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Abstract

Barchini, Kable, and Zierau constructed a number of conédigminvariant sys-
tems of differential operators associated to paraboli@aggbras of Heisenberg type.
When they constructed such systems of operators, two cusstahich play a role
for the construction, were defined as the constants of ptiopatity between two
expressions. In this paper we give concrete and uniformesgmns for these con-
stants. To do so we introduce a new constant inspired by aularon the Dynkin
index of a finite dimensional representation of a complexpséniie algebra.

1. Introduction

Let D4, ..., Dm be a system of differential operators on a smooth manifdid
on which a Lie algebrgy acts by first order differential operators. We say that the
systemDyq, ..., Dy of operators isconformally invariantif for all X € g, it satisfies

the bracket identity
[X,D;] = > CJfDi,
i

where Cﬁj‘ are smooth functions oM. (See for example p.791 of [2] for the pre-
cise definition.) In [1], a number of examples of such systefsperators were con-
structed. On the construction two constaots) and p({;) were introduced. The main
results of this paper concern the two constas{ts) and p(l;).

To describe our results we start with briefly reviewing therkvof [1]. Let g
be a complex simple Lie algebra with highest rgat For each rootx, if a triple
{X_a, Hy: Xo} is the correspondingl(2)-triple in the Chevalley basis then &ti() on
g has eigenvalues-2, —1, 0, 1, and 2. Write the eigenspace decompositiory as
@,2:_2 g(j) with g(k) the k eigenspace of a#f{,). The parabolic subalgebra= [ &

n = g(0) @ g(1) ® g(2) with [ = g(0) the Levi factor andn = g(1) & g(2) the nil-
potent radical is of Heisenberg type, that is,is a two-step nilpotent algebra with
one-dimensional center. Singg2) = g, with g, the root space fory, the parabolic
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360 T. KuBo
subalgebray of Heisenberg type may be expressed as
1.1) g=I[dg(l)Dg,.

Let Gy be a real Lie group with complexified Lie algebgaand Qo be a parabolic sub-
group of Gy with complexified Lie algebra; opposite toq. Then, in [1], from each
2 — k eigenspacegy(2 — k) for k =1, ..., 4, systems ok-th order differential opera-
tors acting on smooth sections on the line bundles — Go/Qo over a homogeneous
manifold Go/Qo are constructed. Hers is a complex parameter, which indexes the
line bundlesL_s. The systems of operators are call@g systemslt is not necessary
that Qx systems are conformally invariant; their conformal insade depends on the
complex parametes for the line bundleL_s. Then, in [1], a complex parametss is
called aspecial valuefor an @y system if the system is conformally invariant on the
line bundle £_g,.

In Section 2 of [1], given simple ided} of [ for the parabolic subalgebrg two
constant(l;) and p(Ij) were defined as proportionality of two expressiénSee Def-
initions 2.1 and 2.2.) These two constants play a criticé for the construction of
conformally invariantQ2y systems. For instance, the special vafyecan be expressed
in terms ofc(l;) and p(f;). Nonetheless, their true mathematical significance or any
concrete expressions were not shown. Then, in this papemjivee explicit and uni-
form expressions for these constants. To do so we introdusemaconstant< (Ij; W)
(See Definition 4.1.) associated to a simple idgabf [ and a finite dimensional-
module W. The formulation of the constari(l;; W) is inspired by a formula on the
Dynkin index of a finite dimensional representation of a campsimple Lie algebra.
With the constantd<(I;; W), we show thatc(l;) = K({;; g(1)) and p(l;) = K({;: [;).

We now outline the remainder of this paper. In Section 2 weltgbe definitions
of c((;) and p([;) from [1]. The notation and normalizations that are in fofoe the
rest of this paper are also introduced in this section. Inti@e@& we review the Dynkin
index of a simple Lie algebrg. In Section 4 we define the constat(lj; W) and show
its several properties. In Section 5, for the parabolic kédaag = [ & g(1) & g, of
Heisenberg type, we show thafl;) = K(I;; g(1)) and p((;) = K(I;;[;) as our main
results. These are done in Theorems 5.1 and 5.4, respgctivel

2. Preliminaries

In this section we recall from [1] two constartf;) and p(l;) associated to a sim-
ple ideall; of the Levi subalgebré of the parabolic subalgebip= [@n of Heisenberg
type. To do so we need to introduce some notation and fix nizateins on the root
vectors X_,, H,, and X,.

