Journal of Mathematics, Osaka City University Vol. 14, No. 1.

STRUCTURE OF HEREDITARY ORDERS OVER LOCAL RINGS

Manabu HARADA

(Received April 15, 1963)

Let R be a noetherian integral domain and K its quotient field, and Σ a semi-simple K-algebra with finite degree over K. If Λ is a subring in Σ which is finitely generated R-module and $\Lambda K = \Sigma$, then we call it an order. If Λ is a hereditary ring, we call it a hereditary order (briefly *h*-order).

This order was defined in [1], and the author has substantially studied properties of *h*-orders in [5], and shown that we may restrict ourselves to the case where R is a Dedekind domain, and Σ is a central simple *K*-algebra.

In this note, we shall obtain further results when R is a discrete rank one valuation ring. Let R be such a ring, and Ω a maximal order with radical \mathfrak{N} , and $\Omega/\mathfrak{N}=\Delta_n$; Δ division ring. Then we shall show the following results: 1) Every *h*-order contains minimal *h*-orders Λ such that $\Lambda/N(\Lambda) \approx \Sigma \oplus \Delta$, where $N(\Lambda)$ is the radical of Λ , (Section 3); 2) The length of maximal chains for *h*-order is equal to *n*, and we can decide all chains which pass a given *h*-order, (Section 5); 3) For two *h*-orders Γ_1 and Γ_2 they are isomorphic if and only if they are of same form, (see definition in Section 4); 4) The number of *h*-orders in a nonminimal *h*-order is finite if and only if R/\mathfrak{P} is a finite field, where \mathfrak{P} is a maximal ideal in R, (Section 6).

In order to obtain those results we shall use a fundamental property of maximal two-sided ideals in Λ ; { \mathfrak{M} , $\mathfrak{N}^{-1}\mathfrak{M}\mathfrak{N}$, $\mathfrak{N}^{-2}\mathfrak{M}\mathfrak{N}^2$, ..., $\mathfrak{N}^{-r+1}\mathfrak{M}\mathfrak{N}^{r-1}$ } gives a complete set of maximal two-sided ideals in Λ , where $\mathfrak{N} = N(\Lambda)$, (Section 2).

H. Higikata has also determined h-orders over local ring in [8] by direct computation and the author owes his suggestions to rewrite this paper, (Section 6). However, in this note we shall decide h-orders as a ring, namely by making use of properties of idempotent ideals and radical.

We only consider *h*-orders over local ring in this paper, except Section 1, and problems in the global case will be discussed in [7] and in a

special case, where Σ is the field of quaternions, we will be discussed in [6].

1. Notations and preliminary lemmas.

Throughout this note, we shall always assume that R is a discrete rank one valuation ring and K is the quotient field of R, and that Λ , Γ , Ω are *h*-orders over R in a central simple K-algebra Σ .

For two orders Λ , Γ , the left Γ - and right Λ -module $C_{\Lambda}(\Gamma) = \{x | \in \Sigma, \Gamma x \leq \Lambda\}$ is called "(*right*) conductor of Γ over Λ ". By [5], Theorem 1.7, we obtain a one-to-one correspondence between order $\Gamma(\geq \Lambda)$ and two-sided idempotent ideal \mathfrak{A} in Λ as follows:

$$\Gamma = \operatorname{Hom}_{\Lambda}^{r}(\mathfrak{A}, \mathfrak{A}) \text{ and } C_{\Lambda}(\Gamma) = \mathfrak{A}.$$

Furthermore, we have a one-to-one correspondence between two-sided idempotent ideals \mathfrak{A} and two-sided ideals \mathfrak{M} containing the radical \mathfrak{N} of an order Λ by [5], Lemma 2.4:

$$\mathfrak{A} + \mathfrak{N} = \mathfrak{M}$$
 .

Let $\Lambda/\mathfrak{N} = \Lambda/\mathfrak{M}_1 \oplus \cdots \oplus \Lambda/\mathfrak{M}_n$, where the \mathfrak{M}_i 's are maximal two-sided ideals in Λ . Then \mathfrak{M} is written uniquely as an intersection of some \mathfrak{M}_i 's, say $\mathfrak{M}_{i_1}, \mathfrak{M}_{i_2}, \cdots, \mathfrak{M}_{i_n}$. We shall denote those relations by

$$\mathfrak{A} = I(\mathfrak{M}) = I(\mathfrak{M}_{i_1}, \mathfrak{M}_{i_2}, \cdots, \mathfrak{M}_{i_r}).$$

Let $\Lambda/\mathfrak{M}_i = (\Delta_i)_{n_i}$; Δ_i division ring. Then by [5], Theorem 4.6, we know that the Δ_i 's depend only on Σ , and we shall denote it by Δ . For any order Γ , we denote the radical of Γ by $N(\Gamma)$. Let $\Gamma \geq \Lambda$ be *h*-orders, and $C(\Gamma) = I(\mathfrak{M}_{i_1}, \mathfrak{M}_{i_2}, \dots, \mathfrak{M}_{i_r})$. Then $C(\Gamma)/C(\Gamma)\mathfrak{M} \approx \Lambda/\mathfrak{M}_{j_1} \oplus \dots \oplus \Lambda/\mathfrak{M}_{j_{n-r}}$ $\oplus C(\Gamma) \cap \mathfrak{M}/C(\Gamma)\mathfrak{M}$ as a right Λ -module; $(i_1, i_2, \dots, i_r, j_1, j_2, \dots, j_{n-r}) \equiv$ $(1, 2, \dots, n)$. By [5], Theorem 4.6 and its proof, we have

LEMMA 1.1. $\Gamma/N(\Gamma) \approx \operatorname{Hom}_{\Lambda/\Re}^{r}(C(\Gamma)/C(\Gamma)\mathfrak{R}, C(\Gamma)/C(\Gamma)\mathfrak{R})$, and every simple component of $C(\Gamma) \cap \mathfrak{R}/C(\Gamma)\mathfrak{R}$ appears in some $\Lambda/\mathfrak{M}_{j_t}, t=1, \dots, n-r$.

Let \hat{R} be the completion of R with respect to the maximal ideal \mathfrak{p} in R, and \hat{K} its quotient field. Then $\hat{\Sigma} = \Sigma \otimes \hat{K}$ is also central simple \hat{K} algebra and $\hat{\Lambda} = \Lambda \otimes \hat{R}$ is an order over \hat{R} in $\hat{\Sigma}$. If Ω is a maximal order in Σ , then $\hat{\Omega}$ is also maximal in $\hat{\Sigma}$ by [1], Proposition 2.5. Let Γ' be any order in $\hat{\Omega}$, then we can find some n such that $\hat{\Omega}\mathfrak{p}^n \leq \Gamma'$. Since $\Omega/\mathfrak{p}^n \Omega \approx \hat{\Omega}/\mathfrak{p}^n \hat{\Omega}$ as a ring, there exists an order Γ in Ω such that $\hat{\Gamma} = \Gamma'$. Furthermore, since $\otimes \hat{R}$ is an exact functor, we have

PROPOSITION 1.1. Let Ω be a maximal order in Σ . Then there is a

one-to-one correspondence between orders Γ in Ω and order $\hat{\Gamma}$ in $\hat{\Omega}$.

If Λ is an *h*-order then \Re is Λ -projective, and hence, \Re is $\hat{\Lambda}$ -projective. Therefore, by usual argument (cf. [2], p. 123, Exer. 11, and [5], Lemma 3.6), we have

COROLLARY. By the above correspondence h-orders in Ω correspond to those in $\hat{\Omega}$.

PROPOSITION 1.2. Let Λ , Γ , and Ω be as above. If $\Lambda = \alpha' \Gamma \alpha'^{-1}$ for a unit α' in $\hat{\Omega}$, then $\Lambda = \alpha \Gamma \alpha^{-1}$, and α is unit in Ω .

Proof. Since $\hat{\Omega}/\mathfrak{p}^n\hat{\Omega}\approx\Omega/\mathfrak{p}^n\Omega$ for some *n*, and $\mathfrak{p}^n\Omega$ is contained in $N(\Omega)$, it is clear.

From those propositions many results in *h*-orders over *R* are obtained from those in *h*-orders in the ring of matrices of maximal order \mathfrak{O} in a division ring Δ' over a complete field. Furthermore, all *h*-orders in \mathfrak{O}_n are decided by Higikata [8]. However, in this note, we shall discuss properties of *h*-orders as a hereditary ring, namely, by means of idempotent ideals and radical, except the following lemma and the last section.

Let \mathfrak{O} be as above. Then \mathfrak{O} contains a unique maximal ideal (π) , and every left or right ideal is two-sided and is equal to (π^n) by [3], p. 100, Satz 12. In $\Sigma = \Delta'_2$, we know by [6] that $\Lambda = \{(a_{i,j}) | \in \Sigma, a_{i,j} \in R,$ and $a_{1,2} \in (\pi)\}$ is an *h*-order in Σ . Analogously, we have

LEMMA 1.2. Let $\Sigma = (\Delta')_n$. Then $\Lambda = \{(a_{i,j}) | \in \Sigma, a_{i,j} \in \mathbb{O}, a_{i,j} \in (\pi) \text{ for } i < j\}$ is an h-order in Σ , and there exist no h-orders under Λ .

Proof. Let $\mathfrak{N} = \{(a_{i,j}) | \in \Lambda, a_{i,i} \in (\pi)\}$. It is clear that \mathfrak{N} is a twosided ideal in Λ . Furthermore, we can easily check that $\mathfrak{N}/(\pi)$ is nilpotent, and $\Lambda/\mathfrak{N} \approx \Sigma \oplus \mathfrak{O}/(\pi)$. Hence, \mathfrak{N} is the radical of Λ . Let $\mathfrak{N}^{-1} = \{(a_{i,j}) | \in \Sigma, (a_{i,j})\mathfrak{N} \subseteq \Lambda\}$. From the definition of \mathfrak{N} , we have $\mathfrak{N}^{-1} \ni e_{i,i+1}$, where the $e_{i,j}$'s are matrix units in Σ . Since $\mathfrak{N}^{-1}\mathfrak{N} \ni e_{1,2}e_{2,1} + \cdots + e_{n-1,n}e_{n,n-1} + (1/\pi)e_{n,1}\pi e_{1,n} = 1 \in \mathfrak{M}\mathfrak{N}^{-1}, \mathfrak{N}^{-1}\mathfrak{N} = \mathfrak{M}\mathfrak{N}^{-1} = \Lambda$. Therefore, Λ is hereditary by [2], p. 132, Proposition 3.2, and [5], Lemma 3.6. Since $\Lambda/\mathfrak{N} = \Sigma \oplus \mathfrak{O}/(\pi)$, the second part is clear by [5], Theorem 4.6.

We shall call such an *h*-order Λ "*minimal h-order*", namely there exist no *h*-orders contained in Λ and $\Lambda/N(\Lambda) = \Sigma \oplus \Delta$.

THEOREM 1.1. In the central simple K-algebra Σ , there exists always a minimal h-order.

In Sections 3, and 4 we shall show that every h-order contains a minimal h-order, and all minimal h-orders are isomorphic.

Finally we shall consider the converse of [4], Theorem 7.2.

THEOREM 1.2. Let R be a Dedekind domain and P a finite set of primes in R, and Ω a maximal order over R in Σ . For any given h-order $\Lambda(\mathfrak{p})$ in $\Omega_p, \mathfrak{p} \in P$, there exists a unique h-order Λ in Ω such that $\Lambda_p = \Lambda(\mathfrak{p})$ for $\mathfrak{p} \in P$, and $\Lambda_q = \Omega_q$ for $q \notin P$.

Proof. First, we assume $P = \{\mathfrak{p}\}$. By [4], Theorem 3.3, $\Lambda(\mathfrak{p}) = \Omega_p \cap \Omega'_2 \cap \ldots \cap \Omega'_i : \Omega'_i \text{ maximal order over } R_p$. Let $\mathfrak{C}'_i = C_{\Omega_p}(\Omega'_i)$, then $\Omega'_i = \operatorname{Hom}_{\Omega_p}^r(\mathfrak{C}'_i, \mathfrak{C}'_i)$ where $\Omega'_1 = \Omega_p$. Furthermore, $\mathfrak{C}'_i \supseteq p^n \Omega_p$. Let $\mathfrak{C}_i = \mathfrak{C}'_i \cap \Omega$, then $\mathfrak{C}_{i_p} = \mathfrak{C}'_i$, and $\mathfrak{C}_{i_q} = \Omega_q$ since $\mathfrak{C}_i \supseteq \mathfrak{p}^n$. Put $\Omega_i = \operatorname{Hom}_{\Omega}^r(\mathfrak{C}_i, \mathfrak{C}_i)$ and $\Lambda = \bigcap \Omega_i$. Then $\Lambda_p = \bigcap \operatorname{Hom}_{\Omega_p}^r(\mathfrak{C}_{i_p}, \mathfrak{C}_{i_p}) = \bigcap \Omega'_i = \Lambda(\mathfrak{p})$, and $\Lambda_q = \bigcap \operatorname{Hom}_{\Omega_q}^r(\mathfrak{C}_{i_q}, \mathfrak{C}_{i_q}) = \Omega_q$ if $\mathfrak{p} \neq \mathfrak{q}$. Hence, Λ is a desired *h*-order. Let Λ^{q_i} be such an *h*-order as above for $\mathfrak{p} = \mathfrak{q}_i$. Then $\Lambda = \bigcap \Lambda^{q_i}$ has a property in the theorem.

By virtue of this theorem we shall study, in this paper, h-orders over a valuation ring.

