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0. Introduction

Let p denote an odd prime. A Moore space My=M(n, Z,) is a simply
connected space with two non-vanishing (integral) homology groups
HM3})=Z and H,M};)=Z,. The mod p cohomology structure of Mj is
as follows: HMy;Z,)=2,, H"My;Z,)=Z,={¢"}, H""(M};Z,)=Z,
=1{""Y, HiM;,;Z,)=0, i4=0, n, n+1, and Ae"=¢"*"" for the mod p
Bockstein operator A, for n=2.

The m-th homotopy group =,(Z,;n, Z,) of the Moore space M(n, Z,)
with the coefficient group Z, (or, briefly, the m-th mod p homotopy group
of M(n, Z,)) is the set of homotopy classes of maps M; — Mj; with the
track addition (See [3]).

The set ”*:z;: 7niZ,; N, Z,) (N denotes a sufficiently large integer)

of the stable homotopy groups of the Moore space M(N, Z,) with the
coefficient group Z, (i.e., the stable mod p homotopy groups of M(N, Z,))
admits a ring structrue with respect to the composition. Really, it forms
an algebra over the field Z,.

In this paper, we shall investigate its structure by means of the
results and the methods of Toda [10], [11], [12].

For simplicity, we shall denote =,.(Z,; N, Z,) by =; and we shall
say that an element of =; is of dimension 1.

Among the elements of =,, 6 denotes the element in =_, such that
8*elY =(—1)Nel¥ for the generators eff € HN(MY"; Z,)and ¢ € H¥(M} ;Z,);
¢ denotes the class of the identity map of MY ;« denotes the element
in my, ., such that @ieN*'=(—1)N"'eN**?-D for the generators eN*'€
HNY (MY ;Z,) and eNtke HN T (MN**;Z), k=2(p—1), where ®, is the
functional cohomological operation with respect to ®' and «; 8, denotes
the element in 7,,,,,, such that a8,=0 and @3 eN*'=(—1)N*ieN*t2r2~b
for the generators eN*'€ H¥N"'(MY;Z,) and e € H¥NU' (MYt Z,),
[=2p(p—1), where 3, is the functional cohomological operation with respect
to ®? and B,;and, B, 1<s<p, denote the element in m,,, 1 ,-n-1
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defined inductively by the stable secondary composition <8;-,, &, 8,
respectively.
Then, our main theorems are

THEOREM 1. A set of additive bases for my, is as follows in
dim <2p(p—1)—4:
S, ¢
at, atd, at-da, atad,  for 1 <t < p?,
(B.0)'B,, 8(B.8)'B,, (BSY, 8(BS),  for 1=r=p,
a(dB,), da(5BY, a(dB,)s, da(dB)s,  for 1<=r<_p,
(BOYBs, 8(B.0)8B;, (8.9)B3, 8(8,0) B3,
ad(8,8)'8;, Sad(8,9)8,, d(8,8) B,
3ad(3,8)" 3,6, for 0<r, 2<s<p, and r+s<p.

TueoREM II.  The ring my, in dim < 2p*(p—1)—4, is generated by 9,
a, and B, 1<s<p, with the following fundamental relations :
(i) 82:0: aBs:Bsa__‘O,‘Bth:O’
(ii) 2ada = a5 +oa?,
(iii) «dB, = Bda,

iv) 808, = St _B8,.,...
(IV) Bs 'Bt S+t—161 18s+t—1

TurorREM IIL. The subring of m, generated by 6 and & has only two
Sfundamental relations: =0 and 2ada=as 46’

Thus, the subalgebra generated by & is an exterior algebra and the
subalgebra generated by « is a polynomial algebra.

The relation 838, = j BB,y in wy, implies the relation
S J—
Eﬁt=—L—B—1§s+,_l in the stable homotopy ring G, of sphere, for a

s+i—1
suitable choice of the element 5, in G4 This is an answer to a problem
of Toda [10].

The writer is deeply indebted to Professor H. Toda for many advices
and kind criticisms. The writer wishes to express his sincere gratitude
to Professor A. Komatu for constant encouragement given during the
preparation of this paper.

1. Preliminaries

Throughout this paper, unless otherwise stated, all space are connected
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and have the homotopy type of a CW-complex. There is given a base
point on each space, all maps take base point to base point and all
homotopies keep base point fixed. All groups are finitely generated and
abelian. We shall denote the additive group of integers by Z, and the
additive group of integers modulo an odd prime p by Z,. The closed
interval [0, 1] is denoted by I, and f=g denotes that two maps f and
g are homotopic. Often a map and its homotopy class are denoted by
the same letter.

Let X, Y be spaces with base points x,, 3,, and f: X—Y a map. The
mapping cylinder Y, of f is the space obtained from the disjoint union
(XxI)uY by identifying (x, 1) € X xI with f(x)€ Y and shrinking x,x/
to the base point y,.

The mapping cone C; of fis the space obtained from Y, by shrinking
X %0 to the base point y,. The space Y, has the same homotopy type
as Y and we may regard X as a subspace of Y, by the inclusion map
iy : X— Y, defined by ix(x)=(x, 0). If Y=x,and f: X—x,is the constant
map, the mapping cylinder of f is the cone 7X over X, and the mapping
cone of f is the suspension SX of X. The iterated suspension S"X of
X is defined inductively by S”X=S(S*"'X). Note that S(7X) and T(TX)
are homeomorphic to 7(SX). If X=SX’ for a space X', we can define
amap ¢: X—->XvX (=Xxx,vx,xX) by

(', 28), %,) 0<t=1/2,
(%, (¢, 2¢=1)) 1/2=t=<1,

1.1) P, £) = { ¥ex.

We can also define a map ¢’:C,—~SXVvC; by

, k(x, 28), ¥,) 0<t<1/2,
1.1Y 9'(y) = (%, 9), y€Y, 9'(x, 1) ={ x€X,

(xm (x, Zt—l)) 1/2 é ¢ g 1 ’
where k:C,—SX is the shrinking map of YCC,. We shall also denote
the space C, by Y\JTX or Y\JTX where « is the homotopy class of f.
r @

The loop space QX on X is the space of maps A:(/, I )— (X, x,) with
the compact open topology. The constant map A,:I-—>x, is the base
point of QX. The iterated loop space Q"X on X is defined inductively
by Q"X=0(Q"'X). Since X is assumed to have the homotopy type of
a CW-complex, the loop space X also has the homotopy type of a
CW-complex [4].

We shall denote by #(X, Y) the set of homotopy classes of maps
X—Y. For any pairs (X, A) and (Y, B) of spaces (i.e., AC X and BCY),
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the relative homotopy set #(X, A; Y, B) is the set of homotopy classes
of maps f:(X, A)— (Y, B) (ie., f:X—Y and f(A)CB).
The following lemmas are well-known [3].

LemMA 1.1. If X is the suspension SX’ of a space X', =(X, Y) admits
a natural group structure for amy space Y. If X is the two-fold sus-
pension S’°X” of a space X, the group =(X, Y) is abelian.

LemmA 1.2. There is a natural isomorphism =X, QY)~=(SX, Y),
Jor any spaces X and Y.