1in [1] the 1 eigenspacg(l) is denoted by *.
2In [1] the constantss(!;) and p(l;) are denoted by(g, C) and p(g, C), respectively.
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Let g be a complex simple Lie algebra. Fix a Cartan subalggbaad write A =
A(g, b), the set of rootg with respect tofj. Choose a Borel subalgebbaand denote
by A* the corresponding set of positive roots so that h & @, .+ 9, With g, the
root space ofx. We write I1 for the set of simple roots and for half the sum of the
positive roots. We denote by the highest root ofy. Let By be a positive multiple of
the Killing form on g and denote by -, -) the corresponding inner product dofi. A
normalization ofBy will be specified below.

As in [1], for eacha € A*, we chooseX, € g, and H, € b in such a way that
the following properties hold:

(C1) For eachx € A, {Xq4, Hyy X_o} is ansl(2)-triple; in particular, Ko, X_4] = H,.
(C2) For eachy, p € A, [Hy, Xg] = B(Ha) Xp.

(C3) The inner product -, -) is positive-definite on the real span Ofl, | @ € A}.
(C4) Fora € A we haveBy(Xy, X_y) = 2/{a, a).

(CH) Fora, B € A we havepB(H,) = 2(8, o) /{«, ).

We normalizeB,; so thatBy(X,, X_,) = 1. By the condition (C4), this is equivalent
to requiring (y, y) = 2. Fora € A, we write ||«|? = (@, @) anda" = 2a/{a, ).

Let g =& g(1) ® g, be the standard parabolic subalgebra of Heisenberg type, as
described in (1.1). Observe thatgfis of type A, then, asq = b the Borel subalgebra,
we have [, [] = 0. Thus, for the rest of this section, we assume thé not of type
A, so that [, ] # 0.

Now we recall the definitions of the constamd;) and p({;) from [1]. If W is a
finite dimensional representation of a complex reductive &ligebra then we denote by
A(W) the set of weights foWW. When A(W)\{0} C A, we write AT(W) = A(W)NA™*
and IT(W) = A(W) N I1.

DEerINITION 2.1 ([1, Proposition 2.1]). Ley be a complex simple Lie algebra,
not of type A, and letq = (& g(1)®g, be the parabolic subalgebra gfof Heisenberg
type. If [j is a simple ideal ofl then there exists a constaof(;) such that, for all
o € A(g(1)) ands € A(l)),

2.1) D (e BB, &) =c(lj)(a, 8).

BeA(g(1)

DEFINITION 2.2 ([1, Proposition 2.2]). Lefy be a complex simple Lie algebra,
not of type A, and letq = (@ g(1)®g, be the parabolic subalgebra gfof Heisenberg
type. If [[,1] = @'j“:l[j with [; the simple ideals ofl[[] then there exist constan{x({;)
such that, for allX € g(1) andY € g(—1),

(2.2) D IBIPIX, X-g], [Xg, YT = D p(t) pri([X, YD),

BeA(a(1)) j=1

where pr: [I, [] — [j is the projection map.
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The goal of this paper is to express the constanfts) and p(l;) explicitly. To
this end we show two technical lemmas, which will make cargipositions simple in
later proofs. LetD, (g, h) denote the subdiagram of the Dynkin diagramgobbtained
by deleting the nodes that are connected-to in the extended Dynkin diagram and
the edges that touch them. (See Appendix A for the diagr@ang, h) for each of
the complex simple Lie algebras.) For a simple idgabf [[, [], we denote by%; the
highest root ofl; with respect to the positive syste™([;).

Lemma 2.3. If «g is a simple root whose node is deletedTi (g, b) thené; +
ao € A. In particular, any simple ideall; acts ong(1) non-trivially.

