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A group 9 is called a Burnside group or B-group for short when
every primitive permutation group which contains the regular representa-
tion of © is doubly transitive. An example of such a group was first
given by Burnside ([2], Chapter XVI, Theorem VIII). In fact, he proved
that a cyclic group of prime power order p” (m_>1) is a B-group. Since
then an abelian B-group has been studied by Kochendorffer [4], Manning
[5] and Wielandt [7]. As for non-abelian B-group, Wielandt [8] showed
that a dihedral group is a B-group and recently Nagai [6] has proved
that a non-abelian group of order 3p is a B-group if p is a prime number
of the form 2.3°+1 (@a>2).

The purpose of this paper is to prove the following

THEOREM. Let p be a prime number of the form 6l+1 with prime
number 1 >7. A non-abelian group of order 3p is then a B-group.

To prove the theorem, we make use of the method of Wielandt used
in .[10] and the results of Schur, Frame and Nagai.

1. Preliminary remarks.

We shall give here a summary of the results of Schur, Wielandt
and Frame which will be needed afterwards. For the proofs we refer
to Wielandt [9] and Frame [3].

The following convention and notation are appropriate: The words
“representations” and “characters” always refer to the representations
in the field of all complex numbers and their characters. The degree of
a representation ¢ or a character X will be denoted by Dg# or DgX.

Let ® be a transitive permutation group on Q={1,2, ---, n} and &*
the representation of & by permutation matrices. The matrices which
are commutative with every G* € &* give the commutator ring B of &*.

Let ®, denote the subgroup of ®& consisting of all permutations of
@& each of which fixes the letter 1 and let

A, = {1}’ Ay, Ay, e, Ay,
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be the sets of transitivity of ®,. With each set of transitivity A of &,
we associate a matrix V(A)=(v;;); j-.,.., With elements

1 when there are Ge€® and d€ A such that
(1) V;; = ]_G:j and dG———Z.,
0 otherwise.

LemMa 1 ([9], 28.4). {V(A,), V(A), -, V(A,_)} is a linear basis of
the commutator ring B of &*.

Let A be a given set of transitivity of &,. We denote by A’ the
set of letters {1 '|HE®, 17€A}. Then A’ is also a set of transitivity
of ®&, with the same length as A and (A’)Y’=A. The matrix V(A’) is the
transposed matrix of V(A), ie. V(A)=V(A).

Lemma 2 ([97, 28.10). For two given sets of tramsitivity A;, A; of &,

(2) tr (V(A) V(A;) = 8;;m| A
where |A;| denotes the length of A;.

Now let
(3) & = Seo,

1=0
be the complete reduction of &* into irreducible representations. We
assume that ¢, is the principal representation of &. Then ¢, is equal
to 1.

LemMa 3 ([9], 29.2). Let k be the number of the sets of transitivity
of &,. Then

kzri_‘,le%.

i=0

From this lemma we have immediately

LEMMA 4. & is doubly transitive if and only if r=2 and e,=e,=1.
Corresponding to the reduction (3) of &* we have the complete
reduction of B :

(4) D IER
‘L=
where z,=Dg#, and Dg®B,.=e¢.. In fact there is a unitary matrix U
such that
. 0
(5) U V(A)U = | VA)XE,,
0 "
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where E,, is the unit matrix of degree z. and V(A)—Vu(A)) gives an
irreducible representation B, of ¥. From (4) we have

LemmA 5 ([9], 29.3, 29.5). B is commutative if and only if ¢,=e,=
vo=¢,_,=1. Especially if k<4 then B is commutative.

Let €; be a class of conjugate elements of & and let Cj=G§(,§ G*.
)

If B is commutative then each V(A,) is a linear combination of C; with
rational coefficients: V(A;)=31x;C;. The matrices of B are transformed
j

by a unitary matrix into diagonal form. If

.0
(6) UV(A)U = a.E,,
o -
then
(7) @ = 3% B:i'—zw (x,: rational numbers)
7 p-

where |€;| denotes the number of elements of €;, G; € €; and X, denotes
the character of #,.