Let «e#(X, Y) be the homotopy class of a map f:X— Y, then the
suspension Sa € #(SX, SY) of « is the homotopy class of the map Sf:
SX—SY defined by Sf(x, ¢)=(f(x),t), x€X, t€l, and the loop Q€
z(QX, QY) of « is the homotopy class of the map Qf: QX— QY defined
by ((QF)YANE) =fA@)), M€ QX, t€I. They are well-defined and if =(X, Y)
admits a group structure, the correspondences S, :7(X, Y)—=(SX, SY),
Q, :7(X, Y)—=(QX, QY) defined by Sy(@)=Sa, Q. (@)=0Qa are homomor-
phisms.

Let f: X—Y be a map, then we have the Puppe sequence of f [5]:

f J k Sf Sj

Sk S?
X Y C,—> SX SY SC, S°X /, S?Y —— -

such that the following sequence is exact for any space U:
* i b SF)*
L2)  wX U) (Y, U)<—n(C,, U)<— m(SX, U) (S
Sk)*
z(SY, U)S—)n'(SCf, U)<—:-.

Given a group H and an integer n=2, the Moore space [3] M=
M(n, H) is a simply connected space having only two non-vanishing
(integral) homology groups : H(M)=Z, H,(M)=H. For a given pair of
n and H, the space M(n, H) is determined uniquely up to homotopy type,
in particular, M(n, Z) is the homotopy type of the n-sphere S*, M(n, Z,)
is the homotopy type of the cell complex S”ye"““ ! where ¢""'=TS" is

an (n+1)-cell and » denotes the class of the identity map of S”. It is
easily seen that the suspension of M(n—1, H) is an M(n, H) for n_>2,
so that the set #(M(n, H), X) admits an abelian group structure for any
space X and n>3. It is called the wu-th homotopy group of X with a
coefficient group H and denoted by =,(H ; X). Similarly, for any pair
(X, A), the n-th relative homotopy group =,H;X, A) of (X, A) with a
coefficient group H is defined as the relative homotopy set w(TM(n—1, H),
Mmn—1, H); X, A), for n>4. We have the exact sequence
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d . .
e (3 X, A) = (H 5 A) 5 e (H X) T5 e, (H 3 X, A) — o
for any pair (X, A), and the naturalities dfy=(f|A)sd and Sy fix=(Sf)xS«

el X, A) Lo (H Y, B)  m(H3X) L% wH:Y)
S S
et ) L% ¥ (3 %) L% (i S

for a map f: (X, A)— (Y, B), and the suspension homomorphism Si.

Given a group = and an integer =1, the Eilenberg-MaclLane space
K=K(=, n) is a space having only one non-vanishing homotopy group :
7. (K)==. For a given pair of » and =, the space K(=, n) is determined
uniquely up to homotopy type. It is easily seen that the loop space on
K(z, n+1) is a K(=, n), so that the set =(X, K(=, n)) admits an abelian
group structure. It is the x-th cohomology group H"(X ;=) of X with a
coefficient group .

A space X is said to be n-connected if #;(X)=0 for 0<i< .

The following lemmas are well-known [2], [7].

Lemva 1.3. Let X be (m—1)-connected and Y be (n—1)-connected
(m, n=>1), and f:X—Y be a map. Then, ¥* : 2, (Y, X)—>=,(C;) are
isomorphisms for v<m-+n—1, where (Y, X)—(Cy, 3,) is the shrinking
map of X.

LemMA 1.4. If X is an (n—1)-connected space (n_>1), then
(i) the (homotopy) suspension homomorphisms Sy :m(X)— 7, (SX) are
isomorphisms for r< 2n—1.
(i) the cohomology suspension homomorphisms Q. : H' (X ;7z)— H QX ; =)
are isomorphisms for r<2n—1.

Let f:S°—S* be a map of degree p, then the mapping cone C;of f
is an M(2, Z,). So that, by (1.2), the following sequence is exact for
any space X :

" * k* T . *
e —> 7fr+1(X) (—p—')_’ 7tr+1(X) - ”r(Zp > X) _]—" ”r(X) g?_)_’
1.3) (X)) e (X)) (X) 72,5 X) —>
7o X) — m(X) .

By the exactness of the above sequence and the five lemma, we have

CorOLLARY 1.1. If X is an (n—1)-connected space (n>>1), the suspen-
sion homomorphisms Sy :w/Z,; X)—>n=,(Z,;SX) are isomorphisms for
r<2n—2.
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COROLLARY 1.2. If X is (m—1)-connected, and Y is (n—1)-connected
(m, n>>1), then the homomorphisms Vy:w(Z,; Yy, X)—nZ,;C)) areiso-
morphisms for r<m-+n—2.

By the above corollary, we have an exact sequence

rusZys X)L (2,3 1) T (2,50
(1.4) A2y X) ey 2y C)—r (2,5 X)L

(2, V)L w2, C) — wralZy X) — e,
where 7=_S3'k, and s=Min(m, n).
Since S” is (n—1)-connected and SS”=S""", Lemma 1.4 implies
Sk i i i(S™) =~ 7y 1i(S™HE) for n>k+1 and i >0. Therefore, we can define
the k-th stable homotopy group G, of sphere by

G, = dir. lim {=,, (S"), Si} for any integer k.

Similarly, we can define the k-th stable homotopy group =, of Moore
space M(n, Z,) with a coefficient group Z, by

zp = dir. lim {z,, x(Z, ; n, Z,), Sy} for any integer k.

While, since K(w=, n) is (n—1)-connected and QK(w, #n) = K (=, n—1),
by Lemma 1.4, Q% : H*""*i(z, n+i;G)~ H" ¥z, n;G) for n_>k+1 and
i >0. So that we can define the k-th stable cohomology group A*(z, G)
of K(=, n) with a coefficient group G by

A¥(z, G) = inv. im {H" *(z, n; G), Q4} for any integer k.

Given « € =,(G;n, H), the composition operation a@y:z,(H;X)—
74(G ; X) is a correspondence defined by a,(8)=B-a for any space X and
Be€x,(H;X). Obviously, it is natural with respect to any map f: XY,
ie. fulx=0yfy

Given 6 € H#z,n;G), the composition operation 6y:H™(X;=)—
H*(X;G) is a correspondence defined by 0x(u)=0-u for any space X and
u€ H"(X; z). Obviously, it is natural with respet to any map f:Y—X,
ie. f*0,=0,F*

A set a={a,} of correspondences @y :z,(H; X)—m,(G;X) (resp.
0={0x} of 0x: H"(X;»)— HX;G)) defined for any space X, is called
homotopical operation of type (%, ¢; H, G) (resp. cohomological operation
of type (n, ¢; =, G)) if it satisfies the naturality. The following lemmas
are well-known.

LemMA 1.5. There is a one-to-one correspondence between elements of



ALGEBRA OF STABLE HOMOTOPY OF MOORE SPACE 51

7(G:n, H) (resp. H(z, n; G)) and homotopical operations of type (n,q; H, G)
(resp. cohomological operations of type (n, q; =, G)).

