Xt ] denotes the polynomial ring overC of t-variables

X1, : : : , Xt . For A� C[X], Span{A} and (A) denote the linear space overC generated
by A and the ideal inC[X] generated byA, respectively. AlsoXM , M D (m1, : : : ,mt ),
denotesXM

D Xm1
1 � � � X

mt
t for simplicity.

For M 2 V(At ) we define the polynomialFM (X) 2 C[X] by

(1) FM (X) D XM
� XL

�

X

{N2B(At )j9(N)<9(M)}

�N XN , �N 2 C,

where L is the element ofB(At ) satisfying9(L) D 9(M). We assume that the set of
polynomials{FM j M 2 V(At )} satisfies the following condition:

(2) Span{XN
j N 2 B(At )} \ ({FM j M 2 V(At )}) D {0}.

Let I D ({FM j M 2 V(At )}), RD C[X]=I , xi the image ofXi for the projection
C[X] ! R, and K the total quotient ring ofR. Then we have the following three
propositions. Because there exists no paper where proofs are written in English, we
give complete proofs in Appendix.

Proposition 2.1 (Miura [13]). (i) The set{xN
j N 2 B(At )} is a basis of R over

C, where xD (x1, : : : , xt ).
(ii) The ring R is an integral domain, therefore K is the quotient field of R.
(iii) The field K is an algebraic function field of one variable overC.
(iv) There exists a discrete valuationv

1

of K such that(xi )1 D ai v1 for any i,
where (xi )1 denotes the pole divisor of xi (cf. [19] p.19).

Let Caff
D {(z1, : : : , zt ) 2 Ct

j f (z1, : : : , zt ) D 0, 8 f 2 I }. From Proposition 2.1
(ii) (iii), Caff is an affine algebraic curve inCt . Hereafter we assume thatCaff is non-
singular. Fork 2 N we defineL(kv

1

) D { f 2 K j ( f ) C kv
1

� 0} [ {0}, where (f )
denotes the divisor off , i.e., (f ) D

P

v

v( f ) � v.

Proposition 2.2 (Miura [13]). (i) RD
S

1

kD0 L(kv
1

).
(ii) The map�

Caff
! {discrete valuation of K} n {v

1

},

p! vp
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is bijective, where vp is the discrete valuation corresponding to p2 Caff (cf. [17],
p.21, 22).

Let C be the compact Riemann surface corresponding toCaff. From Proposition 2.2
(ii), C is obtained fromCaff by adding one point, say1, where the discrete valuation
corresponding to1 is v

1

. It is known that any non-singular algebraic curve is bira-
tionally equivalent to suchC for someAt (cf. [13]). Hereafter we represent each curve
C by the sequenceAt D (a1, : : : , at ) and call (a1, : : : , at )-curve for short.

The sequenceAt D (a1, : : : , at ) is called telescopic if for anyi (2� i � t)

ai

di
2

a1

di�1
N C � � � C

ai�1

di�1
N, di WD GCD{a1, : : : , ai }.

Note that A2 D (a1, a2) is always telescopic.

Proposition 2.3 (Miura [13]). If At is telescopic, then the condition(2) is satis-
fied and we have the following properties.
(i) B(At ) D {(m1, : : : , mt ) 2 N t

j 0� mi � di�1=di � 1, 2� i � t}.
(ii) V(At ) D {(di�1=di )ei j 2� i � t}, whereei is the i-th unit vector inZt .
(iii) The genus g of C is

(3) g D
1

2

(

(1� a1)C
t
X

iD2

�

di�1

di
� 1

�

ai

)

.

Note that #V(At ) is the number of defining equations, where # denotes the number
of elements. From Lemma C.1 (iv) in Appendix, we obtain #V(At ) � t � 1. If At is
telescopic, then from Proposition 2.3 (ii) we obtain #V(At ) D t �1. On the other hand
Suzuki [18] proved that if #V(At ) D t � 1, then At is telescopic.

From Proposition 2.3, the defining equations of a telescopic(a1, : : : , at )-curve are
given as follows: for 2� i � t ,

Fi (X1, : : : , Xt ) D Xdi�1=di
i �

t
Y

jD1

X
mi j

j �
X

�

(i )
j1,:::, jt

X j1
1 � � � X

jt
t ,

where (mi 1, : : : , mi t ) 2 B(At ) such that
Pt

jD1 a j mi j D ai di�1=di , �
(i )
j1,:::, jt

2 C, and the

sum is over all (j1, : : : , jt ) 2 B(At ) such that
Pt

kD1 ak jk < ai di�1=di . Assign degrees as

degXk D ak, deg�(i )
j1,:::, jt

D ai di�1=di �

t
X

kD1

ak jk.

EXAMPLE 1. A2 D (n, s), n, s 2 N
C

, GCD{n, s} D 1.
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Since A2 D (n, s) is telescopic, from Proposition 2.3 (ii), we haveV(A2) D {(0, n)}.
Therefore we have

F2(X1, X2) D Xn
2 � Xs

1 �
X

nj1Cs j2<ns

�

(2)
j1, j2

X j1
1 X j2

2 ,

which is the (n, s)-curve introduced in [2]. In particular we obtain the elliptic curves
if n D 2 andsD 3 and the hyperelliptic curves of genusg if n D 2 andsD 2gC 1.

EXAMPLE 2. A3 D (4, 6, 5).

Since A3 D (4, 6, 5) is telescopic, from Proposition 2.3 (ii), we haveV(A3) D {(0, 2, 0),
(0, 0, 2)}. Therefore we have

F2(X1, X2, X3) D X2
2 � X3

1 � �
(2)
0,1,1X2X3 � �

(2)
1,1,0X1X2 � �

(2)
1,0,1X1X3 � �

(2)
2,0,0X

2
1

� �

(2)
0,1,0X2 � �

(2)
0,0,1X3 � �

(2)
1,0,0X1 � �

(2)
0,0,0

and

F3(X1, X2, X3) D X2
3 � X1X2 � �

(3)
1,0,1X1X3 � �

(3)
2,0,0X

2
1 � �

(3)
0,1,0X2 � �

(3)
0,0,1X3

� �

(3)
1,0,0X1 � �

(3)
0,0,0.