Frame [3] gave a number theoretical relationship between
n=|Q|, n;=|4;] and z;=Dgd;.

LEmMA 6 ([3]). The number

k 1k-—l r—-1 ez
n* 1w | IL 25

=1 i=1
is a rational integer.
‘We now conclude this section with some more remarks.

REMARK 1. The characteristic roots of V(4;), V(A;) V(A,) are algebraic
integers.

REMARK 2. If 2;=Dgd; is different from all other z;=Dg#; in (3),
then tr V,(4,) in (5) is a rational integer.

ReMARk 3 ([9], 8.6). If ® is primitive and not a regular group of
prime degree then #;=|A;| >1 for {==0.

REMARK 4 ([9], 18.7). If n;=|A;| =2 for some ¢ then & contains a

regular normal subgroup of index 2.

2. Former results of Nagai.

Let © be a non-abelian group of order 3p where p is a prime number
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greater than 3: $={A4, B}, A?=B°=1, B'AB=A’ (=1, j=£1 (mod p)).
In what is to follow we shall consider a permutation group ® as follows :
(%) The group & is a primitive permutation group of degree 3p
which contains © as its regular subgroup and is not doubly transitive.
We now give a summary of the former results of Nagai concerning
the groups as above, which will be needed afterwards.

Lemma 7 ([6], (a), (b)). Under the assumption (x) the order of &
contains the prime p to the first power and the centvalizer of a Sylow
p-subgroup B of & coinsides with L.

By this lemma we can apply the results of Brauer [1] to our case.
Without loss of generality we may assume that & contains P=(1, ---, p)
(p+1, -+, 2p) (2p+1,--+,3p). Let M=N(P) be the normalizer of P= {P},
and let g=|M :P|. Then N is generated by P and an element @ of
order ¢ and they satisfy

(8) Q'PQ = P
where v is a primitive root (mod p) and ¢ is a positive integer such that
(9) tqg =p—1.

The irreducible characters of & are of four different types:

I. Character A, of degree a,=u,p+1.

1. Character B, of degree b,=v,p—1.
III. Character C™ of degree (wp-+90)/t (6==x1).
IV. Character D. of degree d.=x_p.
The characters of type III are called exceptional characters.

The characters of N are easily determined. Let @ be a primitive

g th root of unity. There are ¢ linear characters co,bl(/w=0, L2 -, q—-1)
of M which are defined by

0, (Q)) = o, o,(P) =1
and the other irreducible characters are ¢ algebraically conjugate characters

Y™ of degree g¢.

Lemma 8 ([1], Lemma 3). The restriction A, of A, to R contains
u,+1 of the o,, B,|N contains v,—1 of the w,, CV|N contains (w+98)/t
of the o, and D.|N contains x. of the o,.

Now let II be the character of the permutation representation &* of
@ and let

(10) =%+ e
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be the complete reduction of II where X, is the principal character of ®.
Since & is not doubly transitive £>3.

LemmMa 9 ([6], (), (d)). In (10), every constituent X; is not exceptional
and DgX;>1 for i==0.

From this lemma we have easily the following possibilities of the
complete reduction of II ([6], (g), (h)):

Case I: II=X,+X,+2X,, DgX,=p+1, DgX,=p—1.

Case II: II=X,+X,+X,+X,, DgX,=p+1, DgX,=DgX,=p—1.

Case III: II=X,+X,+X,, DgX,=2p—1, DgX,=p.

Case IV: II=X,+X,+X,, DgX,=p—1, DgX,=2p.

Case V: II=X,+X,+2X,, DgX,=p—1, DgX,=p.

Case VI: II=X+X,+X,+X,, DgX,=p—1, DgX,=DgX,=p.

Under some condition the possility of Case IV can be excluded.

ProrosITION 1 ([6], (). Let © be a group which satisfies the condition
(x). If p>T7 and 4p is not of the form 3c*+1 then Case IV does not

occur.
The possibility of Case V will be easily excluded from the following
lemma.

