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Abstract
In this paper we obtain theL p-boundedness for the maximal functions and the

singular integrals associated to surfaces (y, �(jyj)) with rough kernels, 1< p <1.
The analogue estimate is also established for the corresponding maximal singular
integrals.

1. Introduction

Let K W Rn
! R be a Calderón–Zygmund standard kernel inRn (n � 2), that is,

K (y) D �(y)=jyjn with y ¤ 0, where�(y) satisfies

�(y) 2 C1(Sn�1),

�(�y) D �(y), � > 0,

and

(1.1)
Z

Sn�1
�(y) d� (y) D 0.

Let 0W Rn
! R

m be a smooth map. Then, we define the singular integralsT associated
with 0 by the principal-value integral

(1.2) T f (x) D p.v.
Z

R

n

f (x � 0(y))K (y) dy,

where x 2 Rm and f 2 S (Rm). Similar to the case of classical singular integrals the-
ory, one can define the corresponding maximal functions as

M f (x) D sup
h>0

1

hn

Z

jyj�h
j f (x � 0(y))j dy.

The boundedness of the two operatorsT andM above onL p(Rm) has been well
studied. We begin with the classical results by Stein, whichcan be found in [15].
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Theorem A (See [15]). If 0 is any polynomial map fromRn to Rm, then the op-
erators T and M are both bounded on Lp(Rm) for 1< p <1.

Moreover, if 0 is a smooth mapping from the unit ball inRn to Rm, and of finite
type at the origin, then T and M are bounded operators on Lp(Rm) for 1< p <1.

Later, the theorem above was extended. That is, even in the case� is rough, the
two results above still holds (see [9] and [10]). Furthermore, T is bounded onPFp,q

�

for
1< p, q <1 and � 2 R, where� is rough and0 is a polynomial map or a smooth
mapping of finite type. More details can be found in [6] and [12].

For 0(y) D (y, �(jyj)), y 2 Rn and� 2 C(RC), Kim, Wainger, Wright and Ziesler
proved the following result in [11].

Theorem B (See [11]). Let �(t) be a C2 function on[0,1), and assume that�
is convex and increasing on[0,1), and �(0)D 0. Then, for 1< p <1, there exists
a positive constant Ap such that

kT f kL p
� Apk f kL p and kM f kL p

� Apk f kL p ( f 2 L p).

In this case, theL p-boundedness for the singular integrals in (1.2) with roughker-
nel is studied by Chen–Fan [5] and Lu–Pan–Yang [13].

Let P(t) be a real-valued polynomial oft in R, and assume that
 satisfies


 2 C2[0,1), convex on [0,1) and 
 (0)D 0.

In this paper, we consider the hypersurface parameterized by 0 W Rn
! R

nC1, where0
is given by

0(y) D (y, P(
 (jyj))), y 2 Rn.

Then, the operatorsT andM above take the form

(1.3) T f (u) D p.v.
Z

R

n

f (x � y, s� P(
 (jyj)))K (y) dy

and

(1.4) M f (u) D sup
h>0

1

hn

Z

jyj�h
j f (x � y, s� P(
 (jyj)))j j�(y)j dy,

where x 2 Rn, s 2 R and u D (x, s), K is the Calderón–Zygmund standard kernel as
before.

For the L p-boundedness of the singular integralsT in (1.3) and the maximal
functionsM in (1.4), Bez proved the following theorem in [1].
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Theorem C (See [1]). For T in (1.3)andM in (1.4), if 
 0(0)� 0,� 2 C1(Sn�1),
then, for 1 < p <1, there exists a positive constant C only dependent on p, n, 
 and
the degree of P such that

kT f kL p
� Ck f kL p and kM f kL p

� Ck f kL p ( f 2 L p).

REMARK 1.1. One may notice that there is a little difference betweenthe max-
imal function in (1.4) and that in Bez’s paper [1], we represent the maximal function in
this form just for convenient. But Bez’s results still hold,sinceC1(Sn�1) � L1(Sn�1).

Besides the operatorsT and M above, we also consider the corresponding max-
imal singular integrals

(1.5) T � f (u) D sup
">0

�

�

�

�

Z

jyj�"
f (x � y, s� P(
 (jyj)))K (y) dy

�

�

�

�

.

Appropriate estimates for the maximal singular integrals give the pointwise existence
of the principle value singular integrals.

REMARK 1.2. For n D 1, if 0 satisfies a ‘finite type condition’ at origin in
R

m, the L p-estimates for the Hilbert transform, the maximal functionand the max-
imal Hilbert transform can be found in the survey [14] of results through 1978. For
other one-dimensional curves0, there are considerable results about theL p-estimates
for the Hilbert transform and the maximal function, see [2],[7] and [8] for example.
Specially, the maximal Hilbert transform has been discussed in detail in [8].

The purpose of this note is to study theL p-boundedness forT in (1.3) andM
in (1.4), also, the analogue estimate for the maximal singular integralsT � in (1.5) is
considered. Main results are presented as follows.