3. Holomorphic 1-forms for telescopic curves

Let C be a telescopic (a1, : : : , at )-curve and0(C,�1
C) the linear space consisting

of holomorphic 1-forms onC. In this section we construct a basis of0(C, �1
C). Let

G be the matrix defined by

G WD

0

B

B

B

�

�F2

�X1
� � �

�F2

�Xt
. . . . . . . . . . . . . . . . .
�Ft

�X1
� � �

�Ft

�Xt

1

C

C

C

A

and Gi the matrix obtained by removing thei -th column fromG. Then we have the
following theorem.

Theorem 3.1.

P WD

(

xk1
1 � � � x

kt
t

detG1(x)
dx1 (k1, : : : , kt ) 2 B(At ), 0�

t
X

iD1

ai ki � 2g� 2

)

is a basis of0(C, �1
C) over C, wheredetG1(x) denotesdetG1(X D x).
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We order the elements ofP in the ascending order with respect to the order at1
and write{du1, : : : , dug}.

In order to prove Theorem 3.1, we need some lemmas.

Lemma 3.1. If detGi (p) ¤ 0 for p D (p1, : : : , pt ) 2 Caff and 1 � i � t , then
vp(xi � pi ) D 1.

Proof. Without loss of generality, we assumei D 1. Supposevp(x1 � p1) � 2.
Then there existsk (2 � k � t) such thatvp(xk � pk) D 1. In fact, if vp(xk � pk) � 2
for any k, then vp( f ) � 2 or vp( f ) D 0 for any f 2 R. Then vp(g) � 2 or vp(g) D 0
for any g 2 Rp, where Rp is the localization ofR at p. This contradicts thatRp is a
discrete valuation ring.

There exist{
i j , Æ
(i )
j1,:::, jt

} 2 C such that for 2� i � t

Fi (X1, : : : , Xt ) D
t
X

jD1


i j (X j � p j )C
X

j1C���C jt�2

Æ

(i )
j1,:::, jt

(X1 � p1) j1
� � � (Xt � pt )

jt ,

where 
i j D (�Fi =�X j )(p). Since Fi (x1, : : : , xt ) D 0 and vp(x1 � p1) � 2, we have
vp
�

Pt
jD2
i j (x j � p j )

�

D vp
�

(xk� pk)
�

Pt
jD2
i j (x j � p j )=(xk� pk)

��

� 2. Sincevp(xk�

pk) D 1, we have
Pt

jD2 
i j b j D 0, whereb j D ((x j � p j )=(xk � pk))(p). Therefore
we obtain

G1(p)

0

B

B

�

b2

�

�

bt

1

C

C

A

D

0

B

B

�

0
�

�

0

1

C

C

A

.

Since bk D 1 (¤ 0), we have detG1(p) D 0. This contradicts the assumption of
Lemma 3.1. Therefore we obtainvp(x1 � p1) D 1.

Lemma 3.2. (i) As an element of K, we havedetG1(x) ¤ 0.
(ii) div(dx1=detG1(x)) D (2g� 2)1.

Proof. Since the differentiald(Fi (x1, : : : , xt )) D 0 for any i , we have

G(x)

0

B

B

�

dx1

�

�

dxt

1

C

C

A

D

0

B

B

�

0
�

�

0

1

C

C

A

.
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By multiplying some elementary matrices on the left, the above equation becomes

0

B

B

�

w2 z22 z23 � � � z2t

w3 0 z33 � � � z3t

� � �

wt 0 � � � zt t

1

C

C

A

0

B

B

�

dx1

�

�

dxt

1

C

C

A

D

0

B

B

�

0
�

�

0

1

C

C

A

.

Since Caff is non-singular, for anyp 2 Caff there existsi such that detGi (p) ¤ 0.
Therefore we havewt ¤ 0 or zt t ¤ 0 as elements ofK . Sincev

1

(x j ) D �a j , we have
x j � C, thereforedxj ¤ 0 for any j . Sincewt dx1 D zt t dxt , we havewt ¤ 0 and
zt t ¤ 0. Therefore, by multiplying some elementary matrices on the left, the above
equation becomes

0

B

B

�

w

0

2 z22 z23 � � � 0
w

0

3 0 z33 � � � 0
� � �

wt 0 � � � zt t

1

C

C

A

0

B

B

�

dx1

�

�

dxt

1

C

C

A

D

0

B

B

�

0
�

�

0

1

C

C

A

.

Similarly we obtain

0

B

B

�

w

00

2 z22 0 � � � 0
w

00

3 0 z33 � � � 0
� � �

w

00

t 0 � � � zt t

1

C

C

A

0

B

B

�

dx1

�

�

dxt

1

C

C

A

D

0

B

B

�

0
�

�

0

1

C

C

A

,

wherew00

2, : : : , w00

t , z22, : : : , zt t 2 K are non-zero. Therefore we obtain detG1(x) D
�z22 � � � zt t ¤ 0, which complete the proof of (i).

Next we prove that the 1-formdx1=detG1(x) is both holomorphic and non-vanishing
on Caff. When detG1(p) ¤ 0 for p 2 Caff, from Lemma 3.1,dx1=detG1(x) is both
holomorphic and non-vanishing atp. Suppose detG1(p) D 0 for p 2 Caff. SinceCaff is
non-singular, there existsi (2� i � t) such that detGi (p) ¤ 0. Sincew00

i dx1C zi i dxi D

0, we havew00

i z22 � � � bzi i � � � zt t dx1C z22 � � � zt t dxi D 0, wherebzi i denotes to removezi i .
Therefore we obtain

(�1)i�2 detGi (x) dx1C detG1(x) dxi D 0.

Since detG1(x) ¤ 0 and detGi (x) ¤ 0, we have

dx1

detG1(x)
D (�1)i�1 dxi

detGi (x)
.

Therefore, from detGi (p) ¤ 0 and Lemma 3.1,dx1=detG1(x) is holomorphic
and non-vanishing atp. On the other hand, by Riemann–Roch’s theorem, we have
deg div(dx1=detG1(x)) D 2g� 2, which complete the proof of (ii).
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Proof of Theorem 3.1. From Lemma 3.2 and Proposition 2.1 (i),we have P �
0(C, �1

C) and the elements ofP are linearly independent. Since dim
C

0(C, �1
C) D g,

it is sufficient to prove #P D g. It is well-known that there areg gap values at1
from 0 to 2g � 1. Since dim

C

L((2g � 1)v
1

) D dim
C

L((2g � 2)v
1

) D g (Riemann–
Roch’s theorem), 2g� 1 is a gap value at1. Therefore, from Proposition 2.1 (i) and
Proposition 2.2 (i), we have #

{

(k1, : : : , kt ) 2 B(At )
�

� 0 �
Pt

iD1 ai ki � 2g � 2
}

D g,
which complete the proof of Theorem 3.1.

