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Introduction

In 1958, R. Bott and H. Samelson [8] defined the notion of K-cycles for every
smooth complete Riemannian manifold M on which a compact connected Lie
group K of isometries operates variationally completely, and showed that some
K-cycles form a homeclogy basis (mod 2 in general and integral in K-orientable
cases) of some type of spaces of paths in M. They proved three kinds of varia-
tional completeness of K-actions related to symmetric spaces, and obtained many
direct results.

In case K operates on itself or on its Lie algebra by adjoint actions, they
determined moreover the integral cohomology of used K-cycles completely by
making use of Cartan integers and applied it to several cohomological and homo-
topical problems of Lie groups [8], Chap. III

The aim of the present work is to get an analogy (Theorems 2.10 and 6.4)
of this for K-cycles associated with symmetric spaces, a partial result of which
is used in determining the cohomology mod 2 of the compact exceptional group
Eg [3].

§ 1 is preliminaries about symmetric pairs, their Cartan subalgebras, restricted
root systems, etc., including the definition of symmetric pairs of splitting rank.
In §2 we discuss basic properties of K-cycles associated with symmetric pairs. It
is proved that every K-cycle associated with a symmetric pair is an iterated
sphere bundle over a sphere (Cor. 2.5). Theorem 2.10 asserts that the cohomology
rings mod 2 of K-cycles, associated with pairs (G, K) with simply connected G,
are determined completely by Cartan integers of restricted roots. In §§ 8 and
4 we compute the number of connected components of centralizers in K of
maximal tori and singular tori of symmetric pairs (G, K) with simply connected
G. §5 is a preparation for subsequent two sections.

In §6 we discuss symmetric spaces of splitting rank. These behave them-
selves very similarly to compact Lie groups as symmetric spaces from homological
point of view; for example, there holds an analogy (Prop. 6.3) of a well known
result of J. Leray [10], Prop. 11.1. Here we prove Theorem 6.4 which asserts
that the integral cohomology rings of K-cycles, associated with symmetric pairs
(G, K) of splitting rank with simply connected G, are determined completely
analogously to [8], Chap. III, Prop. 4.2, by Cartan integers of restricted roots.
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Though there are many other symmetric pairs for which their K-cycles are all
orientable, this integral form can not be extended to them since each one of them
has at least one restricted root of odd multiplicity by virtue of Prop. 1.2 and
some K-cycles associated with it have exterior tensor factors of Prop. 2.9 in their
integral cohomologies.

Finally §7 is devoted to the proof of Theorem 2. 10.

§1. Symmetric pairs.

1. 1. Let G be a compact connected Lie group, ¢ an involutive automorphism
of G, K the e-component of the group K consisting of all fixed elements under o.
The pair (G, K) is called a symmetric pair [8], and the homogeneous space G/K
(K< K< K) a compact symmetric space, K the fixed group of the pair. If G is
simply connected, then K=K by [8, 9] and G/K is simply-connected. Conversely
every compact simply-connected symmetric space can be expressed as a homo-
geneus space of a simply-connected group G.

Let (G, K) be a symmetric pair, and ¢, f denote Lie algebras of G, K res-
pectively. We choose once and for all a positive definite invariant metric on g.
The scalar products defined canonically by this metric on g, subspaces of g, and
their dual spaces, will be denoted by < , >.

The involution ¢ of G induces an involutive automorphism of g denoted by
the same letter ¢. The pair (g, ) with ¢ is called the infinitesimal symmetric
pair of (G, K). t is the eigenspace of ¢ with eigenvalue 1. Let m be the
eigenspace of ¢ with eigenvalue —1, then we have the well-known orthogonal de-

cemposition
(1. D g=f+m
with respect to < , >, satisfying
(1.2) [f, m]C m, [m m]Ct

which characterize the infinitesimal involution ¢ conversely.

Put M=exp m. It is a closed submanifold of G, which can be regarded as a

symmetric space idéntiﬁed with G/K in a well-known fashion. (Cf., [7] or others.)

1. 2. Let  be a maximal abelian subalgebra of m, t that of g containing {~.
T_=exp t is a maximal torus of M, and T=exp { a maximal torus of G
containg 7.

