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O. Introduction 

Let p denote an odd prime. A Moore space M~=M(n, Zp) is a simply 
connected space with two non-vanishing (integral) homology groups 
H0(M~)=Z and Hn(M~)=Zp. The mod p cohomology structure of M~ is 
as follows: H0(M~; Zp) = zp, Hn(M~; Zp) = zp = {en}, Hn+'(M~; Zp) = zp 
={en+'}, Hi(M~;Zp)=O, io=J=O, n, n+1, and Aen=en+' for the mod p 
Bockstein operator A, for n::;:::::2. 

Them-th homotopy group n:m(Zp; n, Zp) of the Moore space M(n, Zp) 
with the coefficient group ZP (or, briefly, the m-th mod p homotopy group 
of M(n, Z P)) is the set of homotopy classes of maps M";-'>- M~ with the 
track addition (See [3]). 

The set n:*=2,J n:N+i(Zp; N, Zp) (N denotes a sufficiently large integer) 
' 

of the stable homotopy groups of the Moore space M(N, Zp) with the 
coefficient group ZP (i.e., the stable mod p homotopy groups of M(N, Zp)) 

admits a ring structrue with respect to the composition. Really, it forms 
an algebra over the field ZP. 

In this paper, we shall investigate its structure by means of the 
results and the methods of Toda [10], [11], [12]. 

For simplicity, we shall denote n:N+i(Zp; N, Zp) by n:; and we shall 
say that an element of n:; is of dimension i. 

Among the elements of n: *, ô denotes the element in n: _, such that 
ô*ef =( -1)Nef" for the generators ef" E HN(M!;!-'; Zv)and elf E HN(M!;!; Zp); 

~ denotes the class of the identity map of M!;!; a denotes the element 
in n:2cp-1) such that (9~eN+'=(-1)N+'eN+2cp-l) for the generators eN+IE 
HN+'(MN·Z) and eN+kEHN+k(MN+k.z) k=2(p-1) where C9 1 is the 

p ' p p ' p' ' a, 

functional cohomological operation with respect to (9' and a; /3, denotes 
the element in n:2pCp-I)-I such that a/3, =0 and C9~,eN+' = ( -1)N+'eN+2pcp-l) 
for the generators eN+' E HN+'(M!;!; Zv) and eN+t E HN+t(M!;j+t-'; Zv), 

l = 2p(p -1), where C9~, is the functional cohomological operation with respect 
to (9P and /3,; and, f3s, 1<s<p, denote the element in n:2csp+s-l)Cp-1)-1 
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defined inductively by the stable secondary composition (fls-n a, /3,), 
respectively. 

Then, our main theorems are 

THEOREM I. A set of additive bases for 7l'* is as follows in 
dim<2P2(P-1)-4: 

o, t, 

a 1, a 1o, a 1-'oa, at-'oao, for 1 < t <P2 , 

(fJ,oY-'fJ, o(f3,oY-'fJ, (fJ,oy, o(fJ,oY, for 1 < r < p, 

a(ofJ,r, oa(o(3J, a(o(3Jo, oa(of3,yo, for 1 < r < p' 

(f3,oYf3s, o(f3,8Yf3s, (f3,oYf3so, o(f3,oYf3so, 

ao((3,oy f3s' oao((3,oy f3s' ao((3,Dy f3so' 

oao(f3,oYf3so, for 0 < r, 2 < s<p, and r+s<P. 

THEOREM II. The ring 7l'*' in dim<2P2(P-1)-4, is generated by ô, 
a, and f3s, 1:S:::s<p, with the following fundamental relations: 

( i ) 

(ii) 

(iii) 

(iv) 

/)2 = 0, af3s = f3sa = 0, f3sf3t = 0' 

2aoa = a2o + ôa2 , 

aof3s = f3soa ' 

f3sôflt = st f3,of3s+t-I · 
s+t-1 

THEOREM III. The subring of 7l'* generated by o and a has only two 
fundamental relations: 02 =0 and 2aoa=a2ô+oa2• 

Thus, the subalgebra generated by o is an exterior algebra and the 
subalgebra generated by a is a polynomial algebra. 

The relation f3sof31 = st (3,ôf3s+t-" in 7l' *, implies the relation 
s+t-1 

-- st -- . . f3.f3t = f3,(3s+t- 1 m the stable homotopy nng G* of sphere, for a 
s+t-1 

suitable choice of the element 73s in G*. This is an answer to a problem 
of Toda [10]. 

The writer is deeply indebted to Professor H. Toda for many advices 
and kind criticisms. The writer wishes to express his sincere gratitude 
to Professor A. Komatu for constant encouragement given during the 
preparation of this paper. 

1. Preliminaries 

Throughout this paper, unless otherwise stated, all space are connected 
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and have the homotopy type of a CW-complex. There is given a base 
point on each space, all maps take base point to base point and all 
homotopies keep base point fixed. All groups are finitely generated and 
abelian. We shall denote the additive group of integers by Z, and the 
additive group of integers modulo an odd prime p by ZP" The closed 
interval [0, 1] is denoted by !, and f =g denotes that two maps f and 
g are homotopie. Often a map and its homotopy class are denoted by 
the same letter. 

Let X, Y be spaces with base points X0 , y0 , and f: x- Y a map. The 
mapping cylinder Yf of f is the space obtained from the disjoint union 
(Xxl)vY by identifying (x, 1)EXxl with f(x)E Y and shrinking X0 Xl 
to the base point Yo. 

The mapping cane Cf off is the space obtained from Yf by shrinking 
XxO to the base point Yo· The space Yf has the same homotopy type 
as Y and we may regard X as a subspace of Yf by the inclusion map 
i.x:X-Yfdefinedbyix(x)=(x,O). If Y=x0 andf:X-x0 is the constant 
map, the mapping cylinder off is the cane TX over X, and the mapping 
cane of f is the suspension SX of X. The iterated suspension sn X of 
X is defined inductively by snX=S(sn- 1X). Note that S(TX) and T(TX) 
are homeomorphic to T(SX). If X=SX' for a space X', we can define 
a map cp :X-Xv X (=XXX0 VX0 XX) by 

(1. 1) { ((x', 2t), X0) 

cp(x', t) = (x0 , (x', 2t-1)) 
0 < t < 1/2' 

x' EX'. 

We can also define a map cp': cf-SXvCf by 

{ k(x, 2t), Yo) 0 < t < 1/2, 
(1.1)' cp'(y) = (x0 , y), y E Y, cp'(x, t) = (Xo, (x, 2t- 1)) 11--;-<-; s:;: 1 ' XE X' 

where k : Cf- SX is the shrinking map of Y C Cf· We shall also denote 
the spa ce Cf by YV TX or YV TX where a is the homotopy class of f. 

1 ., 

The loop space nX on X is the space of maps :.\. : (!, Ï)- (X, Xo) with 
the compact open topology. The constant map À.0 : I- X0 is the base 
point of nX. The iterated loop space nnx on X is defined inductively 
by nnX=n(nn-lX). Since X is assumed to have the homotopy type of 
a CW-complex, the loop space .nx also has the homotopy type of a 
CW-complex [4]. 

W e shall denote by 77:(X, Y) the set of homotopy classes of maps 
x- Y. For any pairs (X, A) and (Y, B) of spaces (i.e., Ac X and Be Y), 
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the relative homotopy set 7Z'(X, A ; Y, B) is the set of homotopy classes 
of maps f: (X, A)-* (Y, B) (i.e., f: X---* Y and f(A) C B). 

The following lemmas are well-known [3]. 

LEMMA 1. 1. lf X is the suspension SX' of a space X', 7Z'(X, Y) admits 

a natural group structure for any space Y. If X is the two-fold sus­

pension S2X" of a space X", the group 1Z'(X, Y) is abelian. 

LEMMA 1. 2. There is a natural isomorphism 1Z'(X, nY) = 1Z'(SX, Y), 

for any spaces X and Y. 