LeMvA 1.6. If a€ny(G;n, H) (resp. € H(w, n;G)) is a stable ele-
ment, then the composition operation cy (vesp. 0x) is a homomorphism.
The direct sum >} G, (resp. 3 7., X A¥=, =)) of stable groups has
k k k

a multiplicative structure defined by the composition. In particular,
$=>1A*=3AXNZ,, Z,) is the (mod p) Steenrod algebra.
k k

The following lemma is well-known [1].

LemMmA 1.7. The (mod p) Steenrod algebra & is generated by A€ A’
and ®** e A** 2D (k=0, 1,2, --+) satisfying the Adem’s relations

PUP? = SN (—1)“+f((b"i)(1’_.1)‘1>(Pa+b~"6>i, if a<lpb,

a—pt
P AP = Em/m( 1)a+t<(b aZ)(?n 1))A6)a+b iPi
+2W;f::,;m(—1)a+f—1(<b‘;)(§z_1) Dowo-aps, it a<po.

Let f:X—Y, g:Y—Z be map such that gf~0:X—>Z where O
denotes the constant map X->z,. Then we have

LEMMA 1.8. There is a map g:C,—Z such that the restriction g|Y
of gon YCCyis g. For any two such maps g,, g,, we can define a map
d(g,, 3.):SX—Z such that g, ~=(dvg,)¥, where ¢’ is themap defined in
(1. 1Y. Conversely, for any map h:SX—>Z, the map g'=hvg)p’ satisfies
g'Y=g.

Proof. Since gf=0, there is a homotopy H:XxI—Z such that
H(x, 0)=2z,, H(x, 1)=g(f(x)). Define the map g:C,—~Z by

2(») =g(»),y€Y, g t)=H(x,t), x€X, tel.

Then, since H(x, 1)=g(f(x)), g is well-defined and, by definition, g| Y=g.
Let g,, g, be two such maps, then we define d=d(g,, g,) by
g.(x, 28), 0=t<1/2,
d(x,t)={‘f( ) /20 vex.
gz(x’z_Zt)7 1/2§t§1-
Since g(x, 1) = g(f(x)) = g,(x, 1), d is well-defined. It is easily verified
that g,=(dv g)®’ (rel. Y). The last assertion is obvious.
We shall denote by ¥ the homotopy class of g, when v is the class
of g.
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Similarly, we have

LEmMA 1.9. There is a map f:SX—C, such that

fl, ) =(f),2t), 0=t=1/2,

i € X,
fx, H ez, 12<t<1,

hence kyf =Sf:SX—SY, where k,: C,—SY is the shrinking map of ZC Cg.
For any two such maps f,, f,, we can define a map d(f,, f,): SX—Z
such that f,=(dv f,)p:SX—C, where ¢ is the map defined in (1.1).
Conversely, for any map h:SX—Z, the map f'=(hvf)p satisfies the same
condition as f.

We shall denote by @ the homotopy class f, when « is the class of f.

2. Functional operations

In the remainder of this paper, unless otherwise stated, we shall be
concerned with only stable elements (of homotopy and cohomology groups).

Let @€ n(G;n H), BEn,(H;X), and ye=(X, Y) be elements such
that ax(8)=0 and v.(8)=0. Then, by Lemma 1.8 and 1.9, there are
elements &€ 7,,(G; Co)/james(G; X) and 7 € #(Cq, Y)/k¥m,..(H; Y) such
that j¥y=v, ksa=Sa where j;:X—>C; is the injection and kg:Cp—
M(n+1, H) is the shrinking map of X. So that we can define an element
{7, 8, a} in =,,(G;Y) modulo vz, (G;X)+(Sa)*x,,(H;Y) to be the
coset of ¥.@ It is called the secondary composition of v, B, @ [10;IV],
[12;Chap. 1].

The following properties of the secondary compositions are well-
known [107, [12].

Lemma 2.1 (i) {v+%, 6, a}={v, B, a} +{r., B, a}
mod. Im 4+ Im ¥,y + Im (Sa)*,
(ii) Ay, Bi+B,, at={v, B, a} +{v, B, &}  mod. Im 7, +Im (Sa)*,
(i) {v, 8 a,+a}={y, B a}+{v B a}
mod. Im v, +Im (Sa,)* +Im (Sa,)*.

Lemma 2.2. (i) S{y, B, a}=—{Sy, SB, Sa}
mod. Im (Sv), +Im (S*@)*,
(ii) if 8.y=0, 8{y, 8, a}=—{3, v, B}«(Sa)  mod. Im 5,(Sex)*.
When ¢=N+k+I+m, n=N+k+I, X=M(N+k, H) Y=M(N, H) for
a sufficiently large integer N and G=H, we can define a stable secondary
composition <y, B, @> such that <y, B, a>=(—1)"{y, B, a} ([10], [12]).
Let 0€ H(=, n;G), f: X—Y. A functional cohomological operation
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[61, 6,: H'(Y ; =) n Ker f* n Ker 0, — H*(X;G)/f*H*(Y;G) +
(Q0)H**(X ; =) is defined by

0,(u) = the coset of A* 'y 4 7*"(u)

for ue H*(Y ; w)nKer f*nKer 0y (ie. f*(u)=0, 6y (u)=0).

H" (X5 7) = H(Y;, X; 2) 2= HX(Y ; ) 2 H*(X; )
o G N [ S [

H*(Y;6) 2= H(X;6) -~ HY(Y", X;G)—— HU(Y; G)

The functional cohomological operation 6, is also denoted by 6,,
where « is the homotopy class of f.

The following properties of the functional cohomological operations
are well-known [6], [9].

LEMMA 2.3. Let f:X—Y, 0€H" (z, n; =), & € H', ' ; G), then
(1) for ue H*(Y ;=)nKer f*nKer 0,
(0°0) {u) =0'(0 {u)) mod. Im (Q(¢'6))y+Im f*,
(ii) for ue H*(Y:z)nKer f*nKer (660)y,
(0°0) () =0(0(w)) mod. Im (Q¢'),+Im f*.

LEMMA 2.4. Let f: X—Y, g:Y—Z and 0€ H (=, n;G), then
(i) for ue H*(Z ; w)nKer 8,nKer g¥,
0, () =71*(0,(w)) mod. Im (Q0), +1Im f*g*,
(ii) for ue H(Z; )nKer 0,nKer f*g*,
0, A u)=0,(g*(u)) mod. Im (Q8),.+1Im f*.

