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Abstract

We consider a parametric nonlinear elliptic equation drivey the Dirichlet
p-Laplacian. We study the existence, nonexistence and plicity of positive so-
lutions as the parameteér varies in Rg and the potential exhibits @-superlinear
growth, without satisfying the usual in such cases Ambitageabinowitz condition.
We prove a bifurcation-type result when the reaction hps—(1)-sublinear terms
near zero (problem with concave and convex nonlinearitié® show that a similar
bifurcation-type result is also true, if near zero the rigland side is |§ — 1)-linear.

1. Introduction

Let @ c RN be a bounded domain with @2 boundarydQ and p > 1 be a real
number. In this paper we study the following nonlinear pataim Dirichlet problem:

—Apu=f(z,u, ) in Q,
(P.) u>0 in Q,
u=20 on 9Q.

The aim of this study is to establish the existence, norexég and multiplicity of
positive smooth solutions ofF) as the parametek varies over ]0+oo[ and when
the reaction termf (z, x, 1) exhibits a ¢ — 1)-superlinear growth ag goes to+oo.
However, we do not employ the usual in such cases Ambro&ahiowitz condition
(AR-condition for short). Instead, we use a weaker conditiorictvipermits a much
slower growth forx — f(z, X, A) near+oo. Our setting incorporates, as a very special
case, equations involving the combined effects of concang @nvex nonlinearities.
Such problems were studied by Ambrosetti, Brezis and Cefdin{semilinear equa-
tions, i.e.p = 2) and by Garcia Azorero, Manfredi and Peral Alonso [7] and @aod
Zhang [12] (nonlinear equations, i.p.# 2; in Guo and Zhang [12] it is assumed that
p > 2). In all the aforementioned works, the reaction term hasftim

f(x, 1) = A|x|92x + |x|"™2x, forall xeR, A >0, with 1<q<p<r < p*
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(recall thatp* = Np/(N—p) if p< N and p* =o0 if p> N).
Recently, Hu and Papageorgiou [14] extended these resyltsobsidering reac-
tions of the form

f(z, X, 1) = AX|[92x + fo(z,x), forall xeR, >0, with 1<q<p,

fo: 2 xR — R being a Carathéodory function (i.e}~> fo(z, X) is measurable for all
x € R and x — fp(z, X) is continuous for a.az € ©2) with subcritical growth inx and
which satisfies theAR-condition.

We should mention that there are alternative ways to gemeréhe AR-condition
and incorporate more general “superlinear” reactions. reore information in this dir-
ection, we refer to the works of Li and Yang [17] and Miyagakidasouto [19].

Other parametric equations driven by thelLaplacian were also considered by
Brock, Itturiaga and Ubilla [4], Guo [11], Hu and Papageotgi[13] and Takeuchi
[22]. However, their hypotheses preclude - 1)-superlinear terms.

We will prove the following bifurcation-type result: theexists1* > 0 s.t. for all
0 < A < A* problem ;) admits at least two positive smooth solutions; foe= A*
there is at least one positive smooth solution; andifer A* there is no positive solu-
tion. This holds for both problems withp(— 1)-sublinear reaction near zero (see The-
orem 10 below) and problems withp & 1)-linear reaction near zero (see Theorem 13
below). Our approach is variational, based on the critiggihiptheory coupled with
suitable truncation techniques.

2. Mathematical background

In this section we recall some basic notions and analytmalstwhich we will use
in the sequel. So, leX be a Banach space arXl* its topological dual. By(-, -)
we denote the duality brackets for the pai*( X). Let ¢ € C1(X) be a functional. A
point xo € X is called acritical point of ¢ if ¢’(xg) = 0. A numberc € R is acritical
value of ¢ if there exists a critical poinky € X of ¢, s.t. (xg) = C.

We say thatgy e C(X) satisfies theCerami condition at level c= R (the
Cc-condition, for short), if the following holdsevery sequencéx,) C X, s.t.

(X)) — ¢ and (1+ |[X D¢’ (%) — 0 in X* as n— oo,

admits a strongly convergent subsequeri€dhis is true at every levet € R, then we
say thaty satisfies theCerami condition(C-condition, for short).

Using this compactness-type condition, we can have theviollg minimax char-
acterization of certain critical values of @' functional. The result is known as the
mountain pass theorem
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Theorem 1. If X is a Banach spacgep € C1(X), Xo, X1 € X, 0 < p < [[X1 — Xol|,

max{¢(xo), ¢(X1)} < | inf  o(x) = n,,

X=Xoll=p
and ¢ satisfies the gcondition where

c = inf maxe(y(t)) and I ={y € C([0, 1], X): y(i) =x, i =0, 1},
yel te[0,1]

then c> 5, and c is a critical value ofp. Moreovey if ¢ = 7,, then there exists a
critical point x € X s.t. ¢(x) = ¢ and ||x — Xo|| = p.

In the study of problem,), we will use the Sobolev spacd/ = Wol*p(sz), en-

dowed with the normj|u| = ||Du],, whose dual is the spadt/* = W-LP(Q) (1/p+
1/p = 1). We will also use the space

C(Q) = {ue CYQ): u@ = 0 for all ze 4Q}.
This is an ordered Banach space with positive cone
C, ={ueC}Q):u@® >0 forall ze Q.
This cone has a nonempty interior, given by

d
int(C,) = {u €Ci:u(2 >0 for all ze , %(z) <Oforallze BSZ}.

Here n(z) denotes the outward unit normal &2 at a pointz.
Concerning ordered Banach spaces, in the sequel we willhesétlowing simple
fact about them.

Lemma 2. If X is an ordered Banach space with positif@der) cone C and
Xp € int(C), then for every ye X we can find t= 0 s.t. t —y € int(C).