Let a E 7Z'(X, Y) be the homotopy class of a map f: X----;. Y, then the 
suspension Sa E 1Z'(SX, SY) of a is the homotopy class of the map Sf: 

SX---* SY defined by Sj(x, t) = (f(x), t), xE X, tE/, and the loop na E 
7Z'(nX, n Y) of a is the homotopy class of the map nt: nX---* n Y defined 
by ((nf)(')..))(t) = j(')..(t)), ').. E nX, tE/. They are well-defined and if 7Z'(X, Y) 

admits a group structure, the correspondences S* : 7Z'(X, Y)---* 1Z'(SX, SY), 

n*: 7Z'(X, Y)-*1Z'(nX, DY) defined by S*(a)=Sa, n*(a)=na are homomor­
phisms. 

Let f: X---* Y be a map, then we have the Puppe sequence of f [5] : 

f j k Sf Sj Sk Szf 2 
x~Y~cf~sx~sy~scf~szx~s Y~··· 

such that the following sequence is exact for any space U: 

(1. 2) 
!* j* k* (Sf)* 

7Z'(X, U) +--7Z'(Y, U) +---- 1Z'(Cf, U) +--1Z'(SX, U) ~-
(Sk)* 

1Z'(SY, U) +---- 1Z'(SCf, U) +---- ·•• . 

Given a group H and an integer n > 2, the Moore space [3] M = 
M(n, H) is a simply connected space having only two non-vanishing 
(integral) homology groups: H 0(M)=Z, Hn(M)=H. For a given pair of 
n and H, the space M(n, H) is determined uniquely up to homotopy type, 
in particular, M(n, Z) is the homotopy type of the n-sphere sn, M(n, Zp) 

is the homotopy type of the cell complex snven+l where en+l = rsn is 
Pt 

an (n + 1)-cell and t denotes the class of the identity map of sn. It is 
easily seen that the suspension of M(n-1, H) is an M(n, H) for n>2, 
so that the set 7Z'(M(n, H), X) admits an abelian group structure for any 
space X and n >3. It is called the n-th homotopy group of X with a 
coefficient group H and denoted by 7Z'n(H; X). Similarly, for any pair 
(X, A), the n-th relative homotopy group 7Z'n(H; X, A) of (X, A) with a 

coefficient group His defined as the relative homotopy set,7Z'(TM(n-1, H), 
M(n-1, H); X, A), for n>4. We have the exact sequence 
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d i* j* 
··· ~ 'ltn+l(H; X, A)~ 7tn(H; A) ---7 7tn(H; X)------? 7tn(H; X, A) ---7 ••· 

for any pair (X, A), and the naturalities df*=(JIA)*d and S*f*=(Sf)*S* 

f* f* 1tn+,(H; X, A)~ 1tn+,(H; Y, B) 1tnCH; X) --+ 7tn(H; Y) 

dl UIA)* ld . 5*1 (Sf)* 15* 
7tn(H; A) ----? 7tn(H; B) 7t,+>(H; SX) ~ 7tn+ 1(H; SY) 

for a map f: (X, A)~ (Y, B), and the suspension homomorphism S*. 
Given a group 7t and an integer n>1, the Eilenberg-MacLane space 

K=K(7t, n) is a space having only one non-vanishing homotopy group: 
7tn(K)=7t. For a given pair of n and 7t, the space K(7t, n) is determined 
uniquely up to homotopy type. It is easily seen that the loop space on 
K(7t, n + 1) is a K(7t, n), so that the set 7t(X, K(7t, n)) admits an abelian 

group structure. It is the n-th cohomology group Hn(X; 7t) of X with a 
coefficient group 7t. 

A space X is sa id to be n-connected if 7t;(X) = 0 for 0 < i < n. 
The following lemmas are well-known [2], [7]. 

LEMMA 1. 3. Let X be (m -1)-connected and Y be (n -1)-connected 
(m, n>l), and f: x~ Y be a map. Then, "fr*: 7tr(Yf, X)~7tr(Cf) are 
isomorphisms for r< m + n -1, where "fr : (Y f• X)~ ( C f• Yo) is the shrinking 
map of X. 

LEMMA 1. 4. If X is an (n-1)-connected space (n>l), then 
( i ) the (homotopy) suspension homomorphisms S* : 1t r(X) ~ 1t r+ 1(SX) are 
isomorphisms for r<2n -1. 
(ii) the cohomology suspension homomorphisms D*: H"(X; 7t)--'> H"-'(DX; 7t) 
are isomorphisms for r<2n-1. 

Let f: 52~ 52 be a map of degree p, then the mapping cone C1 off 

is an M(2, Zp). So that, by (1. 2), the following sequence is exact for 
any space X: 

(Pt)* k* j* (Pt)* 
··· ~ n'r-1-l(X)--+ 1t,+,(X) ---7 7t,(ZP; X)--+ 7t,(X) ----+ 

(1. 3) 7t,(X) ~ ···--+ 1ta(X) ---7 7t3(X)--+ 7t2(Zp; X)~ 

1tz(X)--+ 1tz(X). 

By the exactness of the above sequence and the five lemma, we have 

COROLLARY 1. 1. lf X is an (n -1)-connected space (n > 1), the suspen­
sion homomorphisms S*: 7t,(Zp; X)~1t,+,(ZP; SX) are isomorphisms for 
r<2n-2. 
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CoROLLARY 1. 2. If X is (m -1)-connected, and Y is (n -l)-connected 

(m, n>l), then the homomorphisms '\h: n:r(Zp; Yf, X)~n:r(Zp; Cf) are iso­

morphisms for r<m+n-2. 
By the above corollary, we have an exact sequence 

f* ù 'T 
"'2S-a(Zp; X)- "'2S-a(Zp; Y)- n:2s-a(Zp; Ct)-

(1. 4) 
'T f* 

n:2s-lZP; X)- ... - n:r+l(Zp; Cf)- n:r(Zp; X)-

j* 'T 
n:r(Zp; Y)- n:r(Zp; Cf)- n:r-l(Zp; X)- ... , 

where 'T=S;. 1k* and s=Min(m, n). 
Since sn is (n-1)-connected and ssn =sn+\ Lemma 1. 4 implies 

Sf:: "'n+k(Sn) = "'n+k+i(sn+i) for n>k+l and i>O. Therefore, we can define 
the k-th stable homotopy group Gk of sphere by 

for any integer k. 

Similarly, we can define the k-th stable homotopy group n:k of Moore 
space M(n, Zp) with a coefficient group ZP by 

n:k = dir. lim kn+k(Zp; n, Zp), S*} for any integer k. 

While, since K(n:, n) is (n-1)-connected and nK(n:, n) =K(n:, n-1), 

by Lemma 1.4, n~:Hn+k+i(n:,n+i;G)=Hn+k(n:,n;G) for n>k+l and 
i>O. So that we can define the k-th stable cohomology group Ak(n:, G) 
of K(n:, n) with a coefficient group G by 

for any integer k. 

Given a E n:q(G; n, H), the composition operation a x: n:n(H; X)~ 

n:q(G; X) is a correspondence defined by ax(!3)=f3·a for any space X and 
/3 E n:n(H; X). Obviously, it is natural with respect to any map f: X~ Y, 

i.e. f*ax=ayf*. 
Given 8 E Hq(n:, n; G), the composition operation ex: Hn( X; n:) ~ 

Hq(X; G) is a correspondence defined by ex(u)=B·u for any space X and 
uEHn(X;n:). Obviously, it is natural with respet to any map f: Y~X, 
i.e. f*Ox=Oyf*. 

A set a= {a x} of correspondences ax: n:n(H; X)~n:q(G; X) (resp. 
8={0x} of Bx:Hn(X;n:)~Hq(X;G)) defined for any space X, is called 
homotopical operation of type (n, q ; H, G) (resp. cohomological operation 
of type (n, q; n:, G)) if it satisfies the naturality. The following lemmas 
are well-known. 

LEMMA 1. 5. There is a ane-to-one correspondence between elements of 
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n:q(G: n, H) (resp. Hq(n:, n; G)) and homotopical operations of type (n, q; H, G) 

(resp. cohomological operations of type (n, q; n:, G)). 

LEMMA 1. 6. If a E n:q(G; n, H) (resp. e E Hq(n:, n; G)) is a stable ele­

ment, then the composition operation ax (resp. Bx) is a homomorphism. 