LemMA 2.5. Let X be the suspension of a space X', and «, B€ (X, Y),
0€ H(w, n;G). Then,

0, p(u) = 0,(u)+04(us) mod. Im (Q6), +Im a* 4+ Im B*,

for ue H*(Y ; z)nKer  y,nKer a*nKer 8*,
Let a€#,(G;n, H), Be€n,(H; X), yé=(X, Y) be elements such that
Ba=0, v-B=0. Then {v, B, a} is defined to be the coset of ¥.a& If

{7, B, @} =0, there are &, and ¥, such that #,,=0. Hence, we have

Lemma 2.6. If {v, B, @} =0, there are elements @,€ n4.,(G;Cs,)/
Jrppmasl G5 Y) and %, € (e, Y)/k; 7q./(G; Y) such that Ja,Yo=To» Ry xly=
Sa,, (ie. jEa,Vo=" kpky @, =S), where Jay 1 Ce—C5 s Gy, Y—>C5 ) are
injections and k; : C; — M(g+2, G), ky,:Cy,—SCq are shrinking maps of
Cs and Y respectively.
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The following is a direct consequence of the definition of ¢,

LEEMA 2.7. Let f:X—Y be a map, and 60€H(z, n;G). If
0 (w)y=v for uc¢ H"(Y ;=) and v€ H* (X ; G), then 0(j**(u))=A*(v)
mod, A¥ Q0 H" (X ; =).

3. p-component of homotopy groups of sphere [10]

In the following, p denotes an odd prime.

In [10], Toda determined the generators and the relations of the
p-primary component G,(p) of the k-th stable homotopy groups of sphere
for k< 2p*(p—1)—3.

In this section we recall briefly his results.

TaeEOREM 3.1. [10; Theorem 4.15]

Gorpep-v-(D) = Z,2 = {&],} for 1<=r<p-—1,
= sz+Zp = {a/(p—l)p} =+ {“1182{_1} for r =p—1,
Gosrcp-v+(D) = Z, = {a} for 1 <t<p
and t =0 (mod p),
Garpisxp-v-sr-(0) = Z, = BT 7811} for 0=s<r=<p-1,

Gz(rp+s+1)(p—1)—2(r—s)—l(p) = Zp = {alﬁi—s_lﬁs+1} for 0=s < r=p—1
and r—s=+=p—1,

Gzp(p—l)—zg.(p) = Zp = {B{,}

G(p)=0 otherwise for k<_2p(p—1)—3.

There is a sequence of spaces X, X,, =+, X, --- such that X,,, is a
fibre space over X, with the fibre K(=y. ,(SY), N+k—1) for a sufficiently
large integer N, and with the projection p,., : X;.,— X,, where X, =S". It
is easily seen that X, is also a fibre space over SV with the projection
Div=0py " Pr-1br, and that X, is (N+k—1)-connected and pix:=;(X,)
~m(SY) for i=N-+k.

From (3.10) and Theorem 3.11 of [10], we have

THEOREM 3.2. HY*KX,;Z,) is generated by an element
a; for k=2¢p—1)—1, 1<¢t<p* and t == (p—1)p,
be—v for kB =2(sp+s—1)(p—1)—2 and 1 < s<p,
and a, ., 1s a generator of a subgroup of HN'KX,;Z,)=Z,+Z, for
k=2(p—1)p(p—1)—1. They satisfy the relations :
Ra, =0 for 1<t p° and  A®Aa,, , =0 for 1<=r<_p,
@b =0 and WHS =0 for 1<s<p,
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where R,={+1)P'A—tACP, W,=(s+1)P?®'A —s®P?A+(s—1)AR?*.

Let K= SN\j TXy, k=2p(p—1)—2, then A*: H{(X,;Z,)~H" (K ;Z,)
({==N), and ]* HN(K’ Z,)~H"(SY;Z,), where A* is the coboundary
homomorphism and j:S¥— K’ is the injection. Put a,=7%(eV) € HMK';Z,)
for the fundamental class eV € HY(SV; Z,), then by (3.12) of [10]

3.1) Ab, = P’a,
in HNV** (K’ ; Z ) where b,=A*({").

Finally, (4.10) of [10] implies

Lemma 3.1. Let K be an (N-+k—1)-connected finite cell-complex,
f:K—SY a map. Then there is a map g: K— X, such that f=p;g.

4. Additive structure of =,

Let N denote a sufficiently large integer.
Since the mapping cone of pi€=y(SV) is an M(N, Z,) by (1.4) and
(1.3), we have the following exact sequences :

(4.1) v ——> Gy, ‘(p_l,);ka ']_*’ 7M7) . G-y (pll)*Gla—l
- (p)*.  R* 7 (pe)*
4.2) o Gri Gk+1 Tk G Gy

where MY=M(N, Z,) and G,=muy. (M.

Let G, be the subgroup of G, consisting of the elements whose orders
are finite and prime to p, then (po)y:Gi.— G is an isomorphism. So that
they have no influences upon =y, (M})) in (4.1). Thus, we may replace
G, by Gu(p) in (4.1) for £>O0.

Since p is an odd prime, the following is a direct consequence of
(4.1) and (4.2).

PROPOSITION 4.1. =_,=Z,= {k*j ()} and =,=Z,={j*"'j«(2)}, where
t€G, is the class of the identity map of SV.

It is readily seen that the set 7z‘*=; 7, admits a ring structure with

respect to the composition such that =;-z; C#;.;. In particular, we have

COROLLARY 4.1. For any k, = is @ =ymodule.
Since =,=Z, is a field, =, is a vector space over Z ,- Hence we
have

COROLLARY 4.2. my is an algebra over Z,,.

PROPOSITION 4.2. 74 =Gp,QZ,+GRZ,+GxZ ,+ Gy ixZ,, where @
and x denote the tensor and torsion product, respectively.
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Proof. We may identify (G,), = G./pG, with G,RZ, and +Gr)
= {g€ G, pg=0} with GiZ,. So, by the exactness of (4.1) and since p
is an odd prime,

0—> G,®Z, 25 Gy Gyt Z, — 0

is a split exact sequence. Hence, we have G, =ju(G,®Z,)+7 (Gs-1%Z,)
=G,®Z,+G,-*Z,. By (4.2), we have also a split exact sequence
~ k* 7
0— G, R®Z,—> mpy—>GxZ,—>0.
We shall denote a right inverse of + (or j*) of an element a by + ()
(or j*7(«)), though it is not uniquely determined. Since ((®RZ,)RZ,
=(GRZ)*Z,=GRZ, and (Gx£,)RZ,=(GxZ )xZ,=GxZ,, we have

7y = B jGrin®Z,) + 71 Ge®Z ) + R (GpeZ ) + 7777 (G2 )
== Gk+1®Zp + Gk®Zp +Gk*Zp +Gk—1*Zp .

Put 6=Fk*j,(v)€m_,, then &€ n_,ow_,Cx_,=0, and hence &=0.
Let Rs, Ls : #,— m;-, be homomorphisms defined by Rs(y)=7+6, Ls(v)
=8-v, for v€w,, respectively. Then, we have

PROPOSITION 4.3. The homomorphism Ry maps j*'v7(GpZ,) Cmpry
isomorphically onto k*t (GxZ,)Cm, in such a way that Rs(7*'v7'(y))
=k*c7({), for \r € GZ,. It also maps j*'j (G, R Z,) C my, isomor phically
onto k¥j(GyRZ,) Cmyy in Such a way that Ry(j*'j«(P)) = k*j(P), for
PEGLRZ,.