Theorem 1.3. Let T andM be given as in(1.3) and (1.4), respectively. If
 0(0)�
0 and� 2 Lq(Sn�1) for some1 < q � 1, then T and M are bounded on Lp(RnC1)
for 1< p <1.

REMARK 1.4. Note thatC1(Sn�1) � Lq(Sn�1) for 1< q � 1, so, Theorem 1.3
improves and extends Theorem C. Also, Theorem B is a special case of Theorem 1.3
for P(t) D t . Further, theL p-boundedness forM can be proved by using Calderón–
Zygmund’s rotation method with� 2 L1(Sn�1), if either
(1) P0(0)D 0, or
(2) P0(0)¤ 0 and
 0(�t) � 2�0(t) for some� > 1.

Theorem 1.5. Let T � be given as in(1.5). If 
 0(0) � 0 and � 2 Lq(Sn�1) for
some1< q � 1, then T � is bounded on Lp(RnC1) for 1< p <1.
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This paper is organized as follows. In Section 2 we list some key properties con-
cerning polynomials of one variable and give some fundamental lemmas for the proof
of main results. TheL p-boundedness ofM and T is proved following the arguments
of Bez [1] and Carbery et al. [2] in Section 3 and Section 4, respectively. The last
section contains the proof of Theorem 1.5, where we use the ideas of Córdoba and
Rubio de Francia [8].

2. Preliminaries

Without loss of generality, we suppose thatP(t) D
Pd

kD1 pktk, whered � 2. Let
z1, z2, � � � , zd be thed complex roots ofP ordered as

0D jz1j � jz2j � � � � � jzdj.

Let A > 1, whose value we fix in Lemma 2.1. DefineG j D (Ajzj j, A�1
jzjC1j]

if it is nonempty for 1� j < d and Gd D (Ajzdj,1). Let J D { j W G j ¤ ;}, then,
(0,1) n

S

j2J G j can be decomposed as
S

k2K Dk, where Dk is the interval between
Gk and adjacentGkCl for some l � 1, it it obvious thatDk’s are disjoint. Then, we
can split (0,1) as

(0,1) D
[

j2J




�1(G j ) [
[

k2K




�1(Dk),

where
 �1(I ) D {t 2 (0,1) W 
 (t) 2 I }.
The properties ofP on Dk and G j are important for our proof, the following re-

lated lemma can be found in [1] and [3].

Lemma 2.1. There exists a constant Cd > 1 such that for any A� Cd and any
j 2 J ,
(1) jP(t)j � jp j j jt j j for jt j 2 G j ;
(2) P0(t)=P(t) > 0 for t 2 G j , P0(t)=P(t) < 0 for �t 2 G j ;
(3) jP0(t)=P(t)j � 1=jt j for jt j 2 G j ;
(4) P00(t)=P(t) > 0 and P00(t)=P(t) � 1=t2 for jt j 2 G j , j 2 J n {1}.

The following trivial fact follows the proof of Lemma 2.1 (see [1]), that is, we can
chooseA > 0 such that forjt j 2 G j ,

(2.1) jP(t)j � 2jp j j jt j
j and

1

2
j jp j j jt j

j�1
� jP0(t)j � 2 j jp j j jt j

j�1.

Let � D nC 2, for I � (0,1), MI and TI are given by

MI f (u) D sup
k2Z

1

�

nk

Z

jyj2
 �1(I )\(�k,�kC1]
j f (x � y, s� P(
 (jyj)))j j�(y)j dy,
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and

TI f (u) D
Z

jyj2
 �1(I )
f (x � y, s� P(
 (jyj)))K (y) dy.

For k 2 Z and j 2 J , let

Ak, j D

0

B

B

B

�

�

k 0 � � � 0
0 �

k 0 0
...

...
. .. 0

0 0 � � � jp j j

j (�k)

1

C

C

C

A

(nC1)�(nC1)

,

then, Ak, j satisfies Rivière condition, that iskA�1
kC1, j Ak, j k � � < 1. In fact,

A�1
kC1, j Ak, j D

0

�

�

�1In 0

0

�


 (�k)


 (�kC1)

� j

1

A.

Note that
 is convex,
 (t)=t � 
 (s)=s for 0< t � s, therefore,

�


 (�k)


 (�kC1)

�

�

1

�

< 1.

We choose� 2 C1(RnC1) such that O�(� )D 1 for j� j � 1 and O�(� )D 0 for j� j � 2.
For k 2 Z and j 2 J , the multiplier mk, j is defined by

mk, j (� ) D O�(A�k, j � ) � O�(A�kC1, j � ),

where A�k, j is the adjoint ofAk, j . Then, we define the operatorSk, j by

(Sk, j f )^(� ) D mk, j (� ) Of (� ).

In the next proposition, we state a useful result for future reference.