2. Normal sequence.

Let Λ be an *h*-order and \Re the radical of Λ . Let $\{\mathfrak{M}_i\}$; $i=1, \dots, n$, be the set of maximal two-sided ideals in Λ . Since $\mathfrak{N}^{-1}\mathfrak{N} = \mathfrak{N}\mathfrak{N}^{-1} = \Lambda$ by [5], Theorem 6.1, $\mathfrak{A} \to \mathfrak{A}^{\mathfrak{N}} = \mathfrak{N}^{-1}\mathfrak{A}\mathfrak{N}$ gives a one-to-one correspondence among two-sided ideals \mathfrak{A} in Λ , which preserves inclusion by [5], Proposition 4.1.

THEOREM 2.1. Let Λ be an h-order with radical \Re such that $\Lambda/\Re \approx \Delta_{m_1} \oplus \Delta_{m_2} \oplus \cdots \oplus \Delta_{m_n}$. For any maximal two-sided ideal \mathfrak{M} in Λ , $\{\mathfrak{M}, \mathfrak{N}^{-1}\mathfrak{M}\mathfrak{N}, \mathfrak{N}^{-2}\mathfrak{M}\mathfrak{N}^2, \cdots, \mathfrak{N}^{-n+1}\mathfrak{M}\mathfrak{N}^{n-1}\}$ gives a complete set of maximal two-sided ideals in Λ .

Proof. We may assume that $\mathfrak{N}^{-i}\mathfrak{M}\mathfrak{N}^i = \mathfrak{M}$. If $i \leq n$, there exists an *h*-order Ω such that $C(\Omega) = I(\mathfrak{M}, \mathfrak{N}^{-1}\mathfrak{M}\mathfrak{N}, \cdots, \mathfrak{N}^{-i+1}\mathfrak{M}\mathfrak{N}^{i-1})$. Let $\mathfrak{C} = C(\Omega)$ and $\mathfrak{M}_j = \mathfrak{N}^{-j+1}\mathfrak{M}\mathfrak{N}^{j-1}, \mathfrak{M}_i = \mathfrak{M}$. $\mathfrak{N}^{-1}(\bigwedge_{j=1}^i \mathfrak{M}_j)\mathfrak{N} = \bigwedge_{j=1}^i \mathfrak{M}_j$, and $\mathfrak{N}^{-1}\mathfrak{C}\mathfrak{N} = \mathfrak{C}$ by the observation in Section 1. Since $\mathfrak{C} \cap \mathfrak{N}/\mathfrak{C}\mathfrak{N} = \mathfrak{C} \cap \mathfrak{N}/\mathfrak{N}\mathfrak{C}, \mathfrak{C} + \mathfrak{N}/\mathfrak{N}$ is contained in the annihilator of $\mathfrak{C} \cap \mathfrak{N}/\mathfrak{C}\mathfrak{N}$ on Λ/\mathfrak{N} . However, by Lemma 1. 1 $\mathfrak{C} \cap \mathfrak{N}/\mathfrak{C}\mathfrak{N}$ contains only simple components which appear in $\mathfrak{C} + \mathfrak{N}/\mathfrak{N} \approx \Lambda/\mathfrak{M}_{j_1} \oplus \cdots \oplus \Lambda/\mathfrak{M}_{j_{n-i}}$ as a right Λ -module, which is a contradiction.

From this theorem we can find a sequence of maximal two-sided ideals $\{\mathfrak{M}_i\}_{i=1,\dots,n}$ in Λ such that $\mathfrak{N}^{-1}\mathfrak{M}_i\mathfrak{N} = \mathfrak{M}_{i+1}, \mathfrak{M}_{n+1} = \mathfrak{M}_1$ for all *i*. We shall call such a sequence $\{\mathfrak{M}_i\}$ "a normal sequence".

LEMMA 2.1. Let Λ be an h-order with radical \mathfrak{N} . If Ω is an order containing properly Λ , then $\mathfrak{N}^{-1}\Omega\mathfrak{N}$ contains Λ and is not equal to Ω .

Proof. Let $\mathfrak{C} = C(\Omega)$. It is clear that $\mathfrak{N}^{-1}\Omega\mathfrak{N}$ is an order containing Λ , and that $C(\mathfrak{N}^{-1}\Omega\mathfrak{N}) = \mathfrak{N}^{-1}\mathfrak{C}\mathfrak{N}$. Since $\mathfrak{C} \neq \Lambda$, $\mathfrak{N}^{-1}\mathfrak{C}\mathfrak{N} \neq \mathfrak{C}$ by Theorem 2.1 and the observation in Section 1.

PROPOSITION 2.1. Let Λ , \Re be as above. For a two-sided ideal \mathfrak{A} in Λ \mathfrak{A} is inversible¹⁾ in Λ if and only if $\mathfrak{A}\mathfrak{N} = \mathfrak{N}\mathfrak{A}$.

Proof. If \mathfrak{A} is inversible, then $\mathfrak{A} = \mathfrak{N}^t$ by [5], Theorem 6.1, and hence $\mathfrak{A}\mathfrak{N} = \mathfrak{N}\mathfrak{A}$. Conversely, let $\mathfrak{A}\mathfrak{N} = \mathfrak{N}\mathfrak{A}$, and $\Omega = \operatorname{Hom}_{\Lambda}^r(\mathfrak{A}, \mathfrak{A}) =$ $\operatorname{Hom}_{\Lambda}^r(\mathfrak{N}^{-1}\mathfrak{A}\mathfrak{N}, \mathfrak{N}^{-1}\mathfrak{A}\mathfrak{N}) \geq \mathfrak{N}^{-1}\Omega\mathfrak{N}$. Since $\Omega, \mathfrak{N}^{-1}\Omega\mathfrak{N}$ contain same number of maximal two-sided ideals, $\Omega = \mathfrak{N}^{-1}\Omega\mathfrak{N}$. Therefore, $\Omega = \Lambda$ by Lemma 2.1, and hence \mathfrak{A} is inversible by [5], Section 2.

LEMMA 2.2. Let Λ be an h-order, and $\{\mathfrak{M}_i\}$ $i=1, \dots, n$ the complete set of maximal two-sided ideals and \mathfrak{A} a two-sided ideal in Λ . If $\mathfrak{AM}_i = \mathfrak{M}_i \mathfrak{A}$ for all *i*, then \mathfrak{A} is principal, i.e., $\mathfrak{A} = \alpha \Lambda = \Lambda \alpha$.

Proof. Since $\mathfrak{N} = \bigcap \mathfrak{M}_i = \sum_{i_1, i_2, \cdots, i_n} \mathfrak{M}_{i_1} \mathfrak{M}_{i_2} \cdots \mathfrak{M}_{i_n}$, $\mathfrak{A}\mathfrak{N} = \mathfrak{N}\mathfrak{A}$. Hence \mathfrak{A} is inversible by Proposition 2.1, and $\Lambda = \operatorname{Hom}_{\Lambda}^r(\mathfrak{A}, \mathfrak{A})$. Since \mathfrak{A} is Λ -projective, we have a two-sided Λ -epimorphism $\psi : \Lambda \to \operatorname{Hom}_{\Lambda/\mathfrak{M}_i}^r(\mathfrak{A}/\mathfrak{A}\mathfrak{M}_i)$, $\mathfrak{A}/\mathfrak{A}\mathfrak{M}_i) \to 0$. Since $\psi^{-1}(0) \supseteq \mathfrak{M}_i$, we obtain $\Lambda/\mathfrak{M}_i \approx \operatorname{Hom}_{\Lambda/\mathfrak{M}_i}^r(\mathfrak{A}/\mathfrak{A}\mathfrak{M}_i)$, $\mathfrak{A}/\mathfrak{A}\mathfrak{M}_i)$. Hence, $\mathfrak{A}/\mathfrak{A}\mathfrak{M}_i \approx \Lambda/\mathfrak{M}_i$ as a right Λ -module. Since \mathfrak{A} is inversible, $\mathfrak{A}/\mathfrak{A}\mathfrak{R} \approx \Sigma \oplus \mathfrak{A}/\mathfrak{A}\mathfrak{M}_i \approx \Lambda/\mathfrak{R}$ as a right Λ -module. Therefore, $\mathfrak{A} = \alpha \Lambda$, and $\Lambda = \operatorname{Hom}_{\Lambda}^r(\alpha \Lambda, \alpha \Lambda) = \alpha \Lambda \alpha^{-1}$.

In any *h*-order Λ , we have $N(\Lambda)^m = \mathfrak{p}\Lambda$ for some *m*, we call *m* "the ramification index of Λ ", and Λ "unramified" if m=1.

THEOREM 2.2. Let Λ be an h-order with radical \Re , and $\{\mathfrak{M}_i\}$ $i=1, \dots, n$ the set of maximal two-sided ideals. Then \Re^n is principal. For a twosided ideal $\mathfrak{A}, \ \mathfrak{A}\mathfrak{M}_i = \mathfrak{M}_i\mathfrak{A}$ for all *i* if and only if $\mathfrak{A} = \Re^{nr}$ for some *r*. Let Ω be an order containing Λ , and *s*, *t* are ramification indices of Ω and Λ , respectively. Then n|t, and t|sn. Therefore, if Ω is unramified, then n=t, and $\mathfrak{A}\mathfrak{M}_i = \mathfrak{M}_i\mathfrak{A}$ for all *i* if and only if $\mathfrak{A} = \mathfrak{p}^t\Lambda$ for some *l*, (cf. Proposition 6.2).

Proof. The first part is clear by Theorem 2.1 and Lemma 2.2. Let $\mathfrak{N}^n = \alpha \Lambda = \Lambda \alpha$. Since $\alpha^{-1}\mathfrak{M}_i \alpha = \mathfrak{M}_i$ for all i and $\mathfrak{S} = C(\Omega) = I(\mathfrak{M}_{i_1}, \cdots, \mathfrak{M}_{i_r}), \alpha^{-1}\mathfrak{S}\alpha = \mathfrak{S}$. Therefore, $\Omega = \operatorname{Hom}_{\Lambda}^r(\mathfrak{S}, \mathfrak{S}) = \operatorname{Hom}_{\alpha^{-1}\Lambda\alpha}^r(\alpha^{-1}\mathfrak{S}\alpha, \alpha^{-1}\mathfrak{S}\alpha) = \alpha^{-1}\Omega\alpha$. Thus $\alpha\Omega = \Omega\alpha$ is an inversible two-sided ideal in Ω , and hence, $\alpha\Omega = N(\Omega)^I$ by [5], Theorem 6.1. It is clear by Theorem 2.1 that $n \mid t$.

¹⁾ We call \mathfrak{A} inversible in Λ if $\mathfrak{M}^{-1} = \mathfrak{A}^{-1}\mathfrak{A} = \Lambda$; $\mathfrak{A}^{-1} = \{x \mid \in \Sigma, \mathfrak{A}x\mathfrak{A} \subseteq \Lambda\}$.

Furthermore, $\mathfrak{N}^t = (\mathfrak{N}^n)^{t/n} = \alpha^{t/n} \Lambda = \mathfrak{p} \Lambda$. Therefore, $\alpha^{t/n} \Omega = N(\Omega)^{t \cdot (t/n)} = \mathfrak{p} \Omega$, and hence, $l \cdot (t/n) = s$.

As an analogy to Lemma 2.2,

PROPOSITION 2.2. Let α be a non-zero divisor in Λ . If $\alpha^{-1}\mathfrak{M}\alpha$ is a maximal ideal in Λ for a maximal ideal \mathfrak{M} , then $\Lambda\alpha\Lambda$ is principal ideal in Λ .

Proof. Let $\alpha^{-1}\mathfrak{M}\alpha = \mathfrak{M}'$, then $\mathfrak{M}\alpha = \alpha\mathfrak{M}'$, and $\alpha^{-1}\mathfrak{M} = \mathfrak{M}'\alpha^{-1}$. If we set $\mathfrak{A} = \Lambda \alpha \Lambda$, $\mathfrak{A}' = \Lambda \alpha^{-1}\Lambda$, then $\mathfrak{M}\mathfrak{A} = \mathfrak{A}\mathfrak{M}'$ and $\mathfrak{A}'\mathfrak{M} = \mathfrak{M}'\mathfrak{A}'$. Since $\mathfrak{M}\mathfrak{A}\mathfrak{A}' = \mathfrak{M}'\mathfrak{A}' = \alpha \mathfrak{M}'\mathfrak{A}^{-1}\Lambda = \mathfrak{M}$, $\mathfrak{A}\mathfrak{A}' \subseteq \operatorname{Hom}_{\Lambda}^{i}(\mathfrak{M}, \mathfrak{M})$. Similarly, we obtain $\mathfrak{A}\mathfrak{A}' \subseteq \operatorname{Hom}_{\Lambda}^{i}(\mathfrak{M}, \mathfrak{M})$. Therefore, $\mathfrak{A}\mathfrak{A}' \subseteq \operatorname{Hom}_{\Lambda}^{i}(\mathfrak{M}, \mathfrak{M}) \cap \operatorname{Hom}_{\Lambda}^{i}(\mathfrak{M}, \mathfrak{M}) = \Lambda$ by [5], Corollary 1.9 and Theorem 3.3. It is clear that $\mathfrak{A}\mathfrak{A}' \ge \Lambda$, and hence $\mathfrak{A}\mathfrak{A}' = \Lambda$. Since $\mathfrak{A}\alpha^{-1} \subseteq \mathfrak{A}\mathfrak{A}' = \Lambda$, $\mathfrak{A} \leq \Lambda \alpha$, which implies $\mathfrak{A} = \alpha\Lambda = \Lambda\alpha$.