Levmma 10 ([6], (e)). II restricted to W contains just three different
linear characters ,, one of which is the principal character w,.

If II decomposes as in Case V, then from Lemma 8 II contains some
®, with multiplicity 2. This contradicts Lemma 10. Thus we have

PROPOSITION 2. Let & be a group which satisfies the condition (x).
Then Case V does not occur.

3. Remaining cases.

Under the condition (x) we shall now consider the cases except Case
IV and V separately.

Case VI: Suppose II decomposes as in Case VI. Since II is a
rational character and X, is its only constituent of degree p—1, X, is also
a rational character and X, and X, are both rational or algebraically
conjugate.

Now, from Lemma 8, X; (i=2, 3) restricted to M contains one linear
character o; /=2, 3) of N and for an element B of order 3 in $

0 = II(B) = 1+ o,(B)+w,B).
Therefore X,(B)=w,(B) (=2, 3) is a primitive third root of unity. Thus



28 H. NAGAO

X; (1=2,3) is not rational and the field P(X,(G)) which is obtained by
adjoining {X;{(G)|G€ @} to the field P of rational numbers is of rank 2
over P and not real since it contains a primitive third root of unity X B).
In this way we can see that

an X(G) = X,(G)

for all Ge@®.

From Lemma 3, the number of the sets of transitivity of ®, is now 4,
therefore, from Lemma 5, the commutator ring B of &* is commutative.
Further there is a set of transitivity A(s=A,) such that A’=A. Then
V(A)=V(AY and the characteristic roots of V(A) are all real. Let U be
a unitary matrix which transforms V(A) in diagonal form :

v 0

~1 _ akE -
U=

4
?

where v=|A|. From Remark 1 and 2, ¢ is a rational integer and from

(7) and (11) ¢=b. On the other hand, & is real therefore b=c.

Now applying (2) to tr(V(A,)YV(A)) =tr (V(A)) and tr (V(AYV(A))
we have

(i) 0=v+(p—1)a+2pb,

(ii) 3pv = v+ (p—1)a®+2pb°.
From (i), b is a rational integer and v==a (mod p).
From (ii)

@< 3po[/(p—-1)< 9/ (p—-1) < p*  if p>T

and hence |a|<p if p>>7. In the following we assume p _>7. Then
combining v=a (mod p) and |a@|<p we have

12) a=v—ap (¢=0,1,2 or 3).

Substituting v=a+ap in (i) we have b= —(a+«a)/2. Substitute these in
(ii). Then we have

13) p6a—2a%) = 3a*+6(d—1)a+a? .

If «=0, then a=0 or 2 by (13) and hence v=0 or 2 by (12). Since
v=|A|>>0, v=2. Then from Remark 4 & can not be primitive. If a¢=1
or 2, then we have 4p=34’+1 or 3(a+1Y+1 by (13). If a=3, then
a=-—3 or —1 by (13) and v=3p—3 or 3p—1 by (12). Since the lengths
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of the other three sets of transitivity are not all 1 (Remark 3), this is
impossible. Thus we have

PROPOSITION 3. Let & be a permutation group which satisfies the
condition (x). If p>T and 4p is not of the form 3c*+1 then Case VI
does not occur.

Case IIT: Suppose II decomposes as in Case III. The number of
the sets of transitivity of & is now 3. Therefore there is a set of
transitivity A (s=A,) with length »<(3p—1)/2. Let U be a unitary
matrix which transforms V(A),) in diagonal form :

v 0
U-'VAU = ak,,
0 bE,
From Remark 1 and 2, ¢ and & are rational integers and from (2) we have
(i) 0=0v+@p—1a+pb,
(ii) 3pv =+ (2p—1)a’+pb°.

From (i), we have v=a (mod p). From (ii), we have
@< 3pv/2p—1)<9p’/@2p-1)<p* if p=5
and hence |a|</p. Now assume p_>5. Since v<(3p—1)/2< 2p, com-
bining v=a (mod p) and |a|<p we have
(14) a=v-—ap (¢=0,1 or 2).