A nonlinear mapA: X — X* is of type (S), if, for every sequencexf) C X s.t.

Xp = x in X and limsugA(x,), Xn — X) <0,
n

we havex, — x in X.
Let A: W — W* be defined by

Q) (A(u), v) = / |DulP~2Du- Dvdz forall u,ve Wol'p(sz).
Q

We have the following result (see, for example, Papageorgind Kyritsi [20]).
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Proposition 3. The map AW — W* defined by(1) is continuousstrictly mono-
tone (hence maximal monotone foand of type(S);.

Next, let us recall some basic facts about the spectrum ofnduative Dirichlet
p-Laplacian. Letm € L*°(2)+, m # 0 and consider the following nonlinear weighted
eigenvalue problem:

(2) u=20 on 0%.

{—Apu=im(z)|u|p2u in €,

By an eigenvalueof (2) we mean a numbej((m) € R s.t. problem (2) has a non-
trivial solution u € W. Nonlinear regularity theory (see, for example, Papagearg
and Kiyritsi [20], pp. 311-312) implies thate C}(Q). We know that (2) has a smallest
eigenvaluel,(m) > 0, which is simple and isolated. Moreover, the following a#ignal
characterization is available:

) |Dullp
(3) r(m) = ) T m@)ulP az
The minimum in (3) is attained on the one-dimensional eigaos of i1(m). Note
that, if m,m" € L>*°(), \ {0}, m # m andm < n7, then because of (3) we see that
Aa(m) > Ay(m). If m =1, we simply writei; for A1(1). Let (; € CA() be theLP-
normalized eigenfunction corresponding . It is clear from (3) that(l; does not
change sign, and so we may assuimes C . In fact the nonlinear maximum principle
of Vazquez [23] implies thafl; € int(C.). Every eigenfunctioru corresponding to an
eigenvaluel. # 4, is necessarilynodal (i.e., sign changing).

Finally, in what follows we denote by- |y the Lebesgue measure &V. For all
x € R, we set

x* = max{£x, 0}.

3. Problems with concave and convex nonlinearities

In this section, we consider problems with reactions whigh@ncave (i.e.f— 1)-
sublinear) near zero and convex (i.@.{ 1)-superlinear) nea#oo. More precisely, the
hypotheses orf (z, x, 1) are the following (byp* we denote the Sobolev critical expo-
nent, defined as in Introduction):

H f:Q2xRxRJ — R is a Carathéodory function s.f(z, 0,1) =0 for a.a.z€ Q
and allA > 0. We set

X
F(z,x,A):/ f(z,s,A)ds foraa. ze Q2 andall xeR, A>0
0

and assume:
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() f(zx,2)<a(z,1)+c|x|'"tforaa.zeQ and allx e R, » > 0, with p <
r < p*anda(-, 1) € L*(Q), s.t. the functionr — ||a(-, 1)||o IS bounded on
bounded sets and goes to 0Jas> 0t, ¢ > 0;

(i) forall A >0

im F(z x, A)

= +oo uniformly for a.a. ze Q,
X—+00 XP

and there exist € ](r — p) max{1, N/p}, p*[ and, for all bounded c R, a real
number gy > 0 s.t.

@) lim inf f(z, X, \)x — pF(z, X, 1) >

i v Bo forall Ael;
X—>400

(iii) there existdg > 0, n €11, p[ and ng > 0 s.t.
f(z,x,A) > nox*! foraa. zeQ andall xel0,68) A>0;

(iv) for a.a.z € Q and allx > 0 the functionx > f(z, x, A) is increasing, for all
A > M\ >0,s> 0 there existsus > 0 s.t.

f(z,x,2)— f(z,x,))>pus foraa. zeQ andall x>s
and for all compacK C RJ

lim f(z, x,1) =400 uniformly for a.a. ze 2 and all x € K;

A—>+o0

v) for all £ > 0 and every bounded intervalc R}, we can findo! > 0 s.t. the
) § ry t

function x — f(z,x, 1) 4—a§'xp*l is nondecreasing on [@] for a.a.z <€ 2 and all
rel.

REMARK 4. Since we are interested in positive solutions and hypethid (ii)—
(v) concern only the positive semiaxi®™, by truncating things if necessary, we may
(and will) assume thaf (z, x, ) = 0 for a.a.ze€ Q and allx <0, » > 0. Hypothesis
H (i) imposes a growth condition only from above, since frontobethe other hypoth-
eses imply that for every > 0 we can findé* > 0 s.t. f(z,x,A) > —&* for a.a.z € Q,
all x> 0. Indeed, fromH (ii) we see that forx > 0 large, say fox > M > 0, we have
f(z, x, 1) = 0 for a.a.z € Q. Similarly, hypothesisH (iii) implies that f(z, x, A) >0
for a.a.z e @, all x € [0, 8g]. Finally, for x € [§o, M] we useH (v) and obtain the
required bound from below. Hypothedik (ii) classifies problem ;) as p-superlinear
since it implies that neaso the potential functiorx — F(z, x, 1) grows faster tharxP.
Evidently, this is the case ik — f(z, x, 1) is (p — 1)-superlinear nea#-oo, i.e.

im f(z, x, 1)

M S 400 uniformly for a.a. ze 2 and all 1 > 0.
X—>—+00 -
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In the literature, such problems are usually studied usimgAtR-condition. We recall
that f satisfies the (unilateral\R-condition uniformly in A > 0O, if there existM > O,
T>ps.t