The direct sum 2J Gk (resp. 2J n:k, :E Ak(n:, n:)) of stable groups bas 
k k k 

a multiplicative structure defined by the composition. In particuiar, 
g'=2JAk=2JAk(Zp, Zp) is the (modp) Steenrod algebra. 

k k 

The following lemma is well-known [1]. 

LEMMA 1. 7. The (mod p) Steenrod algebra g' is generated by À E A' 
and (J>Pk E A 2pkcp-l) (k=O, 1, 2, ···) satisfying the Adem's relations: 

(Pa(J>b ="(!'~Pl (-1)a+i((b-i)(P--.1)-1)(9a+b-i(Pi 
..:::..... ,_o a-pz ' 

if a "'5:_ pb. 

Let f: X-+ Y, g: Y --+Z be map such that gf=O: X--+Z where 0 
denotes the constant map X--+ Z0 • Then we have 

LEMMA 1. 8. There is a map g: Cr-<> Z such that the restriction g 1 Y 

of g on Y C Cf is g. For any two such maps g, g2, we can define a map 

d(g,,g2):SX--+Z such that g,=(dvg2)ql, where cp' is themap defined in 
(1. 1)'. Converse! y, for any map h : SX--+ Z, the map g' = (h v g)rp' satisfies 
g'l Y=g. 

Proo f. Sin ce g f = 0, the re is a homotopy H : X xI--+ Z su ch th at 
H(x, 0)=Z0 , H(x, 1)=g(f(x)). Define the map g: Cf--+Z by 

g(y) = g(y), y E Y, g(x, t) = H(x, t), xE X, tEl. 

Then, since H(x, 1)=g(f(x)), gis well-defined and, by definition, gl Y=g. 

Let g,, g2 be two such maps, then we de fine d = d(g,, g2) by 

d(x, t) = { ~,(x, 2t) ' 
g2(X, 2-2t), 

0< t< 1/2, 

1/2 < t < 1. 
x EX. 

Since g,(x, 1) = g(f(x)) = g2(x, 1), d is well-defined. It is easily verified 
that g, = ( d v g2)rp' (rel. Y). The last assertion is obvions. 

We shall denote by 7 the homotopy class of g, when ry is the class 
of g. 
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Similarly, we have 

LEMMA 1. 9. There is a map f: SX _,.Cg such that 

/(x, t) = (f(x), 2t), 

/(x, t) E Z, 
0 < t < 1/2' 
1/2s t s 1, 

xE X, 

hence kgf =Sf: SX _,.SY, where kg: Cg_,.sy is the shrinking map of Z C Cg. 

For any two such maps fu / 2, we can define a map d(fu /2): SX_,.z 
such that / 1 = (d v / 2)cp : SX---? Cg where cp is the map defined in (1. 1). 

Converse! y, for any map h: SX---? Z, the map f' = (h v /)cp satisfies the same 
condition as f. 

We shall denote by a the homotopy class /, when a is the class of f. 

2. Functional operations 

In the remainder of this paper, unless otherwise stated, we shall be 
concerned with only stable elements (of homotopy and cohomology groups). 

Let a E 7tq(G; n, H), (3 E 7tn(H; X), and 7 E 7t(X, Y) be elements such 
that ax(/3)=0 and 7*(/3)=0. Then, by Lemma 1. 8 and 1. 9, there are 
elements a E 7tqH(G; C13)/j~.7tq+ 1(G; X) and 7 E 7t(C13 , Y)/ ki7tn+l(H; Y) such 
that jt7=7, kil.a=Sa where j~: X-?Cil is the injection and kil: Cil­
M(n+1, H) is the shrinking map of X. So that we can define an element 
{7, (3, a} in 7tq+1(G; Y) modulo 7*7tH1(G; X)+ (Sa)*7tn+1(H; Y) to be the 
coset of 'Y•à. It is called the secondary composition of 7, (3, a [10; IV], 
[12 ; Chap. 1]. 

The following properties of the secondary compositions are well­
known [10], [12]. 

LEMMA 2.1. ( i) {71 +72 , /3, a}= hu /3, a}+ {72 , /3, a} 
mod. lm 71* +lm 72* +lm (Sa)*, 

(ii) {7, /31 +/32 , a}- {7, f3u a}+ {7, /32 , a} mod. lm 7*+Im (Sa)*, 
(iii) {7, (3, a 1 +a2} = {7, /3, a 1} + {7, /3, a 2} 

mod. lm 7* +lm (Sa1)* +lm (Sa2)*. 

LEMMA 2. 2. ( i) S{ry, (3, a}=- {Sry, S/3, Sa} 
mad. lm (Sry)*+Im (S2a)*, 

(ii) if o-ry=O, o{ry, /3, a}=- {o, ry, /3} ·(Sa) mod. lm o*(Sa)*. 
When q=N+k+l+m, n=N+k+l, X=M(N+k, H) Y=M(N, H) for 

a sufficiently large integer N and G=H, we can define a stable secondary 
composition (ry, (3, a) such that (ry, (3, a)=( -1)N{ry, (3, a} ([10], [12]). 

Let e E Hq(7t, n ; G), f: X- Y. A functional cohomological operation 
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[6], ef:Hn(Y;n:)nKerf*nKerey ~ Hq-l(X;G)/f*Hq-t(Y;G)+ 

(ne)xHn-\X; n:) is defined by 

()Au)= the coset of 6.*- 1()cY,X)j*- 1(u) 

for uEHn(Y;n:)nKerf*nKer()y (i.e. f*(u)=O, ()y(u)=O). 

The functional cohomological operation ()f is also denoted by ()a., 

where a is the homotopy class of f. 
The following properties of the functional cohomological operations 

are well-known [6], [9]. 

LEMMA 2. 3. Let f: X___,. Y, () E Hn'(n:, n; n:'), ()' E Hq(n:', n'; G), then 

( i) for u E Hn(Y; n:)nKer f* nKer ()y, 

(()'e)Au) =()'(() J(u)) mod. lm (n(()'e))* +lm f*, 

(ii) for uEHn(Y;n:)nKerf*nKer(()'())y, 

(()'())Au)=e~(e(u)) mod. lm (ne')*+lmf*. 

LEMMA 2. 4. Let f: X___,. Y, g: Y___,. Z and () E Hq(n:, n; G), then 

( i) for u E Hn(z; n:)nKer ()2 nKer g*, 

egAu)=f*(()g(u)) mod. lm (ne)*+lmf*g*, 
(ii) for uEHn(Z;n:)nKer()2 nKerf*g*, 

()g)u)=eAg*(u)) mod. lm (ne)*+lmf*. 

LEMMA 2. 5. Let X be the suspension of a space X', and a, (3 E n:(X, Y), 

(} E Hq(n:, n; G). Then, 

mod. lm (ne)*+ lm a*+ lm (3*, 

for u E Hn( Y; n:) 11 Ker() y fi Ker a* 11 Ker (3*. 

Let a E n:q(G; n, H), (3 E n:nCH; X), 'Y E n:(X, Y) be elements such that 
f3a=O, 'Y·f3=0. Then {'Y, (3, a} is defined to be the coset of 'Y·ii. If 
{'Y, (3, a} =0, there are ii0 and 'Yo such that ry0ii0 =0. Renee, we have 

LEMMA 2. 6. lf {'Y, (3, a} =0, there are elements a 0 E 7tq+2(G; Cy 0)/ 

jy0*7tq-l-zCG; Y) and 'Yo E n:(c;;;0 , Y)/k~07tq 1-2(G; Y) such that j~0ry0 =ty0 , k"io*a0 = 

Sii0 , (i.e. jfj@0 ry0 ="f, kfl*k1 ,a0 =S2a), where j;;; :C13 _,.C;;;, ir-: Y~Cr- are 
0 0 0 0 0 

injections and k;;;0 : C;;;0 ~ M(q+2, G), k"io: C"io _,.SC13 are shrinking maps of 

cfJ and y respective/y. 
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The following is a direct consequence of the definition of e f· 
LEEMA 2. 7. Let f: X--? Y be a map, and e E Hq(11:, n; G). If 

ef(u)=v for u E Hn(Y; 11:) and v E Hq-'(X; G), then B(j*-'(u))=t..*(v) 
mod. Â *(flBx)Hn-'(X; 11:). 