Since we are concerned only with compact ones, we mean by “roots” the
angular parameters in the sense of E. Cartan. Let t be the system of all non-
zero roots of g with respect to . We have the Cartan orthogonal decomposition

(1.3) g=1+>%,
where the summation runs over all positive roots a of r with respect to a linear
order in t* (dual space of t). The space ¢, is of dimension 2 and invariant under
the adjoint actions of 7 (or of t). The adjoint action of exp H, HEt, on ¢, is a
rotation through the angle 27za(H).
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By our choice of i, it is closed by the involution ¢ and ¢ | t induces an involu-

tion in t* defined by
dFa(H)=—a(sH) for e €t* and HE€L

t is closed by ¢* and becomes a s-system of roots (normally extendable in the
sense of [2]).

The set .

, to={a€r; d*a=—a}

is a closed subsystem of roots of r. Let ™ be the set of linear forms on {~ ob-
tained by restricting t—1o to t~. It is a root system in the sense of [2], 2.1, and
is called the restricted root system of m (or of (G, K)) with respect to t~. The
elements of t~ are called the restricted roots. About the properties of restricted
roots we refer to [2]. One of the characteristic properties of restricted roots,
different from those of roots of Lie groups, is that two times of a restricted root
can be a restricted root (but four times of it is not so). Cf., [2], 2.1.2°).

For any A€t , t, denotes the set of all ¢ €t such that ¢ |t =4. The number
of elements of t, is called the multiplicity of A, denoted by m(2) ; put

(1.4) g.= 0%)\6,,,

then dim ¢,=2m(1). By [9], p. 353, or [1], p. 47, €, has an ortho-normal basis
(1.5 {A1, B1, Az, Bs, -, Auciys Bui)}

such that
(1. 5) O'A,'=A,‘, CFB,'= —B,',

[H, Ad=27n)(H)B;, [H, Bi]l=—2m2(H)A;
for H €t and 1=i=m(2). In particular,
(1.6) dim(tN¢,) = dim(mN¢,) = m(R).
1. 3. For any pair (1, #), A€t or €t~ and % an integer, we define a singular
plane p in t or in {~ by
p={H € t(or€ t7); A(H)=mn.
We shall write p=(2, n). Thus
A, n) = (=1 —n)
as a set, and in case p is a singular plane in {~ such that 21€1,
b =Q, n) = (21, 2n).
Define two subsystems " and ™" of = by
v = {A€1T; A/2€r7,
and
v ={ €17 206
respectively. Then every singular plane p in {~ can be expressed as
1.7 p=Q, n), rer".
Hereafter we express singular planes in t~ always in this form.
If p is expressed as (1.7), then we say that 1 is a representative root of p
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which is determined up to sign. When it becomes necessary to orient a singular
plane p=(4, #) in {~ as will occur in discussions of integral cohomology of some
K-cycles, then we distinguish (1, ) from (—A, —») as to denote oppositely
oriented ones. As far as we are concerned to cohomology mod 2 of K-cycles, this
convention is not necessary.

For any singular plane p in {~ the number of distinct singular planes in t
containing p is called the multiplicity of p, denoted by m(p). For a root 1€177/
such that p=(21, n),

m(p)

I

m(2) if 2/2€r” or n odd,
= m(2)+m(1/2) if 2/2€1” and n even.
In subsequent discussions we shall always mean by singular planes only

(1.8)

“singular planes in {7

1. 4. For any subset L of G and any closed subgroup U of G, we denote by
U, the centralizer of L in U. If the Lie algebra of U is denoted by u, we denote
the Lie algebra of U, by ur; thus

uy={Xeu; ad £- X=X for all v€X}.

exp p, p singular planes in {7, are called singular tori in 7" though they are
generally not subgroups. The centralizer of exp p in U and its Lie algebra are
ad ¢+X denoted by U, and u, respectively for the sake of shortness.

