Journal of Mathematics, Osaka City University Vol. 14, No. 1.

ON TRANSITIVE GROUPS OF DEGREE 3P

Hirosi NAGAO

(Received April 17, 1963)

A group § is called a *Burnside group* or *B-group* for short when every primitive permutation group which contains the regular representation of § is doubly transitive. An example of such a group was first given by Burnside ([2], Chapter XVI, Theorem VIII). In fact, he proved that a cyclic group of prime power order p^m (m>1) is a B-group. Since then an abelian B-group has been studied by Kochendörffer [4], Manning [5] and Wielandt [7]. As for non-abelian B-group, Wielandt [8] showed that a dihedral group is a B-group and recently Nagai [6] has proved that a non-abelian group of order 3p is a B-group if p is a prime number of the form $2 \cdot 3^a + 1$ (a>2).

The purpose of this paper is to prove the following

THEOREM. Let p be a prime number of the form 6l+1 with prime number l>7. A non-abelian group of order 3p is then a B-group.

To prove the theorem, we make use of the method of Wielandt used in [10] and the results of Schur, Frame and Nagai.

1. Preliminary remarks.

We shall give here a summary of the results of Schur, Wielandt and Frame which will be needed afterwards. For the proofs we refer to Wielandt [9] and Frame [3].

The following convention and notation are appropriate: The words "representations" and "characters" always refer to the representations in the field of all complex numbers and their characters. The degree of a representation ϑ or a character χ will be denoted by $Dg \vartheta$ or $Dg \chi$.

Let \mathfrak{G} be a transitive permutation group on $\Omega = \{1, 2, \dots, n\}$ and \mathfrak{G}^* the representation of \mathfrak{G} by permutation matrices. The matrices which are commutative with every $G^* \in \mathfrak{G}^*$ give the *commutator ring* \mathfrak{B} of \mathfrak{G}^* .

Let \mathfrak{G}_1 denote the subgroup of \mathfrak{G} consisting of all permutations of \mathfrak{G} each of which fixes the letter 1 and let

$$\Delta_0 = \{1\}, \ \Delta_1, \Delta_2, \ \cdots, \ \Delta_{k-1}$$

be the sets of transitivity of \mathfrak{G}_1 . With each set of transitivity Δ of \mathfrak{G}_1 we associate a matrix $V(\Delta) = (v_{ij})_{i,j=1,\dots,n}$ with elements

(1)
$$v_{ij} = \begin{cases} 1 & \text{when there are } G \in \mathfrak{G} \text{ and } d \in \Delta \text{ such that} \\ 1^G = j \text{ and } d^G = i, \\ 0 & \text{otherwise.} \end{cases}$$

LEMMA 1 ([9], 28.4). $\{V(\Delta_0), V(\Delta_1), \dots, V(\Delta_{k-1})\}$ is a linear basis of the commutator ring \mathfrak{V} of \mathfrak{S}^* .

Let Δ be a given set of transitivity of \mathfrak{G}_1 . We denote by Δ' the set of letters $\{1^{H^{-1}} | H \in \mathfrak{G}, 1^H \in \Delta\}$. Then Δ' is also a set of transitivity of \mathfrak{G}_1 with the same length as Δ and $(\Delta')' = \Delta$. The matrix $V(\Delta')$ is the transposed matrix of $V(\Delta)$, i.e. $V(\Delta') = V(\Delta)'$.

LEMMA 2 ([9], 28.10). For two given sets of transitivity Δ_i , Δ_j of \mathfrak{G}_1

(2)
$$\operatorname{tr} (V(\Delta_i)'V(\Delta_j)) = \delta_{ij} n |\Delta_i|$$

where $|\Delta_i|$ denotes the length of Δ_i . Now let

be the complete reduction of \mathfrak{G}^* into irreducible representations. We assume that ϑ_0 is the principal representation of \mathfrak{G} . Then e_0 is equal to 1.

LEMMA 3 ([9], 29.2). Let k be the number of the sets of transitivity of \mathfrak{G}_1 . Then

$$k=\sum\limits_{i=0}^{r-1}e_i^2$$
 .

From this lemma we have immediately

LEMMA 4. (3) is doubly transitive if and only if r=2 and $e_0=e_1=1$.