Proof. It suffice to prove the equalities. By the definition of 6, we
have

Ry(7* 7771 () = (74 (kY x(0)) = (B¥j:)*(7* 7 (¥)
= F*(7* 7% (7)) = k7,
and
Rs(7*77 +(P)) = (777N E*4(0)) = (B*]3)*(7* " 7(?))
= E*(757* 7 (GP)) = E*jx(p) .
PROPOSITION 4.4. Assume that an element r € G, satisfies pyr=0 and
is not divisible by p, then Lg(57% 77 () =7%""j(y).

Proof. Since pyr=0 and + is not divisible by p, y€GZ, and
YveG,RZ,. So that, *'v7'(y) and 7 Yj.(y) are well-defined. While,
since we are only concerned with the stable elements, we may regard =
as k,. Hence
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Ly(7* 77 () = (K*j()(7* 77 () = (k757" R (Y1)
= Jullukzx (7* () = 77 7(P)
CorOLLARY 4.3. If pG,=0, then Ly maps j* ‘v (GZ,) C wpyy iSOMOY-
phically onto 7% 'j(G,QRZ,) Cmy.

CoROLLARY 4.4. Let V€G, be an element of order p and not divisible
by p, then V'8 and & are linearly independent, and Y'6==0 where
Y =7 () € mpss

LEMMA 4.1. Let ¥/ =7*"v7'(y) and ¢'=7*"'v"(p) for ¥, p€GxZ,.
Then we have j* ‘v ' (Yrp)='8@’, if Yr-p==0.

Proof. By the definition of 8, v, and ¢/,

Pop" = (¥ (INE* ()T 7 (@) = 7)) k(5T (9))
= 7)) T ki (@) = ST ()

LEMMA 4.2. Let ' =7*"v7'(y), @' =7*"v7p), for ¥, ¢ € GyuxZ,.
Then, we have ' @ =7*"'v" (Y, pt, P>) mod. 7* 77 (Yr+Gy+ Gy - p).

Proof. Let Y€G,, p€G, and ® : SN+ SN represent an element
in {, pt, p>. Then, by the definition of secondary composition, it

decomposes into a composition of two maps SN*EFI ? MN*? v s
where @ is an element such that k.(P)=@, ¥ is an element such that
7¥(J)=1, for the shrinking map k: MY —SN** of SN*C MYN*!, and the
injection j: S¥*— MXY*:, So that, j* v {(®) : MYt#H — MN-' decomposes
74 7/

into a composition MN#15 -2 ypner ¥ pne But by the definition,
@ =¥k (@) = ¥ v (p)=¢" and Y ="' (y)=+’. Hence, we have
7 b, D)=V

Toda [11] proved that there are elements «,€<a,_,, pi, &> of order
p in Gy, for all integers £=1. Recently, he has also proved that
the element «, is not divisible by p if #==0 (mod p).

Therefore, by Lemma 4.2 and Corollary 4. 4, we have

ProposITION 4.5. For all t=1, a'=j*"va,)==0, and for #==0
(mod p), da’8==0.
Now we shall show some examples of the additive structures of .

ExampLE 4.1. By Theorem 3.1 and the above Proposition, Tt p-1>
={a?}, for 1=¢t<p’ t==(p—1)p, and a?~>? generates a subgroup con-
tained in 7u, 5,501+

ExampLE 4.2. By Corollary 4.3 and the above Proposition, a8 and
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dat are linearly independent in ,,-,,—, for #==0 (mod p). In particular,
Tl p-1-17— {azs} + {3&2},

ExampLE 4. 3. By Theorem 3.1 and Propositions 4.3, 4.4, myspis-1cp-n-1
= {a?+718} + {dat+-1} + (B}, for 1 <s<p, where B, = 7*'v'(B,),
Bs € Gosprs—vcp-n-2» Since B, is of order p and not divisible by p, by
Corollary 4.4, 8,0 and 88, are linearly independent and 88.86==0.

ExampLE 4.4. Since @88, is of order p and not divisible by p in
Gy if 2<s<p, 07, and r+s<p, we have oJ'8==0 for ¥ =j* ‘v (e, 375;).
While, by Lemma 4.1, we have 7 ‘v %(a,3;8,)=ad(B3,8)'3, for B, in the
above example. Hence, dad(B{8)"B6==0 if 2<s<p, 07, and r+s<p.

EXAMPLE 4.5. Similarly, 6(876)?==0 because B¢ is of order p and
not divisible by p in G,.

5. Some base of 7,

The following is easily verified.

Lemva 5.1. HMY;Z,)=Z, for i=0, N, N+1. Let ¢ and eM** be
generators, then AeN=eN*" for the mod p Backstein operator A ; H(MY ;Z,)
=0 for i==0, N, N+1.

For d=Fk*j,(¢) k*j.(s) €Em_,, it is clear that

(5.1) S*el = (—1)Vel and %Nt =0

where e € HN(MY*;Z,), et € HN(M} ; Z,) and eN*'€ HN (M} ;Z,) are
the generators.

Conversely, it is easily seen that the element & € »_, satisfying (5. 1)
is uniquely determined and coincides with .

LEMMA 5.2. Let ¥ =7*"r7"'(y), Y€ GZ,, and 6 € A** be a cohomo-
logical operation. Then, 04eN=(—1)Nxe™N**, if and only if Oy
=(—1)¥"'xeN* where x € Z,, and ¥ € HY(SN ; Z,), eN** € HNTH(SN*E; 7)),
evtt e HNY (MY, Z,) and eNtET e HYTRH(MNTR 3 Z,) are the generators.

Proof. Note that if j:SV¥— M} is the injection and k: MY—S¥* is
the map shrinking S¥C MY, then j*(@V) =e" and k*(eN™')=gV+,
Let OyeN=(—1)NxeN** then since v may be regarded as k, Lemma
2.4 implies,
F¥OpeNt = jH Ok (eN)) = 0jmpucys(€NTT) = Oy(eNT) = (—1)N*xeN TR

While, j* : HV** (MY 5 Z,) — HNTF(SNHR 0 Z,) is an isomorphism
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and the modulus groups are contained in @HNT(MY*Z,)+
P XN (MY 3 Z,)=0, so we have OyeNt'=(—1)N*"'xg"***'.  Conversely,
let G2V =(—1)N"'xgNk+ and OyeN=(—1)yeN*:, then the above argu-
ment shows x=y.

Next, let a, €G,,_, be the element defined [10;(4.5)] which satisfies
@}, eN=(—1)"eN**?=* for the functional operation ®; . Therefore for
a=j*"'v"a)€m,, , we have by the above lemma

(5. 2) @;eN+1 — (__1)N+1eN+2p_2

where eN*'e HY*'(M}';Z,) and eN***~*e€ ON*7*(My***7*; Z,) are the
generators.

Conversely, again by the above lemma, the element &’ € =, , satisfy-
ing (5.2) is uniquely determined and coincides with a.