Substituting v=a+ap in (i) we have b= —(a¢+2a). Substitute these in
(ii). Then we have

15) P83 —a®) = 6a°+32a—1a+a?.

If «=0, then a=v=0 by (15) and (14). This is impossible. If a=1 or
2, we have — pa’=a’ (mod 3) by (15). Since p=1 (mod 3), 2a’=0 (mod 3).
This is a contradiction. Thus we have

ProrosiTION 4. Let & be a permutation group which satisfies the
condition (x). If p>5 then Case III does not occur.

Case I: Let II decompose as in Case I. We now assume that p is
a prime number of the form 6/+1 with prime number /==2. In the
following we shall show that /<7 follows from our assumption.

The index g=|MN: P| is a divisor of p—1 and a multiple of 3 since
NDOH. Therefore ¢=3,6, 2/ or 6/. When ¢g=3 or 6 Case I does not
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occur by [6], (i). Suppose now that ¢=3/ or 6/. Let L be an element
of order / in M. The lengths of the sets of transitivity of {L} are all /
but three sets of transitivity of length 1. Without loss of generality we
may assume that L€ ®,. Then every set of transitivity of &, is a union
of some sets of transitivity of {L}. The number of the sets of transitivity
of &, is now 6 and the lengths of the sets of transitivity of ®, are

(A) n,=1, n,=ml+1, n,=mi+1, n,=m,l, n,=ml, n=mJ,
or (B) n,=1, ny,=mi+2, n,=m,l, n,=m,l, n,=mJd, n,=m .

By Remark 3 and 4, each m; here is not 0, and from f_,‘n, 3p it follows
that Z m;=18. Therefore in either case (A) or (B) there is at least one

m; (3_<_z_<_5) such that m;<(5. Let A be a set of transitivity of &, with
length m/ <5/, and let U be a unitary matrix which transforms V(A) in
the following form :

ml 0
U ey =| “Em
be
0 ( d c)pr -
Then from (2) we have
(i) 0=ml+(p+1Da+(p—1)(d+c),
(ii)  3pml = WP+ (p+1)@+(p—D)(|0F+ |cP+ |d [+ 1el).
By Remark 2, a is a rational integer and, by (i), (ii) above and Remark
1, b+c and [+ |c[’+|d[*+ |e|* are also rational integers. From (i) we
have ¢=0 (mod!/). Let a=ul. If u=0, then, by (i), O=m+6(b+c).

But this is impossible since m<(5. Thus we have #==0. From (ii) we
have now

((18—m)l+3)ym>2(31+1)/.
The left hand side considered as a function in m<C5 takes the maximum
65/+415 at m=5. Thus we have
65/+15>2(3/+1)/
and hence 10>>/. In this way, we have
PrROPOSITION 5. Let & be a permutation group which satisfies the

condition (x). If p is of the form 6/+1 wherel is a prime number greater
than 7, then Case I does not occur.

Case II: Let II decompose as in Case II. We assume that p is a
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prime number of the form 6/+1 with prime number /==2, and we shall
show that /<7.

The number of the sets of transitivity of ®, is now 4. In the same
way as in Case I, we can see that the lengths of the sets of transitivity
of ®, are as follows :

(A) n,=1, n=ml+1, n,=n,l+1, n,=m,l,
or (B) n,=1, n,=mI+2, n,=m,l, n,=m,l .

Case A: From Lemma 6, it follows that (me,/ +1)(me,l +1)m,/2°(31+-1)/
is an integer. Therefore m,=0 (mod/) and we have [/<m,<16. If
/=13 or 11, we have m,=[ since m, is a multiple of / and less than 17.
Then (m,l+1)(m,l+1)/2(3/+1) is an integer. On the other hand, for
m,=[=13 or 11, m,+m,=5 or 7. By a direct calculation we can see that
(m,l+1)(m,l+1)/2*(37+1) is not an integer for any such m,, m,. This is
a cotradiction and we have /<7.