Proposition 2.2. For any j 2 J , if mlCk, j (� ) ¤ 0 for some k, l 2 Z, then

(2.2) jA�k, j � j � C��l , l < 0I

and

(2.3) jA�kC1, j � j � C��l , l > 0.
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Proof. If mlCk, j (� ) ¤ 0, then jA�lCk, j � j � 2 and jA�lCkC1, j � j > 1. For l < 0, by
the convexity of
 ,

1< jA�lCkC1, j � j � �
lC1
jA�k, j � j,

that is (2.2). Whenl > 0,

2� jA�lCk, j � j � �
l�1
jA�kC1, j � j,

then, (2.3) is obtained.

We need the following Littlewood–Paley theorem, which can be found in [2]
and [4].

Lemma 2.3. For mk, j and Sk, j above, we have the following properties:
(i) for each� at most C0 of the mk, j (� ) are not zero;
(ii) for each� ¤ 0,

P

k2Z mk, j (� ) D 1;

(iii)






�

P

k2ZjSk, j f j2
�1=2





L p � Cpk f kL p , 1< p <1;

(iv)






P

k2Z Sk, j fk







L p � Cp







�

P

k2ZjSk, j fkj
2
�1=2





L p , 1< p <1.

3. The Lp-boundedness forM

It is trivial that

M f (u) � C

"

X

k2K

MDk f (u)C
X

j2J

MG j f (u)

#

.

Note that the cardinalities ofK andJ are less thand, so we just need to verify that
MDk andMG j are L p-bounded for eachk 2 K and j 2 J .

3.1. The Lp-bounedness forMDk . For any u 2 RnC1, there exists an integer
j (u) such that

MDk f (u) �
2

�

nj(u)

Z

jyj2
 �1(Dk)\(� j (u),� j (u)C1]
j f (x � y, s� P(
 (jyj)))j j�(y)j dy.

Then, by Minkowski’s inequality, theL p-norm of MDk f can be dominated by

�

Z

R

nC1

�

1

�

nj(u)

Z

jyj2
 �1(Dk)\(� j (u),� j (u)C1]
j f (x � y, s� P(
 (jyj)))j j�(y)j dy

�p

du

�1=p

�

Z

jyj2
 �1(Dk)

j�(y)j

jyjn

�

Z

R

nC1
j f (x � y, s� P(
 (jyj)))jp du

�1=p

dy

� Ck f kL p
k�kL1(Sn�1)

Z

r2
 �1(Dk)

1

r
dr .
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Let Dk D (A�1
jzj j, AjzjCl j] for some 2� j � d and 0� l � d � j , then

A�1
jzj j � A�1

jzjC1j � Ajzj j � � � � � AjzjCl j < A�1
jzjClC1j

and

A2
�

AjzjCl j

A�1
jzj j
�

AjzjCl j

A�2l�1
jzjCl j

� A2lC2.

Notice that
 is convex and
 (0)D 0, so,
 (t) � t
 0(t) for t > 0. Thus,

Z

r2
 �1(Dk)

1

r
dr D

Z




�1(AjzjCl j)




�1(A�1
jzj j)

1

r
dr D

Z AjzjCl j

A�1
jzj j

1




�1(r )
 0(
 �1(r ))
dr

�

Z AjzjCl j

A�1
jzj j

1

r
dr � 2d ln A,

where
 �1(t) is the inverse function of
 (t).
According to the calculation above, theL p-bounedness forMDk is established,

kMDk f kL p
� Ck f kL p , for 1< p <1, k 2 K.

3.2. The Lp-bounedness forMGj . Next, we verify thatMG j is L p-bounded
for j 2 J . The maximal operatorsMG j can be expressed as

MG j f (u) D sup
k2Z

Z

jyj2��k



�1(G j )\(1,�]
j f (x � �k y, s� P(
 (j�kyj)))j j�(y)j dy.

Set Ik, j D (1, �] \ ��k



�1(G j ), and define the measure�k, j by

h�k, j ,  i D
Z

jyj2Ik, j

 (�ky, P(
 (j�kyj)))j�(y)j dy

for  2 S (RnC1). Then, for j 2 J , MG j f also can be rewritten as

MG j f (u) D sup
k2Z

�k, j � j f j(u).

We also need to define the measure�k, j by

h�k, j ,  i D
O�k, j (0)

jAkC1, j Bj

Z

AkC1, j B
 (u) du,

where B D {u 2 RnC1
W juj � nC 1}.
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3.2.1. Fourier transform estimates for related measures.

Proposition 3.1. For j 2 J and k2 Z, then there exists C> 0 and � > 0 in-
dependent of j and k such that

(3.1) j O�k, j (� )j, j O�k, j (� )j � C max{jA�k, j � j
�1, jA�k, j � j

��}

and

(3.2) j O�k, j (� ) � O�k, j (� )j � CjA�kC1, j � j.

Proof. The main idea of the following proof comes from the work of Bez (see
[1]). For completeness, we show more details.