4. Second kind differentials for telescopic curves

In this section we constructdri for a telescopic (a1, : : : ,at )-curveC. For 2� i � t
and 1� j � t , let

hi j D
Fi (Y1, : : : , Yj�1, X j , X jC1, : : : , Xt ) � Fi (Y1, : : : , Yj�1, Yj , X jC1, : : : , Xt )

X j � Yj

and

H D

0

�

h22 � � � h2t

. . . . . . . . . . . . . .
ht2 � � � ht t

1

A.

We consider the 1-form

�(x, y) WD
detH (x, y)

(x1 � y1) detG1(x)
dx1

and the bilinear form (cf. [15], p. 181, 2.4)

(4) O!(x, y) WD dy�(x, y)C
X

ci1,:::,i t I j1,:::, jt
xi1

1 � � � x
i t
t y j1

1 � � � y
jt
t

detG1(x) detG1(y)
dx1 dy1

on C�C, wherex D (x1, : : : , xt ), yD (y1, : : : , yt ), ci1,:::,i t I j1,:::, jt 2 C, (i1, : : : , i t ) 2 B(At )
satisfying 0�

Pt
kD1 akik � 2g� 2, and (j1, : : : , jt ) 2 B(At ).

We take a basis{�i , �i }
g
iD1 of the homology groupH1(C, Z) such that their inter-

section numbers are�i Æ � j D �i Æ � j D 0 and�i Æ � j D Æi j .

DEFINITION 4.1 (cf. [15], p. 181, 2.4). Let1 D {(p, p) j p 2 C}. A meromor-
phic symmetric bilinear form!(x,y) on C�C is called a normalized fundamental form
if the following conditions are satisfied.
(i) !(x, y) is holomorphic except1 where it has a double pole. Forp 2 C take a
local coordinates around p. Then the expansion ins(x) at s(y) is of the form

!(x, y) D

�

1

(s(x) � s(y))2
C regular

�

ds(x) ds(y).
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(ii)
R

�i
! D 0 for any i , where the integration is with respect to any one of the variables.

Normalized fundamental form exists and unique (cf. [15] p.182). Then we have the
following theorem.

Theorem 4.1. (i) There exists a set of ci1,:::,i t I j1,:::, jt such that O!(x, y) D O!(y, x),

non-zero ci1,:::,i t I j1,:::, jt is a homogeneous polynomial of{�
(i )
l1,:::,l t

} of degree

2
t
X

kD2

dk�1

dk
ak �

t
X

kD1

(ik C jk C 2)ak,

and ci1,:::,i t I j1,:::, jt D 0 if 2
Pt

kD2(dk�1=dk)ak �
Pt

kD1(ik C jk C 2)ak < 0.
For a set of ci1,:::,i t I j1,:::, jt such that O!(x, y) D O!(y, x), we have the following

properties.
(ii) The bilinear form O! satisfies the condition(i) of Definition 4.1.
(iii) For dui WD (xki 1

1 � � � x
ki t
t =detG1(x)) dx1, we define

dri D
X

j1,:::, jt

cki 1,:::,ki t I j1,:::, jt
y j1

1 � � � y
jt
t

detG1(y)
dy1.

Then dri is a second kind differential for any i, and the set{dui ,dri }
g
iD1 is a symplectic

basis of H1(C, C).

Let B be the set of branch points for the mapx1W C! P

1, (x1, : : : , xt )! [x1 W 1]
(cf. [17], p. 24, Example 2.2). Since the ramification index of the mapx1 at1 is a1,
we have degx1 D a1 (cf. [17], p. 28, Proposition 2.6). Forp 2 C we setx�1

1 (x1(p)) D
{p(0), p(1), : : : , p(a1�1)} with p D p(0), where the samep(i ) is listed according to its
ramification index.

Lemma 4.1. Let U be a domain inC, f (z1, z2) a holomorphic function on U�
U , and g(z)D f (z,z). If g� 0 on U, then there exists a holomorphic function h(z1,z2)
on U �U such that f(z1, z2) D (z1 � z2)h(z1, z2).

Proof. Let h(z1, z2) D f (z1, z2)=(z1 � z2). Given z1, h(z1, � ) has a singularity
only at z1, where its singularity is removable. Thereforeh(z1, � ) is holomorphic onU .
Similarly h( � , z2) is holomorphic onU . Thereforeh is holomorphic onU �U .

Lemma 4.2. The 1-form �(x, y) is holomorphic except1[{(p(i ), p) j i ¤ 0, p 2
B or p(i )

2 B} [ C � {1} [ {1} � C.
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Proof. Sincedx1=detG1(x) is holomorphic onC (cf. Lemma 3.2),�(x, y) is
holomorphic except1[ {(p(i ), p) j p 2 C, i ¤ 0}[C� {1}[ {1}�C. We prove that
�(x, y) is holomorphic on{(p(i ), p) j i ¤ 0, p � B, p(i )

� B}. We have

(5) Fi (X1, : : : , Xt ) D
t
X

jD1

hi j � (X j � Yj )C Fi (Y1, : : : , Yt ).

Set X D x and Y D y, then we have

t
X

jD1

hi j (x, y) � (x j � y j ) D 0.

Take (p(i ), p) 2 C � C such thati ¤ 0, p � B, and p(i )
� B, then we have

0

�

h21 � � � h2t

. . . . . . . . . . . . . .
ht1 � � � ht t

1

A

XDp(i ),YDp

0

B

�

p(i )
1 � p1

�

p(i )
t � pt

1

C

A

D

0

�

0
�

0

1

A.

Since p(i )
1 � p1 D 0, we have

H (p(i ), p)

0

B

�

p(i )
2 � p2

�

p(i )
t � pt

1

C

A

D

0

�

0
�

0

1

A.

Since (p(i )
2 � p2, : : : , p(i )

t � pt ) ¤ (0, : : : , 0), we have detH (p(i ), p) D 0. Since p � B
and p(i )

� B, we can take (x1, y1) as a local coordinate around (p(i ), p). Therefore,
from Lemma 4.1, there exists a holomorphic functionh(x1, y1) around (p(i ), p) such
that detH (x, y) D (x1� y1)h(x1, y1). Therefore�(x, y) is holomorphic at (p(i ), p).