3. p-component of homotopy groups of sphere [10] 

In the following, p denotes an odd prime. 
In [10], Toda determined the generators and the relations of the 

p-primary component GiP) of the k-th stable homotopy groups of sphere 
for k<2P2(P-1)-3. 

In this section we recall briefly his results. 

THEOREM 3. 1. [10 ; Theorem 4. 15] 

Gzrpcp-1)-,(P) = Zp" = {a~P} 

= Zp"+Zp = {a'cr!)p} + {a,,ey-1} 

Gucp-lH(p) = ZP = {at} 

G2Crp+slCp-!)-2(r-siPÎ = Zp = {,Bf-'-1J3s+l} 

G2(rp+s+!)Cp-1)-2(r-s)-1(p) = zp = {a,,Bi-S-l!3s+l} 

for 1 < r<P-1, 

for r = p-1, 

for 1 < t<P2 

and t$0 (mod p), 

for O<s<r<p-1, 

for 0 < s<r <p-1 
and r-s =F P-1, 

G2pCp-1l-z~(p) = zp = {,Bf} 
Gk(p) = 0 otherwise for k<2P2(P-1)-3. 

There is a sequence of spaces Xo, X, · ·· , Xk, ·· · such that Xk+, is a 
fibre space over Xk with the fibre K(7t:N+iSN), N + k -1) for a sufficiently 
large integer N, and with the projection Pk+l: xk+l--? xk, where Xo=SN. It 
is easily seen that Xk is also a fibre space over SN with the projection 
P~=P, ... pk-lpk, and that Xk is (N+k-1)-connected and P~*: 11:1(Xk) 
=11:;(SN) for i>N+k. 

From (3. 10) and Theorem 3. 11 of [10], we have 

THEOREM 3. 2. HN+k(Xk; Zp) is generated by an element 

at for k=2t(p-l)-1, 1<t<P2 and t=F(P-1)p, 

b;"-11 for k = 2(sp+s-l)(P-1)-2 and 1 < s<P, 

and acp-l)p is a generator of a subgroup of HN+k(Xk;Zp)=Zp+Zp for 
k=2(p-1)p(p-1)-1. They satisfy the relations: 

R1a1 =0 for1<t<P2 and t..CP 1Âarp- 1 =0 for1<r<p, 

CP 1b~'- 1 l = 0 and Wsb~·'- 11 =0 for 1 < s < P, 
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where Rt=(t+1)CP\6. -tD.CP1, Ws=(s+ 1)Cf'P(f'1D.. -s(pP+1t.. + (s-1)tJ.(pP+1. 

Let K'=SNV TXk, k=2P(P-1)-2, then D..*: Ht(Xk; Zp)=Ht+ 1(K' ;Zp) 
Pk' 

(i +N), and j*: HN(K'; Zp) = HN(SN; Zp), where D..* is the coboundary 
homomorphism and j :SN--+ K' is the injection. Put a0 = j*(eN) E HN(K'; Z p) 
for the fundamental class eN E HN(SN; Zp), then by (3. 12) of [10] 

(3.1) 

in HN+2pcp- 1)(K'; Zp) where b1 =D..*(Wl). 

Finally, (4. 10) of [10] implies 

LEMMA 3. 1. Let K be an (N + k -1)-connected fini te cell-complex, 

f: K--+ SN a ma p. Then there is a map g: K--+ Xk such that f = p~g. 

4. Additive structure of nk 

Let N denote a sufficiently large integer. 
Since the mapping cone of PtE 7tN(SN) is an M(N, Zp) by (1. 4) and 

(1. 3), we have the following exact sequences : 

(4.1) 
(Pt)* j* 'T" (Pt)* 

... ---- Gk---- Gk---- 7tN+iMtf)---- Gk-1---- Gk-1---- ... 

(4. 2) 
_ (Pt)*_ k* j* _ (Pt)*_ 

.. · ---- Gk+1---- Gk+1---- 1tk ~ Gk---- Gk---- .. · 

where Mtf=M(N, Zp) and Gk=7tN+iM;:). 

Let G~ be the subgroup of Gk consisting of the elements whose orders 
are finite and prime top, then (Pt)*: G~-+G~ is an isomorphism. So that 
they have no influences upon 7tN+iMtf) in (4. 1). Thus, we may replace 
Gk by Gk(P) in (4. 1) for k >O. 

Since p is an odd prime, the following is a direct consequence of 
(4. 1) and (4. 2). 

PROPOSITION 4.1. 1t-1 =Zp= {k*j*(t)} and 7t0 =Zp= {j*-1j*(t)}, where 

tE Go is the class of the identity map of SN. 

It is readily seen that the set 7t* = ~ 7tk admits a ring structure with 
k 

respect to the composition su ch that 7t; •7t j C 'Iti+j. In particular, we have 

COROLLARY 4. 1. For any k, 7tk is a 7t0-module. 

Since 7t0 =Zp is a field, 7tk is a vector space over ZP' Renee we 
have 

CoROLLARY 4. 2. 7t* is an algebra over ZP' 

PROPOSITION 4. 2. 7tk = Gk+ 1 fi!;JZP +Gk(Z)ZP +Gk*ZP +Gk_ 1*ZP, where fi!) 

and * denote the tensor and torsion product, respective/y. 
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Proof. We may identify (G")P = G"fpG" with G"&JZP and p(G") 
={gE G"jpg=O} with G"*ZP. So, by the exactness of (4.1) and since P 
is an odd prime, 

j* - T 
0 ~ G"&JZP ~ G"- G"_,*ZP ~ 0 

is a split exact sequence. Renee, we have G"=j*(G"&JZp)+<r-1(G"_,*Zp) 
=G"&JZp+G"_,*Zr By (4. 2), we have also a split exact sequence 

- k* j* -
0 -i>- Gk+1&JZP ~ n:"--i>- G"*ZP ~ 0. 

We shall denote a right inverse of <r (or j*) of an element a by <r- 1 ( a) 

(or j*-1(a)), though it is not uniquely determined. Since (G &J Zp) &J ZP 

=(C&JZp)*Zp=G&JZp and (G*Zp)&JZp=(G*Zp)*Zp=G*ZP, we have 

n:" = k*ù(Gk+1 &JZp) + j*- 1j*(G"&JZp) +k*<r-'(G"*Zp) + j*- 1'~"- 1(G"_,*Zp) 

= Gk+1&JZp+G"®Zp+G"*Zp+Gk-1*ZP. 

Put o=k*j*(t)En:_u then 02 En:_ 1 •n:_ 1 (n:_ 2 =0, and hence 02 =0. 

Let RB, La: n:"---->-n:k-1 be homomorphisms defined by R5(ry)=ry·o, La('Y) 
=o•ry, for ryE n:", respectively. Then, we have 

PROPOSITION 4. 3. The homomorphism R8 maps j*-'<r-1(G"*Zp) C n:k+1 
isomorphically onto k*r- 1(G"*Zp) C n:" in such a way that R8(j*-1<r-1('o/')) 

=k*<r-1('o/'), for V' E G"*ZP. ft also maps j*-'ù(G"&JZp) C n:" isomorphically 
onto k*j*(G"&JZp) C n:k-1 in such a way that RaU*-1j*(cp)) = k*ù(cp), for 

cpE G"&JZp. 

Proof. It suffice to prove the equalities. By the definition of o, we 
have 

and 

Ra(J*-1<r-'('t)) = (j*-'<r-'('t))(k*j*(t)) = (k*j*)*(j*-'<r-'('t)) 

= k*(j*j*-'(<r-'('t))) = k*<r-'('t)' 

RaU*- 1j *(cp)) = (j*-'j*(cp))(k*j*(t)) = (k*j*)*(j*-'ù(cp)) 

= k*(j*j*-'(j*(cp))) = k*j*(cp). 

PROPOSITION 4. 4. Assume that an element V' E G" satisfies P't= 0 and 
is not divisible by p, then L 5(j*-'<r-'('t))=j*-'j*('o/'). 