Let

(1.19 t=tr+1

be the orthogonal decomposition of t with respect to <, >. And put T,=exp t'.
As is easily seen T, is a maximal torus of K;°. (For any subgroup U of G, we
denote by U° the e-component of U.) The Lie algebra of Gr_, gr_, is described
by the decomposition (1.3) as follows :

(1.9) gr =1+ ¢,.
aeT,

i. e., to is the root system of ¢r with respect to {. Since
08y = €y%y and e, = ¢_,
for all ¢ €t (cf., [1], 1.2, or some others), we see that
ey Cf for all a €1y.
Therefore
(1.10) Ir_=1"+2 e,
@E€T,
and to becomes the root system of fr_ with respect to t*.
For any singular plane p=(4, #), A€t~ in t~, we put
(1.11) g,=%, if 2/2€r” or » odd,
=€y +&,,2 otherwise.
And discuss the adjoint actions of exp p on each ¢,, #€17, by (1.5), then we see
easily that

Qp = Gr_+¢,,

1.12
( ) fp = tT_‘l‘fﬂé’p.
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Then, by (1.6), (1.8) and (1.11) we see that
(1.13) dim (K,;/Kr ) = dim f,—dim fr_ = m(p).

1. 5. A linear order in t* satisfying that for any positive root a of t—1,
o*a is also positive, is called a s-order. A os-fundamental system 4 of v is a
fundamental system with respect to some o¢-order. About the properties of o-
fundamental systems, we refer to [12].

Let 4 be a os-fundamental system of t, then 4o =1oN4 is a fundamental
system of 1to; on the other hand, 4-, defined as the subset of t~ obtained by
restricting 4—4, to 17, is a fundamental system of t~, called the restricted funda-
mental system.

By W, Wo and W~ we denote Weyl groups of t, to and 1~ respectively, ie,
finite groups of orthogonal transformations on {, t* and t~ respectively generated
by reflections across singular planes («, 0), @ €, €ty or €tr~. They operates
also on dual spaces t*, t™* and t* by their transposed actions.

As is well known, every action of Weyl groups on t* t* or {*, transforms
roots to roots, fundamental systems of roots to themselves, and permutes the set
of fundamental systems simply transitively.

Let W, be the subgroup of W consisting of all s€ W commuting with ¢. As
is easily seen, every action of W, transforms o-fundamental systems of t to
themselves. For every wo € Wy, extend the action of wo, on " to that on t so
that wo |t =identity map. Thus W, becomes a subgroup, actually a normal sub-
group, of W,. For any we W,, wi =t i.e, w]|t is an orthogonal transforma-
tion of t. By [12], p. 107, lemmas 1 and 2, we can easily conclude that

(1.14) wlte W= for all we W,

and that

(1.15) thus obtained natural homomorphism p: W, -—> W= is surjective with
Wo as its kernel.
Therefrom, furthermore, we see that

(1.16) W, permutes the set of o-fundamental systems of v simply transitively.
1. 6. As is well known, there is a canonical identity

(1.17 N(T)/T = W

in the sense that the adjoint actions of the left side on t coincide with operations
of W, where N(T) is the normalizer of T in G.
Now we assume that G is simply conncted.
In the same sense as above, denoting by Nx(T ) and Ny(T.) the normalizers
of 7_ in K and of T, in K;° respectively, we know the following identities
(1.17) No(T)/T, = Wo. Nxk(T)/Kr_ = W~
Cf., [8] or others.
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Put
T. = KNT
of which the e-component is 7', since t'=fNt. Denoting by s+1 the number of
connected components of T,, we put