Next, we shall consider normal sequences of *h*-orders Γ and $\Lambda (\leq \Gamma)$. Before discussing that, we shall quote the following notations. Let $\{\mathfrak{M}_i\}$ $i=1, \dots, n$ be the normal sequence of Λ . We divide $S = \{\mathfrak{M}_i\}$ to the subsets S'_1, \dots, S'_r , such that $\bigcup S'_i = S$, $S'_i \cap S'_j = \phi$, and for any $\mathfrak{M}_i \in S'_i$, $M_i \in S'_j$, l < t if i < j. Let $S'_i = \{\mathfrak{M}_{ti}, \mathfrak{M}_{ti+1}, \dots, \mathfrak{M}_{ti+mi-1}\}$. $S_i = S'_i - \{\mathfrak{M}_{ti+mi-1}\}$. Then we call m_i the length of S_i or S'_i . Let Γ be *h*-order containing Λ . Then $C(\Gamma) = I(\mathfrak{M}_{i_1}, \dots, \mathfrak{M}_{i_l})$, and by the above definition, $C(\Gamma)$ corresponds uniquely to S_1, \dots, S_r ; for example if $C(\Gamma) = I(\mathfrak{M}_1, \mathfrak{M}_2, \mathfrak{M}_3)$, $S_2 = \phi$, $S_3 = \{\mathfrak{M}_6\}$, $S_i = \phi$, for i > 3. Let $\mathfrak{C}_i = I(S_1, S_2, \dots, S_{i-1}, S'_i \cup S_{i+1}, \dots, S_r)$. Then $\Omega_i = \operatorname{Hom}'_{\Lambda}(\mathfrak{C}_i, \mathfrak{C}_i)$ is an order such that there exist no orders between Ω_i and Γ by [5], Theorem 3.3.

LEMMA 2.3. Let Γ , Λ , \mathfrak{C}_i , and S_i be as above, then $\{\mathfrak{C}_i\Gamma\}$ $i=1, \dots, r$ is the set of maximal two-sided ideals in Γ if Γ is not maximal.

Proof. Since $\mathfrak{C}_i \Gamma = C_{\Gamma}(\Omega_i)$ by [5], Proposition 3.1, we may prove by [5], Theorem 1.7 that every maximal two-sided ideal \mathfrak{V} in Γ is idempotent. Since $\mathfrak{V} = N(\Gamma)$, \mathfrak{V} is not inversible, and hence, $\tau_{\Gamma}^{l}(\mathfrak{V})^{\mathfrak{V}} = \mathfrak{V}$ by [5], Section 2. Therefore, \mathfrak{V} is idempotent by [5], Lemma 1.5.

By Lemma 1.1, we obtain that $\mathbb{C}/\mathbb{CN} \approx \Re_1 \oplus \Re_2 \cdots \oplus \Re_r$ as a right Λ -module, where \Re_i is a direct sum of simple components in $\Lambda/\mathfrak{M}_{t_i+m_i-1}$.

LEMMA 2.4. Let Λ , Γ , \mathfrak{S}_i and $\mathfrak{S}/\mathfrak{S}\mathfrak{N}$ be as above. Then by the isomorphism φ in Lemma 1.1: $\Gamma/N(\Gamma) \approx \operatorname{Hom}_{\Lambda/\mathfrak{N}}^r(\mathfrak{S}/\mathfrak{S}\mathfrak{N}, \mathfrak{S}/\mathfrak{S}\mathfrak{N})$ the maximal ideal $\mathfrak{S}_i\Gamma/N(\Gamma)$ corresponds to $\operatorname{Hom}_{\Lambda/\mathfrak{N}}^r(\sum_{i=j}\mathfrak{R}_j, \sum_{i=j}\mathfrak{R}_j)$.

²⁾ $\tau_{\Gamma}^{l}(\mathfrak{Y})$ means the two-sided ideal in Γ generated images of f; $f \in \operatorname{Hom} \frac{l}{\Gamma}(\mathfrak{Y}, \Gamma)$.

Proof. Since $\mathbb{G}_i\Gamma/N(\Gamma)$ is a maximal two-sided ideal in $\Gamma/N(\Gamma)$, $\mathbb{G}_i\Gamma/N(\Gamma)$ is characterized by the image of $\mathbb{G}/\mathbb{G}\mathfrak{N}$ by $\mathcal{P}(\mathbb{G}_i\Gamma/N(\Gamma))$. $\mathbb{G}/\mathbb{G}\mathfrak{N} = \Lambda/\mathfrak{M}_{t_1+m_1-1} \oplus \cdots \oplus \Lambda/\mathfrak{M}_{t_r+m_r-1} \oplus \mathbb{G}_{\bigcap}\mathfrak{N}/\mathbb{G}\mathfrak{N}$, and $\mathbb{G}_i\Gamma(\mathbb{G}/\mathbb{G}\mathfrak{N}) = \mathbb{G}_i\mathbb{G} + \mathbb{G}\mathfrak{N}/\mathbb{G}\mathfrak{N} = \mathbb{G}_i + \mathbb{G}\mathfrak{N}/\mathbb{G}\mathfrak{N} \ge \Lambda/\mathfrak{M}_{t_1+m_1-1} \oplus \cdots \oplus \mathbb{G}_i^{\bigvee_{j \in \mathfrak{N}}} \oplus \cdots \Lambda/\mathfrak{M}_{r_r+m_r-1}$, which implies the lemma.

LEMMA 2.5. Let Λ be an h-order with radical \Re and normal sequence $\{\mathfrak{M}_i\}$ $i=1, \dots, r$. Then $\mathfrak{M}_i/\mathfrak{M}_i\mathfrak{R} \approx \Lambda/\mathfrak{M}_1 \oplus \dots \bigoplus^{i} \dots \oplus \dots \Lambda/\mathfrak{M}_r \oplus \mathfrak{R}_{i+1}$ as a right Λ -module. Hence, $\Omega_i/N(\Omega_i) = \Delta_{m_1} \oplus \dots \oplus \Delta_{m_{i-1}} \oplus \Delta_{m_i+m_{i+1}} \oplus \Delta_{m_{i+2}} \dots \oplus \Delta_{m_r}$, where \mathfrak{R}_{i+1} is a direct sum of m_i simple components of $\Lambda/\mathfrak{M}_{i+1}$, and $\Lambda/\mathfrak{M}_i = \Delta_{m_i}$, and $\Omega_i = \operatorname{Hom}^r_{\Lambda}(\mathfrak{M}_i, \mathfrak{M}_i)$.

Proof. We obtain similarly to the proof of Lemma 2.2 that $\Lambda/\mathfrak{M}_i \approx \operatorname{Hom}_{\Lambda/\mathfrak{M}_{i+1}}^r(\mathfrak{N}/\mathfrak{M}_{i+1}, \mathfrak{N}/\mathfrak{M}_{i+1})$, since $\Lambda = \operatorname{Hom}_{\Lambda}^r(\mathfrak{N}, \mathfrak{N})$ and $\mathfrak{M}_i\mathfrak{N} = \mathfrak{M}\mathfrak{M}_{i+1}$. Furtheremore, since $\mathfrak{M}_i = C(\operatorname{Hom}_{\Lambda}^r(\mathfrak{M}_i, \mathfrak{M}_i))$, and $\mathfrak{N}/\mathfrak{M}_i\mathfrak{N} = \mathfrak{N}/\mathfrak{M}_{i+1}$, we have the lemma by Lemma 1.1.

COROLLARY. Let Λ be an h-order with radical \Re such that $\Lambda/\Re \approx \sum_{i=1}^{r} \Delta_{m_i}$, then $\sum_{i=1}^{r} m_i$ does not depend on Λ , and the length of maximal chain for h-orders in Σ does not exceed $n = \sum_{i=1}^{r} m_i$.

Proof. Since, every maximal order is isomorphic, Σm_i does not depend on Λ . Since $n = \Sigma m_i \ge r$, the second part is clear by [5], Theorem 3.3.

REMARK. We shall show that every length of maximal chain is equal to n in the following section.

Before proving one of the main theorems in this section we shall consider a special situation of Lemma 2.3. Let $\Gamma = \operatorname{Hom}_{\Lambda}^{r}(\mathfrak{M}_{1}, \mathfrak{M}_{1})$. Then $\mathfrak{C}_{i} = I(\mathfrak{M}_{1}, \mathfrak{M}_{i})$.

LEMMA 2.6. Let Γ , Λ and \mathfrak{C}_i be as above. Then $\{\mathfrak{C}_i\Gamma\}\ i=2, \dots, r$ is the normal sequence in Γ .

Proof. Let $\mathfrak{L}_i = \mathfrak{C}_i \Gamma$. Then $\Omega = \operatorname{Hom}_{\Lambda}^r(\mathfrak{C}_2, \mathfrak{C}_2) = \operatorname{Hom}_{\Gamma}^r(\mathfrak{L}_2, \mathfrak{L}_2)$. If Ω is maximal, then Γ contains only two maximal ideals, and hence, we have nothing to prove. Thus, we may assume $r \ge 4$. We denote $N(\Gamma)$, $N(\Omega)$, $N(\Lambda)$ by $\mathfrak{R}, \mathfrak{R}', \mathfrak{R}''$, respectively. Let $\Gamma_1 = \operatorname{Hom}_{\Lambda}^r(\mathfrak{M}_2, \mathfrak{M}_2) \le \Omega$. Then $\mathfrak{M}_2/\mathfrak{M}_2\mathfrak{R}'' = \Lambda/\mathfrak{M}_1 \oplus \Lambda/\mathfrak{M}_3 \oplus \mathfrak{R}_3 \oplus \cdots \oplus \Lambda/\mathfrak{M}_r$ and $\mathfrak{C}_2 + \mathfrak{R}''/\mathfrak{R}'' = \Lambda/\mathfrak{M}_3 \oplus \cdots \oplus \Lambda/\mathfrak{M}_r$ and $\mathfrak{C}_2 + \mathfrak{R}''/\mathfrak{R}'' = \Lambda/\mathfrak{M}_3 \oplus \cdots \oplus \Lambda/\mathfrak{M}_r$.

³⁾ i means that we omit *i* th component.

 $\mathfrak{M}_{2}\mathfrak{N}'/\mathfrak{M}_{2}\mathfrak{N}'=\Lambda/\mathfrak{M}_{3}\oplus\mathfrak{M}_{3}\oplus\cdots\oplus\Lambda/\mathfrak{M}_{r}$. We consider a natural right Λ -homomorphism $\varphi: \mathfrak{C}_{2}/\mathfrak{C}_{2}\mathfrak{N}''\to\mathfrak{M}_{2}/\mathfrak{M}_{2}\mathfrak{N}''$. Then $\varphi(\mathfrak{C}_{2}/\mathfrak{C}_{2}\mathfrak{N}'')=\mathfrak{C}_{2}+\mathfrak{M}_{2}\mathfrak{M}_{2}''/\mathfrak{M}_{2}\mathfrak{N}''=\Lambda/\mathfrak{M}_{3}\oplus\mathfrak{R}_{3}\oplus\cdots\oplus\Lambda/\mathfrak{M}_{r}$. On the other hand $\mathfrak{C}_{2}/\mathfrak{C}_{2}\mathfrak{N}''\simeq\Lambda/\mathfrak{M}_{3}\oplus\cdots\oplus\Lambda/\mathfrak{M}_{r}\oplus\Lambda/\mathfrak{M}_{r}\oplus\mathfrak{C}_{2}\cap\mathfrak{N}''/\mathfrak{C}_{2}\mathfrak{N}''$. Hence, $\mathfrak{C}_{2}\cap\mathfrak{N}''/\mathfrak{C}_{2}\mathfrak{N}''$ contains a direct sum \mathfrak{K}'_{3} of simple components which appear in Λ/\mathfrak{M}_{3} . Let $\{\mathfrak{D}_{i}=I(\mathfrak{L}_{2},\mathfrak{L}_{i})\Omega\}$ $i=3,\cdots,r$ be the set of maximal ideals in Ω . Since $\Omega=\mathrm{Hom}_{\mathrm{T}}^{r}(\mathfrak{L}_{2},\mathfrak{L}_{2})$, we obtain by Lemmas 2.4, 2.5, $\mathfrak{D}_{i}/\mathfrak{N}'\approx\Gamma/\mathfrak{L}_{i}\approx\Lambda/\mathfrak{M}_{i}$ as a ring for $i\geq3$ except one k of indices i. However, we have shown that $\mathfrak{C}_{2}/\mathfrak{C}_{2}\mathfrak{N}''\geq\Lambda/\mathfrak{M}_{3}\oplus\mathfrak{R}'_{3}$, and hence, we know k=3. Therefore, by Lemma 2.5 we obtain $\mathfrak{N}^{-1}\mathfrak{L}_{2}\mathfrak{N}=\mathfrak{L}_{3}$. Similarly, we can prove $\mathfrak{N}^{-1}\mathfrak{L}_{i}\mathfrak{N}=\mathfrak{L}_{i+1}$ for $i\leq n-1$. Therefore, we have proved the lemma by Theorem 2.1.

Now, we can prove the following theorem.

THEOREM 2.3. Let Λ be an h-order with normal sequence $\{\mathfrak{M}_i\}$ $i=1, \dots, n$. \dots, n . Then for an order Γ corresponding to a sequence $\{S_i\}$ $i=1, \dots, r$, $\{\mathfrak{C}_i\Gamma\}$ $i=1, \dots, r$ is the normal sequence in Γ . Furthermore, $C(\Gamma)/C(\Gamma)\mathfrak{R}$ $\approx \mathfrak{R}_1^{i_1} \oplus \mathfrak{R}_2^{i_2} \oplus \dots \oplus \mathfrak{R}_r^{i_r}$.⁴⁾ Hence, $\Gamma/N(\Gamma) \approx \Delta_{l_1} \oplus \dots \oplus \Delta_{l_r}$, where \mathfrak{R}_i is a simple component in $\Lambda/\mathfrak{M}_{t_i+m_i-1}$, and $l_i = \sum_{j=l_i}^{l_i+m_i-1} s_i$, and $\Lambda/\mathfrak{M}_i = \Delta_{s_i}$, $\mathfrak{C}_i = I(S_1, \dots, S'_i, \dots, S_r)\Gamma$.