Proof. As bothé; and«g are roots, to prove this lemma, it suffices to show that
(&j, ap) < 0. Fora € IT observe thafa, ap) < 0 if « is adjacent toxg in the Dynkin
diagram and(«, ap) = O otherwise. A direct observation di, (g, ) in Appendix A
shows that, for any simple ide§l of [, there exists a simple root in TI(l;) so thate’
is adjacent taxo. Write §j as&j =3 _,.n,)Nee in terms of the simple roots € I1([;).
Observe that sincé; is the highest root for the simple algebiia we haven, € Z.o
for all « € II(l;); in particular,n, > 0 for the simple rootx’. Therefore,(&;, o) <
Ny (o, ag) < 0. Ul

Observe that the Cartan subalgelraan be decomposed §s= 3(I) ® b, where
hss is the Cartan subalgebra of, [|. Then, for a finite dimensionalmodule W, we
say that a weight) € A(W) is a highest weighfor W if the restrictions|y__ onto b is
a highest weight fow as an [, []-module. We denote by. a highest weight fog(1).

Lemma 2.4. If u is a highest weight fog(1) then u — &; € A.

Proof. As the proof for Lemma 2.3, since bagthandé; are roots ofg, to prove
this lemma, it suffices to show thgt, £;) > 0. If the semisimple part[(] of [is [(,(] =
@i, I with [k the simple ideals of([ ] then we writey asp = Y11 >y Ne P
with n, € Z-o, wherew, are the fundamental weights afe I1(l). Observe that since
§j is the highest root folj, the weighté; can be written agj = > 5 () MpB With
mg € Z-.o, a linear combination of the simple rogtse I1(l;) with coefficientmg € Z..o.
Therefore, for eaclk € II([;),

(w—av%‘j) = Z mﬁ(w—arﬁ) =m, >0
BeM(l))

and, for alla € TI(l) with k # j, we have(w,, &) = 0. It follows from Lemma 2.3
that [; acts ong(1) non-trivially. In particular, there exists” e II(l;) so thatn, > 0
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for = 3"k11 > uenqy Ne@a- Therefore we obtain

(&) =D D Nalma, &) = Y Mol &) = NgMyr > 0. O

k=1 aell(lk) aell(l;)

3. The Dynkin index

To give concrete expressions foff;) and p(l;), in the next section, we shall intro-
duce a new constant inspired by a formula on the Dynkin indéen, in this section,
we recall the definition of the Dynkin index and its severabparties. We keep the
notation and normalizations om from Section 2, unless otherwise specified.

DEFINITION 3.1 ([5, Section 2]). Lefy; and g, be two complex simple Lie al-
gebras. Ifg: g; — g, is a Lie algebra homomorphism then there exists a unique num-
ber my € C such that, for allX, Y € gy,

By, (0(X), ¢(Y)) = my By, (X, Y),

where By, (-, +) is the positive multiple of the Killing form ory; normalized as in
Section 2. The unique numbery is called theDynkin indexof ¢.

DEFINITION 3.2 ([5, Section 2]). IfV is a finite dimensional representation (not
necessarily irreducible) of a complex simple Lie algebréhen theDynkin index ny
of the representation \is defined by that of a Lie algebra homomorphism

¢: g —sl(V),
wheresl(V) is the Lie algebra of trace zero endomorphismsvof

Observe that since the inner prodygt, -) is normalized agy, y) = 2, we have
yY = y. Nonetheless, for later convenience, we use the notatioin Proposition 3.3
below. (See Lemma 4.2 and some comments after Definition dldwd

Proposition 3.3 ([8, Lemma 5.2]) Let g be a complex simple Lie algebra with
highest rooty. If V is a finite dimensional representation gfthen the Dynkin index
my of the representation V is given by

3.1) myo=2 Y dimv), P,

reA(V)

where V is the weight space of V for weight. In particular, for the adjoint
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Table 1. The dual Coxeter numbers.

Types ofg | dual Coxeter numbers
An,n>1 n+1
Bn, n>=2 2n—1
Chn=>2 n+1
Dh,n>4 2n—2

Es 12

E; 18

Es 30

F4 9

G, 4

representationad of g, we have

3.2) Mag= Y (o, ¥")> =2(1+ (p, ¥")).

aEAT

REMARK 3.4. The formulamag = 2(1 + (p, ¥")) in (3.2) was first found by
Dynkin ([5, Theorem 2.5]) without using (3.1).