Corresponding to the reduction (3) of \mathfrak{G}^* we have the complete reduction of \mathfrak{B} :

$$(4) \qquad \mathfrak{V} = \sum_{\mu=0}^{r-1} z_{\mu} \mathfrak{V}_{\mu}$$

where $z_{\mu} = \text{Dg} \vartheta_{\mu}$ and $\text{Dg} \mathfrak{B}_{\mu} = e_{\mu}$. In fact there is a unitary matrix U such that

(5)
$$U^{-1}V(\Delta_i)U = \begin{pmatrix} \ddots & 0 \\ V_{\mu}(\Delta_i) \times E_{z\mu} \\ 0 & \ddots \end{pmatrix}$$

where $E_{z\mu}$ is the unit matrix of degree z_{μ} and $V(\Delta_i) \rightarrow V_{\mu}(\Delta_i)$ gives an irreducible representation \mathfrak{B}_{μ} of \mathfrak{B} . From (4) we have

LEMMA 5 ([9], 29.3, 29.5). \mathfrak{V} is commutative if and only if $e_0 = e_1 = \cdots = e_{r-1} = 1$. Especially if $k \leq 4$ then \mathfrak{V} is commutative.

Let \mathfrak{G}_j be a class of conjugate elements of \mathfrak{G} and let $C_j = \sum_{G \in \mathfrak{G}_j} G^*$. If \mathfrak{V} is commutative then each $V(\Delta_i)$ is a linear combination of C_j with rational coefficients: $V(\Delta_i) = \sum_j x_j C_j$. The matrices of \mathfrak{V} are transformed by a unitary matrix into diagonal form. If

$$(6) \qquad \qquad U^{-1}V(\Delta_i)U = \begin{pmatrix} \ddots & 0 \\ a_{\mu}E_{z\mu} \\ 0 & \ddots \\ 0 & \ddots \end{pmatrix}$$

then

(7)
$$a_{\mu} = \sum_{j} x_{j} \frac{|\mathfrak{C}_{j}| \chi_{\mu}(G_{j})}{z_{\mu}}$$
 (x_j: rational numbers)

where $|\mathfrak{C}_j|$ denotes the number of elements of \mathfrak{C}_j , $G_j \in \mathfrak{C}_j$ and χ_{μ} denotes the character of ϑ_{μ} .

Frame [3] gave a number theoretical relationship between $n = |\Omega|$, $n_i = |\Delta_i|$ and $z_i = \text{Dg } \vartheta_i$.

LEMMA 6 ([3]). The number

$$n^{k-1}\prod_{i=1}^{k-1}n_i / \prod_{i=1}^{r-1} z_i^{e_i^2}$$

is a rational integer.

We now conclude this section with some more remarks.

REMARK 1. The characteristic roots of $V(\Delta_i)$, $V(\Delta_i)' V(\Delta_j)$ are algebraic integers.

REMARK 2. If $z_i = \text{Dg } \vartheta_i$ is different from all other $z_j = \text{Dg } \vartheta_j$ in (3), then tr $V_{\mu}(\Delta_i)$ in (5) is a rational integer.

REMARK 3 ([9], 8.6). If \mathfrak{G} is primitive and not a regular group of prime degree then $n_i = |\Delta_i| > 1$ for $i \neq 0$.

REMARK 4 ([9], 18.7). If $n_i = |\Delta_i| = 2$ for some *i* then \mathfrak{G} contains a regular normal subgroup of index 2.

2. Former results of Nagai.

Let \mathfrak{H} be a non-abelian group of order 3p where p is a prime number

greater than 3: $\mathfrak{H} = \{A, B\}$, $A^p = B^3 = 1$, $B^{-1}AB = A^j$ $(j^3 \equiv 1, j \equiv 1 \pmod{p})$. In what is to follow we shall consider a permutation group \mathfrak{G} as follows:

(*) The group \otimes is a primitive permutation group of degree 3p which contains \otimes as its regular subgroup and is not doubly transitive.

We now give a summary of the former results of Nagai concerning the groups as above, which will be needed afterwards.

LEMMA 7 ([6], (a), (b)). Under the assumption (*) the order of \mathfrak{G} contains the prime p to the first power and the centralizer of a Sylow p-subgroup \mathfrak{P} of \mathfrak{G} coinsides with \mathfrak{P} .