PROPOSITION 5.1. 2aéa=a?8+da?,

Proof. By Example 4.2, m,,,,.,= {®’8} + {8a’}, so we may put
ade = xa’d + yda* with some coefficients x and y. Since 8°=0, dadax — x6x*d
=8a(da —xad)=0. Hence, by Lemma 1.8, there is a map f:K—>M)
such that the class of the restriction f|MY**#-»-' is da, where K
=M§,"+2?“3\:b/ TMY**2-° p=0a—xad. Hence, by Lemmas 2.4, 2.5, 2.7, 5.1,

and (5.1), (5. 2), we have

FleN = gNvir-? for eN€e HY(M} ; Z,) and eN*"*?* e HN""¥K; Z,),
PlgN+tt — gN‘E25-2  (DIgNthHl _ gpN+ki2p-1 for eNrk+ie HV'H(K; Z,),

where k=2p—3 and =0, 1, 2p—2, 2p—1. By Lemma 1.7 (i.e. the Adem’s
relation), 2FP'AP'=F'®'A+AFP'®?, and by Lemmas 2.3 and 2.5,

2xeNTETITL = 2PARIN = PPN+ AP PLeN = NtEErL |
So that x=1/2. Similarly, y=1/2 is deduced from (ad— yda)ad=0.

CorOLLARY 5.1. (i) a%dai=¢ o’ '6a+(1—H)a*8, for s, t=0.
(ii) (s+Ha*da?=sa***6+tda**, for s, £ =0.
(ili) 6a"?=a"?8, and da"?6=0, for r=1.
(iv) a’datd=datda’ =ta’+~'0ad, for s, t=0.

Proof. (i) Since 2ada=a’é+8a? 2078 =a*d+ada?, so ada®=2a’da
—a®d, Thus, inductively we have ada’=ta’da+(1—#)at*'8. Hence, by
multiplying a** to the left, @*da’=¢a*"* a4 (1 —¢)a’+18.

(ii) By (i), we have da’*t=(s+f)a* -8+ (1 —(s+#))a+*8, so that a*+~8x

=$(3as+f~(1~s—t)as*"8) for s+#=20 (mod ), and da*** = a**%3 for
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s+t=0 (mod p). Hence, by (i), we have (s+#) a’da’=sa’+'3+ 3+,
(iii) follows immediately from (ii), and (iv) follows immediately from (i)
and (ii).

COROLLARY 5.2. For t=1, a'd and o'-'da are linearly independent,
and at-'6ad ==0.

Proof. Let xa’6+yat~'8a =0, then, by multiplying 8 to the right,
we have ya!~'6a6=0. If a’'8ad=0, a*6aé=0 for s=¢—1, so we may
suppose #==0 (mod p). Then, by (ii) of the above Corollary, fc! '6ad
=8a!S, But, by Proposition 4.6, éa’6==0, which is a contradiction.
Hence that, y=0 and x=0.

Put B =*"77(8) € ppcp 11y TOF By € Gypeppyge  Let f 1 ME+22-D=2
MDY represent B3, then f/=kf#0:MY**##~>=2— MN¥_—>SN where k is
the map shrinking SV 'C MY~'. Since MY+?#®-b=% g (N+2p(p—1)—3)-
connected, by Lemma 3.1, there is a map g: MY**— X, such that f'=p.g,
k=2p(p—1)—2, and gy :z:(MY*¥)—>=4(X,) is an isomorphism for i< N+£k
and an epimorphism for i=N+k. By the theorem of Whitehead [8; p. 276],
g*: H(X,; Z,)—>Hi(My**; Z,) is a monomorphism for i=N+k So
g¥(by”) = (—1)"xeN** for the generators eN**e€ HN**(MY**;Z,), b€
HN*®X,;Z,), and a coefficient x¥==0 (mod p).

Let K=SN\;J TMYN*E, K’=SN>j/ TX,and j:SV"—K, j:S¥— K be the

k
injections. Then, there is a map g:K— K’ such that gj=j’, and hence
the following diagram is commutative :

A*
(X Z,)  — H’“(K' Z)
H,'(SN : Z[))/ g* * \H"H(SN . Zﬁ) .

A
FRSHI(MY#; Z,) —— Hﬂ‘*‘(K, Z,)

So, easily we have g*(a,)=e" for the generators a,€ H¥(K';Z,) and
eNe HMK;Z,). While, by (3. 1), Ab,=®?a, for b, =A%) € HN"**(K'; Z ).
Hence, for eN***'=A¥(eN"¥)e HN***(K; Z,), we have

AxeVThT = ANK(xeN ) = (—1)A(ARHEM))
= (=DVAF*FA*E) = (=D)NAZ*(b,)
= (~1)g*ab) = (—1)"g*(@%a) = (~D)"E2e.
It is easily seen that the coefficient ¥ does not depend on N. Since
x==0 (mod p) and Z, is a field, there is a number x" € Z, such that xx’'=1
(mod p).
Let By =B1+(x"0) € mypy-1p-;, then we have AeNtr+ = (—1)N"@greN*™
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for the generators eN*'€ HN*Y(M} ;Z,) and eNt*T(MYZ)), k

=2p(p—1)—2.
By Corollary 5.2, myyip-n-1={@?"'0} + {@?3a}, so we may put
aB)’ =xa?™'d+ ya?da for some coefficients x and y. Hence, putting

B, = B/ —xa?d —yar~dat ,
we have
af, = af) —xart'6—yatda = Q.
It is easily verified that

N+1 ___ N+1 N-+1
CR eV = CpreN T —x@5sseN T —yBle-15,0

= (—1)NTAgNt2ro-D1
By Theorem 3.1 and Corollary 5. 2,
OF 2 7oy p-1-1 — Tatpraxp-n-1
is an isomorphism. While, a,(Ba)=aBa=0, so B,&=0. Thus, we have
PROPOSITION 5.2. There is an element B, € m,y 15—, Such that
(5.3) G)gl eVl = (—1)N+IA N+

for the gemerators eN"'e€ HN*'(MY; Z,) and Ntk FINvE(|NE Zp), A
=2p(p—1)—1, and aB,=Ba=0.

Conversely, it is easily seen that the element 5167:21,(1,_1)_1 satisfying
(5.3) and @B, =B,a=0 is uniquely determined and coincides with 8,.

Since aB,=B,a=0, we can define the secondary composition {8,, «, 8.}.
If {8, @, B}=0, by Lemma 2.6, there is a map f:K— M} such that
the class of the restriction f|MY** is B, where K :MN+k\j TMY k221
\/ TMYN+¥, k=2p(p—1)—2, and ¥ =22p+1)(p—1)—2. So kf#0:K—
MN“ —S¥ where k is the map shrinking S¥*'C MY’ Since K is
(N+k—1)-connected, similarly as in the proof of Proposition 5.1, there
is a map g: K— X, such that g*: HN"*(X,;Z,)— HN"*(K ; Z,) is a mono-
morphism. Hence g*(b{”)=xeM** for the generators b\” € HN*¥(X,; Z,),
eNtke HN'M(K; Z,) and a coefficient x==0 (mod p). While, by Lemma
2.7 and (5.1), (5.3), we have

A gtk = gN+k+l (LNl — 4 pN+ki20-1 N pN+kt2p=1 _ o Ntk+2p

5. 4)

N+k+2p N+E +1 __ N+ 12
G)ﬁe++ﬁ_iAe++_ie++,

for the generators eV'i€ HN'(K'; Z,), where i=Fk, k+1, k+2p—1, k+2p,
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F+2, ¥+3. By Theorem 3.2, Wb{”=0, so, by the Adem’s relation
®?A —AP?=F'AP?"", we have

0 = g*AWbY) = AW,g*(b) = (AR ?C'A —AR?TA)(xeN*F)
= 20AP? P A NtE = 25(PPAP'A —PAR LI PIA) Nt
= Zx@PAa)lAeN—!-k —_ i,erN—I—k/-{—Z :f: O R

which is a contradiction. Thus, {3,, «, 8.} ==0.