Let � D (� , �), where� 2 Rn and � 2 R. For k 2 Z and j 2 J , we have

j O�k, j (� )j D

�

�

�

�

Z

jyj2Ik, j

e�i [�k y��C�P(
 (�k
jyj))]
j�(y)j dy

�

�

�

�

�

Z

Ik, j

�

�

�

�

Z

Sn�1
e�i�kty0��

j�(y0)j d� (y0)

�

�

�

�

dt.

Set Ik(t) D
R

Sn�1 e�i�kty0��
j�(y0)j d� (y0), by Hölder’s inequality,

j O�k, j (� )j2 � C
Z

Ik, j

jIk(t)j2 dt

� C
Z

(Sn�1)2
j�(y0)j j�(z0)j

�

�

�

�

Z

Ik, j

ei�kt� �(y0�z0) dt

�

�

�

�

d� (y0) d� (z0).

By van der Corput’s lemma, for any� 2 (0, 1), we have
�

�

�

�

Z

Ik, j

ei�kt� �(y0�z0) dt

�

�

�

�

� C min{1, j�k
� � (y0 � z0)j�1}

� C(�k
j� j)��j� 0 � (y0 � z0)j��.

If q D1, it is trivial, we set� D 1=2. For q 2 (1,1), specially, we choose a positive
constant� so that�q0 < 1. By Hölder’s inequality, we get

j O�k, j (� )j2 � C(�k
j� j)��

Z

(Sn�1)2
j�(y0)j j�(z0)j

d� (y0) d� (z0)

j�

0

� (y0 � z0)j�

� C(�k
j� j)��

�

Z

(Sn�1)2
j�(y0)jq j�(z0)jq d� (y0) d� (z0)

�1=q

�

�

Z

(Sn�1)2

d� (y0) d� (z0)

j�

0

� (y0 � z0)j�q0

�1=q0

� Ck�k2
Lq(Sn�1)

(�k
j� j)��.
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Finally, there exists a constant� 2 (0, 1=(2q0)) such that

(3.3) j O�k, j (� )j � C(�k
j� j)�� .

CASE 1. j 2 J n {1}. If � satisfies 4�k
j� j � jp j j


j (�k)j�j, then, jA�k, j � j �
p

17�k
j� j. Therefore, (3.3) impliesj O�k, j (� )j � CjA�k, j � j

�� .

If � satisfies 4�k
j� j < jp j j


j (�k)j�j, in order to estimatej O�k, j (� )j, we need the
following lemma which is Lemma 2.2 in [1].

Lemma 3.2. For all j 2 J n {1}, the function

t 7! P00(
 (�kt))
 0(�kt)2
C P0(
 (�kt))
 00(�kt)

is singled-signed on Ik, j .

On the other hand,

j O�k, j (� )j �
Z

Sn�1

�

�

�

�

Z

Ik, j

e�i [�kty0��C�P(
 (�kt))] dt

�

�

�

�

j�(y0)j d� (y0).

For fixed y0 2 Sn�1, let hk(t) D �kty0 � � C �P(
 (�kt)). For t 2 Ik, j , by (2.1) and the
convexity of 
 , we have

(3.4)
jh0k(t)j � j�k P0(
 (�kt))
 0(�kt)�j � j�k

� j

�

1

2
j jp j j�

k



j�1(�kt)
 0(�kt)j�j � �k
j� j �

1

2
j jp j j


j (�k)j�j � �k
j� j.

Note that 4�k
j� j < jp j j


j (�k)j�j and jA�k, j � j � (
p

17=jp j j)
 j (�k)j�j. Hence,

(3.5) jh0k(t)j �
1

4
jp j j


j (�k)j�j �
1
p

17
jA�k, j � j.

For j 2 J n {1}, h0k(t) is monotone onIk, j by Lemma 3.2. By van der Corput’s lemma
and (3.5), we get

j O�k, j (� )j � Ck�kL1(Sn�1)(jp j j

j (�k)j�j)�1

� CjA�k, j � j
�1.

CASE 2. j D 1. If � satisfiesj� j � (1=4)jp1j

0(�k)j�j, by the convexity of
 ,

then,�k
j� j � (1=4)jp1j
 (�k)j�j and jA�k,1� j �

p

17�k
j� j. According to (3.3), we obtain

j O�k,1(� )j � CjA�k,1� j
�� .
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If � satisfiesj� j < (1=4)jp1j

0(�k)j�j, (3.4) implies

(3.6) jh0k(t)j �
1

2
jp1j�

k



0(�kt)j�j � �k
j� j �

1

4
jp1j�

k



0(�kt)j�j �
1

4
jp1j�

k



0(�k)j�j.

Integration by parts and (3.6) show that
�

�

�

�

Z

Ik,1

e�i [�kty0��C�P(
 (�kt))] dt

�

�

�

�

D

�

�

�

�

Z

Ik,1

e�ihk(t)h0k(t)
dt

h0k(t)

�

�

�

�

� 8(jp1j�
k



0(�k)j�j)�1
C

Z

Ik,1

jh00k(t)j

[h0k(t)]2
dt.