Proof. We shall prove the theorem by induction on the number r of maximal two-sided ideals in Γ . If r=n, then $\Lambda=\Gamma$. If r=n-1, then the theorem is true by Lemma 2.6. We assume r < n-1. Let Γ' be an order between Λ and Γ such that $C(\Gamma')=I\{\bar{S}_0,\bar{S}_1,\dots,\bar{S}_r\}$, and $\{\bar{S}'_0,\bar{S}_1\}=S_1, \ \bar{S}_i=S_i$ for $i \ge 2$. Then $\{I(\bar{S}_0,\dots,\bar{S}'_i,\dots,\bar{S}_r)\Gamma'\}$ $i=0,\dots,r$ is the normal sequence in Γ' by induction hypothesis. Let $\mathfrak{L}_i=I(\bar{S}_0,\dots,\bar{S}'_i,\dots,\bar{S}'_r)$, $\bar{S}_r)\Gamma'$. Since $\mathfrak{L}_0=C(\Gamma)\Gamma', \ \Gamma=\operatorname{Hom}_{\Gamma'}^{r'}(\mathfrak{L}_0,\mathfrak{L}_0)$. Therefore, by Lemma 2.6, $\{I_{\Gamma'}(\mathfrak{L}_0,\mathfrak{L}_i)\Gamma\}$ $i=1,\dots,r$ is the normal sequence in Γ . Since $S_1=\{\bar{S}'_0,\bar{S}_1\}$, $I_{\Gamma'}(\mathfrak{L}_0,\mathfrak{L}_i)\Gamma=I(S_1,\dots,S'_i,\dots,S_r)\Gamma$. Furthermore, $\Gamma/N(\Gamma) \approx \Delta_{I_0'+I_1} \oplus \Delta_{I_2'} \dots \oplus \Delta_{I_r'}$, where $\Gamma'/N(\Gamma') \approx \Delta_{I_0'} \oplus \Delta_{I_1'} \oplus \Delta_{I_2'} \oplus \dots \oplus \Delta_{I_r'}$; $I'_i=I_i$ for $i\ge 2$. Since $\sum_{i=1}^r l'_i = \sum_{i=1}^r l_i, \ l_1=l'_0+l'_1$. Thus we have proved the second part by Lemma 2. 4.

Let Λ be an *h*-order with $\{\mathfrak{M}_i\}$ $i=1, \dots, r$. If $\Lambda/\mathfrak{M}_i=\Delta_{m_i}$, then (m_1, \dots, m_r) is uniquely determined by Λ up to cyclic permutation. We call it a *form of* Λ . Furthermore, we know that (m_1, \dots, m_r) is a nonzero integral solution of

$$(1) \qquad \qquad \sum_{i=1}^r X_i = n.$$

⁴⁾ For any right Λ -module \mathfrak{M} , \mathfrak{M}^t -means a direct sum of t copies of \mathfrak{M} .

COROLLARY. If Λ is a minimal h-order in Σ with normal sequence $\{\mathfrak{M}_i\}$ $i=1, \dots, n$ then for any nonzero integral solution (m_1, \dots, m_r) of (1) there exists an h-order Γ , whose form is (m_1, \dots, m_r) .

Proof. We associate a solution (m_1, \dots, m_r) to a set $\{S'_1, \dots, S'_r\}$, $S'_1 = \{\mathfrak{M}_{t_i}, \dots, \mathfrak{M}_{t_i+m_{i-1}}\}$, where $t_i = m_1 + \dots + m_{i-1}$, $m_0 = 1$. Then $\Gamma = \operatorname{Hom}_{\Delta}^r(I(S_1, \dots, S_r))$, $I(S_1, \dots, S_r)$) is a desired order by the theorem.

3. Minimal *h*-orders.

By Theorem 1.1, we know that there exist minimal *h*-orders Λ in the central simple *K*-algebra, namely $\Lambda/N(\Lambda) = \Delta \oplus \cdots \oplus \Delta$. In this section, we shall show that every *h*-order contains minimal *h*-orders.

LEMMA 3.1. Let Γ be an h-order and Λ , Λ' be h-orders in Γ such that there exist no orders between Γ and Λ , Λ' , respectively. If $C_{\Lambda}(\Gamma)/\Re \approx C_{\Lambda'}(\Gamma)/\Re$, then Λ is isomorphic to Λ' by an inner-automorphism of unit element in Γ , where $\Re = N(\Gamma)$.

Proof. Let $\mathfrak{C} = C_{\Lambda}(\Gamma)$, $\mathfrak{C}' = C_{\Lambda'}(\Gamma)$. Since $\mathfrak{C}/\mathfrak{N} \approx \mathfrak{C}'/\mathfrak{N}$, there exists a unit element \mathscr{E} in Γ such that $\mathfrak{C} = C'\mathscr{E} = \mathscr{E}^{-1}C'\mathscr{E}$. $\Gamma' = \operatorname{Hom}^{\iota}_{\Lambda}(\mathfrak{C}, \mathfrak{C}) = \operatorname{Hom}^{\iota}_{\Lambda}(\mathscr{E}^{-1}\mathfrak{C}'\mathscr{E}, \mathscr{E}^{-1}\mathfrak{C}'\mathscr{E}) \supseteq \mathscr{E}^{-1} \operatorname{Hom}^{\iota}_{\Lambda}(\mathfrak{C}', \mathfrak{C}')\mathscr{E} = \mathscr{E}^{-1}\Gamma''\mathscr{E}$, where $\Gamma'' = \operatorname{Hom}^{\iota}_{\Lambda}(\mathfrak{C}', \mathfrak{C}')$. On the other hand, by Theorem 2.3, we obtain that Γ' and Γ'' contains the same number of maximal two-sided ideals as those in Γ . Hence, $\Gamma' = \mathscr{E}^{-1}\Gamma''\mathscr{E}$ by [5], Theorem 3.3. Furthermore, $\Lambda = \Gamma_{\cap} \Gamma' = \Gamma_{\cap} \mathscr{E}^{-1}\Gamma''\mathscr{E} = \mathscr{E}^{-1}(\Gamma_{\cap} \Gamma'') = \mathscr{E}^{-1}\Lambda'\mathscr{E}$.

LEMMA 3.2. Let $\Gamma \supseteq \Lambda$ be h-orders, then $N(\Lambda) \ge N(\Gamma)$.

Proof. Let $\mathfrak{N}=N(\Lambda)$, and $\mathfrak{N}'=\mathfrak{N}(\Gamma)$. We may assume that there are no orders between Λ and Γ . Then $\mathfrak{C}_{\Lambda}(\Gamma)=\mathfrak{M}$ is a maximal two-sided ideal in Λ by Lemma 2.4. Hence, we obtain by Lemma 1.1 that $\mathfrak{N}'\mathfrak{N} \leq \mathfrak{M}'\mathfrak{M} \leq \mathfrak{M}\mathfrak{N} \leq \mathfrak{N}$. Therefore, $\mathfrak{N}'=\mathfrak{N}'\Lambda \leq \mathfrak{M}\Lambda=\mathfrak{M}$. For any maximal two-sided ideal $\mathfrak{M}' \neq \mathfrak{M}$ in Λ , we have $\mathfrak{N}'=\mathfrak{N}'(\mathfrak{M}+\mathfrak{M}') \leq \mathfrak{N}+\mathfrak{M}\mathfrak{M}' \leq \mathfrak{M}'$ since $\Lambda=\mathfrak{M}+\mathfrak{M}'$. Therefore, $\mathfrak{N}' \leq \bigcap \mathfrak{M}=\mathfrak{N}$.

THEOREM 3.1. Every h-order contains minimal h-orders.

Proof. We obtain a minimal *h*-order Λ by Theorem 1.1. Let Γ be *h*-order. Since every maximal order is isomorphic, we may assume Λ and Γ are contained in a maximal order. Let $\{\mathfrak{M}_i\}$ $i=1, \dots, r$ be the normal sequence of Γ with form (m_1, \dots, m_r) , and $\Omega = \operatorname{Hom}_{\Gamma}^r(\mathfrak{M}_1, \mathfrak{M}_1)$. We assume that $\Omega \ge \Lambda$. Let $\mathfrak{N} = N(\Omega)$, and $\mathfrak{N}' = N(\Gamma)$. Since $\mathfrak{N}' \supseteq \mathfrak{N}$, $\mathfrak{M}_1 \supseteq \mathfrak{N}$. Now, we consider a left ideal $\mathfrak{M}_1/\mathfrak{N}'$ in $\Omega/\mathfrak{N} = \operatorname{Hom}_{\Gamma'/\mathfrak{M}}^r(\mathfrak{M}_1/\mathfrak{M}_1\mathfrak{N}')$.

 $\mathfrak{M}_1/\mathfrak{M}_1\mathfrak{N}'$). Since $(\mathfrak{M}_i, \mathfrak{M}_j) = 1$ if $i \neq j$, there exist m in \mathfrak{M}_1 and y in $\mathfrak{M}_2 \cdots \mathfrak{M}_r$ \mathfrak{M}_r such that 1 = m + y, $m^2 - m = m(m-1) \in \mathfrak{M}_1\mathfrak{M}_2 \cdots \mathfrak{M}_r = \mathfrak{M}_1(\mathfrak{M}_1\mathfrak{M}_2 \cdots \mathfrak{M}_r) \subseteq \mathfrak{M}_1\mathfrak{N}'$. Therefore, $\mathfrak{M}_1/\mathfrak{M}_1\mathfrak{N}' = m\Lambda + \mathfrak{M}_1\mathfrak{N}'/\mathfrak{M}_1\mathfrak{N}' \oplus \mathfrak{N}'/\mathfrak{M}_1\mathfrak{N}'$. It is clear that $\mathfrak{M}_1(\mathfrak{N}'/\mathfrak{M}_1\mathfrak{N}') = (0)$. Hence, $\mathfrak{M}_1/\mathfrak{N} = (\Omega/\mathfrak{N})m \approx \mathbb{I}^{m_2} \oplus \Omega/\mathfrak{L}_3 \oplus \cdots \oplus \Omega/\mathfrak{L}_r$, where the \mathfrak{L}_i 's are maximal ideals in Ω , and \mathfrak{l} is a simple component in Ω/\mathfrak{L}_2 . On the other hand, since Ω contains Λ , Ω contains an h-order Γ' with form (m_1, \cdots, m_r) by Corollary to Theorem 2.3, and $\Omega = \operatorname{Hom}_{\Lambda'}(\mathfrak{M}_1', \mathfrak{M}_1')$, and $\Gamma'/\mathfrak{M}_1 = \Delta_{m_1}$. Therefore, $\mathfrak{M}_1/\mathfrak{N} \approx \mathfrak{M}_1'/\mathfrak{N}$ by the above observation. Hence, Γ is isomorphic to Γ' which contains Λ . We can prove the theorem by induction.

COROLLARY. Every minimal h-order is isomorphic. If two minimal h-orders are contained in an order Γ , then this isomorphism is given by a unit element in Γ .

Proof. In the above, we use the fact that any h-order is isomorphic to an order containing a fixed minimal h-order, which implies the first part of the corollary. The second part is clear from the proof of the theorem.

THEOREM 3.2. Let Ω be a maximal order such that $\Omega/N(\Omega) = \Delta_n$. Then every length of maximal chain for h-orders is equal to n.

Proof. It is clear from Theorems 1.1 and 3.1.

4. Isomorphisms of *h*-orders.

In this section, we shall discuss isomorphisms over R among h-orders. For this purpose, we shall use the following definition. Let Γ_1 , Γ_2 be h-orders containing an h-order Λ . If there exists an isomorphism θ of Γ_1 to Γ_2 such that $\theta(\Lambda) = \Lambda$, we call θ "isomorphism over Λ ", and " Γ_1 , Γ_2 are isomorphic over Λ ". Let Λ be an h-order with normal sequence $\{\mathfrak{M}_i\}$ $i = 1, \dots, r$. Then we shall call that Λ is rth order, and the rank of Λ is r. Ist order is nothing but maximal order Ω , and nth order is minimal if $\Omega/N(\Omega) = \Delta_n$.

We have introduced an equation

$$(1) \qquad \qquad \sum_{i=1}^{r} X_i = n$$

in Section 2. We shall only consider nonzero integral solutions of (1). Hence, by solution we mean always such solutions. We shall define a relation among solutions (a_1, \dots, a_r) as follows: $(a_1, \dots, a_r) \equiv (a'_1, \dots, a'_r)$ if they are only different by a cyclic permutation. We shall denote the

number of classes of solutions by $\varphi(n, r)$. It is clear that $\varphi(n, r) = \varphi(n, n-r)$, and that $\varphi(n, 2) = \lfloor n/2 \rfloor$, and $\varphi(p, r) = \binom{p}{r} / p$, where p is prime and [] Gauss' number.

We note that every isomorphism is given by an inner-automorphism in Σ .

Let Λ be an *h*-order with radical \mathfrak{N} . If \mathfrak{N} is principal, we call Λ "*a principal h-order*". Every maximal order and minimal order are principal.

THEOREM 4.1. Let Λ be an h-order with form (m_1, \dots, m_r) . Then Λ is principal if and only if $m_1 = \dots = m_r$, (cf. [9], Theorem 1).

Proof. If $m_1 = \cdots = m_r$, Λ is principal by the fact $\Lambda = \operatorname{Hom}_{\Lambda}^r(\mathfrak{N}, \mathfrak{N}) = \operatorname{Hom}_{\Lambda}^i(\mathfrak{N}, \mathfrak{N})$ and by [5], Corollary 4.5. Conversely, if $N = \alpha \Lambda = \Lambda \alpha$, then $\alpha^{-1}(\Lambda/\mathfrak{M}_i)\alpha = \Lambda/\alpha^{-1}\mathfrak{M}_{i+1}\alpha$ by Theorem 2.1, and hence, $m_i = m_{i+1}$ for all *i*.