Case B: Let A be a set of trasitivity of &, with length #, or #,,
and let U be a unitary matrix which transforms the matrices of ¥ in
diagonal form :

m g 0
(15) U VAU =| 4 e
0 -1
\ cE,-
We have then
(i) 0 =ml+(p+1a+(p—1)b-+c),
(ii) 3pml = m* P+ (p+ D)@+ (p—1)(|b+ |c ).

Here a, b+c and |b[*+ |c|* are rational integers. By (i), a=0 (mod/).
Let a=ul.

We first consider the case u==0 for A=A, or A,.
From (ii), we have

(16) ((18—m)!+3)ym>23I+1)ul >2BI+1)!].

The left hand side here considered as a function in integral variable m

takes the maximum 81/+27 at m=9. Thus we have
81/+27>2(31+1)!

and hence /< 14. The cases /=13 and /=11 will be discussed later.
We next consider the case =0 for A=A, and A,. From (i), we

now have O=m-+6(b+c). Therefore m=0 (mod 6). But, since m<16,

m=6 or 12. If m=12, for instance m,=12, then it must hold that m,=6,
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m,=0. This is a contradiction. Thus m,=m,=6. If m=6, then m/=6/
=p—1. By (i), b+c=—1and, by (i), |b[*+ |c|*=2p+1. If bis imaginary
then we have c¢=b from (7). Therefore |b|*+|c|?=2]|b[’=2p+1. This
is a contradiction since & is an algebraic integer. Thus & must be real.
Then 2p+1=b4c*=b+(b+17*=2b(b+1)+1 and hence p=b(b+1)= —bc.
In this way, we see that & and c¢ are the roots of the quadratic equation

@an 2+x—p=0.

Now we proved that if

0

p—1
U V(@A) = ( O0F s G =2 3)
0

bE

p—lciEp-l

then b; and ¢; are the roots of (17). If b,=b, and ¢,=c, then V(A,;}=V(A,)
which contradicts the linear independence of V(A;). Thus we have b,=c¢,
and c,=b,. Since the characteristic roots of V(A,) are all real, V(A,)=
V(A,). Therefore by (2)

0 = tr (VA V(Ay) = tr (V(A)V(AY)
= (p=1Y+2(p—Db,c, = (p—1)"—2(p—-1)p.

This is a contradiction. Thus we have proved that for A=A, or
A, u==0 and then we may assume that /=13 or 11.

Now when m, or m, is less than 6, let A in (15) be a set of transi-
tivity A; (=2 or 3) such that m;=m< 6. The left hand side in (16)
then takes the maximum 65/+15 at m=5 under the condition m<Cb.
Thus we have /<11, ie. /<7.

Now assume that m, and m,>6, then m,< 6. From (16) we have
13>wu?l. Since /=13 or 11, u==1 and hence a= +/. From (i), we then
have

0=mx(p+1)+6(0+c).

Combining this and p+1=2 (mod 6), we have m=+2 (mod 6). In this
way, we see that m;=+2 (mod 6) for /=2,3. Hence m;=8, 10 or 14
(=2, 3), but m;=14 is impossible. If m,=10, then m,=8 and m,=0.
This is impossible. In the same way, we have m,==10. Thus we have
m,=2, my,=m,=8. Then, for /=11, 13, (m,/+2)m,m,/2°(3]+1) is not an
integer. This is a contradiction. Thus we have

PROPOSITION 6. Let & be a permutation group which satisfies the
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condition (x). If p is of the form 6l+1 where | is a prime number
greater than 7, then Case II does not occur.

Proof of Theorem. In order to prove Theorem, by Propition 1~6,
it is sufficient to show that if p=6/+1 is a prime number as in Theorem
then 4p is not of the form 3c¢*+1. If 4p=3c’+1 with positive integer c,
then 24/+4=3c’+1. Thus we have 8/=(c—1)(c+1). Therefore c==1
(mod/). Let c=x/+1. Then 8=x(x/+2) and hence

I—2<xi+2<8, 1<10.

Thus we have /<7 and this is a contradiction.
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