REMARK 3.5. The number & (p, yV) is called thedual Coxeter numbeof
g. (See for instance [6, Section 6.1 and Exercise 6.2].) Tabfaimmarizes the dual
Coxeter number for each complex simple Lie algepra

We shall later use a modification of (3.2). To prove the modifan we first recall
the following lemma due to Braden. Let denote the weight lattice of and V(1)
denote the finite dimensional irreducible representation with highest weight € A.
We denote by ranlg) the rank ofg.

Lemma 3.6 ([4, Lemma 1.3]) Letg be a complex simple Lie algebra. Thdar
any v, € € A, we have

(v, €)
(vyn(n, €) = ——~= {(n,n).
neg:\/(/\)) rank@ neA;V(/\))

Here is a modification of (3.2).

Lemma 3.7. Let g be a complex simple Lie algebra with highest rgat Then
for any B4, B> € A, we have

1822 > (o, BYY2 = [1B2l® D {er, B5)%

aeAt aeAt
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In particular, for any g € A,

2
1P 3B P =2 o)

2
Iz &

Proof. Via the adjoint representation, the simple algepisregarded as the finite
dimensional irreducible representation @fwith highest weighty. Since the set of
weights ofg is A U {0}, it follows from Lemma 3.6 that, for ang € A,

2
St ) = g Sl

aeA

Thus if g1, B2 € A then

— 2 __
||ﬂ||22 @ B1)° rank(g)z” ol = IIﬁ E

aEA

Z(Xﬂg .

aEA

Since (a, BY) = 2(a, Bi)/|Bi]1? and («, B’)? = (—a, B")?, this implies that

(3.3) 1BLP >~ (e, BYY2 = [1Ball® D (e, B5)2.

aeAt aeAt

Now if 81 = B and B8, = ¥ in (3.3) then it follows from (3.2) that

2
VoL S @ 87 = Yty =204 (o, 7). -

2
”y” aEAT aEAT

To conclude this section we show an interesting relatigngld@tween the Dynkin
index myg and minimal nilpotent orbitO,,, although the result is not used in this
paper. In Theorem 1 in [11], Wang showed that

(3.4 dimOmin = 2(1+ (p, y')) — 2
With (3.2) and (3.4) in hand, we obtain the following formula
Proposition 3.8. If Onin is the minimal nilpotent orbit ofy then
dim Omin = Mag — 2.
Proof. This lemma directly follows from (3.2) and (3.4). ]

For more properties of the Dynkin index, see for example [8], [7], [8], [9],
and [10]. Some topological interpretation of the Dynkinerds discussed in [9] and
Section 4 of [7].
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4. The constantK(lj; W)

In this section we introduce constariS(l;; W) associated to simple ideals of
a Levi subalgebrd and finite dimensional-modulesW. These constants will play
an essential role for concrete expressionsd@y) and p((;). We continue to use the
notation from the previous sections.

DEFINITION 4.1. Letg be a complex simple Lie algebra with highest roat
and letq = [®n be any standard parabolic subalgebrgoff W is a finite dimensional
[-module and iflj is a simple ideal of ([ [] then we defineK ({;; W) by

12
K w) o= = 5 S~ iy, 6992,

2
2 WE, A,

where W, is the weight space oV for weight A.

Remark that, since the values [p;]|?/|ly || and (,§]) are independent from the
normalizations of the inner produgt, -), the value ofK(lj; W) is defined intrinsically.

It is immediate from the definition thak(l;; k) = 0, unlessj = k. In the case
that j = k, the following formula holds.

Lemma 4.2. Given simple ideal; of [ with highest root;, we have

2|1&1I°

(4.1) K(G:0) = S

(L+ (o). &),

where p([;) is half the sum of the positive roots iv*([;).
Proof. This directly follows from Proposition 3.3 and Defion 4.1. 0

ExamMPLE 4.3. Letg be the complex simple Lie algebra of tyfBg with n > 4,
and letq = [® g(1)® g, be the parabolic subalgebra gfof Heisenberg type described
as in (1.1). If we use the standard realization of the rootesysA with ¢; the dual
basis of the standard orthonormal basis ®dr then the highest roop is y = 1 + ¢5.
As g(1) is the 1 eigenspace of ady), the setA(g(l)) = {B € AT | (B,y) =1} is
given by

A(g(1)) ={ej £ ex: j =1,2 and 3< k < n} U {e1, &2}.