PROPOSITION 4.1. Let Λ be an h-order with radical \mathfrak{N} , and Γ_1 , Γ_2 orders containing Λ . If Γ_1 , Γ_2 are isomorphic over Λ , then this isomorphism is given by an element in \mathfrak{N} . In this case $C(\Gamma_2) = \mathfrak{N}^{-t}C(\Gamma_i)\mathfrak{N}^t$ for some t.

Proof. If $\beta^{-1}\Gamma_1\beta = \Gamma_2$, and $\beta\Lambda\beta^{-1} = \Lambda$ for $\beta \in \Sigma$, then we may assume that $\beta \in \Lambda$. Since $\beta\Lambda = \Lambda\beta$ is inversible two-sided ideal in Λ , $\beta\Lambda = \mathfrak{N}^t$ for some $t \ge 0$. It is clear that $C(\Gamma_2) = \beta^{-1}C(\Gamma_1)\beta = \mathfrak{N}^{-t}C(\Gamma_1)\mathfrak{N}^t$.

COROLLARY. If Λ is principal, then Γ_1 and Γ_2 are isomorphic over Λ if and only if $\Re(\Gamma_1) = \Re^{-t}C(\Gamma_1)\Re^t$ for some t, where $\Re = \Re(\Lambda)$.

THEOREM 4.2. Let Λ be a principal h-order of a form (s, \dots, s) . Then the following statements are true:

1) Γ_1, Γ_2 are isomorphic if and only if Γ_1, Γ_2 are isomorphic over Λ .

2) The number of classes of isomorphic m-rth orders containing Λ is equal to $\varphi(m, r)$.

3) Those isomorphisms are given by inner-automorphisms of α^i for some *i*, where $N(\Lambda) = \alpha \Lambda = \Lambda \alpha$.

4) Let Λ_1 , Λ_2 be h-orders. Then Λ_1 and Λ_2 are isomorphic if and only if they are of same form.

Proof. Let Γ_1 and Γ_2 be m-r th orders and $\mathfrak{G}_i = C(\Omega_i)$ i=1, 2. Let $\mathfrak{G}_1 = I(\mathfrak{M}_{i_1}, \mathfrak{M}_{i_2}, \dots, \mathfrak{M}_{i_r})$ $\mathfrak{G}_2 = I(\mathfrak{M}_{j_1}, \mathfrak{M}_{j_2}, \dots, \mathfrak{M}_{j_r})$, $i_1 \leq i_2 \leq \cdots \leq i_r$; $j_1 \leq j_2 \leq \cdots \leq j_r$, and $\{\mathfrak{M}_i\}$ $i=1, \dots, m$ the normal sequence of Λ . If Γ_1 and Γ_2

are isomorphic over Λ , then $\mathfrak{C}_2 = \alpha^{-t} \mathfrak{C}_1 \alpha^t$ for some t by the above corollary. Furthermore, $\alpha^{-t}\mathfrak{M}_{i_l}\alpha^t = \mathfrak{M}_{(i_l+t)}$, where $(i_{i_1}+t) \equiv i_l+t \mod m$, and 0 < (i+t) $\leq m$. Therefore, $((i_{l+1}+t), (i_{l_1+2}+t), \cdots, (i_{l_1+s}+t), (i_{l_2+1}+t), \cdots, (i_{l_2+(r-s)}+t))$ $\equiv (j_1, j_2, \dots, j_r)$. We shall associate the set (j_1, j_2, \dots, j_r) to a class of solution of (1) as follows: $x_1 = j_2 - j_1, \dots, x_2 = j_3 - j_2, \dots, x_{r-1} = j_r - j_{r-1},$ $x_r = j_1 + m - j_r$. Then (j_1, \dots, j_r) , and (i_1, \dots, i_r) correspond to the same class. Coversely, for any m-r th h-orders Γ_1 and Γ_2 if (j_l) , (i_l) correspond to the same class, then there exists some t such that $((i_l+t))=(j_l)$. Hence, $\beta^{-1}\Gamma_1\beta = \Gamma_2$. Let (x_1, \dots, x_r) be any solution of (1). Let $\mathfrak{C} = I(\mathfrak{M}_1, \dots, x_r)$ $\mathfrak{M}_{1+x_1}, \dots, \mathfrak{M}_{1+x_1+\dots+x_{r-1}}$, then $\Gamma = \operatorname{Hom}_{\Lambda}^r(\mathfrak{C}, \mathfrak{C})$ is an *h*-order containing Λ and Γ corresponds to (x_1, \dots, x_r) by the above mapping, which implies 2). Next, we shall consider r th order Γ_i (i=1, 2) containing A. If Γ_1 and Γ_2 are isomorphic, then they are of same form $(st_1, st_2, \dots, st_r)$. If we associate (t_1, t_2, \dots, t_r) to Γ_i , then Γ_1 and Γ_2 correspond to the same class of solution of (1) replacing n by m. Conversely, for any solution (t_i) of (1), we can find an order $\Gamma(\geq \Lambda)$ of a form (st_1, \dots, st_r) by Theorem 2.3. Hence, the number of classes of isomorphic r th orders is equal to or larger than $\varphi(m, r)$. On the other hand, that number does not exceed the number of classes of isomorphic r th orders over Λ , which is equal to $\varphi(m, m-r)$ $=\varphi(m, r)$ by 2). Therefore, we have proved 1). 3) is clear by 1) and Proposition 4.1. 4) is clear from the above and Theorem 3.1.

COROLLARY 4.1. Let Γ_1 and Γ_2 be isomorphic over Λ , then they are isomorphic over any principal h-orders Λ' contained in Λ . In this case the form of Λ has a periodicity.⁵

Proof. The first part is clear by the theorem, and the isomorphism is given by α^t , where $\Re = N(\Lambda') = \alpha \Lambda'$. Hence, $\alpha^{-t} \Lambda \alpha^t = \Lambda$, which means $C_{\Lambda'}(\Lambda) = \Re^{-t} C_{\Lambda'}(\Lambda) \Re^t$.

COROLLARY 4.2. Let Γ_1 and Γ_2 be h-orders contained in an order Ω , and which are isomorphic, then this isomorphism is given by a unit element in Ω and an element α^t , where α is a generator of radical of minimal h-order contained in Γ_1 .

It is clear by Theorem 4.2 and Corollary to Theorem 3.1.

COROLLARY 4.3. For principal h-orders Γ_1 , Γ_2 , the following statements are equivalent:

⁵⁾ If a form is the following type: $(m_1, m_2, \dots, m_1, m_2, \dots)$, then we call the form has a periodicity.

- 1) Γ_1 and Γ_2 are isomorphic,
- 2) $\Gamma_1/N(\Gamma_1)$ and $\Gamma_2/N(\Gamma_2)$ are isomorphic,
- 3) Γ_1 and Γ_2 are of the same rank.

REMARK. The above corollary is not true for any *h*-order. For instance, let $\{\mathfrak{M}_1, \mathfrak{M}_2, \dots, \mathfrak{M}_6\}$ be the normal sequence of a minimal *h*-order Λ in K_6 , and $\mathfrak{C}_1 = I(\mathfrak{M}_2, \mathfrak{M}_4, \mathfrak{M}_5)$, $\mathfrak{C}_2 = I(\mathfrak{M}_1, \mathfrak{M}_4, \mathfrak{M}_5)$. Then $\Gamma_1 = \operatorname{Hom}_{\Lambda}^r(\mathfrak{C}_1, \mathfrak{C}_1)$ and $\Gamma_2 = \operatorname{Hom}_{\Lambda}^r(\mathfrak{C}_2, \mathfrak{C}_2)$ have different form (1, 2, 3) and (2, 1, 3), but $\Gamma_2/N(\Gamma_1)$ $\approx \Gamma_2/N(\Gamma_2)$.

COROLLARY 4.4. Let Γ_1 and Γ_2 be h-orders containing principal horders Λ_1 , and Λ_2 such that there exist no orders between Γ_i and Λ_i . Then the statements in Corollary 4.3 are true.

Proof. Every Γ containing Λ which satesfies the condition of the corollary is isomorphic by Theorems 2.3 and 4.2. Hence, the corollary is true by Corollary 4.2.

COROLLARY 4.5. Let n be the length of maximal chain for h-orders. If $n \leq 5$, 1) and 2) in Corollary 4.3 are equivalent for any orders. If $n \leq 3$, 1), 2), and 3) in Corollary 4.3. are equivalent for any orders.

We shall recall the definition of same type in [5], Section 4. If there exists a left Γ_1 and right Γ_2 ideal \mathfrak{A} in Σ for two orders Γ_1 and Γ_2 such that $\Gamma_1 = \operatorname{Hom}_{\Gamma_2}^r(\mathfrak{A}, \mathfrak{A})$, and $\Gamma_2 = \operatorname{Hom}_{\Gamma_1}^i(\mathfrak{A}, \mathfrak{A})$, we call " Γ_1 and Γ_2 belong to the same type".

LEMMA 4.1. Let Λ_1 and Λ_2 be h-orders which belong to the same type, and Ω_1 , Ω_2 containing Λ_1 , Λ_2 , respectively. Then Ω_1 , Ω_2 belong to the same type if and only if Ω_1 and Ω_2 are of same rank.

Proof. By the assumption, we have a left Λ₁ and right Λ₂ ideal \mathfrak{A} such that Λ₁=Hom^{*r*}_{Λ₂}(𝔅, 𝔅), Λ₂=Hom^{*l*}_{Λ₁}(𝔅, 𝔅). Then $\mathfrak{M}\mathfrak{A}^{-1}=\Lambda_1$, $\mathfrak{A}^{-1}\mathfrak{A}=\Lambda_2$, and hence, $\mathfrak{A}^{-1}\Lambda_1\mathfrak{A}=\Lambda_2$, and $\mathfrak{A}\Lambda_2\mathfrak{A}^{-1}=\Lambda_1$ by [5], Section 4. Let $\mathfrak{C}=C_{\Lambda_1}(\Omega_1)$. Then Ω_1 =Hom^{*r*}_{Λ₁}(𝔅, 𝔅). It is clear that Ω_1 =Hom^{*r*}_{Λ₁}(𝔅, 𝔅)=Hom^{*r*}_𝔅_{Λ₁(𝔅), $\mathfrak{C}\mathfrak{A}$)=Hom^{*r*}_{Λ₂}(𝔅 𝔅). Let Ω'_2 =Hom^{*l*}_{Ω₁}(𝔅 𝔅), then $\Omega'_2 \ge \Lambda_2$. Since Ω_1 , Ω'_2 belong to the same type, they are of same rank. Therefore, Ω_2 , Ω'_2 belong to the same type by [5], Theorem 4.2. Hence, Ω_1 and Ω_2 belong to the same type.}

The following theorem is a generalization of [5], Theorem 4.3.

THEOREM 4.3. Let Γ_1 , Γ_2 be orders in Σ . Then Γ_1 and Γ_2 belong to the same type if and only if Γ_1 and Γ_2 are of same rank.

Proof. Let Λ_1 , Λ_2 be minimal *h*-orders in Γ_1 , Γ_2 , respectively. Then $\Lambda_1 = \mathcal{E}\Lambda_2 \mathcal{E}^{-1}$ by Corollary to Theorem 3.1. Hence, $\Lambda_1 = \operatorname{Hom}_{\Lambda_2}^r(\mathcal{E}\Lambda_2, \mathcal{E}\Lambda_2)$, and $\Lambda_2 = \operatorname{Hom}_{\Lambda_1}^r(\Lambda_1 \mathcal{E}, \Lambda_1 \mathcal{E})$. Thus, we obtain the theorem by Lemma 4.1.

5. Chain of *h*-orders.

In this section, we shall study by making use of arguments in the proof of Theorem 3.1 how we can find maximal chains of *h*-orders which pass a given *h*-order Γ . We have already known by [5], Theorem 3.3 how we can construct chains of *h*-orders containing Γ , which is determined by the structure of $\Gamma/N(\Gamma)$.

First, we shall study a relation between left conductor D() and right conductor C().

THEOREM 5.1. Let $\Gamma \ge \Lambda$ be h-orders. Then $C(\Gamma) = \Re D(\Gamma) \Re^{-1}$, where $\Re = N(\Lambda)$.