By this lemma we can apply the results of Brauer [1] to our case. Without loss of generality we may assume that \mathfrak{B} contains $P=(1, \dots, p)$ $(p+1, \dots, 2p)$ $(2p+1, \dots, 3p)$. Let $\mathfrak{N}=\mathfrak{N}(\mathfrak{P})$ be the normalizer of $\mathfrak{P}=\{P\}$, and let $q=|\mathfrak{N}:\mathfrak{P}|$. Then \mathfrak{N} is generated by P and an element Q of order q and they satisfy

$$(8) Q^{-1}PQ = P^{\gamma t}$$

where γ is a primitive root (mod p) and t is a positive integer such that

$$(9) tq = p-1.$$

The irreducible characters of ⁽⁸⁾ are of four different types:

I. Character A_{ρ} of degree $a_{\rho} = u_{\rho}p + 1$.

- II. Character B_{σ} of degree $b_{\sigma} = v_{\sigma}p 1$.
- III. Character $C^{(\nu)}$ of degree $(wp+\delta)/t$ $(\delta = \pm 1)$.
- IV. Character D_{τ} of degree $d_{\tau} = x_{\tau} p$.

The characters of type III are called *exceptional characters*.

The characters of \Re are easily determined. Let ω be a primitive q th root of unity. There are q linear characters ω_{μ} ($\mu = 0, 1, 2, \dots, q-1$) of \Re which are defined by

$$\omega_\mu(Q^j)=\omega^{\mu j}\,,\qquad \omega_\mu(P^{\,i})=1$$

and the other irreducible characters are t algebraically conjugate characters $Y^{(\nu)}$ of degree q.

LEMMA 8 ([1], Lemma 3). The restriction $A_{\rho} | \mathfrak{N}$ of A_{ρ} to \mathfrak{N} contains $u_{\rho}+1$ of the ω_{μ} , $B_{\sigma} | \mathfrak{N}$ contains $v_{\sigma}-1$ of the ω_{μ} , $C^{(\nu)} | \mathfrak{N}$ contains $(w+\delta)/t$ of the ω_{μ} and $D_{\tau} | \mathfrak{N}$ contains x_{τ} of the ω_{μ} .

Now let Π be the character of the permutation representation \mathfrak{G}^* of \mathfrak{G} and let

(10)
$$\Pi = \chi_0 + \sum_{i=1}^{k-1} e_i \chi_i$$

be the complete reduction of Π where χ_0 is the principal character of \mathfrak{G} . Since \mathfrak{G} is not doubly transitive $k \geq 3$.

LEMMA 9 ([6], (c), (d)). In (10), every constituent χ_i is not exceptional and $Dg \chi_i > 1$ for $i \neq 0$.

From this lemma we have easily the following possibilities of the complete reduction of Π ([6], (g), (h)):

Case I: $\Pi = \chi_0 + \chi_1 + 2\chi_2$, $Dg \chi_1 = p + 1$, $Dg \chi_2 = p - 1$. Case II: $\Pi = \chi_0 + \chi_1 + \chi_2 + \chi_3$, $Dg \chi_1 = p + 1$, $Dg \chi_2 = Dg \chi_3 = p - 1$. Case III: $\Pi = \chi_0 + \chi_1 + \chi_2$, $Dg \chi_1 = 2p - 1$, $Dg \chi_2 = p$. Case IV: $\Pi = \chi_0 + \chi_1 + \chi_2$, $Dg \chi_1 = p - 1$, $Dg \chi_2 = 2p$. Case V: $\Pi = \chi_0 + \chi_1 + 2\chi_2$, $Dg \chi_1 = p - 1$, $Dg \chi_2 = p$. Case VI: $\Pi = \chi_0 + \chi_1 + \chi_2 + \chi_3$, $Dg \chi_1 = p - 1$, $Dg \chi_2 = Dg \chi_3 = p$.

Under some condition the possility of Case IV can be excluded.

PROPOSITION 1 ([6], (j)). Let \mathfrak{G} be a group which satisfies the condition (*). If p > 7 and 4p is not of the form $3c^2+1$ then Case IV does not occur.

The possibility of Case V will be easily excluded from the following lemma.

LEMMA 10 ([6], (e)). II restricted to \Re contains just three different linear characters ω_{μ} , one of which is the principal character ω_{0} .

If Π decomposes as in Case V, then from Lemma 8 Π contains some ω_{μ} with multiplicity 2. This contradicts Lemma 10. Thus we have

PROPOSITION 2. Let S be a group which satisfies the condition (*). Then Case V does not occur.