Essentially, we just need to consider the second term, whichcan be dominated by

Z

Ik,1

�

2k
j�j jP0(
 (�kt))j
 00(�kt)

h0k(t)2
dt C

Z

Ik,1

�

2k
j�j jP00(
 (�kt))j
 0(�kt)2

h0k(t)2
dt WD �1C �2.

In order to estimate the term�1, we define'k(t) D �

kt j� j C jp1j
 (�kt)j�j, then,
'

0

k(t) D �k
j� j C jp1j�

k



0(�kt)j�j. By (3.6), for t 2 Ik,1, it is obvious that

(3.7) j'

0

k(t)j �
5

4
jp1j


0(�kt)�k
j�j � 5h0k(t).

On the other hand, fort 2 Ik,1,

(3.8) j'

0

k(t)j � jp1j�
k



0(�kt)j�j � �k
j� j �

3

4
jp1j�

k



0(�kt)j�j.

Also, by (2.1), for t 2 Ik,1,

(3.9) '

00

k (t) D jp1j�
2k



00(�kt)j�j �
1

2
�

2k
j�j jP0(
 (�kt))j
 00(�kt).

Thus, in view of (3.7), (3.9) and (3.8), we have

(3.10) �1 � C
Z

Ik,1

'

00

k (t)

'

0

k(t)2
dt � C(jp1j�

k



0(�k)j�j)�1.

For �2, by (3.6) and (2.1),

(3.11)

�2 � C
Z

Ik,1

�

2k
j�j jP00(
 (�kt))j
 0(�kt)2

[jp1j�
k



0(�kt)j�j]2
dt

� C
Z

Ik,1

jp1j
�1
jP00(
 (�kt))j�k




0(�kt)
1

jp1j�
k



0(�kt)j�j
dt

� C(jp1j�
k



0(�k)j�j)�1
Z

G1

jp1j
�1
jP00(t)j dt

� C(jp1j�
k



0(�k)j�j)�1.
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Note thatjA�k,1� j � (
p

17=4)jp1j�
k



0(�k)j�j. Then, (3.10) and (3.11) imply

j O�k,1(� )j � CjA�k,1� j
�1.

For O�k, j , we have

j O�k, j (� )j D
O�k, j (0)

jBj

�

�

�

�

Z

B
e�iu�A�kC1, j � du

�

�

�

�

� CjA�k, j � j
�1.

According to the estimates forO�k, j and O�k, j above, we obtain (3.1). (3.2) can be
proved as follows,

j O�k, j (� ) � O�k, j (� )j � j O�k, j (� ) � O�k, j (0)j C j O�k, j (0)j j O�k, j (� ) � 1j

�

Z

jyj2Ik, j

je�i [�k y��C�P(
 (�k
jyj))]
� 1j j�(y)j dy

C

k�kL1(Sn�1)

jBj

Z

B
je�iu�A�kC1, j �

� 1j du

� CjA�kC1, j � j.

3.2.2. TheLp-norm of MGj f . For the maximal operatorsMG j , it can be dom-
inated by

MG j f (u) � sup
k2Z

�k, j � f (u)C sup
k2Z
j(�k, j � �k, j ) � f j(u)

�Ms f (u)C sup
k2Z
j(�k, j � �k, j ) � f j(u),

whereMs denotes the strong maximal function.
We first consider theL2-estimates forMG j . It is known thatMs is L p bounded

for 1 < p � 1, thus, it suffices to consider theL2-norm of supk2Zj(�k, j � �k, j ) � f j.
In view of Lemma 2.3, we have

(3.12)

j(�k, j � �k, j ) � f j

�

�

�

�

�

�

X

l�0

�k, j � SlCk, j f

�

�

�

�

�

C

�

�

�

�

�

X

l�0

�k, j � SlCk, j f

�

�

�

�

�

C

�

�

�

�

�

1

X

lD1

(�k, j � �k, j ) � SlCk, j f

�

�

�

�

�

WD Ak, j C Bk, j C Ck, j .

The L2-norm of the supremums ofAk, j , Bk, j and Ck, j are considered separately.
Now, the supremum ofAk, j is controlled by

sup
k2Z

Ak, j �
X

l�0

sup
k2Z
j�k, j � SlCk, j f j �

X

l�0

 

X

k2Z

j�k, j � SlCk, j f j2
!1=2

WD

0
X

lD�1

El , j f .
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For each integerl � 0, by Plancherel’s theorem, (3.1) and (2.2),

(3.13) kEl , j f kL2
D

 

X

k2Z

Z

R

nC1
j O�k, j (� )j2jmlCk, j (� )j2j Of (� )j2d�

�1=2

� C��l
k f kL2.

Then, by the triangle inequality inL2, we have

(3.14)













sup
k2Z

Ak, j













L2

� Ck f kL2.

The L2-norm of supk2Z Bk, j can be considered in the same way, therefore,

(3.15)













sup
k2Z

Bk, j













L2

� Ck f kL2.