T, = T.+a1To+ - +a.T..
Since T=T.-T_ by (1.17), we may choose the set of representatives {e¢, a4, -, a;}
in 7, which implies that )
KNT /T.NT. = T,/T..
as isomorphism induced by the inclution map KN T_cT,. On the other hand, by
[1], Prop. 1.5, p. 48,
Ky/K® = KNT_/T.NT-.
Therefore we obtain the following decomposition into connected components :
Ky = K°+a, K%+ - +aKrl.
Then, denoting by ]\70(T+) the normalizer of T, in K7°, we obtain easily the
following identities
No(T.) = No(T)+aiNo(T)+ - +a,No(T.),
and
(1.177) No(T.)/T.=No(T.)/T..= Wo
in the same sense as (1.17).
Lemma 1.1. The inclusion map Nx(T)CNg(T.) induces an isomorphism
Nx(T)/No(T.) = Ne(T-)/Kr_.
Proof. As is easily seen
Ne(TYNKr- = No(T),
which proves the injectivity. To prove the surjectivity, take any element a €
Ng(T_.), and put
alTa =T{ a'Ta = T'.
Since a™*T_a=7T_, T' is a maximal torus of G containing 7°.. Hence
T{ C Kr_,
ie, T{ is a maximal torus of K;°% By the conjugacy of maximal tori of K;°
we have an element b€ K;° such that
b 1T = T..
Then
(ab) 1Tab = T,
ie, a is congruent to an elemen of Ng(7) modulo Kr_. Thereby was proved
the lemma.
On the other hand we have natural inclusions
Wo=No(T.)/ T .CN(T)/T.CN(T)/T=W
and the projection
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(1.18) p": Nxg(T)/T. — Ng(T)/No(T,) (=W~ by the above lemma)
of which the kernel is No( T.)/ 7~‘+= Wo. Comparing (1.18) with (1.15) we obtain
an identity

(1.19) Ne(T)/T=W,
in the same sense as (1.17).

1. 7. dim 7. is called the (restricted) rank of the symmetric pair (G, K),
denoted by “rank (G, K).” By the conjugacy of maximal tori of the pair (G, K),
the restricted rank is well defined. We say that the symmetric pair (G, K) has
splitting rank if the relation

rank G = rank K + rank (G, K)

is satisfied. In this case T, becomes a maximal torus of K. And T.=KNT= ’f‘+,
whence Kr_ is connected if G is simply connected.

For any compact connected Lie group K considered as a symmetric space, its
symmetric pair (KX K, K) has splitting rank as is easily seen. Thus the terms
“symmetric spaces of splitting rank” form a category of symmetric spaces includ-
ing compact Lie groups. They have many similar properties with compact Lie
groups as symmetric spaces.

ProrositioN 1.2. The symmetric pair (G, K) has splitting rank if and only
if its all restricted roots have even multiplicity.

Proof. If 2€r” has odd multiplicity, then 1€t by [2], Prop. 2.2. Then by
[1], Prop. 1.1, p. 45, ¢, has a basis {U,, V,} such that

oU,=U,, ¢V,=—V,.
In particular U, €t. Since i1(H)=0 for all Het", we see that
[t+: U ,\]:0,
ie., rank K > dim t*, which proves the “only if” part.

Next assume that every root i1 of r~ has even multiplicity. Then, by [1],

(1.9) and (1.11), p. 47, we see that the basis (1.5") of {NE, :

{Al; Az;"' ’Am()\)}

can be chosen so as to satisfy that the 2-planes generated by {As;.1, A}, 1 =1¢
=m(A)/2, are invariant and non-trivially rotated by the adjoint actions of T.:
whence f is decomposed orthogonally as a direct sum of fr_ and the 2-planes as
above. Finally, by the above and (1.10), f can be decomposed orthogonally as
a direct sum of {" and 2-planes which are invariant and non-trivially rotated
by the adjoint actions of T,, which shows immediately that t* is maximal abelian
in f.

CoROLLARY 1.3 For any symmetric pair (G, K) of splitting rank its restrict-
ed root system v~ is a proper root system (in the sense of [2], 2.1).

Because, if 21€t for a 2€17, m(22) must be odd by [2], Prop. 2.4.

Now by [2], the table at the end, we can list all irreducible symmetric pairs
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(G, K) such that G is simply connected, except group cases, as follows:
(1.20) (SU@2n), Sp(n)), (Spin(2n), Spin(2n—1)), (Es, Ey).

ProrosiTiON 1.4. For every symmetric pair (G, K) of splitting rank with

simply connected G, there is an isomorphism

W, = Wk
obtained by restriciing the operations of W, to t", where Wx denotes the Weyl
group of K operating on t*.