B) O<ztF(z,x,A) = f(z,x,A)x fora.a. zeQ andall x> M, A > 0.
Integrating (5), we obtain the weaker condition
(6) ax’ <F(z,x,A) foraa. zeQ andall x>M, 1>0 (c>0).
Clearly (6) implies the much weaker condition

) im F&X4)

= 400 uniformly for a.a. ze & and all 1 > 0.
X—+00 XP

Here, instead of thé\R-condition (5), we employ the more general conditions (7Q an
(4). Similar assumptions can be found in Costa and Magalileand Fei [6]. Other
ways to relax theAR-condition in the study ofp-superlinear problems can be found in
the papers of Jeanjean [15], Miyagaki and Souto [19] and $dbeand Zou [21]. Fi-
nally, note that hypothesid (iii) implies that x +— F(z, X, A) is p-sublinear near zero.
Therefore hypothesés correspond to problems wittoncave and convex nonlinearities

ExampLE 5. The following functionsfi: RT xRy — R (i = 1, 2, 3) satisfy hy-
potheseH:

fix, ) =ax914+x1 1<qg<p<r <p),

1
— 3y0d-1 p-1 -
fa(X, A) = AxX97% 4+ x (In(1+x)+p1+x) 1<q<p),
axd-1 if 0=<x=<1,
fs(x, 1) = prpl(In(x) + ‘—1)) it x>1,  =a=P

Of course, we seffi(x, ) =0 for all x <0, A > 0 and fori = 1, 2, 3. Note that
f1(x, A) is the reaction term used by Ambrosetti, Brezis and Cer&hifpr p = 2),
by Garcia Azorero, Manfredi and Peral Alonso [7] (fpr> 1) and by Guo and Zhang
[12] (for p > 2). Functionsfy(x, A) and f3(x, A) do not satisfy theAR-condition. So,
our work generalizes significantly those in [7] and [12].

For all A > 0 andu € W, we denote
(8) Ni(u)(2) = f(z u(z),r) foraa. zeQ.
By a (weak solution of (P,) we mean a functionu € W s.t.

A(u) = Nf(u) in W*,
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that is,
/Q|Du|"‘2Du- Dvdz= /Q f(z,u, A)vdz forall veW.
We say thatu is positiveif u(z) > 0 for a.a.z € Q. Set
P ={r€R{: (P.) has a positive solutign
The following Propositions illustrate the properties oé thetP.

Proposition 6. If hypothesedH hold, thenP # @ and for all » € P, u € ]0, A[
we haveu € P.

Proof. Letee W\ {0}, e > 0 be the unique solution of the following auxiliary
Dirichlet problem:

-Ape=1 in Q,
© {ezo on 0L.

Nonlinear regularity theory (see [20]) and the nonlinearximam principle (see
Vazquez [23]) imply that € int(C.).

Claim. There exists. > 0 s.t, for all » €]0, A[, we can findé > 0 s.t.
(10) a(-, Mo + cElleflo) ™ < EPF (c>0as inH (i)).

We argue by contradiction. So, suppose we can find a sequiglce Ry s.t.An —
0 and

Pt <a(-, An)lleo + C(E]l€ls)t foral neN, &>0.
Passing to the limit as — oo and using hypothesisl (i), we obtain
1<cePle|’st foral &>0.

Sincer > p, letting & — 0T we reach a contradiction. This proves the claim.
Now, we fix A € ]0, A[. Setid = £e e int(C,). We have

A() =" (see (9)),
which implies

(11) A(@) > Nf(0) in W* (see (10) andH (i)),
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thereforel is an upper solution for problenP(). We consider the following truncation

of f(z x, A):
(12)

fz.x, ) = {f(z, X, A) if x <12,

tz (2, 2) if x> () fora.a.ze Q and allx e R, A €]0, A[.

Evidently, ¢ x) — f(z x, 1) is a Carathéodory function. We set
~ X ~
F(z, x, 1) = / f(z, s 1)ds
0
and consider the functiongl, : W — R defined by
- 1 ~
@a(u) = —p||Du||g —/ F(z,u,2)dz forall ueW.
Q

It is clear from (12) thatp, € C1(W) is coercive. Also, exploiting the compact em-
bedding of W into L"(R2) (by the Sobolev embedding theorem), we can easily check
that ¢, is sequentially weakly l.s.c. Thus, by the Weierstrass rigr@p we can find
Up € W s.t.
(13) @2(Uo) = inf @, (u) = M.

ueWw
Let 30 > 0 be as postulated in hypothesis (iii) and lett € ]0, 1[ be s.t.

0 < tl1(2) < min{li(2), 8o} forall zeQ

(recall thatd, 0; € int(C,) and use Lemma 2). Then, by virtue of hypothedig(iii),
we have

(14) F(z t01(2), ) = P(t0,(2))* for aa. ze Q.
"w
So, we get

tp
@, (t0y) = B”DOIHE —/ F(z t0;, A)dz (see (12) and (14))
Q

tP—H
= t"[ 5 A — %HOIHZ] (see (3), (14) and recalldy||p = 1).