3. Remaining cases.

Under the condition (*) we shall now consider the cases except Case IV and V separately.

Case VI: Suppose II decomposes as in Case VI. Since II is a rational character and χ_1 is its only constituent of degree p-1, χ_1 is also a rational character and χ_2 and χ_3 are both rational or algebraically conjugate.

Now, from Lemma 8, χ_i (i=2, 3) restricted to \mathfrak{N} contains one linear character ω_i (i=2, 3) of \mathfrak{N} and for an element *B* of order 3 in \mathfrak{H}

$$0 = \Pi(B) = 1 + \omega_2(B) + \omega_3(B).$$

Therefore $\chi_i(B) = \omega_i(B)$ (i=2,3) is a primitive third root of unity. Thus

 χ_i (i=2, 3) is not rational and the field $P(\chi_i(G))$ which is obtained by adjoining $\{\chi_i(G) | G \in \mathfrak{G}\}$ to the field P of rational numbers is of rank 2 over P and not real since it contains a primitive third root of unity $\chi_i(B)$. In this way we can see that

(11)
$$\chi_3(G) = \overline{\chi_2(G)}$$

for all $G \in \mathfrak{G}$.

From Lemma 3, the number of the sets of transitivity of \mathfrak{G}_1 is now 4, therefore, from Lemma 5, the commutator ring \mathfrak{V} of \mathfrak{G}^* is commutative. Further there is a set of transitivity $\Delta(\pm\Delta_0)$ such that $\Delta'=\Delta$. Then $V(\Delta)=V(\Delta)'$ and the characteristic roots of $V(\Delta)$ are all real. Let U be a unitary matrix which transforms $V(\Delta)$ in diagonal form:

$$U^{-1}V(\Delta)U = \begin{pmatrix} v & 0 \\ aE_{p-1} & 0 \\ 0 & bE_{p} \\ cE_{p} \end{pmatrix}$$

where $v = |\Delta|$. From Remark 1 and 2, *a* is a rational integer and from (7) and (11) $c = \overline{b}$. On the other hand, *b* is real therefore b = c.

Now applying (2) to tr $(V(\Delta_0)'V(\Delta)) = \text{tr}(V(\Delta))$ and tr $(V(\Delta)'V(\Delta))$ we have

(i)
$$0 = v + (p-1)a + 2pb$$
,

(ii)
$$3pv = v^2 + (p-1)a^2 + 2pb^2$$
.

From (i), b is a rational integer and $v \equiv a \pmod{p}$. From (ii)

$$a^2 < 3pv/(p-1) < 9p^2/(p-1) \le p^2$$
 if $p > 7$

and hence |a| < p if p > 7. In the following we assume p > 7. Then combining $v \equiv a \pmod{p}$ and |a| < p we have

(12)
$$a = v - \alpha p$$
 $(\alpha = 0, 1, 2 \text{ or } 3)$

Substituting $v=a+\alpha p$ in (i) we have $b=-(a+\alpha)/2$. Substitute these in (ii). Then we have

(13)
$$p(6\alpha - 2\alpha^2) = 3a^2 + 6(\alpha - 1)a + \alpha^2.$$

If $\alpha = 0$, then a = 0 or 2 by (13) and hence v = 0 or 2 by (12). Since $v = |\Delta| > 0$, v = 2. Then from Remark 4 \otimes can not be primitive. If $\alpha = 1$ or 2, then we have $4p = 3a^2 + 1$ or $3(a+1)^2 + 1$ by (13). If $\alpha = 3$, then a = -3 or -1 by (13) and v = 3p - 3 or 3p - 1 by (12). Since the lengths

of the other three sets of transitivity are not all 1 (Remark 3), this is impossible. Thus we have

PROPOSITION 3. Let (3) be a permutation group which satisfies the condition (*). If p > 7 and 4p is not of the form $3c^2+1$ then Case VI does not occur.