Lemma 4.3. Let p� B, s a local coordinate around p. Then the expansion of
�(x, y) in s(y) at s(x) is of the form

�(x, y) D

�

�1

s(y) � s(x)
C regular

�

ds(x).

Proof. SetY D y in (5), then we have

Fi (X1, : : : , Xt ) D
t
X

jD1

hi j (X, y) � (X j � y j ).



SIGMA FUNCTIONS FOR TELESCOPICCURVES 469

Therefore we obtain

�Fi

�Xk
(x1, : : : , xt ) D

t
X

jD1

�hi j

�Xk
(x, y) � (x j � y j )C hik(x, y).

Set x D y, then we have

�Fi

�Xk
(x1, : : : , xt ) D hik(x, x).

Therefore we obtain detG1(x) D detH (x, x). On the other hand, sincep � B, we can
take (x1, y1) as a local coordinate around (p, p). Since p � B, we have detG1(p) ¤ 0.
In fact, if detG1(p)D 0, thendx1=detG1(x) is not holomorphic atp, which contradicts
Lemma 3.2 (ii). Therefore detH (x, y)=detG1(x) is holomorphic at (p, p). Therefore,
from Lemma 4.1, there exists a holomorphic functionQh(x1, y1) around (p, p) such that
detH (x, y)=detG1(x) D 1C (x1 � y1) Qh(x1, y1). Therefore we obtain Lemma 4.3.

Lemma 4.4. When we express

detH (X, Y) D
X

�m1,:::,mt ,n1,:::,nt X
m1
1 � � � X

mt
t Yn1

1 � � � Y
nt
t ,

we have
Pt

kD1 ak(mk C nk) �
Pt

kD2 ak((dk�1=dk) � 1).

Proof. When we express

Fi (X1, : : : , Xt ) D
m
X

kD0

QF ( j )
ik (X1, : : : , X j�1, X jC1, : : : , Xt )X

k
j ,

we havehi j D
Pm

kD1
QF ( j )
ik (Y1, : : : , Yj�1, X jC1, : : : , Xt )

Pk�1
lD0 Xl

j Y
k�l�1
j . Assign degrees

as degYk D ak, then hi j is a homogeneous polynomial of{�(i )
j1,:::, jt

, Xk, Yk} of degree
ai di�1=di � a j . Therefore we obtain Lemma 4.4.

Lemma 4.5. The meromorphic bilinear form dy�(x, y) is holomorphic except1[
{(p(i ), p) j i ¤ 0, p 2 B or p(i )

2 B} [ C � {1}.

Proof. It is sufficient to prove thatdy�(x, y) is holomorphic at (1, y), y ¤ 1.
From Lemma 4.4, with respect tox, we obtain

v

1

(detH (x, y)) � �
t
X

kD2

ak((dk�1=dk) � 1).
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If v
1

(detH (x, y)) > �
Pt

kD2 ak((dk�1=dk)� 1), then from Lemma 3.2 (ii) and Propos-
ition 2.3 (iii) we obtainv

1

(�(x, y)) � 0. Thereforedy�(x, y) is holomorphic at (1, y).
If v

1

(detH (x, y))D �
Pt

kD2 ak((dk�1=dk)�1), thenv
1

(�(x, y))D �1. Let s be a local
coordinate around1, then from Lemma 4.4 there exists a constante (which does not
depend ony) such that

�(x, y) D
�e

s
C regular

�

ds.

Thereforedy�(x, y) is holomorphic at (1, y), y ¤1.

Lemma 4.6. Let ! be the normalized fundamental form. Then there exist sec-
ond kind differentials dOr i (1 � i � g) which are holomorphic except{1} and satisfy
the equation

!(x, y) � dy�(x, y) D
g
X

iD1

dui (x) dOr i (y).

Proof. SetB2 D {(p(i ), p) j p 2 B n {1} or p(i )
2 B n {1}} in the proof of [15]

Lemma 5, then proof of Lemma 4.6 is similar to that of [15] Lemma 5.

Lemma 4.7. Let Q be the linear space consisting of meromorphic differentials
on C which are singular only at1 and

SD {(xi1
1 � � � x

i t
t =detG1(x)) dx1 j (i1, : : : , i t ) 2 B(At )}.

Then S is a basis of Q.

Proof. For� 2 Q we consider the meromorphic function�=(dx1=detG1(x)). From
Lemma 3.2 (ii), it may have a pole only at1. From Proposition 2.1 (i) and Propos-
ition 2.2 (i), �=(dx1=detG1(x)) is a linear combination ofxi1

1 � � � x
i t
t with (i1, : : : , i t ) 2

B(At ) and the elements ofS are linearly independent.

Proof of Theorem 4.1 (i). We have

dy�(x, y)

D

{
Pt

kD1(�1)kC1(x1�y1)(� detH=�Yk)(x, y) detGk(y)
}

CdetG1(y) detH (x, y)

(x1�y1)2 detG1(x) detG1(y)
dx1 dy1.

Then, detGk, detH , and (� detH=�Yk) are homogeneous polynomials of{�
(i )
j1,:::, jt

, X j ,Yj }

of degree
Pt

iD2(di�1=di )ai �
P

i¤k ai ,
Pt

iD2((di�1=di ) � 1)ai , and
{
Pt

iD2((di�1=di ) �

1)ai
}

� ak, respectively. Let us write

dy�(x, y) D

P

qi1,:::,i t I j1,:::, jt x
i1
1 � � � x

i t
t y j1

1 � � � y
jt
t

(x1 � y1)2 detG1(x) detG1(y)
dx1 dy1,
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where (i1, : : : , i t ), ( j1, : : : , jt ) 2 B(At ), and qi1,:::,i t I j1,:::, jt 2 C. Then qi1,:::,i t I j1,:::, jt 2

Z[{�(i )
l1,:::,l t

}] and qi1,:::,i t I j1,:::, jt is homogeneous of degree 2
Pt

kD2((dk�1=dk) � 1)ak �
Pt

kD1(ikC jk)ak. Note that if (m1, : : : , mt ) 2 B(At ), then (m1Cm, m2, : : : , mt ) 2 B(At )
for m 2 N. Therefore we obtain

X

ci1,:::,i t I j1,:::, jt

xi1
1 � � � x

i t
t y j1

1 � � � y
jt
t

detG1(x) detG1(y)

D

P

(ci1�2,:::,i t I j1,:::, jt � 2ci1�1,:::,i t I j1�1,:::, jt C ci1,:::,i t I j1�2,:::, jt )x
i1
1 � � � x

i t
t y j1

1 � � � y
jt
t

(x1 � y1)2 detG1(x) detG1(y)
,

where (i1, : : : , i t ), ( j1, : : : , jt ) 2 B(At ). Therefore O!(x, y) D O!(y, x) is equivalent to

ci1�2,:::,i t I j1,:::, jt � 2ci1�1,:::,i t I j1�1,:::, jt C ci1,:::,i t I j1�2,:::, jt � c j1�2,:::, jt I i1,:::,i t

C 2c j1�1,:::, jt I i1�1,:::,i t � c j1,:::, jt I i1�2,:::,i t

D q j1,:::, jt I i1,:::,i t � qi1,:::,i t I j1,:::, jt .