Since u < p (seeH (iii)), choosingt € ]0, 1[ even smaller if necessary, from the in-
equality above we infer that

@A(tal) < 0,
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which in turn implies

M. < 0= ¢,(0).

So, by (13)ug # 0.
From (13) we deduce thaty is a critical point of@,, that is,

(15)  A(Uo) = N#(Up) in W* (N defined as in (8), withf instead of f).
On (15) we act withuy; € W and we obtain
[Dugllp =0 (see (12)),

i.e.Uup>0 a.e. inQ.
Also, on (15) we act withuy — G)* € W. Then,

(A(Uo). (U — 0)) = /Q (2, Up, 2 (o — 6)* dz

_ / f(z 0, 2)(Up— ) dz (see (12))
Q

< (A(), (U —m)F) (see (11)),
that is,

(A(uo) — AT), (o —T)") = [{ ~}(IDUIolp’ZDUIo — |Dd|P?D0) - (Duo — D) dz

<0.
So we have
[{uo > G}|n = O,

i.e. Up < 0. So (15) becomes
A(Ug) = N%#(Ug) in W™,

We have proved thatg € W\ {0}, 0 < ug < 0 andup solves problem ;). As before,
nonlinear regularity theory (see [20]) assures thate C, \ {0}. Seté = ||Uplle, | =
10, A[ and findé = 05' as in hypothesi#d (v). We have

—ApUo(2) + Gup(2)Pt = f(z, uo(2), 2) +GUo(z)P* >0 foraa. zeQ,
)
ApUo(z) < Gup(z)Pt foraa. zeQ,

henceug € int(C,) (see [23]). Thus,ugp is a smooth positive solution ofF), in
particularx € P. Therefore J0A[ € P, in particularP # 0.
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Next, letA € P and O< n < A. We can find a positive solution;, € int(C,) for
problem ,). By hypothesisH (iv) we have

(16) A(ui) = Nf(u) = Nf(u;) in W*,

thereforeu, is an upper solution for problenP(). We truncatex — f(z,x,1) at u,(2)
and we argue as above. Via the direct method (using this tit6g ifistead of (11)),
we produce a positive solution, € int(C,) for problem @,), s.t. 0<u, <u;, in Q.

Therefore,u € P. L]

Denote

A" = supP.

Proposition 7. If hypothesedd hold, then »* < 4o0.

Proof. Hypothese$i (i), (iii) and (iv) imply that we can findx > 0 large s.t.
(17) f(z,x,A) > A1xP! foraa zeQ, all x>0.

To see (17) note that by choosiig> 0 even smaller if necessary, frokh (iii) we have
f(z,x,A) > A1xPt foraa zeQ, all xel0, 35
Also, from hypothesidH (ii) we see that we can findl > O large enough s.t.
f(z,x, 1) > AxP1 foraa ze, al x> M.
Finally, invoking H (v), we infer that for allx > O big, we have
f(z,x, 1) = A MP 1> xPt foraa zeQ, all xel[s, M]
From these estimates we h@ve (17) for 0O big. )

We will prove thatA™ < A, arguing by contradiction. So, lét > A and suppose
that problem P,) has a nontrivial positive solution, € W. As before, we obtaim, €
int(C,). By virtue of Lemma 2, we can fintd > 0 s.t.

t01(2) <u(2) foral zeQ.

Let t > O be the largest such positive real number. Eet ||u,|l~, | = [A, A] and
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chooses = oé' as in hypothesi#d (v). We have

- p1
—Apu; +6ub

= f(z, U, &) +aul™t

=f(z U, A)+auP P +6%2) (we setd*(2) = f(z Uy, A) — f(z, Uy, A))

> uP Tt 5uP T 4+ 0%(2) (see (17))

> 2q(t0)Pt + & (t0)P L + 6%(2) (recalltdy < u,)

= —Ap(thy) + & (t0y)P + 6%(2).
Sinceu, € int(C.), using hypothesi$i (iv), we see that for every compakt C Q we
can findux > 0 s.t.

0%*(2) = ux foraa. zeK.

Then, from Proposition 2.6 of Arcoya and Ruiz [3], we infeath; —t0; € int(C.),
which contradicts the maximality df > 0.

This proves that fo. > A problem @,) has no nontrivial positive solution iV
and sor* < 1, in particulari* < +oo. O]

Proposition 8. If hypothesedd hold, then A* € P and soP = ]0, A*].

Proof. Let ¢n) C]0, A*[ € P be an increasing sequence 3.t.— A*. To each
An there corresponds a positive smooth solutign= u;, € int(C.) for problem ;).
For allm > n> 1 we have

(18) A(um) = Nf™(um) > N"(u) in - W*  (see hypothesisi (iv)).

Truncatingx — f(z, X, An) at un(z) and reasoning as in the proof of Proposition 6,
using the direct method and (18) we obtain a smooth positietien for (P,,) with
values in [0,un(2)], with negative energy. So, without any loss of generalitg may
assume that

(19) ¢, (Un) <0 forall neN,
with
1
@ (u) = —p||Du||g—/ F(z,u,A)dz forall A>0,ueW.
Q
Also, we have

(20) A(un) = N{"(up) for all neN.
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From (19) we have

(21) IIDUnIIB—/Q pF(z, Un, ) dz< 0 forall neN.
Acting on (20) withu, € W, we obtain

(22) ||DUn||S—/Q f(z, up, An)un,dz=0 forall neN.
Subtracting (22) from (21), we get

(23) /Q[f(z, Un, An)un — PF(z, U, An)]dz< 0 for all neN.

HypothesedH (i), (ii) imply that we can findB; € ]0, Bo[ and c; > 0 s.t.
(24) Bix*—c < f(z,x, A )x—pF(z, x,A) fora.a.zeQ and allx>0, A€]0, A*].
Using (24) in (23), we see that
(25) (un) is bounded in L7().
Claim. There exists tie W s.t, up to a subsequengce
(26) Uu,—u*inwW and y—u*inL(Q) as n— oco.