Case III: Suppose II decomposes as in Case III. The number of the sets of transitivity of \mathfrak{G} is now 3. Therefore there is a set of transitivity $\Delta(\pm \Delta_0)$ with length $v \leq (3p-1)/2$. Let U be a unitary matrix which transforms $V(\Delta_i)$ in diagonal form:

$$U^{-1}V(\Delta)U = \begin{pmatrix} v & 0 \\ aE_{2p-1} \\ 0 & bE_{p} \end{pmatrix}$$

From Remark 1 and 2, a and b are rational integers and from (2) we have

(i)
$$0 = v + (2p-1)a + pb$$
,

(ii)
$$3pv = v^2 + (2p-1)a^2 + pb^2$$
.

From (i), we have $v \equiv a \pmod{p}$. From (ii), we have

$$a^2 < 3pv/(2p-1) < 9p^2/(2p-1) \le p^2$$
 if $p \ge 5$

and hence |a| < p. Now assume $p \ge 5$. Since $v \le (3p-1)/2 < 2p$, combining $v \equiv a \pmod{p}$ and |a| < p we have

(14)
$$a = v - \alpha p$$
 $(\alpha = 0, 1 \text{ or } 2)$

Substituting $v=a+\alpha p$ in (i) we have $b=-(\alpha+2a)$. Substitute these in (ii). Then we have

(15)
$$p(3\alpha - \alpha^2) = 6a^2 + 3(2\alpha - 1)a + \alpha^2$$

If $\alpha = 0$, then a = v = 0 by (15) and (14). This is impossible. If $\alpha = 1$ or 2, we have $-p\alpha^2 \equiv \alpha^2 \pmod{3}$ by (15). Since $p \equiv 1 \pmod{3}$, $2\alpha^2 \equiv 0 \pmod{3}$. This is a contradiction. Thus we have

PROPOSITION 4. Let G be a permutation group which satisfies the condition (*). If $p \ge 5$ then Case III does not occur.

Case I: Let II decompose as in Case I. We now assume that p is a prime number of the form 6l+1 with prime number l=2. In the following we shall show that $l \leq 7$ follows from our assumption.

The index $q = |\mathfrak{N} : \mathfrak{P}|$ is a divisor of p-1 and a multiple of 3 since $\mathfrak{N} \ge \mathfrak{P}$. Therefore q = 3, 6, 3l or 6l. When q = 3 or 6 Case I does not

occur by [6], (i). Suppose now that q=3l or 6l. Let L be an element of order l in \mathfrak{N} . The lengths of the sets of transitivity of $\{L\}$ are all lbut three sets of transitivity of length 1. Without loss of generality we may assume that $L \in \mathfrak{G}_1$. Then every set of transitivity of \mathfrak{G}_1 is a union of some sets of transitivity of $\{L\}$. The number of the sets of transitivity of \mathfrak{G}_1 is now 6 and the lengths of the sets of transitivity of \mathfrak{G}_1 are

(A)
$$n_0 = 1$$
, $n_1 = m_1 l + 1$, $n_2 = m_2 l + 1$, $n_3 = m_3 l$, $n_4 = m_4 l$, $n_5 = m_5 l$,
or (B) $n_0 = 1$, $n_1 = m_1 l + 2$, $n_2 = m_2 l$, $n_3 = m_3 l$, $n_4 = m_4 l$, $n_5 = m_5 l$.

By Remark 3 and 4, each m_i here is not 0, and from $\sum_{i=0}^{5} n_i = 3p$ it follows that $\sum_{i=0}^{5} m_i = 18$. Therefore in either case (A) or (B) there is at least one m_i ($3 \le i \le 5$) such that $m_i \le 5$. Let Δ be a set of transitivity of \mathfrak{G}_1 with length $ml \le 5l$, and let U be a unitary matrix which transforms $V(\Delta)$ in the following form:

$$U^{-1}V(\Delta)U = \begin{pmatrix} ml & 0 \\ aE_{p+1} \\ 0 & \begin{pmatrix} b & e \\ d & c \end{pmatrix} \times E_{p-1} \end{pmatrix}.$$

Then from (2) we have

(i)
$$0 = ml + (p+1)a + (p-1)(b+c)$$
,

(ii)
$$3pml = m^2l^2 + (p+1)a^2 + (p-1)(|b|^2 + |c|^2 + |d|^2 + |e|^2)$$
.

By Remark 2, *a* is a rational integer and, by (i), (ii) above and Remark 1, b+c and $|b|^2+|c|^2+|d|^2+|e|^2$ are also rational integers. From (i) we have $a\equiv 0 \pmod{l}$. Let a=ul. If u=0, then, by (i), 0=m+6(b+c). But this is impossible since $m\leq 5$. Thus we have $u \neq 0$. From (ii) we have now

$$((18-m)l+3)m \ge 2(3l+1)l$$
.