Proof. Let $\{\mathfrak{M}_i\}$ $i=1, \dots, r$ be the normal sequence in Λ , and let $\Gamma = \operatorname{Hom}_{\Lambda}^{\epsilon}(\mathfrak{M}_{2}, \mathfrak{M}_{2}),$ then $D(\Gamma) = \mathfrak{M}_{2}$. There exists some \mathfrak{M}_{i} such that $\Gamma = \operatorname{Hom}_{\wedge}^{r}(\mathfrak{M}_{i}, \mathfrak{M}_{i})$, and hence, $\{I(\mathfrak{M}_{i}, \mathfrak{M}_{i})\Gamma\}$ $i \neq j$ is the normal sequence in Γ . Since $\mathfrak{M}_2/\mathfrak{M}_2 \approx \Lambda/\mathfrak{M}_1 \oplus \Lambda/\mathfrak{M}_3 \oplus \cdots \oplus \Lambda/\mathfrak{M}_r \oplus \mathfrak{L}$, where $\mathfrak{L} = \mathfrak{N}/\mathfrak{M}_2$ is a direct sum of m_2 simple components which apper in $\Lambda/\mathfrak{M}_1, \mathfrak{M}_2I(\mathfrak{M}_i, \mathfrak{M}_{i+1})\Gamma$ $+\mathfrak{N}\mathfrak{M}_{\scriptscriptstyle 2}/\mathfrak{N}\mathfrak{M}_{\scriptscriptstyle 2}=\Lambda/\mathfrak{M}_{\scriptscriptstyle 1}\oplus\Lambda/\mathfrak{M}_{\scriptscriptstyle 3}\oplus\cdots\stackrel{i}{\oplus}\stackrel{i+1}{\oplus}\cdots\oplus\Lambda/\mathfrak{M}_{\it n}\oplus\mathfrak{N}I(\mathfrak{M}_{\it i},\,\mathfrak{M}_{\it i+1})\Gamma/\mathfrak{N}\mathfrak{M}_{\scriptscriptstyle 2}.$ Hence, if $i \neq 1$, n, $\Gamma/I(\mathfrak{M}_i, \mathfrak{M}_{i+1})\Gamma \approx \Delta_{m_i}$ or $\Delta_{m_{i+1}}$ by Lemma 2.1. However, $\Gamma/I(\mathfrak{M}_i, \mathfrak{M}_{i+1})\Gamma = \Delta_{m_i+m_{i+1}}$ by Lemma 2.5, which is a contradiction. If i=n, then $\Re_2(I(\mathfrak{M}_1, \mathfrak{M}_n)\Gamma)=(0)$, and hence, $\mathfrak{M}_2I(\mathfrak{M}_1, \mathfrak{M}_n)\Gamma+\mathfrak{M}\mathfrak{M}_2/\mathfrak{M}\mathfrak{M}_2=$ $\Lambda/\mathfrak{M}_3 \otimes \cdots \otimes \Lambda/\mathfrak{M}_{n-1}$, which also contradicts the fact that $I(\mathfrak{M}_1, \mathfrak{M}_n)\Gamma$ is a maximal two-sided ideal. Let $\mathfrak{C} = I(\mathfrak{M}_2, \dots, \mathfrak{M}_t)$ and $\mathfrak{D} = I(\mathfrak{M}_1, \dots, \mathfrak{M}_{t-1})$, then $\mathfrak{C} = \mathfrak{N}^{-1}\mathfrak{D}\mathfrak{N}$. We assume that $\Gamma = \operatorname{Hom}_{\lambda}^{\mathfrak{c}}(\mathfrak{C}, \mathfrak{C}) = \operatorname{Hom}_{\lambda}^{\mathfrak{c}}(\mathfrak{D}, \mathfrak{D})$. Then $\Omega = \operatorname{Hom}_{\Lambda}^{l}(I(\mathfrak{C}, \mathfrak{M}_{t+1}), I(\mathfrak{C}, \mathfrak{M}_{t+1})) = \operatorname{Hom}_{\Gamma}^{l}(\Gamma I(\mathfrak{C}, \mathfrak{M}_{t+1}), \Gamma I(\mathfrak{C}, \mathfrak{M}_{t+1})) = \operatorname{Hom}_{\Gamma}^{r}$ $(\Gamma I(\mathfrak{C}, \mathfrak{M}_1), \Gamma I(\mathfrak{C}, \mathfrak{M}_1))$ by the first part. Hence, $\Omega = \operatorname{Hom}_{\Lambda}^{\iota}(I(\mathfrak{C}, \mathfrak{M}_{t+1}))$ $I(\mathfrak{C}, \mathfrak{M}_{t+1})) = \operatorname{Hom}_{\Lambda}^{r}(\mathfrak{N}I(\mathfrak{C}, \mathfrak{M}_{t+1})\mathfrak{N}^{-1}, \mathfrak{N}I(\mathfrak{C}, \mathfrak{M}_{t+1})\mathfrak{N}^{-1}).$ Thus, we can prove by induction that for maximal orders $\Omega_i \ge \Lambda$, $\mathbb{G}_i = C(\Omega_i) = \Re D(\Omega_i) \Re^{-1}$. Let $\Gamma = \bigcap \Omega_i = \bigcap \operatorname{Hom}_{\Lambda}^r(\mathfrak{C}_i, \mathfrak{C}_i) = \bigcap \operatorname{Hom}_{\Lambda}^i(\mathfrak{N}^{-1}\mathfrak{C}_i\mathfrak{N}, \mathfrak{N}^{-1}\mathfrak{C}_i\mathfrak{N}) = \operatorname{Hom}_{\Lambda}^i(\mathfrak{N}^{-1}C(\Gamma)\mathfrak{N}, \mathfrak{N})$ $\mathfrak{N}^{-1}C(\Gamma)\mathfrak{N}$, since $\mathfrak{C}(\Gamma) = \Sigma \mathfrak{C}_i$.

THEOREM 5.2. Let Λ be a principal h-order and Γ an order containing Λ . Then every h-order containing Λ which is isomorphic to Γ is written as $T^{i}(\Gamma)$, where T is the following functor: for $\Omega \supseteq \Lambda T(\Omega) = \operatorname{Hom}_{\Lambda}^{i}(C(\Omega), C(\Omega))$, and $T^{r}(\Omega) = T(T^{r-1}(\Omega))$.

Proof. It is clear by Theorems 4.2 and 5.1, and Proposition 4.1.

We note that for two h-orders $\Lambda \geq \Gamma$, $C_{\Gamma}(\Lambda) \geq N(\Gamma)$ by Lemma 3.2.

LEMMA 5.3. Let Γ be an rth order with radical \mathfrak{N} and \mathfrak{L} a left ideal containing \mathfrak{N} in Γ such that $\mathfrak{L}/\mathfrak{N} \approx \Delta_{m_1} \otimes \cdots \otimes \Delta_{m_i} \otimes \mathfrak{I} \otimes \Delta_{m_{i+2}} \cdots \otimes \Delta_{m_r}$; \mathfrak{I} a proper left ideal in Δ_{m_i} . Then $\Lambda = \operatorname{Hom}_{\Lambda}^{\iota}(\mathfrak{L}, \mathfrak{L}) \cap \operatorname{Hom}_{\Lambda}^{r}(\mathfrak{L}, \mathfrak{L}) = \Gamma \cap \operatorname{Hom}_{\Lambda}^{\iota}(\mathfrak{L}, \mathfrak{L})$ is an r+1th h-order and $C(\Gamma) = \mathfrak{L}$. Hence, Λ is uniquely determined by the rank and conductor. Furthermore, every r+1th h-order in Γ is expressed as above.

Proof. Since $\mathfrak{L}\Gamma = \Gamma$, $\tau_{\Omega}^{l}(\mathfrak{L}) = \Gamma$. If we put $\Gamma' = \operatorname{Hom}_{\Lambda}^{i}(\mathfrak{L}, \mathfrak{L})$, then $\Gamma = \operatorname{Hom}_{\Lambda'}^{r}(\mathfrak{L}, \mathfrak{L})$ by [1], Theorem A 2. By the same argument in the proof of Theorem 3.1, we can find an r+1th *h*-order Λ' such that $C_{\Lambda'}(\Gamma)/\mathfrak{R} \approx \mathfrak{L}/\mathfrak{N}$. Hence, there exists a unit element \mathcal{E} in Γ such that $C_{\Lambda'}(\Gamma) = \mathfrak{L}\mathfrak{E}$. Furthermore, $\Lambda' = \Gamma_{\bigcap} \operatorname{Hom}_{\Lambda}^{i}(C_{\Lambda'}(\Gamma), C_{\Lambda'}(\Gamma)) = \Gamma_{\bigcap} \operatorname{Hom}_{\Lambda}^{i}(\mathfrak{L}\mathfrak{L}, \mathfrak{L}\mathfrak{L}) = \mathfrak{L}_{\bigcap} \mathcal{E}^{-1}\Gamma' \mathcal{E} = \mathfrak{E}^{-1}(\Gamma_{\bigcap} \Gamma')\mathcal{E}$. Therefore, $\Lambda = \Gamma_{\bigcap} \Gamma'$ is an r+1 th *h*-order. Since $\mathfrak{E}^{-1}\mathfrak{L}\mathfrak{E} = C_{\Lambda'}(\Gamma)$, $\mathfrak{L} = C_{\Lambda}(\Gamma)$. If Λ' is an r+1 th *h*-order ($\subseteq \Gamma$) such that $C_{\Lambda'}(\Gamma) = \mathfrak{L}$. Then $\Lambda = \Gamma_{\bigcap} \operatorname{Hom}_{\Gamma}^{i}(C_{\Lambda'}(\Gamma), C_{\Lambda'}(\Gamma)) \supseteq \Lambda'$. Hence $\Lambda = \Lambda'$. The last part is clear.

Let Λ be an *h*-order of form (m_1, m_2, \dots, m_r) ; $\Lambda/N(\Lambda) = \Delta_{m_1} \oplus \dots \oplus \Delta_{m_r}$, and $\mathfrak{L}_{i,j}$ a left ideal in Λ such that $\mathfrak{L}_{i,j} \geq \mathfrak{R}$, and $\mathfrak{L}_{i,j}/\mathfrak{R} = \Delta_{m_1} \oplus \dots \oplus \mathfrak{l}_{i,j} \oplus \dots \oplus \Delta_{m_r}$, $\mathfrak{l}_{i,j}$ a non-zero left ideal in Δ_{m_i} . We denote $\operatorname{Hom}_{\Lambda}^{\mathfrak{l}}(\mathfrak{L}_{i,j}, \mathfrak{L}_{i,j})$ by $\Lambda(\mathfrak{L}_{i,j})$ and $\mathfrak{l}_{i,j}$ by $l(\mathfrak{L}_{i,j})$. Let $k(\mathfrak{l}_{i,j})$ be the length of composition series of $\mathfrak{l}_{i,j}$ as a left Λ -module.

THEOREM 5.3. Let Λ , $\Lambda(\mathfrak{A}_{i,j})$ be as above. Then $\Gamma = \Lambda \bigcap_{i=1,j=1}^{t,s(i)} \Lambda(\mathfrak{A}_{i,j})$ is an h-order if and only if $\{l(\mathfrak{A}_{i,j})\}_{j=1}^{s(i)}$ is linearly ordered by inclusion for all *i*. Every r+s(i) th h-order in Λ is uniquely written as above.

Proof. We assume that Γ is an *h*-order and Λ₀ is a minimal *h*-order in Γ. Let $S_i = \{\mathfrak{M}_{i_i}, \mathfrak{M}_{i_i+1}, \cdots, \mathfrak{M}_{i_i+m_i-1}\}$ be a set of maximal two-sided ideals in Λ₀ such that $C_{\Lambda_0}(\Lambda) = I(S_1, S_2, \cdots, S_r)$, (cf. Section 2). We denote $\Lambda_{\bigcap} \Lambda(\mathfrak{L}_{i,j})$ by Γ_j . Since Γ_j is an r+1 th order from Lemma 2.5 we obtain $C_{\Lambda_0}(\Gamma_j) = I(S_1, \cdots, S_{i-1}, S_i^*, \cdots, S_r)$; $S_i^* = S_i - \{\mathfrak{M}_{\mathfrak{p}(j)}\}$. We assume $\rho(j_1) < \rho(j_2)$. Let $\overline{S}_i = S_i - \{\mathfrak{M}_{\mathfrak{p}(j_1)}, \mathfrak{M}_{\mathfrak{p}(j_2)}\}$, $\mathfrak{C} = I(S_1, \cdots, S_{i-1}, \overline{S}_i, S_{i+1}, \cdots, S_r)$. Then $\Gamma' = \operatorname{Hom}_{\Lambda}^r(\mathfrak{C}, \mathfrak{C})$ is an r+2th *h*-order and $\Gamma' = \Gamma_{j_1} \cap \Gamma_{j_2}, \Lambda = \Gamma_{j_1} \cup \Gamma_{j_2}$. Let $\mathfrak{N}_1 = I(S_1, \cdots, S_{i-1}, S_i - \{\mathfrak{M}_{\mathfrak{p}(j_2)}\}, \cdots, S_r)\Gamma'$ and $\mathfrak{N}_2 = I(S_1, \cdots, S_i - \{\mathfrak{M}_{\mathfrak{p}(j_1)}\}, \cdots, S_r)\Gamma'$, then we obtain a normal sequence $\{\mathfrak{N}_1, \mathfrak{N}_2, \mathfrak{N}_3, \cdots\}$ in Γ' by Theorem 2.3, and $C_{\Gamma'}(\Gamma_{j_1}) = \mathfrak{N}_2, C_{\Gamma'}(\Gamma_{j_2}) = \mathfrak{N}_1$. Since $C_{\Gamma'}(\Lambda) = I(\mathfrak{N}_1, \mathfrak{N}_2)$, $C_{\Gamma'}(\Lambda)/N(\Lambda) = \Delta_{m_1} \oplus \cdots \oplus \Delta_{m_{i-1}} \oplus \Gamma^{i} \oplus \Delta_{m_{i+1}} \oplus \cdots$ by the usual argument in Sections 2 and 3, where $\Gamma'/\mathfrak{N}_3 = \Delta_k$, and I is a simple left ideal in Δ_{m_i} .
$$\begin{split} I(\mathfrak{R}_{1},\mathfrak{R}_{3})\Gamma_{j_{2}},\cdots\} \text{ is a normal sequence in } \Gamma_{j_{2}}, \text{ we obtain } \mathfrak{L}_{i,j_{2}}/\mathfrak{R}(\Lambda) = \Delta_{m_{1}} \oplus \\ \cdots \oplus \Delta_{m_{i-1}} \oplus \mathbb{I}^{k} \oplus \Delta_{m_{i+1}} \oplus \cdots \approx C_{\Gamma'}(\Lambda)/N(\Lambda). \text{ However, } \mathfrak{L}_{i,j_{2}} \supseteq C_{\Gamma'}(\Lambda), \text{ and} \\ \text{hence } \mathfrak{L}_{i,j_{2}} = C_{\Gamma'}(\Lambda) \Longrightarrow \mathfrak{L}_{i,j_{1}}. \text{ Thus we have proved that } \{l(\mathfrak{L}_{i,j})\}_{j} \text{ is linearly} \\ \text{ordered for any } i. \text{ Conversely, we assume that } \{l(\mathfrak{L}_{i,j})\}_{j} \text{ is linearly} \\ \text{ordered for all } i, \text{ and } k(\mathfrak{I}_{i,1}) > k(\mathfrak{I}_{i,2}) > k(\mathfrak{I}_{i,s(i)}). \text{ Let } \Lambda_{0} \text{ be a minimal order} \\ \text{ in } \Lambda \text{ and } \{S_{i}\} \text{ be as above. If we denote } I(S_{1}, \cdots, S_{i-1}, S_{i} - M_{t_{i}+m_{i}-k(l_{i,j})}, S_{i+1}, \cdots) \text{ by } \mathfrak{L}_{i,j}, \text{ then } \Gamma'_{i,j} = \operatorname{Hom}_{\Lambda_{0}}^{r}(\mathfrak{G}_{i,j}, \mathfrak{C}_{i,j}) \text{ is an } r+1 \text{ th order in } \Lambda \text{ and } \\ \mathfrak{L}'_{i,j} = C_{\Gamma'_{i,j}}(\Lambda) \approx \mathfrak{L}_{i,j}. \text{ Furthermore, we know by the above argument that} \\ \{l(\mathfrak{L}_{i,j})\}_{j} \text{ is linearly ordered. Therefore, there exists a unit element } \varepsilon \text{ in } \\ \Lambda \text{ such that } \mathfrak{L}_{i,j} = \mathfrak{L}'_{i,j}\varepsilon \text{ for all } i, j. \text{ Hence } \Gamma = \Lambda \bigcap_{i,j} \Lambda(\mathfrak{L}_{i,j}) = \Lambda \bigcap_{i,j} \varepsilon^{-1} \Lambda(\mathfrak{L}'_{i,j})\varepsilon \\ = \varepsilon^{-1}(\Lambda \bigcap_{i,j} \Lambda(\mathfrak{L}'_{i,j}))\varepsilon \text{ is an } h\text{-order containing } \varepsilon^{-1}\Lambda_{0}\varepsilon. \text{ The second part is } \\ \text{clear from the proof.} \end{split}$$