First, suppose thaN # p. From hypothesid (ii) it is clear that we can always
assumer <r < p*. So, we can find € [0, 1] s.t.
1 1-t

t
= + — (recall thatp® = 400 if N < p).
r T p*

From the interpolation inequality (see, for example, @Gsilsi and Papageorgiou [8],
p.905) we have

lunlle < lunllz “funlly.  for all neN,
which (together with (25) and the Sobolev embedding thepriemplies
(27) [Unllf < cs||Duplly  for all neN (c3> 0).
From hypothesidd (i) we have

(28) f(z, Un(2), An)uUn(2) < cs(1+ Jun(2)|") for a.a.ze 2 and alln € N (¢4 > 0).
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From (20), we have for alh € N and somecs, ¢ > 0

1D = [ 12t 2e)un dz

< s(1+ [lunlly) (see (28))
< cs(1+ [|Dunlly) (see (27)).
The restriction onc in hypothesisH (ii) implies thattr < p. So, from the inequality
above we infer thatuy,) is bounded inW and we can findu* € W satisfying (26).
If N = p, then by the Sobolev theorelV is (compactly) embedded ih”($2) for

all n € [1, +o0[ (see, for example, Gasski and Papageorgiou [8], p.222) while now
p* = +o00. So, in the above argument, we replage by somen > r large enough s.t.

tr

- "(r—_:) <p (seeH (ii).

n—
Then, again we deduce that,j is bounded inW and (26) holds. So, the Claim

is proved.
On (20) we act withu, —u* € W and we pass to the limit a3 — co. We obtain

Iinm(A(un), u, —u*) =0 (see (26)),
which implies
(29) up — u* in W (see Proposition 3).
Therefore, if on (20) we pass to the limit as— oo and use (29), then
AU") = Nf (u”),

i.e. u* € C, (by nonlinear regularity theory) and it solveB;().
We need to show that* # 0. We argue by contradiction. So, suppase= 0 and
consider the following auxiliary Dirichlet problem:

(30)

—Apw =no(wt)* 1 in Q,
w=0 on 9

(seeH (iii)). Since u < p, the energy functional for (30), defined by
1
¥(w) = SlDwl} - Lllw* e for all wew,
"

is coercive and of course it is sequentially weakly |.s.cn¢ée by the Weierstrass the-
orem, we can find a minimizew € W of ¢. Note that, sincex < p, we have

¥(w) = Inf ¥(0) < 0=y (0),
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sow € W\ {0}. Then
Aw) = no(w*)y*t in W,

which impliesw € int(C,) and it solves (30).

From Ladyzhenskaya and Uraltseva [16] (p. 286, see alsq [2@]L1) we can find
M > 0 s.t. Jullc <M for all n > 1. Then we can apply Theorem 1 of Lieberman [18]
(see also [20], p.312) and find € ]0, 1[ andc; > O s.t.

Un € Cé*"(ﬁ) and ||Un||Cé,a(§) <c¢; foral neN.

Recalling thatCy“ (%) is compactly embedded iG'(Q), we may assume that, —
u*=0in Cé(ﬁ) asn — oo, SO there exist®y € N s.t.

(31) 0<uy(2) <& forall zeQ andall n>n.
Fix n > ng and choosd;,, > 0 s.t.
tow(z) <un(z) foral zeQ (recallu, €int(C,) and use Lemma 2).

Let t, be the biggest such number and suppose that]0, 1[. Seté = ||Up]leo, | =
10, 4*] and leto, = o} be as in hypothesisl (v). Then

—Ap(taw) + on(taw) Pt

= tPnow ! + on(thw)P  (see (30))

< no(thw)* L + on(taw)Pt  (recall thatt, € 10, 1[ and u < p)

< nout™t + opul™t (sincethw < up)

< f(z,un, An) + crnu,‘f‘1 (sincen > ng, see (31) and hypothesis (iii))

= —Apln + onul .
Note that if we set
h1(2) = tP Inow” ! + on(thw)P™t,  ha(2) = noul ™ + opuP?,
then hy, hy, € C(Q) and
hi(z) < hy(z) for all ze Q.
Moreover, we have

ha(2) < f(z Un, An) + 0nuP™t ae.in Q.
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Therefore, we can apply Proposition 2.6 of Arcoya and Rujz($8e also Guedda and
Veron [10]) and we have

Up — thw € int(C,),

which contradicts the maximality df,. Thereforet, > 1 and so we havev < u, for
all n > ng, hencew < 0, a contradiction. Thus)* # 0.

As before, by using hypothesid (v) and the nonlinear maximum principle of
Vazquez [23], we have* € int(C.). So,A* € P, i.e.,, P =10, A*]. O

Proposition 9. If hypothesedd hold, then for all » € ]0, A*[ problem(P,) has at
least two positive smooth solutionsg, il € int(C,) s.t. b <0 in Q and w # 0.

Proof. From Proposition 8, we know that € P, i.e., there is a solution™* e
int(C,) for problem ;). We have

(32) AU*) = N} (u*) > N} (u*) in W* (seeH (iv)),

so u* is an upper solution ofR,) whenx € ]0, A*[. In what follows A € 10, A*[. We
truncatex — f(z, x, 1) at u*(z) and, using the direct method and (32), as in the proof
of Proposition 6, we obtain a solutiam € int(C,) for problem @;), s.t. 0= up(2) <
u*(2) for all ze Q. For& = ||u*||, and | =]0, A*], let 6 = ag be as postulated by
hypothesisH (v). We have

—ApUg +6uf
= (2, Up, ) + ud™"

f(z, o, A*) + Ul +0(2) (we setd(2) = f(z Uo, A) — f(z Ug, 1*))

IA

f(z, u*, ") + 6(U*)P L +0(2) (seeH (v) and recallug < u*)

= —Apu* + 6P+ 6(2).
By virtue of hypothesiH (iv), for every compactK C 2, we have
esssup 6 < 0.
Invoking Proposition 2.6 of Arcoya and Ruiz [3], we have
(33) u* — ug € int(C,).