The left hand side considered as a function in $m \le 5$ takes the maximum 65l+15 at m=5. Thus we have

$$65l+15 \ge 2(3l+1)l$$

and hence $10 \ge l$. In this way, we have

PROPOSITION 5. Let \mathfrak{G} be a permutation group which satisfies the condition (*). If p is of the form 6l+1 where l is a prime number greater than 7, then Case I does not occur.

Case II: Let Π decompose as in Case II. We assume that p is a

prime number of the form 6l+1 with prime number $l \neq 2$, and we shall show that $l \leq 7$.

The number of the sets of transitivity of \mathfrak{G}_1 is now 4. In the same way as in Case I, we can see that the lengths of the sets of transitivity of \mathfrak{G}_1 are as follows:

(A)
$$n_0 = 1$$
, $n_1 = m_1 l + 1$, $n_2 = m_2 l + 1$, $n_3 = m_3 l$,

or (B)
$$n_0 = 1$$
, $n_1 = m_1 l + 2$, $n_2 = m_2 l$, $n_3 = m_3 l$.

Case A: From Lemma 6, it follows that $(m_1l+1)(m_2l+1)m_3/2^3(3l+1)l$ is an integer. Therefore $m_3 \equiv 0 \pmod{l}$ and we have $l \leq m_3 \leq 16$. If l=13 or 11, we have $m_3=l$ since m_3 is a multiple of l and less than 17. Then $(m_1l+1)(m_2l+1)/2^3(3l+1)$ is an integer. On the other hand, for $m_3=l=13$ or 11, $m_1+m_2=5$ or 7. By a direct calculation we can see that $(m_1l+1)(m_2l+1)/2^3(3l+1)$ is not an integer for any such m_1, m_2 . This is a cotradiction and we have $l \leq 7$.

Case B: Let Δ be a set of trasitivity of \mathfrak{G}_1 with length n_2 or n_3 , and let U be a unitary matrix which transforms the matrices of \mathfrak{V} in diagonal form:

(15)
$$U^{-1}V(\Delta)U = \begin{pmatrix} m & 0 \\ aE_{p+1} & 0 \\ 0 & bE_{p-1} \\ cE_{p-1} \end{pmatrix}.$$

We have then

(i)
$$0 = ml + (p+1)a + (p-1)(b+c),$$

(ii)
$$3pml = m^{2}l^{2} + (p+1)a^{2} + (p-1)(|b|^{2} + |c|^{2})$$

Here a, b+c and $|b|^2 + |c|^2$ are rational integers. By (i), $a \equiv 0 \pmod{l}$. Let a=ul.

We first consider the case $u \neq 0$ for $\Delta = \Delta_2$ or Δ_3 . From (ii), we have

(16)
$$((18-m)l+3)m \ge 2(3l+1)u^2l \ge 2(3l+1)l.$$

The left hand side here considered as a function in integral variable m takes the maximum 81l+27 at m=9. Thus we have

$$81l+27 \ge 2(3l+1)l$$

and hence l < 14. The cases l = 13 and l = 11 will be discussed later.

We next consider the case u=0 for $\Delta = \Delta_2$ and Δ_3 . From (i), we now have 0=m+6(b+c). Therefore $m\equiv 0 \pmod{6}$. But, since $m\leq 16$, m=6 or 12. If m=12, for instance $m_2=12$, then it must hold that $m_3=6$, $m_1=0$. This is a contradiction. Thus $m_2=m_3=6$. If m=6, then ml=6l=p-1. By (i), b+c=-1 and, by (ii), $|b|^2+|c|^2=2p+1$. If b is imaginary then we have $c=\overline{b}$ from (7). Therefore $|b|^2+|c|^2=2|b|^2=2p+1$. This is a contradiction since b is an algebraic integer. Thus b must be real. Then $2p+1=b^2+c^2=b^2+(b+1)^2=2b(b+1)+1$ and hence p=b(b+1)=-bc. In this way, we see that b and c are the roots of the quadratic equation