Proof. Since P'o/'=0 and V' is not divisible by p, V' E G"*ZP and 
y E G" &J ZP. So that, j*-'<r-'('t) and j*-'j*(y) are well-defined. While, 
since we are only concerned with the stable elements, we may regard <r 

as k*. Renee 
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L8(j*-1T-1("/r)) = (k*j*(t))(j*-1T-1(t)) = (k*j*)*(j*-1k;;/('o/)) 

= ù(ké";/(j*-1(t))) = j*-1ù('t). 

57 

CoROLLARY 4. 3. lf pGk=O, then L8 maps j*- 1T- 1(Gk*Z) C n:k+l isomor­
phically onto j*- 1ù(Gk&.JZp) C n:k-

CoROLLARY 4. 4. Let tE Gk be an element of order p and not divisible 
by p, then t'ô and ot' are linearly independent, and ot'o=FO where 
"fr'= j*-1'1"- 1("/r) E n:k+1• 

LEMMA 4.1. Let t'=j*-1T-1(t) and cp'=j*- 1T- 1(rp) for "fr, rpEG**ZP. 
Then we have j*- 1T- 1("/rrp)=t'ocp', if t·cp=FO. 

Proof. By the definition of o, t', and rp', 

t'orp' = (j*-1T-1(t))(k*j*(t))(j*-1T-1(cp)) = j*(j*-1T-1(t))•k*(j*-1T-l(rp)) 

= 'l"-1(j*j*-1(t))•j*-'(k*k*'(rp)) = j*-l'T"-1(trp). 

LEMMA 4. 2. Let t'= j*-1T-1(t), cp'= j*-'T-1(rp), for t, rp E G**ZP. 
Then, we have t' rp'=j*-'T-'((t, Pt, rp)) mod. j*-1T-1("fr·G*+G*·rp). 

Proof. Let tE Gk, rp E G1 and <1>: SN+k+t+ 1 -o>SN represent an element 
in <t, pt, rp). Then, by the definition of secondary composition, it 

decomposes into a composition of two maps SN+k+t+' ~ M[!+t L SN 

where ip is an element such that k*(ip)=rp, f is an element such that 
j*(f)=t,fortheshrinking map k:M;!+1 ~SN+t+' of SN+tcM{/+ 1, and the 
injection j: SN+t-o>M;!+1• So that, j*-'T-1(<1>): M;!+k+t+ 1 -o>M{!- 1 decomposes 

cp" t" 
into a composition M;!+k+t+ 1 ~ M[!+t---+ M;!- 1• But, by the definition, 

rp"=j*- 1k;/(rp)=j*-'T- 1(rp)=cp' and t"=j*-'T- 1(t)=t'. Renee, we have 
j*-1T-1((t, Pt, rp))=t'rp'. 

Toda [11] proved that there are elements at E <at-t, Pt, a,) of order 
p in G2tcp-tJ-1 for all integers t > 1. Recently, he has also proved that 
the element at is not divisible by p if t$0 (mod p). 

Therefore, by Lemma 4. 2 and Corollary 4. 4, we have 

PROPOSITION 4. 5. For all t>1, at=j*- 1T- 1(at)=F0, and for t$0 
(modp), oatô=FO. 

Now we shall show sorne examples of the additive structures of n:k. 

ExAMPLE 4. 1. By Theorem 3. 1 and the above Proposition, n:2tcp-1J 
= {a1}, for 1 <t<P2, t=F(P-1)p, and acP-'JP generates a subgroup con­

tained in 77:zcp-tlpCp-1J · 

EXAMPLE 4. 2. By Corollary 4. 3 and the above Proposition, ato and 
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Bat are linearly independent in n:2tcp- 1H for t$0 (modp). ln particular, 
n:,cp-1H = {az8} + {Baz}. 

ExAMPLE 4. 3. By Theorem 3.1 and Propositions 4. 3, 4.4, 7Czcsp+s-1lCp-1)-1 

= {a•P+s-18} + {ôa•P+•-1} + {,Ba, for 1 < s<p, where ,8~ = j*-1rr- 1(,8.), 

,8. E Gzcsp+s-1lcp-1J-z· Since fl. is of order P and not divisible by p, by 
Corollary 4. 4, fl~ô and ôfl~ are linearly independent and 8,8~o=F0. 

ExAMPLE 4. 4. Since a 1flif1. is of order p and not divisible by p in 
G* if 2<s<p, O:S:r, and r+s<p, we have 8"fr'o=t=O for "fr' =j*- 1rr- 1(a1flif1.). 

While, by Lemma 4. 1, we have j*- 1<r- 1(a1flifl.)=a8(,8i8t,8~ for ,8~ in the 
above example. Renee, ôaô(fliôtfl.ô=t=O if 2<s<p, O<r, and r+s<P-

EXAMPLE 4. 5. Similarly, ô(fliô)P=t=O because ,8f is of order p and 
not divisible by p in G*. 

5. Sorne base of 1r* 

The following is easily verified. 

LEMMA 5. 1. H'(M ': ; Z p) = Z P for i = 0, N, N + 1. Let eN and eN+l be 
generators, then ÂeN=eN+I for the mod p Backstein operator Â; H'(M':;Zp) 
=0 for i =t=O, N, N +1. 

For B=k*j*(t) k*ù(t) E n:_ 1 , it is clear that 

(5.1) ô*ef = ( -1)Nef and 8*eN+1 = 0 

where ef" E HN(M':- 1 ; Zp), ef E HN(M':; Zp) and eN+l E HN+I(M':; Zp) are 
the genera tors. 

Conversely, it is easily seen that the element 8' E n:_ 1 satisfying (5.1) 
is uniquely determined and coïncides with ô. 

LEMMA 5. 2. Let t'= j*-1rr- 1("fr), "fr E Gk*ZP, and e E Ak- 1 be a cohomo­
logical operation. Then, O+eN=( -l)NxeN+k, if and only if O+rëN+I 
=( -1)N+1xëN+k+l where xE ZP, and eN E HN(SN; Zp), eN+k E HN+k(SN+k; Zp), 
ëN+ 1 E HN+I(M':+1 ; Zp) and ëN+k+l E HN+k+l(MN+k+I; Zp) are the generators. 

Proof. Note that if j:SN~M': is the injection and k:M':~SN+I is 
the map shrinking SN CM':, then j*(ëN) =eN and k*(eN+l) =ëN+I. 

Let O+eN=( -l)NxeN+k then since rr may be regarded as k* Lemma 
2. 4 implies, 

j*8+rëN+1 = j*(81/lrk*(eN+1)) = 0 j*M1fJ'ieN+1) = 01/l(eN+l) = ( -l)N+1xeN+k+1 • 

While, j*: HN+k+ 1(M':+k+1 ; Zp) ~ HN+k+I(SN+k+I; Zp) is an isomorphism 
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and the modulus groups are contained in e*HN+'(Mf!+k+l; Zp) + 
't'* HN+k+I(M{!; Zp) =0, so we have e>[/ëN+l=( -1)N+lxëN+k+l. Conversely, 
let B.p'ëN+I=( -1)N+'xëN+k+' and B.peN=( -1)NyeN+k, then the above argu­

ment shows x= y. 

Next, let a, E Gzp-a be the element defined [10; (4. 5)] which satisfies 
CP~,eN=(-1)NeN+Zp-a for the funetional operation CP~,. Therefore for 
a= j*-'T-'(a,) E 1t'zp-z we have by the above lemma 

(5. 2) 

where eN+'EHN+'(M:;Zp) and eN+zp-zEHN+zp-z(Mf!+zp-z;Zp) are the 

genera tors. 
Conversely, again by the above lemma, the element a' E 7t'zp-z satisfy­

ing (5. 2) is uniquely determined and coïncides with a. 

PROPOSITION 5.1. 2aÔa=ct2Ô+oa2. 