From the above proof we have

COROLLARY 5.1. Let $\Gamma = \Lambda_{\bigcap_{j,i}} \Lambda(\mathfrak{L}_{i,j})$, and $k(i, j) = k(l(\mathfrak{L}_{i,j}))$. If $k_{i,j}$ $>k_{i,j'}$, for j < j', Γ is of a form $(m_1 - k_{1,1}, k_{1,1} - k_{1,2}, \dots, k_{1,s(1)}, \dots, m_i - k_{i,1}, k_{i,1} - k_{i,2}, \dots, k_{i,s(i)}, \dots)$.

COROLLARY 5.2. Let $\{\Omega_i\}_{i=1}^n$ be h-orders. Then $\bigcap_i \Omega_i$ is an h-order if and only if intersection of any two of the Ω_i 's is an h-order.

Proof. Since every *h*-order is written as an intersection of maximal orders, we may assume that the Ω_i 's are maximal. If $\Omega_1 \cap \Omega_i$ is an *h*-order, then $\Omega_i = \operatorname{Hom}_{\Omega_1}^i(\mathfrak{L}_i, \mathfrak{L}_i)$, for a left ideal $\mathfrak{L}_i (\supset N(\Omega_1))$ in Ω_1 . Let $\mathfrak{L}_i + \mathfrak{L}_j = \mathfrak{L}$. Then $\Omega_i \cap \Omega_j \subseteq \operatorname{Hom}_{\Omega_1}^i(\mathfrak{L}, \mathfrak{L})$. Hence Ω_i or Ω_j is equal to $\operatorname{Hom}_{\Omega_1}^i(\mathfrak{L}, \mathfrak{L})$ by [5], Theorem 3.3. Therefore, $\mathfrak{L} = \mathfrak{L}_i$ or \mathfrak{L}_j which shows that $\{\mathfrak{L}_i\}$ is linearly ordered. Hence $\bigcap \Omega_i$ is an *h*-order by the theorem. Converse is clear by [5], Corollary 1.4.

PROPOSITION 5.1. Let Λ be an h-order and \mathfrak{L} a left ideal containing $N(\Lambda)$ such that $\mathfrak{L}\Lambda = \Lambda$. Then $\Gamma = \Lambda_{\cap} \operatorname{Hom}_{\Lambda}^{\iota}(\mathfrak{L}, \mathfrak{L})$ is a unique maximal order among orders Γ' in Λ such that $C_{\Gamma'}(\Lambda) = \mathfrak{L}$. Hence \mathfrak{L} is idempotent.

Proof. Let $\mathfrak{A} = \bigwedge_{i} \mathfrak{A}_{i}$; $\mathfrak{A}_{i}/\mathfrak{A} = \Delta_{m_{1}} \oplus \cdots \oplus \mathfrak{I}_{i} \oplus \cdots \oplus \Delta_{m_{r}}$. Then $\Gamma = \Lambda_{\bigcap}$ $\bigwedge_{i} \Lambda(\mathfrak{A}_{i})$. Hence, $C_{\Gamma}(\Lambda) \leq \bigcap C_{\Lambda(\mathfrak{A}_{i})}(\Lambda) = \bigcap \mathfrak{A}_{i} = \mathfrak{A}$. It is clear that $C_{\Gamma}(\Lambda) \supseteq \mathfrak{A}$. If $C_{\Gamma'}(\Lambda) = \mathfrak{A}$ for an *h*-order $\Gamma' \leq \Lambda$. Then $\Gamma' \leq \Lambda_{\bigcap} \operatorname{Hom}_{\Lambda}^{i}(\mathfrak{A}, \mathfrak{A}) = \Gamma$, since $C_{\Gamma'}(\Lambda)$ is a two-sided ideal in Γ' .

COROLLARY 5.3. Let $\Gamma = \Lambda \bigcap_{i,j} \Lambda(\mathfrak{F}_{i,j})$, then $C_{\Gamma}(\Lambda) = \bigcap_{i,j} \mathfrak{F}_{i,j}$. Proof. Let $C_{\Gamma}(\Lambda) = \bigcap \mathfrak{F}_{i}$, where the \mathfrak{F}_{i} 's are as in the proof of Corollary 5.2. $\Gamma' = \Lambda_{\bigcap} \operatorname{Hom}_{\Lambda}^{i}(C_{\Gamma}(\Lambda), C_{\Gamma}(\Lambda)) \supseteq \Gamma$ and $\Gamma' = \Lambda_{\bigcap} \bigcap_{i} \Lambda(\mathfrak{L}_{i})$. Since $\Lambda(\mathfrak{L}_{i}) \supset \Gamma$, $\mathfrak{L}_{i} = \mathfrak{L}_{k,j}$ for some k, j. Hence $C_{\Gamma}(\Lambda) = \bigcap \mathfrak{L}_{i,j}$.

PROPOSITION 5.2. Let Λ be a principal h-order and \mathfrak{L} a left ideal in Λ . Then \mathfrak{L} is principal if and only if $\tau_{\Lambda}^{\iota}(\mathfrak{L}) = \Lambda$ and $\Lambda(\mathfrak{L})$ is principal.

Proof. If $\mathfrak{L} = \Lambda \alpha$, then $\Lambda(\mathfrak{L}) = \alpha^{-1}\Lambda \alpha$, and hence $\Lambda(\mathfrak{L})$ is principal, and $\tau_{\Lambda}^{\iota}(\mathfrak{L}) = \mathfrak{L}\mathfrak{L}^{-1} = \Lambda \alpha \alpha^{-1}\Lambda = \Lambda$. If $\tau_{\Lambda}^{\iota}(\mathfrak{L}) = \Lambda$, $\Lambda = \operatorname{Hom}_{\Lambda(\mathfrak{L})}^{r}(\mathfrak{L}, \mathfrak{L})$. Furthermore if $\Lambda(\mathfrak{L})$ is principal, Λ and $\Lambda(\mathfrak{L})$ have the same form, and hence \mathfrak{L} is principal by [5], Corollary 4.5.

We shall discuss further properties of one-sided ideals in the forthcoming paper [7].

PROPOSITION 5.3. For any rth order Γ , there exist n-r+1 minimal h-orders Λ_i such that $\Gamma = \bigcup \Lambda_i$, where n is the length of maximal chain for h-orders in Σ .

Proof. We prove the proposition by induction on rank r of orders. If r=n, then Γ is minimal. If Γ is an rth order (r < n), then $\Gamma/N(\Gamma) = \Delta_{m_1} \oplus \cdots \oplus \Delta_{m_r}$, and $m_i > 1$ for some i. Therefore, there exist two distinct left ideals \mathfrak{L}_1 and \mathfrak{L}_2 in Γ by Theorem 5.3 such that $L_1 = C_{\mathfrak{Q}_1}(\Gamma)$, and $C_{\mathfrak{Q}_2}(\Gamma) = \mathfrak{L}_2$ for some r+1 th orders Ω_1 and Ω_2 . Since $\Omega_1 \neq \Omega_2$, $\Gamma = \Omega_1 \cup \Omega_2$. By induction hypothesis we obtain that $\Omega_i = \bigvee_{j=1}^{n-r} \Delta_{i,j}$, where the $\Lambda_{i,j}$'s are minimal *h*-orders. Since $\Omega_1 \neq \Omega_2$, there exists $\Lambda_{2,j} \oplus \Omega_1$. Hence $\Gamma = \Omega_1 \cup \Lambda_{2,j} = \bigvee_{i=1}^{n-r+1} \Lambda_i$.

6. Numbers of *h*-orders.

We shall count numbers of *h*-orders in an *h*-order.

LEMMA 6.1. Let $\Gamma \ge \Lambda$ be h-orders and ε a unit in Γ . If $\varepsilon^{-1}\Lambda \varepsilon = \Lambda$ then $\varepsilon \in \Lambda$.

Proof. Since $\mathcal{E}\Lambda = \Lambda \mathcal{E}$ is a two-sided inversible ideal with respect to Λ in Σ , $\Lambda \mathcal{E} = \mathfrak{N}^{\rho}$ by [5], Theorem 6.1, where $\mathfrak{N} = N(\Lambda)$. Let $\mathfrak{N}^{t} = \mathfrak{p}\Lambda$, then $\Lambda \mathcal{E}^{t} = \mathfrak{N}^{t\rho} = \mathfrak{p}^{\rho}\Lambda$. Hence, $\mathcal{E}^{-t}\mathfrak{p}^{\rho}$ is a unit in Λ , and hence in Γ . Therefore, $\rho = 0$, which implies $\Lambda \mathcal{E} = \Lambda$.

PROPOSITION 6.1. Let Ω be an h-order. If Γ_1 and Γ_2 are isomorphic by an inner-automorphism in Ω for $\Gamma_i \leq \Omega$ (i=1, 2), and $\Gamma_1 \neq \Gamma_2$, then $\Gamma_1 \cap \Gamma_2$ is not an h-order.

Proof. If $\Gamma_1 \cap \Gamma_2$ is h-order, there exists a minimal h-order Λ in

 Γ_1 and Γ_2 . Since Γ_1 and Γ_2 are isomorphic by an inner-automorphism in Ω , they are isomorphic over Λ by Theorem 4.2. Hence, $\mathcal{E}\Lambda\mathcal{E}^{-1}=\Lambda$. Therefore, \mathcal{E} is a unit in Λ , and in Γ_i , which is a contradiction to the fact $\Gamma_1 \neq \Gamma_2$.

COROLLARY 6.1. Let Ω be a maximal order and Γ_1 , Γ_2 nonmaximal distinct principal h-orders of same rank in Ω , then $\Gamma_1 \cap \Gamma_2$ is not an h-order.

Proof. Let Λ_1 and Λ_2 be minimal *h*-orders contained in Γ_1 and Γ_2 , respectively. Then $\Lambda_2 = \varepsilon^{-1} \Lambda_1 \varepsilon$; ε unit in Ω by Corollary to Theorem 3.1. However, by Theorems 2.3 and 4.1, $\Gamma_2 = \varepsilon^{-1} \Gamma_1 \varepsilon$.

COROLLARY 6.2. Let Ω be an h-order, and $\{\Gamma_i\}$ the set of r th h-orders between Ω and a fixed minimal h-order Λ in Ω . Then every r th order in Ω is isomorphic by inner-automorphism in Ω to some Γ_i , and those isomorphic classes by units in Ω do not meet each other.

It is clear by the proof of Theorem 3.1 and the proposition.

THEOREM 6.1. The following conditions are equivalent:

- 1) The number of h-orders in a maximal order is finite,
- 2) The number of h-orders in a nonminimal h-order is finite.
- 3) R/\mathfrak{p} is a finite field.

To prove this we use the following elementary property.

LEMMA 6.2. Let $B = \Delta_n$ be a simple ring and $L = Be_{1,1} \oplus \cdots \oplus Be_{r,r}$, then for any unit element \mathcal{E} in $B \ L\mathcal{E} = L$ if and only if

$$\varepsilon = r \left(\frac{\varepsilon_1}{C} \middle| \begin{array}{c} 0 \\ \varepsilon_2 \end{array} \right)$$

 $\varepsilon_1, \varepsilon_2$ are units in Δ_r and Δ_{n-r} , and C is an arbitrary element in $(n-r) \times r$ matrices over Δ .