There are two simple ideals and |, in [L,[], wherel; =~ s((2,C) and [, =~ so(2(h—2)+

1, C) with highest rootst; = &1 — &2 and & = e3 + &4, respectively. (See the diagram
D, (g, h) in Appendix A.) In this case, foj = 1, 2, K({; : g(1)) and K({; : [) are
computed as follows.
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(1) K(1j; g(1)): Observe that we havgy||? = ||&;||? for j = 1, 2. Also, observe
that since any weight# for g(1) are roots ofg, each weight spacg(1)s of g(1) is
one-dimensional. Thu&(l;; g(1)) is given by

112
K o) = = 15 S~ dimgg(aysip, £
2 I® peiGw)
1
=5 2 (Blea—e)")?
pen(a(l)
1
=3 Z ()  ew, (61— £2)")% + (e, (61— £2)")? + (g2, (1 — £2)")?
=2n-3.

Similarly, we haveK (ly; g(1)) = 4.
(2) K(f;;): By using the dual Coxeter numbers in Table 1, it follows from
Lemma 4.2 that

2||&1?
I 112

Kl h) = S0 (L4 (o), &) = 2-2 = 4,

and

2|61
I 112

K(lz: I2) = 1+ (p(l2), &) = 2(2( - 2) — 1) = 2(2n - 5).

By Proposition 3.3, we have

1

Emad = 1+ (p’ y\/)l
wheremyq is the Dynkin index of the adjoint representation. To finibis tsection we
show an analogous formula fa€ (f;; g(k)).

Proposition 4.4. Let g = @L:—r g(k) be a complex simple graded Lie algebra
with parabolic subalgebra; = [ & n = g(0) ® P,., 9(k). If y is the highest root for
g and if [j is a simple ideal off = g(0) then

2K 0) + YD KA 00) = 1+ (0, 7).
k=1
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Proof. First observe that sinde= g(0), each subspaggk) is an[-module. Then
we have

K([J [)+ZK([J (k)

k=1
1l w2 LN "2
Y aeA([j) k=1 peA(a(k)
1 gIR “we L% w
aeA*(l;) k=1 peA(g(k)

If the semisimple partI[I] of ['is [I,[] = @{”zllt with [; simple ideals them\(g(0)) is
given by A(g(0)) = A() = Ui A(k). Asa L& for anya € A(l) for t # j, we have

D () Z o (wEN= )0 ()

aeAt (1)) t=1 acA* (L) acA* ()

Therefore we obtain

«uu+2mnw»

k=1
_ 1 oglP Z £V +Z Z (B, £Y)
FE (o, J
aeA* (1)) k=1 peA(g(k))
_ 1§ [ Z ( SV)2+rZ Z (B, £Y)?
~ 2 Iyl %o )
aeA+(g(0) k=1 BeA(g(K))
1 i&02 v
=3 R o
aeAT

Note that it is applied from line three to line four that™ = A*(g(0))U U,_; A(a(K)).
Now Lemma 3.7 concludes the proposition. ]

5. Main results

In this section, as our main results, we show tbdf) = K(I;; g(1)) and p(f;) =
K(lj; I;), where c(l;) and p(l;) are the two constants defined in Definitions 2.1
and 2.2, respectively.
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Theorem 5.1. Let g be a complex simple Lie algebraot of type A, and let
qg=1[1& g(1) ® g, be the parabolic subalgebra af of Heisenberg type. If; is a
simple ideal off then

c(lj) = K(1j; g(1)).

Proof. Observe that, 38 € A(g(1)) are roots forg, we have dimg(1)s) = 1 for
all B € A(g(1)). Since||y||? is normalized ag|y||* = 2, it then follows that

12
> dimpe &) = BE S (e

BeA(g(1) BeA(g(1)

1 12
=z ||||Eyj ||||2

Thus, to prove this theorem, it suffices to show that

o 1 vy2
(5.1) o)== X (BE

BeA(g(1)

Since (u, &) = (11§ 11%/2)(w, &), if « = p and . = &; in (2.1) then

515
2

(5.2) > (BB &) = (i)

BeA(g(1)

(. &)
On the other hand, by Lemma 2.4, we have- £; € A(g(1)). So, ife = u —&; and
A =& in (2.1) then, agu—&;,&)) = (1, &) —lI&; 11> = (1 17/2)((1. §) —2), we have

18112
2

(5.3) D (w—&, B)B.E) = (i)

BeA(g(1)

(. &)~ 2).