Proof. By Example 4. 2, 7t'4cp-rl-r = {a2ô} + {oa2}, so we may put 
aoa=xa2o+yoa2 with sorne coefficients x and y. Sinee 02 =0, ôaôa-xôa2ô 
=oa(ôa-xaô)=O. Renee, by Lemma 1. 8, there is a map f: K~Mf! 
sueh that the class of the restriction fi Mf!+zcp-l)-l is ôa, where K 
=Mf!+zp-aV TMf!+•P- 6, "fr=oa-xaô. Renee, by Lemmas 2.4, 2.5, 2. 7, 5.1, 

'fr 
and (5. 1), (5. 2), we have 

CP}eN = eN+2p-a 

CP'eN+k = eN+k+2p-z, 
for eN E HN(M N · Z ) and eN+Zp-a E HN+Zp-a(K · Z ) 

v ' p ' p ' 
CP'eN+k+' = xeN+k+zp-r for eN+k+; E HN+k+i(K · Z ) 

' p ' 

where k=2P-3 and i=O, 1, 2p-2, 2p-1. By Lemma 1. 7 (i.e. the Adem's 
relation), 2CP'6.CP' = CP'CP'6. + 6.CP'CP', and by Lemmas 2. 3 and 2.5, 

So that x=1/2. Similarly, y=1/2 is dedueed from (aô-yôa)ao=O. 

CoROLLARY 5.1. ( i) a•oa1=t a•+t-rôa+(1-t)a•+tô, for s, t>O. 
(ii) (s+t)a•oa1 =sa•+~ô+toa•"·t, fors, t>O. 
(iii) oarP=arPô, and ÔarpO=Ü, for r>l. 
(iv) a•oato=oa1oa'=ta•+t-roao, for s, t20. 

Prooj. ( i) Since 2aoa=a2o+oa2, 2a2ôa=a3o+aoa2, so aoa2=2a2oa 
-a3o. Thus, induetively we have aoat=tatoa+(1-t)at+'o. Renee, by 
multiplying a•-l to the left, a•oat = ta•+t-Ioa + (1- t)a•+to. 
(ii) By (i), we have oa•+~=(s+t)a•+t-J3a+(1-(s+t))a•+to, so that a•+t-Iôa 

= s~/oa•+t_ (1-s-t)a•+~o) for s+t$0 (modp), and oa<+t = a<+to for 
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s+t=O (modp). Renee, by (i), we have (s+t) asôa1 =sif+tô+tôas+t. 
(iii) follows immediately from (ii), and (iv) follows immediately from (i) 

and (ii). 

CoROLLARY 5. 2. For t > 1, at ô and at-Iôa are linearly independent, 
and a 1- 1ôaô 9= O. 

Proof. Let xa1ô+ yat-tôa = 0, theo, by multiplying ô to the right, 
we have yat-tôaô=O. If at-Iôaô=O, asôaô=O for s>t-1, so we may 
suppose t $0 (mod p ). Th en, by (ii) of the above Corollary, tat-Iôaô 
= ôa1ô. But, by Proposition 4. 6, ôatô 9= 0, which is a contradiction. 
Renee that, y=O and x=O. 

Put f3i = j*-1'1"-1((31) En: zpcp-ll-1' for (31 E Gzpcp-1)-z• Let f: M:+zpcp-1)-z ~ 
M~-1 represent f3i, then f'=kf;I::.O:M:+zpcp- 1)-z~M:~sN where k is 
the map shrinking SN- 1 CM~- 1 . Since M~+zpcp- 1)-z is (N+2P(P-1)-3)­

connected, by Lemma 3. 1, there is a map g: M:+k ~ Xk such that f' = p~g, 
k=2P(P-1)-2, and g*: n:1(M~+k)~n:,(Xk) is an isomorphism for ï<N+k 
and an epimorphism for i = N +k. By the theorem of Whitehead [8; p. 276], 
g*:H•(Xk;Zp)~H•(M:+k;Zp) is a monomorphism for i=N+k. So 
g*(W)) = (-1)NxeN+k for the generators eN+kEHN+k(M:+k; Zp), bi0)E 

HN+k(Xk; Zp), and a coefficient x$0 (mod p). 
LetK=SNVTMf+k,K'=SNVTXkand j:SN~K, j':SN~K' be the 

JI Pk' 
injections. Then, there is a map g: K ~ K' such that gj =j', and hence 
the following diagram is commutative : 

b.* 
p~*./'Hi(Xk; Zp) ~ H 1+1(K'; Zp) j'* 

H1(SN;Zp)/ lg* b.* lg* :H1+1(SN;Zp)· 
~H•(Mlj+k; Zp) ------)- H 1+1(K; Zp) ~ 

So, easily we have g*(a0) =eN for the genera tors a0 E HN(K' ; Zp) and 

eN E HN(K; Zp). While, by (3.1), D.b1 = (9Pa0 for b1 =b.*(bi0)) E HN+k+1(K'; Zp). 
Renee, for eN+k+ 1 =D.*(eN+k)EHN+k+1(K;Zp), we have 

D.xeN+k+1 = il(il*(xeN+k)) = ( -1)Nil(D.*g*(Wl)) 

= ( -1)ND.(g*D.*(W))) = ( -1)NL1g*(b1) 

= ( -1)Ng*(b.b1) = ( -1)Ng*((9Pa0 ) = ( -1)N(9PeN. 

It is easily seen that the coefficient x does not depend on N. Since 
x$0 (modp) and ZP is a field, there is a number x'EZP such that xx'=1 
(modp). 

Let f3i' = f3i ·(x' t) E n:zpcp-1)-1, then we have D.eN+k+1 = ( -1)N+1 (9~i'eN+ 1 
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for the generators eN+! EHN+ 1(Mf; Zp) and eN+k+1(M:+k+l; Zp), k 

=2P(P-1)-2. 
By Corollary 5. 2, n:2cp-1-!JCp-ll-l = {aP+1ô} + {aPôa}, so we may put 

af3i' = xaP+Iô + yaP/)a for sorne coefficients x and y. Renee, putting 

/31 = /3i' -xaPô-yaP-1()a' 

we have 

a/31 = af3i' - xaP+Io-yaPoa = 0 . 

It is easily verified that 

By Theorem 3. 1 and Corollary 5. 2, 

a*: 7l:zCp+tlCp-ll-1 _,. 7l:zCp+2JCp-1l-1 

is an isomorphism. While, a*(f31a)=af31a=O, so f31a=0. Thus, we have 

PROPOSITION 5. 2. There is an element (31 E n:2pcp-ll-l such that 

(5. 3) (9~ 1 eN+l = ( -1)N+1Â eN+2PCP-1J-I 

for the generators eN+! E HN+1(M:; Zp) and eN+k E HN+k(M:+k; Zp), k 

=2P(P-1)-1, and af31=f31a=O. 

Conversely, it is easily seen that the element /31 E n:2pcp-ll-l satisfying 
(5. 3) and a/31 = /31a = 0 is uniquely determined and coïncides with (31· 

Since a/31 =f31a=O, we can define the secondary composition {f3u a, !3~}. 

If {f3u a, /31} =0, by Lemma 2. 6, there is a map f: K _,. M:-~ such that 
the class of the restriction fi Mf+k is (31 where K =M:+k V TM:+k+zcp-l) 

"' V TM:+k', k=2P(P-1)-2, and k'=2(2P+1)(p-1)-2. So kf#-0 :K_,. 
Il, 

M:-I_,.SN where k is the map shrinking SN-leM:-~. Since K is 
(N+k-1)-connected, similarly as in the proof of Proposition 5.1, there 
is a map g: K _,. Xk such that g*: HN+k(Xk; Zp) _,. HN+k(K; Zp) is a mono­
morphism. Renee g*(bi0 ))=xeN+k for the generators W1 E HN+k(Xk; Zp), 

eN+k E HN+k(K; Zp) and a coefficient x$0 (mod p). While, by Lemma 
2. 7 and (5. 1), (5. 3), we have 

(5. 4) 
Â eN+k = eN+k+', (91 eN+k+l = ± eN+k+2P- ', Â eN+k+2P-I = eN+k+2P, 

(9PeN+k+2P = ±ÂeN+k1+1 = ±eN+k'+2, 

for the generators eN+iEHN+i(K; Zp), where i=k, k+1, k+2p-1, k+2P, 
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k' + 2, k' + 3. By Theorem 3. 2, W1W) = 0, so, by the Adem's relation 
CPPÀ -ÀCPP=CP\:~CPP-t, we have 

0 = g*(À W1W)) =À W1g*(Wl) = (2ÀCPPCP1À-ÀCflP+1À)(xeN+k) 
= 2XÀCflPCfl 1À eN+k = 2x(CPP ÀCfl1À- Cfl1ÀCPP-ICfl 1À) eN+k 
= 2xCflPÀCfl1ÀeN+k = ±2xeN+kt+z =!= 0, 

which is a contradiction. Thus, {,Bn a, ,81} $0. 