Proof of Theorem 6.1. Let Γ be a nonminimal r th h-order. By Theorem 5.3 r+1 th h-orders contained in Γ correspond uniquely to left ideals \mathfrak{L}_i ; $\mathfrak{L}_i/N(\Gamma) = \Delta_{m_1} \oplus \cdots \oplus \mathfrak{L}_i \oplus \cdots \oplus \Delta_{m_r}$. Hence, the number of r+1 th h-orders in Γ is equal to the number of those left ideals. The number of left ideals in $\Gamma/N(\Gamma)$ which are isomorphic to $\mathfrak{L}_i/N(\Gamma)$ is equal to $[(\Gamma/N(\Gamma))^*: 1]/[E(\mathfrak{L}_i): 1]$, where * means the group of units and $E(\mathfrak{L}_i) = \{\varepsilon \mid \in (\Gamma/N(\Gamma))^*, (\mathfrak{L}_i/N(\Gamma))\varepsilon \subseteq \mathfrak{L}_i/N(\Gamma)\}$. Since $[\Delta: R/\mathfrak{p}] < \infty, [(\Gamma/N(\Gamma))^*: 1]/[E(\mathfrak{L}_i): 1] < \infty$ if and only if $[R/\mathfrak{p}: 1] < \infty$ by Lemma 6.1. Thus, we

obtain 2) \Leftrightarrow 3). Since the length of maximal chain is finite, we have 1) \Leftrightarrow 2).

If we want to count the number of *h*-orders in Γ , we may use the argument in the proof of Theorem 6.1. However, it is complicated a little. By virtue of Corollary 6.2, we may fix a minimal *h*-order in Λ . From this point, we shall study the numbers of *h*-orders in the special case as follows.

In Section 1, we have noted that we may restrict R to the case of a complete, discrete valuation ring. By \wedge we mean completion with respect to the maximal ideal \mathfrak{P} in R. Let Ω be a maximal order with radical \mathfrak{N} ; $\Omega/\mathfrak{N} = \Delta_n$. Let $\hat{\Sigma} = T_{n'}$; T division ring, then $\hat{\Omega} = \mathfrak{O}_{n'}$, where \mathfrak{O} is a unique maximal order with radical (π) in T. Since $\Omega/\mathfrak{N} \approx \hat{\Omega}/\hat{\mathfrak{N}}$, n' = n.

In order to decide all types of *h*-orders in Σ , we may consider *h*-orders containing a fixed minimal *h*-order by Theorem 3.1. By Lemma 1.2, we obtain a minimal *h*-order Λ , which we shall fix in this section; namely

From now on we denote $\hat{\Sigma}$, $\hat{\Omega}$, \hat{K} by Σ , Ω , R, respectively.

Let $\mathfrak{M}_i = \{(a_{i,j}) | \in \Lambda, a_{ii} \in (\pi)\}$. Then the \mathfrak{M}_i 's are the set of maximal two-sided ideals in Λ . Since $e_{i-1,i}\pi e_{i,i}e_{i,i-1} = \pi e_{i-1,i-1} \in \mathfrak{N}^{-1}\mathfrak{M}_i\mathfrak{N}$, we know that $\mathfrak{N}^{-1}\mathfrak{M}_i\mathfrak{N} = \mathfrak{M}_{i-1}$. Hence, $\{\mathfrak{M}_n, \mathfrak{M}_{n-1}, \cdots, \mathfrak{M}_1\}$ is the normal sequence in Λ . We can easily check that $\Gamma_i = \operatorname{Hom}_{\Lambda}^r(\mathfrak{M}_i, \mathfrak{M}_i) =$ the ring generated by Λ and $e_{i-1,i}$ if $i \neq 1$, and that $\Gamma_1 = \operatorname{Hom}_{\Lambda}^r(\mathfrak{M}_1, \mathfrak{M}_1) = \{(a_{i,j}) | \in \Sigma, a_{i,j} \in (\pi)\}$ for i < j, $a_{i,j} \in \mathfrak{O}$ for $i \neq n$, $j \neq 1$, and $a_{n,1} \in (1/\pi)\mathfrak{O}\}$. Hence, $\{\Gamma_2, \cdots, \Gamma_n\}$ is a complete set of n-1 th order in Ω . For any order Γ between Ω and Λ , $C(\Gamma) = I(\mathfrak{M}_{i_1}, \cdots, \mathfrak{M}_{i_r})$ $(i_j > 1)$. Then Γ is the ring generated by Λ and $\{e_{j-1,j}\}$ $j = i_1, \cdots, i_r$.

Summarizing the above, we have

Theorem 6.2.⁶⁾ Every h-order in Σ is isomorphic to the following type

⁶⁾ Those types are changed by the suggestion of Mr. Higikata.

	m ₁ m		<i>l</i> ₂	m _r
111	$\mathfrak{O}(m_{\scriptscriptstyle 1} \times m_{\scriptscriptstyle 1})$	$\pi \mathfrak{O}(m_1 \times m_2)$		$\pi \mathfrak{O}(m_1 \times m_r)$
$\begin{array}{c} m_1 \\ m_2 \\ \vdots \\ m_r \end{array}$	$\mathfrak{O}(m_2 \times m_1)$	$\mathfrak{O}(m_2 imes m_2)$		$\pi \mathfrak{O}(m_2 \times m_r)$
		•		:
	$\mathfrak{O}(m_r \times m_1)$	$\mathfrak{O}(m_r \times m_2)$		$\mathfrak{O}(m_r \times m_r)$

where $n = \sum m_i$, and $\mathfrak{O}(i \times j)$: all $(i \times j)$ matrices over \mathfrak{O} .

We shall return to problem of counting the number of *h*-orders. By virtue of Theorem 6.1, we may assume that \Re/\mathfrak{p} is a finite field and hence, $\mathfrak{D}/\pi = GF(p^m)$.

LEMMA 6.3. Let Γ , Ω be as above. Then the number of isomorphic classes of Γ by unit element in Ω is equal to $[(\Omega/\pi\Omega)^*: (\Gamma/\pi\Omega)^*]$.

Proof. By Lemma 6.1, this number is equal to $[\Omega^* : \Gamma^*]$, and by the above remark $\pi\Gamma \leq N(\Gamma)$. Hence, we have $(\Omega/\pi\Omega)^*/(\Gamma/\pi\Omega)^* \approx \Omega^*/\Gamma^*$.

LEMMA 6.4. $[(\Omega/\pi\Omega)^*: (\Gamma/\pi\Omega)^*] = (p^{mn}-1)(p^{nm}-p^m)\cdots(p^{nm}-p^{m(n-1)})/\prod_{i=1}^r (p^{m_im}-1)(p^{m_im}-p^m)\cdots(p^{m_im}-p^{m(m_i-1)})p^{ms}, s = \sum_{i=1}^r m_i(n-m_1-m_2-\cdots-m_i).$

Proof. It is clear that $\Omega/\pi\Omega = (\mathfrak{O}/\pi)_n$ and $[(\mathfrak{O}/\pi)_n^*:1] = [GL(n, p^m):1] = (p^{m^n}-1)(p^{n^m}-p^m)\cdots(p^{m^n}-p^{m(n-1)})$ by [4], p. 77, Theorem 99. $\Gamma/\pi\Omega =$

$$\left\{ \begin{pmatrix} B_{1,1} & 0 \\ & \ddots \\ & B_{r,r} \end{pmatrix} \right\}$$

and hence, $r(\in \Gamma/\pi\Omega)$ is unit if and only if the $B_{i,i}$ are unit in $(\mathfrak{D}/\pi)m_i$. Therefore, $[(\Gamma/\pi\Omega)^*:1] = \prod_{i=1}^{r} (GL(m_i, p^m):1)p^{ms}, s = \sum_{i=1}^{r} m_i(n-m_1-m_2-\cdots -m_i).$

By Corollary 6.4, and Theorem 4.1, we have

THEOREM 6.3. The number of rth h-orders in a maximal order is equal to

 $\sum_{\substack{m_1+m_2+\dots+m_r=n\\m_i}} \{p^{nm}-1)(p^{nm}-p^m)\cdots(p^{nm}-p^{m(n-1)})/\prod_{i=1}^r (p^{m_i}m-1)(p^{m_i}m-p^m)\cdots(p^{m_i}m-p^m)\cdots(p^{m_i}m-p^{m(n-1)})p^m(\sum_{i=1}^r m_i(n-m_1-\dots-m_i)\}.$ The number of rth principal h-order is equal to

$$\{ (p^{mn/r'} - 1)(p^{mn/r'} - p^m) \cdots (p^{mn/r'} - p^{m(n/r'-1)}) \}^{r'} / \\ \{ (p^{mn/r} - 1)(p^{mn/r} - p^m) \cdots (p^{mn/r} - p^{m(n/r-1)}) \}^{r} p^{(mn^2/2)(r-r'/rr')} \}$$

Especially, the number of minimal h-orders in a maximal order is equal to

$$\prod_{i=1}^{n-1} (1+p^m+\cdots+p^{m_i}).$$

We shall describe Λ as follows:

$$\Lambda = \begin{pmatrix} A_{1,1} \pi A_{1,2} \pi A_{1,3} \cdots \pi A_{1,m} \\ A_{2,1} A_{2,2} \pi A_{2,3} \cdots \pi A_{2,m} \\ A_{m,1} A_{m,2} \cdots \pi A_{m,m} \end{pmatrix}; \ A_{i,j} \text{ is matrices of } m_i \times m_j \text{ over } \mathfrak{D}.$$

Since

$$N = \begin{pmatrix} \pi A_{1,1} \pi A_{1,2} & \dots & \pi A_{1,m} \\ A_{2,1} \pi A_{2,2} & \dots & \pi & A_{2,m} \\ A_{m,1} A_{m,2} & \dots & A_{m,m-1} \pi & A_{m,m} \end{pmatrix}; \ N^m = \pi \Lambda \ .$$

Let t be the ramification index of a maximal order, namely $\pi^t = pe$, $e \in \mathfrak{O}$. Then we have a explicit result of Theorem 2.2.

PROPOSITION 6.2. Let Λ be an rth h-order, then its ramification index is equal to tr.

PROPOSITION 6.3. Let Λ be an rth principal h-order, and α an element in Λ such that $\Lambda \alpha^{n/r} = N(\Lambda)$ for some n. Then $\Gamma = \Lambda_{\cap} \alpha^{-1} \Lambda \alpha_{\cap} \cdots_{\cap} \alpha^{-(n/r)+1} \Lambda \alpha^{1-(n/r)}$ is an nth principal h-order, and any nth principal h-order Γ in Λ is written as above and $N(\Gamma) = \alpha \Gamma = \Gamma \alpha$, where $r \mid n$.

Proof. If Γ is an *n*th principal *h*-order with N(Γ) = αΓ in Λ, we can easily show, by Theorems 2.1 and 2.3, that $α^{n/r}Λ = Λα^{n/r}$ and $Γ = Λ_{∩}$ $α^{-1}Λα_{∩} \cdots_{∩} α^{-(n/r)+1}Λα^{1-(n/r)}$. Since $α^{n/r}Λ = Λα^{n/r}$, $α^{n/r}Λ = N(Λ)^{l}$. However $α^{nt}Λ = pΛ$, and hence l = 1 by Proposition 6.2. Therefore, $Λα^{n/r} = N(Λ)$. Conversely if $Λα^{n/r} = N(Λ)$, $Λα^{i}$ is a left ideal in Λ containing N(Λ) for $i \leq n/r$, and $Λα^{i}/Λα^{i+1} \approx Λ/Λα$ as a left Λ-module. If ΛαΛ = Λ, $Λ/Λα \approx l_1 \oplus l_2 \oplus$ $\cdots \oplus Δ_{m_i} \oplus \cdots \oplus l_r$ for some *i*. Hence, since $Λ/Λα \approx Λα/Λα^2$, $Λα^2 \supseteq N(Λ)$, we have a contradiction. Since Λ is principal, $Λα^{(n/r)-1}/N(Λ) = l_1 \oplus l_2 \oplus \cdots \oplus$ $l_r, Λα^i/N(Λ) = l_1^{((n/r)-i)} \oplus l_2^{((n/r)-i)} \oplus \cdots \oplus l_r^{((n/r)-i)}$. Then $Γ = Λ_{∩} Hom_{Λ}^i(Λα, Λα)$ $∩ Hom_{Λ}^i(Λα^2, Λα^2) ∩ \cdots ∩ Hom_{Λ}^i(Λα^{(n/r)-1}, Λα^{(n/r)-1}) = Λ_{∩}α^{-1}Λα ∩ \cdots ∩ α^{1-(n/r)}$ $Λα^{(n/r)-1}$ is a principal *n*th *h*-order by Corollary 5.1. It is clear that αΓ = Γα. Hence $αΓ = N(Γ)^i β^i Γ$. However, $\mathfrak{p} = (α^{n/r})^{rt} \mathcal{E} = \beta^{rtt} \mathcal{E}' = \mathfrak{p}^t \mathcal{E}''$, where $\mathcal{E}, \mathcal{E}'$ and \mathcal{E}'' are units in Λ. Hence l = 1.

Bibliography

- 1. M. Auslander and O. Goldman, *Maximal orders*, Trans. Amer. Math. Soc., 97 (1960), 1-24.
- 2. H. Cartan and S. Eilenberg, Homological Algebra, Princeton, 1956.
- 3. M. Deuring, Algebren, Berlin, 1953.
- 4. L. Dickson, Linear groups, New York, 1900.
- 5. M. Harade, Hereditary orders, to appear in Trans. Amer. Math. Soc..
- 6. ——, Hereditary orders in generalized quaternions, to appear in Trans. Amer. Math. Soc.
- 7. ———, Multiplicative ideal theory on hereditary orders, to appear in this Journal.
- 8. H. Higikata, Maximal compact subgroups in p-adic classical groups, Sugaku no Ayumi, (In Japanese), 10 (1963), 66-77.
- 9. K. Morita, On group rings over a modular field which possess radicals are expressible as principal ideals, Sci. Rep. Tokyo Bunrika Daigaku, 4 (1954), 177-194.