We consider the following truncation of — f(z, x, 1):
(34)
g(z,x,A) = {f(z’ Uo(2), ) if X =<uUo(2),

t(z, %, 4) it X > Uo(2), fora.a.ze @ and allx e R, 2 €]0, A™[.
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This is a Carathéodory function. We set
X
G(z, x, 1) =/ g(z,s,A)ds fora.a. ze 2 andall xeR, A€]0,A"[
0
and consider the&€! functional v, : W — R defined by

Y (U) = %||Du||g—/ G(z,u,A)dz forall ueWw.
Q

Claim 1. 4 satisfies the C-condition.

Let (uy) € W be a sequence s.t.

(35) |Y¥;.(un)] <cg forall neN (cg>0)
and
(36) im(L + [Jun[)¥;(un) = 0 in W=

From (35) we have
(37) IIDUnIIE—/ pG(z, un, A)dz< pgg for all neN.
Q

From (36) we have

(38)

‘A(un),v)—/ 9(z,Un, 2 vdz Ll
Q

14 fJunll

forall veW, neN (g, — 0" asn— o).

=én
In (38) we choosey = —u;, € W. Then,

DU IE < en + [ F(2 0, 2)(-ug)dz (see (34)
Q
< Co(1+ |[Du,llp) for some co> 0 (seeH (i)),

which implies that @) is bounded inW.
Next, in (38) we choose = ut € W. Then,

(39) —||Dun+||g+/ g(z, ut, Mutdz<e, foral neN.
Q

We add (37) and (39) and use (34) and the boundedness9ft¢ obtain, for all
neN,

(40) /Q[f(z, us, Aut — pF(z, uf, )] dz<cip (Cio> 0).
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From (40), using hypothesid (ii) and the interpolation inequality, as in the proof of
Proposition 8, we show thauf) is bounded inW as well. Thus, ,) is bounded in
W. So, we may assume that there exists W s.t.

Up—u in W and u,—u in L(Q) as n— oo,

from which, using as before Proposition 3, we show that> u in W (as in the proof
of Proposition 8), hencey, satisfies theC-condition. This proves Claim 1.

Claim 2. ug is a local minimizer ofy;.

We can always assume thag is the only nontrivial positive solution of problem
(P,) in the order interval

IT={ueW:0=<u(z) <u’(2 for a.a.z€ @},
or otherwise we already have a second nontrivial smoothtisaland we are done (see
also [9]).
We introduce the following truncation of — g(z, X, A):
f(z, up(2), ) if X =< up(2),
(42) 0(z, X, A) = 1 f(z, X, A) if Uup(2) < x < u*(2),
f(z,u*(2), 1) if x=u*(2,

for a.a.ze€ Q and allx € R, » € R{. This is a Carathéodory function. As usual,
we set

X
é(z, X, A) = / 0(z,s,2)ds fora.a. zeQ andall xeR, 1€ Rar
0
and consider the functional, € C1(W) given by

N 1 ~
¥y (U) = —p||Du||g —/ G(z,u,A)dz forall ueWw.
Q

Evidently v, is coercive (see (41)) and is as well sequentially weaklg..So, we can
find g € W s.t.

J;,(Go) = inf ¥
¥.(0o) n Yis
in particular (g is a critical point ofy 1, i.e.

(42) A(lo) = Ng(Go) in W* (Nj defined as in (8)).
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On (42) we act with o — Gg)* € W. Then
(A, (o= 00)") = [ @zt 1)(to — 00)" dz

= /Q f(z, ug, AM)(Uup — Ug)t dz (sinceug < u*, see (41))
= (A(Uo), (Uo — G0)™),

which implies

(Awo)~ AGo), (o0} = [ (1Dus|**Du— D[ *Dl)- (Do~ Dl 2
0>0o
=0.

So

l{uo > Go}|n =0,
i.e. Up < 0p. Also, acting on (42) with @ —u*)* € W, we have
(A(Oo), (G0 —u")") = fg 8(z, Go, )(00 — u)" dz
= /Q f(z,u*, \)(0g—u*)" dz (see (41) and recally < u®)
< (A(U), (@0 —u")") (see (32)),

i.e.

{Uo>u*}

(A(Go) — A(U"), (Go—u")") = / (ID0o| Dl — |Du*[P~?Du*)-(Dlig— Du*) dz

<0.
So

[{Oo > u*}|n =0,
i.e. Ug < u*. Hence, (42) becomes
A(Qo) = N#(0p) in W* (see (41) and (34))
and (g € int(C,) N Z is a solution of problem ;). This implies
0o = ug (recall thatug is the only nontrivial solution of ;) in 7).

Note that
Jo(U) = ¥, (u) forall ueZ.
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Recall, also, thau* — ugp € int(C,) (see (33)) andug € int(C,). Therefore,Z is a
neighborhood ofug in the topology ofcg(ﬁ), and soug is a local Cg(ﬁ)—minimizer
of ¢,. By virtue of Theorem 1.2 of Garcia Azorero, Manfredi and P&ionso [7],
it is also a localW-minimizer of ;. This proves Claim 2.

We may assume thaip is an isolated critical point of; (otherwise we have a
whole sequence of distinct positive smooth solutions cayimg to up). Therefore we
can findp €10, 1[ small enough s.t.

(43) ¥ (Up) < ”ujm‘:p Y (u) =n,

(see Aizicovici, Papageorgiou and Staicu [1], proof of Fifpon 29).
Clearly hypothesidd (ii) implies that

(44) t—ljmoo Wx(tﬂl) = —0Q.

Then, (43), (44) and Claim 1 permit the use of Theorem 1 (theintan pass the-
orem). So, we obtairll € W s.t.