PROPOSITION 5.3. For 1<s<p—1, there is an element B;€
Tatsprs-vip-v-1 SUCh that aB;=Ba=0 and {B,, @, B} ==0.

Proof. By the above argument, this assertion is true for s=1.
Suppose, inductively, that B,_, (s>>1) satisfying the condition is defined
then the stable secondary composition <{B;_,, &, B> defines a unique
non-trivial element B, in my,pis-1p--1, DECAUSE Biiomoyrirp-n=0 and

TCols— 1 p+1Dp~1D '181 =0.

By Lemma 2.2,
<183—1’ «, /3’1>an,8$_1<6(, Bn a> modulo ’83—1.”2(17+1)(p—1)'a’

and since ,83 1 <C¥ 181; (X>CBS 1'772(p+2)(p 1)_18.9 1° 7o p+1p— prd= 0 we have
B.a=0. Also, we have

“18.9 = a‘<Bs—1» a, i81> = ——<C£, 183—1) C(>~,81 =0.

Hence, {8,, «, B8} can be defined. If {8, @, B,}=0, by Lemma 2.6,
there is a map f:K—M}"* such that the class of the restriction f|M>N**
is B;, where K= MN+k\j TMN+#+20- 2\j TMN, k=2(sp+s—1)(p—1)—2

and B =2((s+1)p+s)(p—1)—2. So that there is a map g:K— X, such
that g*: HV*¥(X,; Z,)>H"M*K; Z,) is a monomorphism. Hence
g¥(by¢—V)=xeN+** for the generators b V€ HN*K(X,; Z,), eN e
HN®K; Z,) and a coefficient ¥==0 (mod p). Since Wby > =0 and the
relation (5.4) holds in H*(K; Z,), we have

0 = g*AWb™) = AW,g*Er™) = AW (xeN™)
= +(s+1)xeN¥+? 0,

which is a contradiction.
In the case when s=p—1, similarly to the above, we have an element
181;—1 S 772(1)—2)(17—1)—1 such that

(5.5) ap,, =B, =0.
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COROLLARY 5.3. For 1<s<p, B,, a’*+*-'8 agnd a’?**-*3a are linearly
independent.

Proof. Let xa’?+°-'8 4 ya*t+*-20at+ 23, =0, then, by multiplying @ to

the left, we have xa*#+°6+ya’?+*-'6a=0, But, by Corollary 5.2, x=y=0,
so z=0.

CoroLLARY 5.4. (i) For 1<s<p, 68,6==0.
(if) For 2<s<p, 0<r and r+s<p, dad(8,8)" B,8=0.
(i) 3(8,9)”+0.

Pi’OOf. (l) BY Example 4. 3’ Bs € ”z(sp+s—1)(p—1)—1= {asp+s—18} + {asp+s—28a}
+ {8}, where B =7*"(B,), B,€GCuspis-1xp-n-2» SO W€ may put B,
20018 4 y ot -8+ z B, Since B, a’?+°-?8 and a*?*°*~'dc are linearly
independent, we have z,2=0 (mod p). Hence, by Corollary 5.1, (iv),
and Example 4.3, we have 880 =288/8=0. Similarly &ad(838)" B0
=272,0a8(3/8)" B840 by Example 4.4, and &(B8)?=2z8(8;8)?==0 by
Example 4. 5.

6. Multiplicative structure of =,

Now, we shall study some relations among 8, @ and B,.

LEMMA 6.1. Let 4/ =x*"'v"'(y) mod 7.,/ {7* v (Y)} for y€GxZ,,
and ¢'=yj* v~ (@) mod =,/ {* v (@)} for pEGxZ,, where x,y are
some coefficients ==0 (mod p), Yr-@==0, and k/=0 (mod 2). Then,

'\]J"SQ)' Eq)/&,lf‘/ mod ”k+l+1/ {j*_l‘T_l(\l’q))} .

Proof. By Lemma 4.1, we have (7* v (4)8(j* v (@) = j* ="' (Yyp)
and (7% 'v () 8(j*r~(y)) = ¥+ @¥). While, since k/=0 (mod 2), we
have yp=@yr in G,. So that,

Vo = xy(7* () 8(7* ) = xy* T (Yep)
= xy* e pY) = 9oy,

modulo (/{7777 (Y)}) 8(7,s/ {7* 77 HPY) C s/ {7* 77 ()}

PrOPOSITION 6.1. (i) For 1<s<p, adB,=px.
(if) For 1<s<p—1, B8B,=B30,.
(iii) For 1<s, t<p and s+t<p, B,B;=0.

Proof. (i) By the definition,
@ = j*'rN(a,) and B, = x/*'v7(B,) mod =,/ {7*v7'(B,)} ,
for &, €G,, ,, B,€G,, k=2(sp+s—1)(p—1)—2, and a coefficient x==0
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(mOd p)' SO, by Lemma 6 17 C(SBSEBSSC( mOd ”23(p+1)(p—1)—-2/ {j*—lq'_l(al’es)}‘
While, by Theorem 3.1 andP roposition 4.2, 7, incp-v-2o/ 175777 (@55}
= {@°?*+°-8ad}, so we may put adB,=pB0c -+ xa*?+°~6ad for a coefficient x.
But

0 = a®B,a = af b’ + xasr+6adar = xa*P+dadex

and a?+dada =0, so that x=0,

(ii) Similarly to (i), 8,08, = 5,68, mod ﬂz((s+1)p+s—1)(p—1)—3/ {8:88;}. While,
by Theorem 3.1 and Proposition 4.2, %y i1 pis-1ip-m-s=2Z,= 1B8:08:}. S0
that B,68,=£8,58,.

(iif) Since BB, € 7, ,-ry-,= {008}, k=(s+1)p+s+{—2, we may put
BB, =zxa*0ad, But, 0=aB,B,=xa*6ad and a*6ad==0, so x=0.

Added in proof. When p=3, B8, € 7,,= {@°ad} + {8ad(B, 8)°}, so the
above argument is not valid. We have no idea to know whether 8,8,=0
or not. So, Theorem II (ii) should be understood that 8,8,=0 if p==3,
and also propositions in section 7 are valid under the assumption p==3.

CorOLLARY 6.1. For 1<s<p, a’6B,=adB da=0.
Now, we have the following theorems :

TueoreMm 1. A set of additive bases for my, is as follows in dim
<2 (p—1)—4:
S, s,
af, afs, at8a, at'oas, for 1<t<_p?,
(BO) By, 8(BO) '8, (B, (B3, for 1=r=<p,
a(8B,), da(dB,), a(8B,)8, 8a(dB,)'8, for 1 <=r<_p,
(B8)Bs, 8(B.OYB,, (B.8)B.3, 8(8.8)8,9,
ad(B,8)B,, dad(B,0)YB,, ad(B,6) 3.
dad(B,8) B, for 0<r, 2<s<p, and r+s<_p.