By Lemma 4.6, 4.7, the system of the above linear equations has a solution. Moreover
it has a solution such that eachci1,:::,i t I j1,:::, jt is a linear combination ofqi 01,:::,i 0t I j 01,:::, j 0t

satisfying i 01C j 01 D i1C j1C2, (i 0k, j 0k) D (ik, jk) or (i 0k, j 0k) D ( jk, ik) for k D 2, : : : , t . In
particular one can takeci1,:::,i t I j1,:::, jt such thatci1,:::,i t I j1,:::, jt D 0 if 2

Pt
kD2(dk�1=dk)ak�

Pt
kD1(ik C jk C 2)ak < 0 and

degci1,:::,i t I j1,:::, jt D 2
t
X

kD2

dk�1

dk
ak �

t
X

kD1

(ik C jk C 2)ak

if ci1,:::,i t I j1,:::, jt ¤ 0.

Proof of Theorem 4.1 (ii). From Lemma 4.6,dy�(x, y) is holomorphic except
1[C � {1} and so is O!. Since O!(x, y) D O!(y, x), O! is holomorphic except1. From
the definition ofdri , we obtain

O! � ! D

g
X

iD1

dui (x)(dri (y) � dOr i (y)).

On the other handO! � ! is holomorphic except1 and
Pg

iD1 dui (x)(dri (y) � dOr i (y))
is holomorphic exceptC � {1}. Therefore O! � ! is holomorphic except{1} � {1}.
Therefore O! � ! and dri � dOr i are holomorphic onC � C and C respectively, which
complete the proof of Theorem 4.1 (ii).

Proof of Theorem 4.1 (iii). The 1-formdri is a second kind differential. In fact
dri � dOr i is holomorphic 1-form as is just proved in the proof of Theorem 4.1 (ii) and
dOr i is a second kind differential from Lemma 4.6. Proof of Theorem 4.1 (iii) is similar
to the case of the (n, s)-curves (cf. [15] Lemmas 7, 8, Proposition 3).
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5. Sigma functions for telescopic curves

In this section we construct the sigma function for a telescopic (a1, : : : , at )-curve
C. First we take the following data.
1. A basis{�i , �i }

g
iD1 of the homology groupH1(C, Z) such that their intersection

numbers are�i Æ � j D �i Æ � j D 0 and�i Æ � j D Æi j .
2. The symplectic basis{dui , dri }

g
iD1 of the first cohomology groupH1(C, C) con-

structed in Sections 3 and 4.
We define the period matrices by

2!1 D

�

Z

� j

dui

�

, 2!2 D

�

Z

� j

dui

�

, �2�1 D

�

Z

� j

dri

�

, �2�2 D

�

Z

� j

dri

�

.

Then !1 is invertible. Set� D !

�1
1 !2, then � is symmetric and Im� > 0. By the

Riemann’s bilinear relation

2� i� Æ �0 D
g
X

iD1

�

Z

�i

�

Z

�i

�

0

�

Z

�i

�

0

Z

�i

�

�

,

the matrix

M WD

�

!1 !2

�1 �2

�

satisfies

M

�

0 Ig

�Ig 0

�

t M D �
�

p

�1

2

�

0 Ig

�Ig 0

�

,

where Ig denotes the unit matrix of degreeg. Since �1!
�1
1 is symmetric (cf. [15]

Lemma 8), we obtain the following proposition.

Proposition 5.1 (generalized Legendre relation).

t M

�

0 Ig

�Ig 0

�

M D �
�

p

�1

2

�

0 Ig

�Ig 0

�

.

Let Æ D �Æ

0

C Æ

00 be the Riemann’s constant ofC with respect to our choice (1,
{�i ,�i }

g
iD1). Since the divisor of the holomorphic 1-formdug is (2g�2)1, the Riemann’s

constantÆ becomes a half period. Then the sigma function� (u) associated withC is
defined as follows.
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DEFINITION 5.1 (Sigma function). Foru 2 Cg

� (u) D � (uI M) D c � exp

�

1

2
tu�1!

�1
1 u

�

�

�

Æ

0

Æ

00

�

((2!1)�1u, � )

D c � exp

�

1

2
tu�1!

�1
1 u

�

�

X

n2Zg

exp{�
p

�1t (nC Æ0)� (nC Æ0)C 2�
p

�1t (nC Æ0)((2!1)�1uC Æ00)},

wherec is a constant.

By Proposition 5.1 we obtain the following proposition.

Proposition 5.2. For any m1, m2 2 Z
g and u2 Cg, we have

� (uC 2!1m1C 2!2m2)=� (u) D exp(�
p

�1(tm1m2C 2t
Æ

0m1 � 2t
Æ

00m2))

� exp(t (2�1m1C 2�2m2)(uC !1m1C !2m2)).

REMARK . In this paper we have constructed sigma functions explicitly for tele-
scopic curves. On the other hand Nakayashiki [15] showed that the first term of the
series expansion around the origin of the sigma function foran (n, s)-curve becomes
Schur function corresponding to the partition determined from the gap sequence at in-
finity and the expansion coefficients are homogeneous polynomials of the coefficients
of the defining equation of the curve. One will be able to extend these results to tele-
scopic curves.

A. Proof of Proposition 2.1

Lemma A.1. V(At )CN t
D N

t
n B(At ).