Similarly, for supk2Z Ck, j , we have

sup
k2Z

Ck, j �

1

X

lD1

 

X

k2Z

j(�k, j � �k, j ) � SlCk, j f j2
!1=2

WD

1

X

lD1

Fl , j f .

For each integerl � 1, by Plancherel’s theorem, (3.2) and (2.3),kFl , j f kL2
�

C��l
k f kL2. Furthermore,

(3.16)













sup
k2Z

Ck, j













L2

� Ck f kL2.

Then, combining (3.12), (3.14), (3.15) with (3.16), we have

(3.17) kMG j f kL2
� Ck f kL2.

For theL p-boundedness ofMG j with p¤ 2, we need the following lemma, which
is Lemma 4 in [8].

Lemma 3.3. Suppose that Uk f D uk � f is a sequence of positive operators uni-
formly bounded on L1 and U� f D supk2Zjuk � f j is bounded on Lr , then, for p >
2r =(1C r ), there exists a positive constant Cp such that
















 

X

k2Z

juk fkj
2

!1=2













L p

� Cp
















 

X

k2Z

j fkj
2

!1=2













L p

, { fk} 2 L p(l 2).
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By (3.17), Lemma 3.3 and Lemma 2.3, forp > 4=3, we get

(3.18)

kEl , j kL p
D
















 

X

k2Z

j�k, j � SlCk, j f j2
!1=2














L p

� C
















 

X

k2Z

jSlCk, j f j2
!1=2














L p

� Ck f kL p .

Interpolation between (3.13) and (3.18), and the triangle inequality in L p imply that

(3.19)













sup
k2Z

Ak, j













L p

� Ck f kL p , p >
3

4
.

For supk2Z Bk, j and supk2Z Ck, j , by the same argument as we used for supk2ZAk, j ,
we obtain

(3.20)













sup
k2Z

Bk, j













L p

� Ck f kL p and













sup
k2Z

Ck, j













L p

� Ck f kL p , p >
3

4
.

So, according to theL p-boundedness ofMs, (3.19) and (3.20), we have
kMG j f kL p

� Ck f kL p for p > 4=3.
Finally, by a bootstrap argument, we can apply Lemma 3.3 inductively to show that

kMG j f kL p
� Ck f kL p , 1< p <1.

4. The Lp-boundedness forT

Similar to the maximal functionsM, the singular integralsT can be decomposed as

T f (u) D
X

k2K

TDk f (u)C
X

j2J

TG j f (u).

Then, theL p-boundedness forTDk and TG j will be considered separately for eachk 2
K and j 2 J .

4.1. TheLp-bounedness forTDk . Fork 2 K, by Minkowski’s inequality, we have

(4.1)

kTDk f kL p
�

Z

jyj2
 �1(Dk)
jK (y)j

�

Z

R

nC1
j f (x � y, s� P(
 (jyj)))jp du

�1=p

dy

� k f kL p

Z

Sn�1
j�(y0)j d� (y0)

Z

r2
 �1(Dk)

1

r
dr .

As the L p-estimates forMDk in Subsection 3.1, we get theL p-bounedness ofTDk ,

kTDk f kL p
� Ck f kL p , 1< p <1.
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4.2. The Lp-bounedness forTGj . For j 2 J , TG j f can be rewritten as

TG j f (u) D
X

k2Z

�k, j � f (u),

where the measure�k, j is given by

h�k, j ,  i D
Z

jyj2Ik, j

 (�ky, P(
 (j�kyj)))K (y) dy

for  2 S (RnC1).
For the estimates ofO�k, j , we have the following proposition.

Proposition 4.1. For j 2 J and k2 Z, then there exists C> 0 and � > 0 in-
dependent of j and k such that

(4.2) j O�k, j (� )j � C max{jA�k, j � j
�1, jA�k, j � j

��}

and

(4.3) j O�k, j (� )j � CjA�kC1, j � j.

Proof. (4.2) can be proved by using the same method as (3.1). It is trivial to
verify (4.3). In fact, by (1.1),

j O�k, j (� )j D

�

�

�

�

Z

jyj2Ik, j

[e�i [�k y��C�P(
 (jyj))]
� e�i�P(
 (jyj))]K (y) dy

�

�

�

�

�

Z

jyj2Ik, j

je�i�k y��
� 1j jK (y)j dy� Ck�kL1(Sn�1)�

kC1
j� j

� CjA�kC1, j � j.

By Lemma 2.3, we can decomposeTG j as

(4.4) TG j f D
X

k2Z

X

l�1

�k, j � SlCk, j f C
X

k2Z

X

l�0

�k, j � SlCk, j f WD D j C G j .

By the triangle inequality inL p and Lemma 2.3, we have

(4.5) kD j kL p
�

X

l�1
















X

k2Z

�k, j � SlCk, j f
















L p

� C
X

l�1

kHl , j kL p ,
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whereHl . j D
�

P

k2Zj�k, j � SlCk, j f j2
�1=2

. Plancherel’s theorem, (4.3) and (2.3) give

(4.6) kHl , j kL2
D

 

X

k2Z

Z

R

nC1
jmlCk, j (� )j2j O�k, j (� )j2j Of (� )j2d�

!1=2

� C��l
k f kL2.