THEOREM II. The ring =, in dim< 2p(p—1)—4, is generated by
v, &, and B,, 1<s<p, with the following fundamental relations :

(1) 82:07 aBs:BsaZO’ Bth=O’
(i) 2wéa = a6+ da?,
(i) 3B, = 8.5,

iv) B8, = —L BB,
s+t—1

ReEmMARk. The class ¢ of the identity map MY — MY is the identity
element of =,.
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The proof of (iv) will be given in the next section.

THEOREM III. The subring of =, generated by & and o has only two
fundamental relations: =0 and 208 =a’s + 8.

7. Secondary compositions

Following the method of Toda [10; IV], we shall study some
secondary compositions.
Similarly to Lemma 4.8, iii) of [10], we have

Lemma 7.1. Let a€n,(G; n H), &' €n,(G; ', H), Ben,(H; X),
Bern,(H ; X), and v €n(X,Y) be elements such that Ba=Ra’ =0, yB=
v8'=0 and {y, B, &} + {v, &, &'} =0. Then there is an element y€ n(K, Y)
such that j*(%) =& where K = X( B\g[)T(M(n, H)VMw, H ’))w\v_/u,TM(q-i- 1, G),
and j: X—K is the injection.

Also, similarly to Theorem 4.3, ii) of [10], we have

LEMMA 7.2. Let a€w,, B€mx,, yEn,, d€x,,, EE€ =, be stable elements
such that Ba = yB=0y=E6=0, <{0,y,8>-a=0 and &-{8,4,8>=0. Then,

<<8’ 8, 'Y>, 18, a>+(_1)h<8’ <8, s ‘8>1 a>+(_1)h+k<8’ 3) <’Y’ lB& a>>EO
modulo Im &,+Im a*+Im (&, 8, vDu+Im (v, B, ad*.

PROPOSITION 7.1. For 1<s<p—1, <B;, B,, a>= —ﬁiﬁm modulo

{acs+1)p+s3} + {aervres-15a)

Proof. Since <B;, B, &> C Zycsipptsx,-n-1» W may put (B, B, ad>=
xBs4,. So that (B, B, a>—x(B,, @, B>=0. By Lemma 7.1, we
have a map f:K-—>MFN-" such that the class of f|MYN** is B, where
K=MN+eyu T(MPN+F v MYy TMY e = 2(sp+s—1)(p—1)—2,
[=2(p—1), m=2p(p—1)—1. Therefore, similarly to the proof of Proposi-
tion 5. 3, there is a map g ; K—X, such that g*(b{ ") =yeN** y==0 (mod p).
While, as is easily seen, the following relations hold in H*(K; Z,):
A6N+k — 8N+k+1, (PPeN+k — (_1)N+k6N+k+m+l, G)PeN+k+1 — (_1)N+k+1eN+k+m+2’
(PleN-}—k+l — (_1)N+k+1eN+k+I+1, (PleN+k+m+1 —_ O

b
PP N+ErI+L = () N+ktla2y pN+RALEME2 (D1 N+ hbm2 (—L)N+Eems2 pN+kt1me2

By Theorem 3.2,
0 — g*(stg*‘"”) — ng*(bgs—l)) — yWseN+k
= (s +1) P?P'A —sP'P?A + (s—1) AP P?) Ntk
— y((s+ 1)( _1)1+3x eN+k+l+m+2_s( _ 1)m+3eN+k+I+m+2) ,
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since y==0, we have (s+1)x+s=0, so that x = —-:‘T_T

PROPOSITION 7.2. For 1<s<p—1, {B, &, B> =P0,,.
Proof. By Lemma 7.2, we have

<<131’ «, ‘Bs—1>’ a, Bl>+('_1)h<1319 <(X, lBs—n C(>, i81>
+(_1)h+k<ﬁn «, </gs—17 o, i81>> =0 ’

modulo Im B+Im BF +Im B,«+Im B¥=0, where h=2p(p—1)—1 and %

=2(p—1). Since for s=1, (B, a, B>=4,, so inductively we may assume

that <B,, a, B,_>=p8,. While, {B,, @, B>=28B,, {a, B._,, &> = xa+Or+s

and <B,, xa=vr+ B >=<{Ba, xa+Pr+-1 B %=(0, Hence, B,,—<B, a,B.,>=0.
Similarly we have

COROLLARY 7.1. For s+t<p, <{B,, &, B,>=PB;;.

COROLLARY 7.2. For s+t<p, <BS,B,,6¥>E(~1)‘S—-L ree

PROPOSITION 7.3. For 1<s< p—2, <a, B, B>= —;f:i By

Proof. We may put <«, B, B> =x8,.,, for a coefficient x. By
Lemma 7.2, we have

<<B17 a, 181>’ Bs) C(>—<,81, <C(, Bl’ Bs>7 C(>———<,81, «, <'81’ Bs’ C(>>EO ’
so that <i82’ Bs’ a>'_x<1817 Bs+1’ a>—(—1)sS-I]-. 18 «, 18+1>'—’0 Thus,

(— 1)3 2 Bsﬂ (— 1)s+l 2 ,6’5+2 (-—I)S%BWEO. Hence, we have
s

= _~s_
s+1
COROLLARY 7.3. For s+t<p—1,<a, Bt,,@&E(-—l)’ﬁZ st
PROPOSITION 7.4. For s+t<_p, ,333:3,=S+stt 131333+;-1-

Proof. Put B08,=x,388,.,-, for a coefficient x,,. Then, by Pro-
position 6.1, (ii), 8,88,=8,08,, so x,,=1. For ¢_>1, by Proposition 7.1,

’8 813! —_’_'18 8<181—1y ,31, a> __‘<13 aﬁt -1 181: a>

= :i‘<xs,t~1/818183+t—2’ Bu a> EZ_—lxs,t-11818<Bs+t—-z’ Bu C(>

tx S+t2ﬁ,3

s, t-1 sti-1¢
t—1
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So that,
g = bosHE=2. _ # sti-2t-dsti-3 2 s .
o 1s+t—1 t—1s+t—1¢t—2s+t-2 1 s+1
_ st
Cos+t-1

Now, we must calculate the modulus groups. But, a simple calculation

t_ 161833_”..1 .

shows that all these groups are 0. Hence, we have 8,68,=

COROLLARY 7.4. For s+t=s +t’<15, /9313, ,t,B'aB,/.

RemARk. In [10;IV], Toda defined the element B, as a non-trivial
element of Gypis-1p-1-2=Z,. S0, We may choose B, € Gy as B, = *(8,)
for ;€ myspis-13p-v-1» By Lemma 4.1, we have that T*(B.88,)=BpB,.

So that, the relation 8,68, = ¢ 1;818,8$+,_1 for s+¢<p implies that

4 1—1_s+t_1 for s+¢< p in G4. This is an answer to the problem

of Toda [10;1IV, p. 326].
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