Proof. If M � B(At ) and N 2 N t , then M C N � B(At ). Therefore we have
V(At )CN t

� N

t
n B(At ). SupposeV(At )CN t

¨ N

t
n B(At ). Take M1 2 N

t
n B(At )

satisfying M1 � V(At ) C N t . Since M1 � V(At ) and M1 � B(At ), there existM2 2

N

t
nB(At ) and (0,: : : , 0)¤ N1 2 N

t such thatM1 D M2CN1. SinceM1 � V(At )CN t ,
we haveM2 � V(At )CN t . Similarly, for the elementMi 2 N

t
n B(At ) satisfying Mi �

V(At )CN t , there existMiC1 and Ni such thatMiC1 2 N
t
nB(At ), MiC1 � V(At )CN t ,

(0, : : : , 0)¤ Ni 2 N
t , and Mi D MiC1C Ni . Therefore there exists a infinite sequence

9(M1) > 9(M2) > � � � > 9(Mi ) > � � � . This is contradiction.

Proof of Proposition 2.1 (i). From (2) it is sufficient to prove

Span{XN
j N 2 B(At )} C ({FM j M 2 V(At )}) D C[X].
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We prove that for anyT 2 N t

XT
2 Span{XN

j N 2 B(At )} C ({FM j M 2 V(At )})

by transfinite induction with respect to the well-order< in N t . The statement is correct
for the minimal elementT D (0, : : : , 0). Suppose that it is correct for anyU 2 N t

satisfying U < T . Since it is correct forT 2 B(At ), we assumeT � B(At ). From
Lemma A.1, there existM 2 V(At ) and Z 2 N t such thatT D M C Z. Then we have
XT
D XM XZ

D (XM
� FM )XZ

C FM XZ . For any monomialXU in (XM
� FM )XZ ,

we haveU < T . Therefore, by the assumption of transfinite induction, thestatement
is correct forT � B(At ).

We define the functionoW R! N [ {�1} by

o( f ) D

�

�1 for f D 0,
max{9(N) j �N ¤ 0} for f ¤ 0,

where for f ¤ 0 we expressf D
P

N �NxN with �N 2 C and N 2 B(At ).

Lemma A.2. o(xT ) D 9(T) for any T 2 N t .

Proof. We prove the statement by transfinite induction with respect to the well-
order< in N

t . It is correct for the minimal elementT D (0, : : : , 0) 2 N t . Suppose
that it is correct for anyU 2 N t satisfyingU < T . Since it is correct forT 2 B(At ),
we assumeT � B(At ). From Lemma A.1, there existM 2 V(At ) and Z 2 N t such
that T D M C Z. Then we haveXT

D XM XZ
D (XM

� FM )XZ
C FM XZ . Since

XM
� FM D XL

C

P

N �N XN from (1), we havexT
D (xL

C

P

N �N xN)xZ
D xLCZ

C

P

N �N xNCZ . SinceNCZ < LCZ < T , by the assumption of transfinite induction, we
haveo(xLCZ)D9(LCZ) ando(xNCZ)D9(NCZ). Sinceo( f Cg)Dmax{o( f ),o(g)}
for f, g 2 R satisfying o( f ) ¤ o(g), we haveo(xT ) D o(xLCZ

C

P

N �NxNCZ) D
o(xLCZ) D 9(L C Z) D 9(T).

Lemma A.3. The function o satisfies the following properties:
(i) o( f ) D �1 if and only if f D 0,
(ii) o( f g)D o( f )Co(g) for any f,g 2 R, where we define�1C(�1)D aC(�1)D
(�1)C a D �1 for a 2 N,
(iii) o( f C g) � max{o( f ), o(g)},
(iv) o(R n {0}) D hAti, in particular N n o(R n {0}) is a finite set, and
(v) o(a) D 0 for any 0¤ a 2 C.

Proof. (i), (iii), (v), ando(Rn{0}) D hAti are trivial. Since GCD{a1, : : : , at } D 1,
N n hAti is a finite set (cf. [16], Theorem 5). We prove (ii). Iff D 0 or g D 0, then
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o( f g) D o( f )C o(g) D �1. Supposef ¤ 0 and g ¤ 0. Then we can express

f D �M xM
C

X

T

�T xT and g D Q�N xN
C

X

Z

Q

�ZxZ ,

where�M , �T , Q�N , Q�Z 2 C, �M ¤ 0, Q�N ¤ 0, M, T, N, Z 2 B(At ), 9(T) < 9(M), and
9(Z) < 9(N). From Lemma A.2, we haveo( f g) D o(�M Q�NxMCN) D 9(M C N) D
9(M)C9(N) D o( f )C o(g).

Proof of Proposition (ii). Takef, g 2 R satisfying f g D 0. Then, since�1 D
o( f g) D o( f )Co(g), we haveo( f ) D �1 or o(g) D �1. Therefore we obtainf D 0
or g D 0.

Lemma A.4. B � N t be a set such that the restriction map of9 W N t
! hAti on

B is bijective. Then the set{xM
j M 2 B} � R is a basis of R overC.

Proof. Sinceo(xT ) D 9(T) for T 2 N t and o( f C g) D max{o( f ), o(g)} for
f, g 2 R satisfying o( f ) ¤ o(g), the elements of the set{xM

j M 2 B} are linearly
independent. SinceRD Span{xN

j N 2 B(At )}, in order to proveRD Span{xM
j M 2

B}, it is sufficient to prove Span{xN
j N 2 B(At )} � Span{xM

j M 2 B}. We prove
Span{xN

j N 2 B(At ), 9(N) � m} � Span{xM
j M 2 B, 9(M) � m} for any m 2 N

by induction. FormD 0 the statement is trivial. Suppose that the statement is correct
for any i with 0� i �m�1. If m� hAti, then since Span{xM

j M 2 B, 9(M) �m} D

Span{xM
j M 2 B, 9(M) �m�1} and Span{xN

j N 2 B(At ), 9(N) �m} D Span{xN
j

N 2 B(At ), 9(N) � m� 1}, the statement is correct. Supposem 2 hAti. Take T 2 B
satisfying9(T) D m. If T 2 B(At ), then since Span{xM

j M 2 B, 9(M) � m} D

Span{xM
j M 2 B, 9(M) � m� 1} [C{xT } and Span{xN

j N 2 B(At ), 9(N) � m} D

Span{xN
j N 2 B(At ), 9(N) � m � 1} [ C{xT }, the statement is correct. Suppose

T � B(At ). Then we can expressxT
D �L xL

C

P

N �NxN , where 0¤ �L , �N 2 C,
L , N 2 B(At ), 9(L) D m, and9(N) � m � 1. SincexL

D �

�1
L

�

xT
�

P

N �N xN
�

2

Span{xN
j N 2 B(At ), 9(N) � m�1}[C{xT } � Span{xM

j M 2 B, 9(M) � m�1}[

C{xT } � Span{xM
j M 2 B, 9(M) �m}, we have Span{xN

j N 2 B(At ), 9(N) �m} �

Span{xM
j M 2 B, 9(M) � m}.