(45) Va.(Uo) < m, < ¥ (0) (see (43))
and
(46) ¥;(0) = 0.

From (45) we havdl # ug. From (46), we have
47) A@) = Ng(@) in W
Acting on (47) with (g — 0)* € W, as before we show thaty < (. Hence (47)

becomes
A@) = N§(Q) in W* (see (34)),

so @ € int(C,) (nonlinear regularity) is a solution ofP). []

Summarizing the situation, we have the following bifuroattype result for
problem ;).

Theorem 10. If hypothesedd hold, then there exists.* € R s.t.
(a) for everyx €]0,A*[ problem(P;) has at least two positive smooth solutiong(ue
int(C,) s.t. <0 in Q and u# Q;
(b) for A = A* problem(P;) has at least one positive smooth solutichaiint(C.);
(c) for everyi > A* problem(P;) has no positive solution.
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REMARK 11. If p=2 and O< A < A*, then the two positive solutiongg, (I €
int(C,) satisfy
0 —up € int(C,).

Indeed, if¢ = ||0]l and | =10, 4*], then we findé = o/ as in hypothesisi (v) and
we have
—A( —ug) + (@ —ug) = f(z,0,A)+50— f(z, ug, 1) —FUp

>0 (seeH (v)),

Al —=ug) <6(0—ug) a.e.in
which implies
0—ugeint(C.) (see Vazquez [23]).

Finally, note that, if f(z, -, A) € C}(R), then by the mean value theorekh (v) is
automatically true.

4. Problems with (p — 1)-linear nonlinearities near zero

In the previous section, we examined problems in which tlaetien was concave
near the origin (see hypothesi$ (iii)). Here, we consider equations in which—
f(z, x, A) exhibits (p — 1)-linear growth near zero. We show that in this case we can
still have a bifurcation-type theorem similar to Theorem 10

The new hypotheses on the nonlinearityz, x, 1) are the following.
H f:QxRxRJ — R is a Carathéodory function s.f.(z, 0,1) =0 for a.a.z€ Q
and allA > 0. We set

X
F(z,x,A):/ f(z,s,A)ds fora.a. ze 2 and all xeR, A > 0.
0

Let hypothesedd’ (i), (i), (iv), (v) be asH (i), (ii), (iv), (v) and
(iii) for all bounded| C R there existno € L>®(Q), no(2) > i1 for aa.ze Q,
1o 75 5\.1, and n1 > 0 s.t.

o f(zoxoa) f(z, x, )
< < -
no(2) < "X”L{,Qf pr=—— lim sup

Xx—0t X p-1

<mn1 uniformly for a.a. ze Q2 and all 1 e l.

EXAMPLE 12. Letn> i1, 1<q< p <t < p*. The following function satisfies
hypothesed":

AXFL 4 pxPL if 0<x<1,

PG =914 pnxpl(ln(X)Jr—;) if x>1,

for a.a.zeQ and allL eR].
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Again this (p — 1)-superlinear function (ato) does not satisfy thdR-condition.

A careful inspection of the proofs in Section 3 reveals tihalytremain essentially
unchanged. The only two parts which need to be modified ardaitmving:
(A) in the proof of Proposition 6, the part where we show thad minimizerug is
nontrivial;
(B) in the proof of Proposition 8, the part where we show thiat 0.
First we deal with (A). By virtue of hypothesisl’ (iii), given ¢ > 0, we can find
8§ >0 s.t.

(48) F(z,x,A)> I%(no(z) —&)xP fora.a.zeQ, all x €0, 8] and all » €10, A[.

Lett €]0, 1] be s.t.
(49) 0<t01(2) <min{s, 0(z)} forall zeQ (see Lemma 2).
Then,
0, (t0y) = %||D01||g —/Q F(z,t01, 1) dz (see (12) and (49))
< % /Q(il —10(2)01(2)P dz + %s (see (48), (49) and recalld, ||, = 1).

Since

[ 6= ma(@ps(@r dz <
Q
by choosinge > 0 small enough we see that

@:(Uo) = ¢,(t01) <O (see (13)),

i.e. ug # 0.
Next we deal with B). Again we argue indirectly. So, suppose tidt= 0. Then,
u, — 0 in W (see (29) and in fact, using Theorem 1 of Lieberman [18], wansthat
up — 0 in C&(ﬁ) asn — oo (see the proof of Proposition 8). Therefore we can find
no € N s.t.

0<uy(2)<1 forall n>ny and ze Q.
HypothesedH’ (i), (iii) imply that
[f(z, %, A)| < cpa|xtPl| foraa. zeQ and all x €[0, 1], » €]0, A*] (c11 > 0),
which implies

| f(Z, Un(2), An)| < Cralun(@)|P? foraa. ze Q and all n> n.
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(N?wa)
[lun][P~2

is bounded inL "' (Q). Hence, passing if necessary to a subsequence, we mayeatsam

So, the sequence

Nf"(Un)

50 _
(50) N

h in LP(Q) as n— oc.

Sety, = uUn/|lun]| for all n e N. Then|y,| =1 for all n € N and so we may assume
that

(51) Yo—yinW and y,—yinLP(Q) as n-— oo.
Recall that

N (un)
(52) Alyn) = ——— forall ne N (see (20)).

 funflPt

Acting on (52) withy, —y € W, passing to the limit a& — oo and using (50) and
(51), we obtain

im(A(yn), Yo —y) =0,
hencey, — y (see Proposition 3). In particular, we have
(53) lyl=1 and y(z) >0 foraa. zeQ.

Moreover, using hypothesisl’ (iii) and reasoning as in the proof of Theorem 2.8 of
[14] (see also [1], proof of Proposition 31), we show thatr¢hexistsm € L*°(R2) s.t.