Proof. By Prop. 1.2 every restricted root of (G, K) has even multiplicity,
which implies that, for every a€t, a|t" is a non-zero linear form on t*. (Cf. [2],
Prop. 2.2.) Therefor t* contains a regular element of t. Thus, for any #€ Ny
(T, its adjoint operation sends a regular element of t into t. Therefore

ad n+t =t
which shows that
Ng(T)=Ng(T).
Then by (1.19) we finish our proof of the proposition.

1. 8. Let us consider the case that (G, K), G simply connected, has splitting
rank and Kr_ is semi-simple, to which belongs every symmetric pair of (1.20).

Denote by Ao the finite group of orthogonal transformations of {* obtained
by restricting the group of all automorphisms of f;_ preserving t*, to t*.  Since
every action of W, transforms t, onto itself, by Prop. 1.4 every action of Weyl
group Wyx of K transforms t, onto itself; on the other hand 1, is the root
system of fr_ with respect to t*. Hence

(1.21) Wi C A,.

Denote by D, the group of particular rotations on t* of ¥;_ preserving a
fundamental system 4, of t,. As is well known since Dynkin, there is a splitt-
ing extension

(1.22) 0 — Wy — A ;g Dy — 0
Y3
where the splitting map 2 is a map making D, a subgroup of A, in the natural
sense. Then, by (1.15), Prop. 1.4 and (1.22), we have an injective homomorphism :
W~ — D° so that the following diagram of homomorphisms is commutative.
0—> Wy —> Wx—> W =0
I | |
0— Wo—> Ay — Dy —0.
In particular, the upper extention is also splittable.
In each symmetric pair of (1.20) we see that
W™ = D, Wg = A,
as will be seen by the form of its root systems r, and .
1. 9. Let W~ operate on the homogeneous space K/K;_ from right by cho-
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osing a representative in Nx(T) for each element of W~ (by Lemma 1.1) Then
W~ operates on K/Kr_ without fixed points.

These operations may be viewed as analogous ones to the Weyl group opera-
tions on G/T.

In fact, in case of the symmetric pair (KX K, K), Kr_=T" and W,={1}
(trivial group). Then, by (1.15) and Prop. 1.4, Wx=W~. Through this isomor-
phism the operations of W~ on K/K;_=K/T, coincide with the usual Weyl group
operations.

In each case of (1.20) we may regard as if the group D, of particular rota-
tions of fr_ operates on K/Kr_, via the isomorphism D,=W~. Their homological
effects will be discussed in a later section ( §6).

§ 2. K-cycles.

2. 1. Let (G, K) be a symmetric pair. We fix every notation of §1 once
and for all.

Let P={p4, ---, p»} be a finite sequence of singular planes in {~. As far as
we are concerned to K-cycles we abbreviate K,; to K;, and Kr_ to K,. Put

Wp=K; X% K,
and let the #n-fold direct product (K,)" of K, operate on Wp from the right by
rule
2.1 (X1, %) = (Rayeee, R) = (1R, Ri'%oko, o, Ritixiki, -, Ry %ky)

for (x4, -, x,) € Wp, (ky, -, k,) € (Ky)". The quotient space of Wp by these
operation of (K,)"” is by definition the K-cycle I'» associated with (G, K) cor-
responding to the sequence P [8]. It is also described as

I'p = KXy, Ko X g, X, (Ku/ Ko),
the n-ple X g -product of Ky, K,, -+, K, 1, K./Ko.

Evidently, by the above operations (K,)* operates on W, without fixed
points. Hence Wp is a principal (K,)"-bundle over I'p,

The discussions of cohomologies of I'p is the subject of the present work.
Bott and Samelson [8] proved the variational completeness of the adjoint actions
of K on m as well as on G/K, and showed some K-cycles of the above type gave
a basis for the homology mod 2, in general .and the integral homology in some
special cases, of spaces such as the loop space of G/K, or K/K;» where T’ is a
torus subgroup of 7.