Lemma A.5. Given i, there exists a set Ti � N
i�1
�{0}�N t�i such that#Ti D ai

and for the set Bi WD Ti C {0}i�1
�N � {0}t�i the restriction map of9 W N t

! hAti on
Bi is bijective.

Proof. Since GCD{a1, : : : ,at } D 1, the set{c 2 a1NC� � �Cai�1NCaiC1NC� � �C

atN j c � j modai } is not empty for anyj with 0 � j � ai � 1. Let c j D min{c 2
a1NC � � � C ai�1NC aiC1N C � � � C atN j c� j modai }. Take N j 2 N

i�1
� {0} �N t�i

satisfying9(N j ) D c j . Let Ti D {N j j 0� j � ai �1}. Then Ti satisfies the conditions
of Lemma A.5.
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Proof of Proposition 2.1 (iii). Sinceo(xT ) D 9(T) for T 2 N t and o( f C g) D
max{o( f ),o(g)} for f, g 2 R satisfyingo( f ) ¤ o(g), the elements of the set{xM

j M 2
{0}i�1

�N � {0}t�i } � C[xi ] are linearly independent. Therefore the extension of field
C(xi )=C is a simple transcendental extension for anyi . Next we prove [K W C(xi )] � ai

for any i . From Lemma A.4 and Lemma A.5, we haveRD C[x1, : : : , xt ] D Span{xM
j

M 2 Ti C {0}i�1
�N � {0}t�i }. ThereforeC[x1, : : : , xt ] D C[xi ] f0C � � � C C[xi ] fai�1,

where f j D xN j (see the proof of Lemma A.5 forN j ). Since f0 D 1, we obtain the
finite extension of integral domainC(xi ) � C(xi ) f0C � � � C C(xi ) fai�1. SinceC(xi ) is
a field,C(xi ) f0C � � �CC(xi ) fai�1 is also a field. Therefore we obtainC(xi ) f0C � � �C

C(xi ) fai�1 D K and [K W C(xi )] � ai .

Proof of Proposition 2.1 (iv). We define the functionv
1

W K ! Z [ {1} by

v

1

( f ) D

�

1 for f D 0,
�o( f1)C o( f2) for f ¤ 0,

where for f ¤ 0 we expressf D f1= f2 with f1, f2 2 R. The definition ofv
1

is
well-defined. In fact, if 0¤ f D f1= f2 D g1=g2, then since f1g2 D g1 f2 2 R, we
have o( f1) C o(g2) D o( f1g2) D o(g1 f2) D o(g1) C o( f2). From Lemma A.3, one can
check that the functionv

1

is a discrete valuation ofK . From Lemma A.2, we obtain
v

1

(xi ) D �ai . From [19] p. 19 Theorem 1.4.11, we obtain [K W C(xi )] D deg(xi )1 �
deg(ai v1) D ai . On the other hand, in the proof of Proposition 2.1 (iii), we proved
[K W C(xi )] � ai . Therefore we obtain (xi )1 D ai v1.

B. Proof of Proposition 2.2

Proof of Proposition 2.2 (i). It is trivial thatR �
S

1

kD0 L(kv
1

). On the other
hand we have

1

[

kD0

L(kv
1

) �
\

v¤v

1

O
v

�

\

p2Caff

Op D R,

whereO
v

D { f 2 K j v( f ) � 0} andOp D { f 2 K j vp( f ) � 0} (see Proposition 2.2
(ii) for vp).

Proof of Proposition 2.2 (ii). It is trivial that the map� is injective. We prove
that the map� is surjective. Letv be a discrete valuation such thatv ¤ v

1

. Since
v(xi ) � 0 for any i , we haveR � O

v

. Let P be the maximal ideal ofO
v

and m WD
P \ R. Then we have

C ,! R=m ,! O
v

=P.

Since [O
v

=P W C] D 1, we haveC ' R=m' O
v

=P. Thereforem is a maximal ideal.
Let Rm be the localization ofR with respect tom. Then Rm andO

v

are discrete val-



SIGMA FUNCTIONS FOR TELESCOPICCURVES 477

uation rings satisfyingRm � O
v

and P \ Rm D m Rm. Therefore, from [8] p. 40 The-
orem 6.1A, we obtainRm D O

v

. Since there existsp 2 Caff such thatOp D Rm, we
haveOp D O

v

. Therefore we obtainvp D v and the map� is surjective.

C. Proof of Proposition 2.3

Let T(At ) D B(At ) \ ({0} �N t�1).

Lemma C.1. (i) T(At )D {M(bi ) 2 B(At ) j i D 0,:::,a1�1}, where bi Dmin{b2
a2N C � � � C atN j b� i moda1}. In particular #T(At ) D a1.
(ii) B(At ) D T(At )CN � {0}t�1.
(iii) V(At ) � {T(At )C ei j i D 2, : : : , t} n T(At ) � {0} �N t�1.
(iv) The set{0}i�1

� N � {0}t�i
\ V(At ) consists of only one element for any i(2 �

i � t).

Proof. We haveM(bi ) D (m1, : : : , mt ) 2 {0} �N t�1. In fact, if m1 ¤ 0, then we
have9((0,m2, : : : ,mt ))� bi � i moda1 and9((0,m2, : : : ,mt )) < bi , which contradicts
the definition ofbi . Therefore we haveM(bi ) 2 T(At ). For M, N 2 {0}�N t�1 satisfy-
ing 9(M) > 9(N) and9(M)�9(N)D ea1 for somee2 N

C

, we haveM � T(At ). In
fact, for N 0

WD (e, 0, : : : , 0)C N, we haveM > N 0 and9(M) D 9(N 0), which means
M � B(At ). Therefore we obtain (i).