(54) h(z) = m@2y(@2)P and no(z) <m(z) <y foraa. zeQ.
So, if in (52) we pass to the limit as — oo and use (53) and (54), then
A(y) = m(2)yP,

i.e., y € W solves the Dirichlet problem

—Apy =m(2)yPt in
(59) {y =0 on 9.

But, note that
a(m) < 2104) =1 (see (3) and (54)).
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So, from (55) it follows thaty must be nodal, contradicting (53). This proves that
u* #£ 0.
So, we can state the following bifurcation-type theorem.

Theorem 13. If hypothesedd’ hold, then there exists.* € R} s.t.
(a) for everya €]0,1*[ problem(P,) has at least two positive smooth solutiong(ue
int(C,) sit. w<0inQ and w # {;
(b) for » = A* problem(P,) has at least one positive smooth solutioheauint(C.);
(c) for everyi > A* problem(P;) has no positive solution.

ACKNOWLEDGMENT. The authors wish to thank a knowledgeable Referee for
her/his corrections and remarks.

References

[1] S. Aizicovici, N.S. Papageorgiou and V. StaicDegree theory for operators of monotone type
and nonlinear elliptic equations with inequality constre Mem. Amer. Math. Soc196 (2008).
[2] A. Ambrosetti, H. Brezis and G. CeramCombined effects of concave and convex nonlinearities
in some elliptic problemsJ. Funct. Anal.122 (1994), 519-543.
[3] D. Arcoya and D. Ruiz:The Ambrosetti—Prodi problem for the p-Laplacian operatGomm.
Partial Differential Equation81 (2006), 849—-865.
[4] F. Brock, L. lturriaga and P. UbillaA multiplicity result for the p-Laplacian involving a par-
ameter Ann. Henri Poincar® (2008), 1371-1386.
[5] D.G. Costa and C.A. Magalh&eExistence results for perturbations of the p-Laplagi&on-
linear Anal.24 (1995), 409-418.
[6] G. Fei: On periodic solutions of superquadratic Hamiltonian systeElectron. J. Differential
Equations2002
[7]1 J.P. Garcia Azorero, I. Peral Alonso and J.J. Manfr&tibolev versus Holder local minimizers
and global multiplicity for some quasilinear elliptic eciens Commun. Contemp. Mat2
(2000), 385-404.
[8] L. Gasiski and N.S. Papageorgiou: Nonlinear Analysis, Chapmanaf/ERC, Boca Raton,
FL, 2006.
[9] L. Gasiski and N.S. PapageorgiolNodal and multiple constant sign solutions for resonant
p-Laplacian equations with a nonsmooth potentidbnlinear Anal.71 (2009), 5747-5772.
[10] M. Guedda and L. VéronQuasilinear elliptic equations involving critical Sobelexponents
Nonlinear Anal.13 (1989), 879-902.
[11] Z.M. Guo: Some existence and multiplicity results for a class of dusir elliptic eigenvalue
problems Nonlinear Anal.18 (1992), 957-971.
[12] Z. Guo and Z. ZhangW?P versus C local minimizers and multiplicity results for quasilinear
elliptic equations J. Math. Anal. Appl.286 (2003), 32-50.
[13] S. Hu and N.S. PapageorgioMultiple positive solutions for nonlinear eigenvalue pieris
with the p-LaplacianNonlinear Anal.69 (2008), 4286—4300.
[14] S. Hu and N.S. PapageorgioMultiplicity of solutions for parametric p-Laplacian egtians
with nonlinearity concave near the origifohoku Math. J. (262 (2010), 137-162.
[15] L. Jeanjean: On the existence of bounded Palais—Smale sequences andtatippl to a

Landesman-Lazer-type problem set RN, Proc. Roy. Soc. Edinburgh Sect. 229 (1999),
787-809.



202

(16]

(17]

(18]
(19]
(20]

[21]
(22]

(23]

A. IANNIZZOTTO AND N.S. FRRPAGEORGIOU

O.A. Ladyzhenskaya and N.N. Ural'tseva: Linear and §)lireear Elliptic Equations, Academic
Press, New York, 1968.

G. Li and C. Yang:The existence of a nontrivial solution to a nonlinear eltgtoundary value
problem of p-Laplacian type without the Ambrosetti-Rabiito condition Nonlinear Anal.72
(2010), 4602-4613.

G.M. Lieberman:Boundary regularity for solutions of degenerate elliptiquations Nonlinear
Anal. 12 (1988), 1203-1219.

O.H. Miyagaki and M.A.S. SoutoSuperlinear problems without Ambrosetti and Rabinowitz
growth condition J. Differential Equation245 (2008), 3628—3638.

N.S. Papageorgiou and S.Th. Kyritsi-Yiallourou: Handk of Applied Analysis, Springer,
New York, 2009.

M. Schechter and W. ZouSuperlinear problemsPacific J. Math214 (2004), 145-160.

S. Takeuchi:Multiplicity result for a degenerate elliptic equation Witogistic reaction J. Dif-
ferential Equationd 73 (2001), 138-144.

J.L. Vazquez:A strong maximum principle for some quasilinear ellipticuations Appl. Math.
Optim. 12 (1984), 191-202.

Antonio lannizzotto

Dipartimento di Informatica
Universita degli Studi di Verona
Ca Vignal ll, Strada Le Grazie 15
37134 \erona

Italy

e-mail: antonio.iannizzotto@univr.it

Nikolaos S. Papageorgiou
Department of Mathematics
National Technical University
Zografou Campus, 15780 Athens
Greece

e-mail: npapg@math.ntua.gr