The difference of the left hand sides of (5.2) and (5.3) is

D BB E)— (=&, BYNB.E) = D (5. BB &)

BeA(g(1) BeA(a(1))

4
LT Ny

BeA(g(1)

and that of the right hand sides is

51
2

(515

c(lj) 5

(w, &) — (1)) (e, &) = 2) = lIg; 11 %e(1;).

Therefore we have

M 2 _ 1£. 1120(].
(5.4) 4 Z (B, &) = 1§ lI°c(ry).

BeA(g(1)
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Now the equation (5.1) follows from dividing both sides of4Bby |&;12. ]

Next we show thatp(l;) = K(Ij; [;). To this end we show one simple result on
the parabolic subalgebra= [ & g(1) ® g, of Heisenberg type.

Lemma 5.2. If q=1[® g(1)® g, is the parabolic subalgebra of of Heisenberg
type then

_ dim(g(1)) + 4

1+ (p,v") >

Proof. By the equation (3.2), we have

L4,y =2 3 oy

aeAt

=§< CAREEDD <a,yV>2+<y,y>2>.

aeA*(l) aeA(g(1)

As [ and g(1) are the O eigenspace and 1 eigenspace dfl,gdespectively, it follows
from the normalization thaty, y) = 2 that

N [0 if ae AT,
(o, y >—<°"V>—{1 if o e Ag(2)).

Therefore, we have _, (e, ¥) =0 and_,c,ayle vY) = dim(g(1)). Hence,

1+<p,yV>=§( S e+ Y <a,yV>2+<y.y>Z)

aeA*(I) aeA(g(1))
_ dim(g(1)) + 4
=K

Proposition 5.3 ([1, Proposition 3.1]) We have

1 dim(g(1)) + 4
Ep([j) + C([j) = f

Now we are ready to show thad(l;) = K({;; [;).

Theorem 5.4. Let g be a complex simple Lie algehraot of type A, and let
q=I[dg(l)®g, be the parabolic subalgebra @f of Heisenberg type. ffi,[] = @T:l[j
with [; the simple ideals ofl, [] then

p(tj) = K15 ).
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Proof. As in the proof for Lemma 5.2, observe that g(0) the O eigenspace of
adH,). Thus,a L y for all « € A(I); in particular,&; L y. Therefore, agy, = g(2),
we haveK (lj; g(2)) = K(I;; g,) = 0. It then follows from Proposition 4.4 that

(5.5) %Kmﬂ0+Kmmﬂ»=1+@wW-

On the other hand, by Proposition 5.3, we have

dim(g(1)) + 4

1
5 P() +c(t) = >

Thus it follows from Lemma 5.2 and (5.5) that

2K ) + K (55 01) = 5 P05 + ).

Now the theorem is concluded by Theorem 5.1. ]

A.  Appendix

In this appendix we give the diagraf, (g, h) for each complex simple Lie alge-
bra. (See Section 2.) For simplicity we depict the diagramsrossing out the deleted
nodes. We use the Bourbaki conventions [3] for the labelihghe simple roots for
exceptional algebras.

o A, NnN>2:

e B, n=>3:

a1 a2 a3 Qpn-1  On

e Cyn=>2:

&—O—— - — OO0

o1 a2 Qp-1  On
e D, n=>4:

Qn-1
oO———-- n—2
o1 o2

On
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(1]

(2]

(3]
(4]

(5]
(6]
[7]
(8]

T. KuBo
Es:
o2
O O
o1 o3 (071 s o1
E;:
o2
& O
(21 o3 o4 o5 (o7 o7
o
O &
oq a3 [67) 615 07 (0% ag
Fa4:
& > g O
(041 (0% o3 (o7}
G;:
O =50
01 (0%
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