PROPOSITION 5. 3. For 1 < s<p -1, there is an element ,Bs E 

'Ttzcsp+s-tJCp-ll-I SUCh that a,8s=,8sa=0 and {,88 , a, ,81} $0. 

Proof. By the above argument, this assertion is true for s= 1. 
Suppose, inductively, that ,88 _ 1 (s > 1) satisfying the condition is defined 
then the stable secondary composition <,Bs-n a, ,81) defines a unique 

non-trivial element ,Bs in 7t2csp+s-tJCp-tJ-I> because ,8s-t•7tzcp+tJCp-1l=0 and 

7tzcs-IJCp+tJCp-1l•,81 =0. 
By Lemma 2. 2, 

and since ,88 _ 1 •<a, ,Bu a)(,88 _ 1•7tzcp+zJcp-tJ=,8s_1•7t2cp+!lcp-1l•a=O, we have 
,Bsa=O. Also, we have 

Renee, {,Bs, a, ,81} can be defined. If {,Bs, a, ,81} =0, by Lemma 2. 6, 
there is a map f: K _,. Mt'- 1 such that the class of the restriction fi Mt'+k 
is ,es, where K=Mt'+kV TMt'+k+Zp-zV TM:'+k', k=2(sp+s-1)(p-1)-2 

"' flt 
and k'=2((s+1)P+s)(p-1)-2. So that, there is a map g:K_,.Xk such 
that g* :HN+k(Xk; Zp)-HN+k(K; Zp) is a monomorphism. Renee 
g*(b;•-ll)=xeN+k for the generators b;•-llEHN+k(Xk; Zp), eN+kE 

HN+k(K; Zp) and a coefficient x$0 (mod p). Since Wsb~·-1)=0 and the 

relation (5. 4) holds in H*(K; Zp), we have 

0 = g*(À WsW-ll) =À Wsg*(b;•-ll) =À Ws(xeN+k) 
= ±(s+1)xeN+k'+z =!= 0, 

which is a contradiction. 
In the case when s = p -1, similarly to the above, we have an element 

,8 p-IE 7tzcp-zJCp-1l-1 such that 

(5. 5) 
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CoROLLARY 5. 3. For 1 <s<p, /38 , asP+•-'ô and a•P+•-zôa are linearly 
independent. 

Proof. Let xa•P+•-'ô+ya•P+•-zôa+z/3.=0, then, by multiplying a to 
the left, we have xa•P+sô+yasP+•-'ôa=O. But, by Corollary 5. 2, x=y=O, 
so z=O. 

COROLLARY 5. 4. (i) For 1 < s<p, ôf3.ô =!= 0. 
(ii) For 2<s<p, O::S:r and r+s<P. ôaô(f3,ôY f3.ô=J=0. 
(iii) ô(f3,ô)P =J= 0. 

Proof. (i) By Example 4. 3, f3s E 7t2csp+s-I)Cp-I)-I = {asp+s-'ô} + {asp+s-zôa} 

+ {f3a, where (3~ = j*-'T-'(/38 ), f3s E Gzcsp+s-IXp-1)-z• so we may put !3. 
x.a•P+•-'ô + y.a•P+•-zôa + z./3~. Since !3., asp+s-zô and «P+s-'ôa are linearly 

independent, we have Z8 $0 (mod p). Renee, by Corollary 5.1, (iv), 
and Example 4. 3, we have ô(3sô = z.ôf3~ô =!=O. Similarly ôaô(f3,ôY f3.ô 
=zrz.ôaô((3~ôy (3~ô=J=O by Example 4. 4, and ô(f3,ô)P=z~ô((3~ô)P=J=O by 

Example 4. 5. 

6. Multiplicative structure of n* 

Now, we shall study sorne relations among ô, a and !3 •. 

LEMMA 6.1. Let 'o/'=xj*-'T-'('t) mod n:k+J {j*-'T-'('o/)} for 'o/ E Gk*ZP, 
and q:>'=yj*-'T-'(q:>) mod n:,+,/ {j*-'T-'(q:>)} for q:> E G,*ZP, where x, y are 
some coefficients $0 (mod p), 'o/·q:>=J=O, and kl=O (mod 2). Then, 

'o/'Ôq:>' = q:>'ô'o/' mod n:k+1+1l {j*-'T-'('o/q:>)}. 

Proof. By Lemma 4. 1, we have (j*-'T-1(-o/)) ô(j*-'T-'(q:>)) = j*-'T-'('o/q:>) 

and (j*-1T-'(q:>))ô(j*-1T-1('o/)) = j*-'T-'(q:>"fr). While, since kl=O (mod 2), we 

have 'o/q:> = q:>'o/ in G*. So that, 

"fr'ôq:>' = xy(j*-1T-'('o/))ô(j*-'T-1(q:>)) =xyj*-'T-'('1/rq:>) 
= xyj*-'T-'(q:>'o/) = q:>'ô'o/', 

modulo (n:k+,/ {j*-'T-'('o/)} )ô(n:t+,/ {j*-'T-1(q:>)}) C n:k+l+11 {j*-1T-1('o/q:>)}. 

PROPOSITION 6.1. (i) For 1 <s<p, aôf3.=f3.ôa. 
(ii) For 1 ::S:s<P-1, (3,ôf3.=f3.ô(3,. 
(iii) For l::S:s, t<P and s+t<P, f3.f3t=0. 

Proof. (i) By the definition, 

a= j*-'T-'(a,) and !3. = xj*-'T-'(f3s) mod n:kf {j*-1T-1(f3.)}, 

for a, E Gzp-3 , f3s E Gk, k=2(sp+s-l)(p-l)-2, and a coefficient x$0 
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(mod p). So, by Lemma 6. 1, aof3s=f3J5a mod n:2sCp+llCp-ll-2/ {j*-l'T-1(alf3s)}. 
While, by Theorem 3. 1 andP roposition 4. 2, 7r2scp+tJCp-t)-z/ {j*-1'T-1(a1f3s)} 
= {asP+S-loao}, so we may put aof3s =f3soa +xasp+s-!oao for a coefficient x. 

But 

and asp+soaoa+O, so that x=O, 

(ii) Similarly to (i), f31of3s = f3sof31 mod 7r2ccs+t)p+s-1)Cp-1)-s/ {f31of3s}. While, 
by Theorem 3.1 and Proposition 4. 2, 7r2ccs+!)p+s-1)Cp-1)-s=Zp= {f31Ôf3s}. So 

that f31of3s ~ f3sof31. 
(iii) Since f3sf3t E n:zkcp-!)-z= {ak-loao}, k=(s+t)P+s+t-2, we may put 
f3sf3t = xak-toao. But, 0 = af3sf3t = xakoao and akoao + 0, so x= O. 

Added in proof. When P=3, /3P1 E 71:22 = {asoao} + {oao(/31 o)"}, so the 

above argument is not valid. We have no idea to know whether f3P~=Ü 
or not. So, Theorem II (ii) should be understood that f3sf31=0 if P+3, 
and also propositions in section 7 are valid under the assumption p + 3. 

CoROLLARY 6. 1. For 1 <s<p, a2of3s=aof3soa=O. 
Now, we have the following theorems: 

THEOREM I. A set of additive bases for n:*' is as follows in dim 
<2P2(P-1)-4: 

o, t, 

a 1, a 1o, a 1- 1oa, at-loao, for 1 < t < p2 , 

(f3~or-lf31> o(f3~W-!f31> (f3~or, o(f3~or, for 1 < r < p, 
a(of31Y, oa(of31Y, a(of3Jo, oa(o/31yo, for 1 < r < p, 
(f3~oYf3s, o(f3~oYf3" (f31oYf3so, o(f31oYf3so, 
ao(f31oy f3s, oao(f31oy f3s, ao(f31oy f3so . 

oao(f31oYf3so, for O<r, 2<s<p, and r+s<p. 