On the other hand, note thatj�k, j � gj � C�k, j � jgj. For 1< p < 1, by the
L p-boundedness ofMG j , Lemma 3.3 and Lemma 2.3, we obtain

(4.7) kHl , j kL p
� C
















 

X

k2Z

jSlCk, j f j2
!1=2














L p

� Ck f kL p .

Interpolation between (4.6) and (4.7), and (4.5) imply that

(4.8) kD j kL p
� Ck f kL p , 1< p <1.

The L p-norm ofG j can be obtained in the same way. Forl � 0, using Plancherel’s
theorem, (4.2) and (2.2), we havekHl , j kL2

� C��l
k f kL2. Further, (4.7) still holds.

Interpolation and the triangle inequality inL p show that

(4.9) kG j kL p
� Ck f kL p , 1< p <1.

Combining (4.8) and (4.9), we prove theL p-boundedness forTG j .

5. The Lp-boundedness forT �

Let K and J be given as in the second section. Then, we have the following
majorization

T � f (u) �
X

k2K

sup
">0

�

�

�

�

Z

jyj2
 �1(Dk)\{t�"}
f (x � y, s� P(
 (jyj)))K (y) dy

�

�

�

�

C

X

j2J

sup
">0

�

�

�

�

Z

jyj2
 �1(G j )\{t�"}
f (x � y, s� P(
 (jyj)))K (y) dy

�

�

�

�

WD

X

k2K

T �

Dk
f (u)C

X

j2J

T �

G j
f (u).

In the same way, we just need to show thatT �

Dk
andT �

G j
are L p bounded fork 2 K

and j 2 J .
For k 2 K, let "(u) be some measurable function fromRnC1 to RC such that

T �

Dk
f (u) � 2

�

�

�

�

Z

jyj2
 �1(Dk)\{t�"(u)}
f (x � y, s� P(
 (jyj)))K (y) dy

�

�

�

�

.
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Then, theL p-boundedness forT �

Dk
can be proved in the same way as (4.1).

For j 2 J , it is trivial that

T �

G j
f (u) �MG j f (u)C sup

i2Z

�

�

�

�

�

X

k�i

�k, j � f (u)

�

�

�

�

�

.

By the L p-boundedness forMG j , it suffices to consider the latter term. Let8 2

S (Rn) be such thatO8(� ) D 1 for j� j � 1 and O8(� ) D 0 for j� j � 2. Write O8i (� ) D
O

8(� i
� ), and denote by? convolution in the firstn variables. Fori 2 Z, the truncated

singular integrals can be split as

X

k�i

�k, j � f D 8i ?

 

TG j f �
X

k<i

�k, j � f

!

C (Æ �8i ) ?
X

k�i

�k, j � f DW Ai , j CBi , j ,

where Æ is the Dirac measure inRn. Then, we just need to estimate supi2ZjAi , j j and
supi2Z jBi , j j for j 2 J .

5.1. TheLp-estimates of supi2ZjA i, jj. By a linear transformation and (1.1), we
observe that

8i ?
X

k<i

�k, j � f (u)

D

Z

R

n

8i (x � y)
X

k<i

Z

jzj2�k Ik, j

f (y� z, s� P(
 (jzj)))K (z) dz dy

D

X

k<i

Z

jzj2�k Ik, j

K (z)
Z

R

n

8i (x � y� z) f (y, s� P(
 (jzj))) dy dz

D

X

k<i

Z

jzj2�k Ik, j

K (z)
Z

R

n

[8i (x � y � z) �8i (x � y)] f (y, s� P(
 (jzj))) dy dz.

Note that8 2 S (Rn), then, for anyN > 0,
�

�

�

�

�

8i ?
X

k<i

�k, j � f (u)

�

�

�

�

�

�

Z

jzj2(0,� i ]\
 �1(G j )
jK (z)j

Z

R

n

jzj��i

�

in(1C ��i
jx � yj)N

j f (y, s� P(
 (jzj)))j dy dz

�

Z

R

n

�

�in

(1C j��i x � ��i yj)N

1

�

i

Z

jzj2(0,� i ]\
 �1(G j )
j f (y, s� P(
 (jzj)))j

j�(z)j

jzjn�1
dz dy.

For the inner integral inz, by a rotation,

1

�

i

Z

jzj2(0,� i ]\
 �1(G j )
j f (y, s� P(
 (jzj)))j

j�(z)j

jzjn�1
dz� k�kL1(Sn�1)N j f (y, s),
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whereN j is defined by

N j g(s) D sup
i2Z

1

�

i

Z

t2(0,� i ]\
 �1(G j )
jg(s� P(
 (t)))j dt.