(17)
$$x^2 + x - p = 0.$$

Now we proved that if

$$U^{-1}V(\Delta_i)U = \begin{pmatrix} p-1 & 0\\ 0E_{p+1} & 0\\ 0 & b_iE_{p-1} \\ c_iE_{p-1} \end{pmatrix} \quad (i = 2, 3)$$

then b_i and c_i are the roots of (17). If $b_2 = b_3$ and $c_2 = c_3$ then $V(\Delta_2) = V(\Delta_3)$ which contradicts the linear independence of $V(\Delta_i)$. Thus we have $b_2 = c_3$ and $c_2 = b_3$. Since the characteristic roots of $V(\Delta_2)$ are all real, $V(\Delta_2)' = V(\Delta_2)$. Therefore by (2)

$$egin{aligned} 0 &= \mathrm{tr} \left(V(\Delta_2)' V(\Delta_3)
ight) = \mathrm{tr} \left(V(\Delta_2) V(\Delta_3)
ight) \ &= (p\!-\!1)^2\!+\!2(p\!-\!1) b_2 c_2 = (p\!-\!1)^2\!-\!2(p\!-\!1) p \,. \end{aligned}$$

This is a contradiction. Thus we have proved that for $\Delta = \Delta_2$ or $\Delta_3 \ u \neq 0$ and then we may assume that l=13 or 11.

Now when m_2 or m_3 is less than 6, let Δ in (15) be a set of transitivity Δ_i (i=2 or 3) such that $m_i=m < 6$. The left hand side in (16) then takes the maximum 65l+15 at m=5 under the condition $m \le 5$. Thus we have l < 11, i.e. $l \le 7$.

Now assume that m_2 and $m_3 \ge 6$, then $m_1 \le 6$. From (16) we have $13 \ge u^2 l$. Since l=13 or 11, $u=\pm 1$ and hence $a=\pm l$. From (i), we then have

$$0 = m \pm (p+1) + 6(b+c)$$
.

Combining this and $p+1\equiv 2 \pmod{6}$, we have $m\equiv \pm 2 \pmod{6}$. In this way, we see that $m_i\equiv \pm 2 \pmod{6}$ for i=2, 3. Hence $m_i=8, 10$ or 14 (i=2, 3), but $m_i=14$ is impossible. If $m_2=10$, then $m_3=8$ and $m_1=0$. This is impossible. In the same way, we have $m_3 \pm 10$. Thus we have $m_1=2, m_2=m_3=8$. Then, for $l=11, 13, (m_1l+2)m_2m_3/2^3(3l+1)$ is not an integer. This is a contradiction. Thus we have

PROPOSITION 6. Let S be a permutation group which satisfies the

condition (*). If p is of the form 6l+1 where l is a prime number greater than 7, then Case II does not occur.

Proof of Theorem. In order to prove Theorem, by Propition 1~6, it is sufficient to show that if p=6l+1 is a prime number as in Theorem then 4p is not of the form $3c^2+1$. If $4p=3c^2+1$ with positive integer c, then $24l+4=3c^2+1$. Thus we have 8l=(c-1)(c+1). Therefore $c \equiv \pm 1 \pmod{l}$. Let $c=xl\pm 1$. Then $8=x(xl\pm 2)$ and hence

$$l-2 \leq xl \pm 2 \leq 8$$
, $l \leq 10$.

Thus we have $l \leq 7$ and this is a contradiction.

References

- 1. R. Brauer, On permutation groups of prime degree and related classes of groups, Ann. of Math. 44 (1943), 57-79.
- 2. W. Burnside, Theory of groups of finite order, Cambridge Univ. Press (1911).
- 3. J. S. Frame, The double cosets of a finite group, Bull. Amer. Soc. 47 (1941), 458-467.
- 4. R. Kochendörffer, Untersuchungen über eine Vermutung von W. Burnside, Schriften Math. Sem. Inst. Angew. Math. Univ. Berlin 3 (1937), 155-180.
- 5. D. Manning, On simply transitive groups with trasitive abelian subgroups of the same degree, Trans. Amer. Math. Soc. 40 (1936), 324-342.
- 6. O. Nagai, On transitive groups that contain non-abelian regular subgroups, Osaka Math. J. 13 (1961), 199-207.
- H. Wielandt, Zur Theorie der einfach transitiven Permutationsgruppen, Math. Z. 40 (1935), 582-587.
- 8. _____, Zur Theorie der einfach transitiven Permutationsgruppen, II, Math. Z. 52 (1950), 384-393.