Next we proveB(At ) � T(At ) C N � {0}t�1. Let M D (m1, : : : , mt ) 2 B(At ),
M1 D (0, m2, : : : , mt ), and M2 D (m1, 0, : : : , 0). SinceM1 C M2 2 B(At ), we have
M1, M2 2 B(At ). Since M1 2 B(At ) \ ({0} � N t�1) D T(At ), we haveM 2 T(At ) C
N � {0}t�1. SupposeB(At ) ¨ T(At ) C N � {0}t�1. Then from (i) there existi (0 �
i � a1 � 1) and M3 2 N � {0}t�1 such thatM(bi ) C M3 � B(At ). Take N 2 B(At )
satisfying9(M(bi )CM3)D 9(N). SinceN 2 B(At )� T(At )CN�{0}t�1 and9(N)�
i moda1, there existsM4 2 N�{0}t�1 such thatN D M(bi )CM4. ThereforeM3 > M4,
M3,M4 2 N�{0}t�1, and9(M3)D 9(M4), which is contradiction. Therefore we obtain
B(At ) D T(At )CN � {0}t�1.

Next we proveV(At )� {0}�N t�1. Let M D (m1,:::,mt ) 2 V(At ), M1D (0,m2,:::,
mt ), and M2 D (m1, 0,: : : , 0). SinceM � B(At ) and M2 2 B(At ), we haveM1 � B(At ).
From the definition ofV(At ), we obtainM2 D (0,: : : , 0). Therefore we obtainV(At ) �
{0} �N t�1.

Let M 2 V(At ) � {0} �N t�1. Since M ¤ (0, : : : , 0), there existi (2� i � t) and
M1 2 {0} � N t�1 such thatM D M1 C ei . Since M1 2 B(At ) from the definition of
V(At ), we haveM1 2 B(At ) \ ({0} �N t�1) D T(At ). Therefore we obtain (iii).

For 2� i � t , the set{0}i�1
�N�{0}t�i

\{N t
n B(At )} is not empty. In fact, since

9((0, : : : , 0, a1, 0, : : : , 0))D 9((ai , 0, : : : , 0))D a1ai ,

we have (0,: : : , 0, a1, 0, : : : , 0) > (ai , 0, : : : , 0). Let Ni be the minimal element of
{0}i�1

�N � {0}t�i
\ {N t

n B(At )}. Then we obtain{0}i�1
�N � {0}t�i

\V(At ) D {Ni }.
Therefore we obtain (iv).
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Let SV(At ) D {Ni j 2 � i � t} (see the proof of Lemma C.1 (iv) forNi ). For F D
P

�N XN
2 C[X], we definemultidegof F by

multideg(F) D

(

�1 for F D 0,
max
<

{N 2 N t
j �N ¤ 0} for F ¤ 0.

Also we defineleading termof F by

LT(F) D

�

0 for F D 0,
�T XT for F ¤ 0, whereT D multideg(F).

For a idealJ � C[X], we define

1(J) D N t
n

[

F2Jn{0}

{multideg(F)CN t}.

Then we have

(6) Span{XM
j M 2 1(J)} \ J D {0}.

Lemma C.2. (i) {FM j M 2 SV(At )} is a Gröbner basis of the ideal JWD ({FM j

M 2 SV(At )}) with respect to the order< in N t , i.e., ({LT(F) j F 2 J}) D ({LT(FM ) j
M 2 SV(At )}).
(ii) Span{XN

j N 2 B(At )} \ ({FM j M 2 SV(At )}) D {0}.

Proof. For M, N 2 SV(At ) (M ¤ N), we have L.C.M.{LT(FM ), LT(FN)} D
LT(FM )LT(FN). Therefore, from [6] p. 102 Theorem 3 and p. 103 Proposition4, we
obtain (i). From (i) we obtain1(({FM j M 2 SV(At )})) D N

t
n {SV(At ) C N

t} �

N

t
n {V(At ) C N t} D B(At ), where the last equality is due to Lemma A.1. Since

Span{XN
j N 2 1({FM j M 2 SV(At )})} \ ({FM j M 2 SV(At )}) D {0} from (6), we

have Span{XN
j N 2 B(At )} \ ({FM j M 2 SV(At )}) D {0}.

Lemma C.3. If At is telescopic, then the following properties are satisfied.
(i) T(At ) D {(0, m2, : : : , mt ) 2 N t

j 0� mi � di�1=di � 1, i D 2, : : : , t}.
(ii) SV(At ) D V(At ) D {(di�1=di )ei j 2� i � t}.

Proof. LetU D {(0,m2, : : : , mt ) 2 N t
j 0� mi � di�1=di � 1, i D 2, : : : , t}. Take

uD (0,u2,:::,ut ) 2U andv D (0,v2,:::,vt ) 2U satisfyingu¤ v. First we prove9(u)¥
9(v) mod a1. Suppose that there exists an integerw such that9(u) � 9(v) D wa1.
Let � be the positive integer such thatu

�

¤ v

�

, u
�C1 D v�C1, : : : ,ut D vt . Without loss

of generality we assumeu
�

> v

�

. Then we have (u
�

� v

�

)a
�

D wa1�
P

��1
kD2(uk� vk)ak

and 0< u
�

� v

�

< d
��1=d� , which is contradiction. Therefore we obtain9(u) 6� 9(v)

mod a1. Since At is telescopic, for anyu D (0, u2, : : : , ut ) 2 N t , there existsu0 2 U
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such that9(u) � 9(u0) mod a1. Since9(u) � 9(u0) and #U D a1, we have{9(u) j
u 2 U} D {b0, : : : ,ba1�1}, wherebi D min{b 2 a2NC� � �CatN j b� i moda1}. Finally
we proveu 2 B(At ) for any u 2 U . Takeu 2 U , then there existsu00 D (u001, : : : , u00t ) 2
B(At ) such that9(u) D 9(u00). Since At is telescopic, we have 0� u00j < d j�1=d j for
2 � j � t . Sinceu001 D 0 from the definition ofbi , we obtainu00 2 U . Therefore we
obtain u D u00 2 B(At ). From Lemma C.1 (i), we obtain (i). From Lemma C.1 (iii)
(iv) and the definition ofV(At ), we obtain (ii).

Proof of Proposition 2.3. From Lemma C.2 (ii) and Lemma C.3 (ii), the con-
dition (2) is satisfied. From Lemma C.1 (ii) and Lemma C.3 (i),we obtain Prop-
osition 2.3 (i). From Lemma C.3 (ii), we obtain Proposition 2.3 (ii). From Propos-
ition 2.1 (i) and Proposition 2.2 (i), the gap values at1 areN n hAti. Therefore, from
[16] Theorem 5, we obtain Proposition 2.3 (iii).
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