Thus, we obtain

(5.1) sup
i2Z
jAi , j j � C[k�kL1(Sn�1)(N j f )?(u)C (TG j f )?(u)],

where f ?(x, s) is the Hardy–Littlewood maximal function off (y, s) in the first n
variables.

Proposition 5.1. For j 2 J , N j is a bounded operator on Lp(R), 1< p <1.

Proof. We denoteP(
 (t)) by 7(t) for short, then,7(t)0 D P0(
 (t))
 0(t). Note
that P(s) has no null point onG j , then, it is singled-signed. Fort 2 
 �1(G j ), 
 (t) 2
G j , by (2) of Lemma 2.1,P0(
 (t)) is also singled-signed on
 �1(G j ). By 
 0(0) � 0
and the convexity of
 , 
 0(t) > 0 for t > 0. Then,7(t) is monotonous on
 �1(G j ).
Suppose that7(t) is increasing on
 �1(G j ), then

1

�

i

Z

t2(0,� i ]\
 �1(G j )
jg(s� 7(t))j dt D

1

�

i

Z

t2(0,7(� i )]\P(G j )
jg(s� t)j

dt

7

0(7�1(t))

WD

Z

1

0
jg(s� t)j�i , j (t) dt.

For j 2 J n {1}, by Lemma 3.2,7(t)0 is monotonous on
 �1(G j ). If 7 0(t) is
increasing on
 �1(G j ), then, fori 2 Z, �i , j (t) is nonnegative and decreasing onP(G j ).
Furthermore, one should note that

Z

1

0
�i , j (t) dt �

1

�

i

Z

t2(0,7(� i )]

dt

7

0(7�1(t))
D 1.

Therefore, fori 2 Z, we have

1

�

i

Z

t2(0,� i ]\
 �1(G j )
jg(s� 7(t))j dt � C Mg(s).

If 7 0(t) is decreasing on
 �1(G j ), write

Z

1

0
jg(s� t)j�i , j (t) dt D

Z

1

0
j Qg(�sC t)j Q�i , j (�t) dt D

Z 0

�1

j Qg(�s� t)j Q�i , j (t) dt,
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where Qg denotes the reflection ofg. Notice that Q�i , j (t) is nonnegative and decreasing

on �P(G j ). Also, k Q�i , j kL1
� 1. Similarly,

1

�

i

Z

t2(0,� i ]\
 �1(G j )
jg(s� 7(t))j dt � C M Qg(�s).

For j D 1, note that7(t) and
 (t) are increasing on
 �1(G1) andRC, respectively.
Then, P(s) is increasing onG1, that is, P0(s) > 0. According to (2.1), (1=2)jp1j �

P0(t) � 2jp1j, furthermore, (1=2)jp1jt � P(t) � 2jp1jt for t 2 G1. Therefore, combining
the convexity of
 , we get

1

�

i

Z

t2(0,7(� i )]\P(G1)
jg(s� t)j

dt

7

0(7�1(t))

�

1

�

i

Z

t2(0,2jp1j
 (� i )]\2jp1jG1

jg(s� t)j
dt

(1=2)jp1j

0(
 �1(2jp1j

�1t))

�

1

�

i

Z

t2(0,4
 (� i )]\4G1

�

�

�

�

g

�

s�
t jp1j

2

�

�

�

�

�

dt




0(
 �1(t))
� C Mg

jp1j=2

�

2

jp1j
s

�

,

where g
jp1j=2(t) D g(jp1jt=2).

Thus, for j 2 J , N j is bounded onL p(R), 1< p <1.

Finally, by Lemma 5.1 and theL p-boundedness forTG j , we obtain













sup
i2Z
jAi , j j













L p

� Ck f kL p .

5.2. The Lp-estimates of supi2ZjBi, jj. supi2ZjBi , j j is dominated by

sup
i2Z
jBi , j j �

X

l�0

sup
i2Z
j(Æ �8i ) ? �lCi , j � f j WD

X

l�0

Pl , j .

The maximal operatorPl , j is uniformly bounded onL p, 1< p <1, since

Pl , j � C(MG j f )?.

On the other hand, forp D 2, we have

kPl , j kL2
�
















 

X

i2Z

j(Æ �8i ) ? �lCi , j � f j2
!1=2














L2

�

 

X

i2Z

Z

R

nC1
j1� O8(� i

� )j2j O�lCi , j (� )j2j Of (� )j2d�

!1=2
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� C

 

X

i2Z

Z

R

nC1
�{� i

j� j�1}(� )j�lCi
� j

�2�
j

Of (� )j2d�

!1=2

� C��l�

 

Z

R

nC1

X

i W ��i
�j� j

j�

i
� j

�2�
j

Of (� )j2d�

!1=2

� C��l�
k f kL2,

where the factj O�k, j (� )j � C(�k
j� j)�� can be proved in the same way as (3.3).

Interpolation and the triangle inequality inL p imply that
















sup
i2Z
jBi , j j
















L p

�

X

l�0

kPl , j kL p
� Ck f kL p , 1< p <1.
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