THEOREM II. The ring n: *, in dim < 2P2(P -1)- 4, is generated by 
ry, a, and f3s, 1 < s<p, with the following fundamental relations : 

( i ) 02 = 0, af3s = f3sa = 0, f3sf3t = 0' 
(ii) 2aoa = a2o+oa2 , 

(iii) aof3s = f3soa ' 

(iv) f3sof3t = st 1 f31of3s+t+! . 
s+t-

REMARK. The class t of the identity map M{;'--? M{;' is the identity 

element of n:*. 
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The proof of (iv) will be given in the next section. 

THEOREM III. The subring of 1t* generated by o and a has only two 
fundamental relations: 02 =0 and 2aoa=a2o+oa2• 

7. Secondary compositions 

Following the method of Toda [10 ; IV], we shall study sorne 
secondary compositions. 

Similarly to Lemma 4. 8, iii) of [10], we have 

LEMMA 7. 1. Let a E 7tq(G; n, H), a' E 1tq(G; n', H'), j3 E 7tn(H; X), 
/3' E 7l'n1(H'; X), and 7 E 1t(X, Y) be elements such that f3a=f3'a' =0, ry/3= 

ry/3' = 0 and {7, /3, a} + {7, /3', a'} =0. Then there is an element ;y E 1t(K, Y) 
such that j*(ry) = 7 where K =XV T(M(n, H) V M(n', H')) V TM(q+1, G), 

C/l,/3') a> V œ' 

and j : X.- K is the injection. 

Also, similarly to Theorem 4. 3, ii) of [10], we have 

LEMMA 7. 2. Let a E 1t h• j3 E 1t k• 7 E 1t11 o E 1tm, é E 1t n be stable elements 

such that j3a = ry/3 =ory= so = 0, <o,ry,/3)·a=O and s.<o,ry,/3)=0. Then, 

«s, o, ry), /3, a)+( -1)k<S, <o, 7, /3), a)+( -1)h+k<S, o, <7, /3, a))=O 

modulo lm é*+lm a*+ lm <s, ô, ry)*+lm <rr. /3, a)*. 

PROPOSITION 7.1. For 1 <s<p-1, <f3s, /3, a)= __ s_f3s+t modulo 
s+1 

{acs+'JP+So} + {acs+l)ft+S-loa}. 

Proof. Since <f3s, /31> a) C 7t2ccs+üp+sxp-l)-l) we may put <f3s, /31> a)= 
xf3s+t· So that <!351 /3, a)- x<f3s, a, /3,) =O. By Lemma 7. 1, we 
have a map f: K- Mt'-' such that the class of fi Mfj+k is f3s where 
K=Mt'+k v T(Mt'+k+l v Mt'+k+m)v TM:'+k+l+m+t, k = 2(sp+s-1)(P-1)-2, 

l=2(p-l), m=2P(P-1)-l. Therefore, similarly to the proof of Proposi­
tion 5. 3, there is a map g; K-Xk such that g*(b~•-ll)=yeN+k, y$0 (modp). 
While, as is easily seen, the following relations hold in H*(K; Zp): 

D,.eN+k = eN+k+', (J'PeN+k = ( -l)N+keN+k+m+', (J'PeN+k+l = ( -l)N+k+'eN+k+m+2, 

(J''eN+k+t = ( -l)N+k+'eN+k+t+', (J''eN+k+m+' = 0, 
(JJP eN+k+l+l = ( -l)N+k+l+2X eN+k+l+m+2, {J'' eN+k+m+2 = ( -l)N+k+m+2 eN+k+l+m+2 • 

By Theorem 3. 2, 

Ü = g*(Wsb~•-1l) = Wsg*(b~s-1 )) = yWseN+k 

= y((s+ 1) (J'P(J''A. -s6''(J'PA. + (s-l)A.(J''(J'P) eN+k 
= y((s+l)( -l)l+axeN+k+l+m+z_s( -l)m+aeN+k+l+m+z), 
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since y$0, we have (s+1)x+s=0, so that x= --8-. 
s+1 

PROPOSITION 7. 2. For 1~s<p-1, (/31 a, f3s) =f3s+I" 

Proof. By Lemma 7. 2, we have 

«f3u a, f3s-l), a, /31)+ ( -1)h(f3u (a, f3s-u a), /3) 

+ ( -1)h+k(f31, a, (f3s-I, a, /31)) = 0, 

modulo Im/31*+Im/3t+Imf3s*+Iml3f=0, where h=2P(P-1)-1 and k 

=2(p-1). Since for s=1, (f3u a, /31)=/32, so inductively we may assume 

that <f3u a, 13s-l> = f3s. While, <13s' a, 131) = f3s+u <a, 13.-u a)= xaCS+l)P+S, 

and (f3u xaC+l)p+s, /31)=(131a, xacs+l)P+•-r, 131)=0. Renee, 13s+1 -(131> a, 13.)=0. 

Similarly we have 

COROLLARY 7.1. For s+t<p, (13., a, f3t)=f3s+t· 

CoROLLARY 7. 2. For s+t<p, (/35 , f3t, a)=( -1)'-8-f3s+t· 
s+t 

PROPOSITION 7. 3. For 1 ~ s<p-2, (a, f3u f3s) = -s ~ 1 f3s+1 · 

Proof. We may put (a, f3u !3.) = xf3s 1 u for a coefficient x. By 

Lemma 7. 2, we have 

«f3u a, /31), f3s, a)-<!31> (a, (31> f3s), a)-(f3u a, <f3u f3s, a))= 0' 

so that (/32, f3s, a)-x(/31, f3s+I• a)-(-1Y-1-(f3ua,f3s+1)=0. Thus, 
s+1 

( -1Y~f3s+2- ( -1Y+1~-f3s+2-( -1Y-1-f3s+2=0. Renee, we have 
s+2 s+2 s+1 

X=--s-. 
s+1 

COROLLARY 7.3. For s+t<p-1, (a,f3nf3s)=(-1)'-8-f3s+t· 
s+t 

PROPOSITION 7. 4. For s+t<p, f3/>f3t= st f3/if3s+t-P 
s+t-1 

Proof. Put f3/5f3t=Xs,tf3/if3s+t- 1 for a coefficient Xs,t· Then, by Pro-

position 6.1, (ii), f3l>f31=f3l)f3s, so X5 , 1=1. For t>1, by Proposition 7.1, 

t t 
f3ljf3t ==:: f _ 1 f3sô<f3t-I > (31> a) = f _ 1 <f3sôf3f-l > f3u a) 

t t 
= t-1 <xs,t-113lôf3s+t-2> f3u a)= t-1 Xs,t-If3lô<f3s+t-2> 13u a) 

= _f_Xs t-I s+f- 2 (31Ôf3s+t-I • 
t-1 · s+t-1 
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So that, 

x. t = _t_ s+t-2 x. 1_ 1 = _t_ s+t-2 t-1 s+t-3 ... ~ _s_Xs,t 
· t-1 s+t-1 ' t-1 s+t-1 t-2 s+t-2 1 s+1 

st 

Now, we must calculate the modulus groups. But, a simple calculation 

shows that ail these groups are O. Renee, we have f3.ôf31 = st (3lôf3.+t-t· 
s+t-1 

COROLLARY 7. 4. For s+t=s' +t' <P, .1_(3.ôf31 = ; , f3.,ôf3t'. 
ts s t 

REMARK. In [10; IV], Toda defined the element (3. as a non-trivial 
element of G2csp+s-üCp-t)-z= ZP" So, we may choose fl. E G* as fi.= Tj*(f3.) 
for (3. E n:2csp+s-l)Cp-tH. By Lemma 4. 1, we have that '~" j*((3.ôf31) =flflt. 

So that, the relation (3.'8(31 = st f31Ôf3s+t-t for s+t<P implies that 
s+t-1 

-- st -- . 
!3.(31 = f31f3s+t- 1 for s+t<P mG*. This is an answer to the problem 

s+t-1 
of Toda [10 ; IV, p. 326]. 
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