The projection: Wp—>Wps, P'= {p4, -, pu_y}, dropping off the last factor,
induces a fibre bundle

(2.2) (I'p, T'pr, 7, Ku/Ko)
which has a canonical cross section [8]. Hence I'» can be endowed with the
structure of an (n—1)-fold iterated fibre bundle, admitting cross-sections, over
K,/K, with successive fibres K,/K,, -+, K,/K,. In particular we see that
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2. 2. Let p be a singular plane in t~. Clearly G,° is closed by ¢, and ¢ |G,°
gives a symmetric pair (G,°, K,°), (g, f,) its infinitesimal symmetric pair. Let
8p =T, +m,
be its decomposition (1.1); f,=fNg, and m,=mNg,. By (1.12) we know that
8y = 07—+, I, = Ir_+INE,.
Further, by (1.9) and (1.10) we se that
2.4 m, = t7+mNe,.
Now it is clear that t~ is a Cartan subalgebra (maximal abelian subalgebra) of
m and its restricted root system is of restricted rank 1. (The rank of a root
system is defined as the number of roots of one of its fundamental systems,
which may be different from the rank of its ambient group or symmetric pair.)
Let ¢, be the center of g, and put ¢, =c,Nm, Clearly ¢,~Ct". Let p be ex-
pressed as p=(2, n), A€1r™”, and r, the basic translation corresponding to 2, i.e.,
an element of {~ which is perpendicular to the plane (1, 0) and satisfies 1(z,)=2.
Then we have an orthogonal decomposition
7 = R{z)} +¢,57,
where R denotes the field of real numbers and R{ } the linear subspace over R
generated by elements in the parentheses. Let us denote by m,” the orthogonal
complement of ¢,” in m,, ie,

(2.5) m,” = Rir,} +mNg,.
Then
(2.6) dim m,” =m(p)+1

by (1.6), (1.8) and (1.11).

2. 3. Put p'=(a, 0). Since exp p is contained in the group generated by
exp p, G,CGy and the latter is connected because exp p” is a torus subgroup of
G. Use the notations of 2. 2 for p” in place of p. In particular

Now adjoint actions of G, =exp g, leave ¢,” element-wise fixed, and hence
those of G, also do so as a subgroup of G,~. On the other hand, through the
adjoint actions G, leaves g, invariant and K leaves m invariant. Therefore
K,=G,NK leaves m, invariant and ¢,” element-wise fixed, and hence m, invariant.

By ad” we denote the representation of K, (and its subgroups KNG,° K,°)
on my obtained by restricting its adjoint representation to m,. Since adjoint
representations are orthogonal ones, by (2.6) ad” is a homomorphism

2.7 ad": K, —> O(m(p)+1).
(KNG,* — O(m(p)+1), K,° — SO(m(p)+1)).

Let S™® be the unit sphere of my, ie., the set of all X€m, such that
<X, X>=1
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Lemma 2.1 ad’K,° operates transitively on S™®,

Proof. Let a and b be any two elements of S™®), t,~ and t,~ Cartan sub-
algebras of the pair (g, f,) containing respectively « and b, ie.,

t,=Ria} +¢,7, {7 =R{b}+c,".
By the conjugacy of Cartan subalgebras, there exists an element 2€ K,° such that
ad kt,” = t,~.
Then
ad’k-R{a} =R{b}.
Now <a, a>=<b, b>=1 and ad’k preserves length; consequently
ad’k-a==b.
In case ad’k-a = —b, let &" be an element of K,° representing the generator of
the Weyl group of the pair (g, f,) with respect to t,~, then
ad’®'-(=b) =b
and
ad’(B'k)+a = b. q.ed.

Prorosition 2.2. K,/Kr ~KNG,°/Kr ~K,°/K,° N Ky_~S"®),

where diffeomorphisms ~ are induced by ad’ and the natural inclusions
K,CKNG,°CK,.

Proof. By the above lemma K,°, KNG,° and K, operates transitively on
S™@® through ad’. Since Gr_ is connected, Kr_CKNG,°. Now every element
fixing the point ¢,/v/<z,, ¢,> of S™® through ad’, leaves = element-wise fixed
by its adjoint action, hence is contained in Kr_, and vice versa; therefrom the

proposition follows.

As a corollary of this proposition we see the

ProrosiTiON 2.3 Ky,=KNG,°
for every singular plane p in t.

The author has no complete proof whether G, in general is connected or not,
so that the above proposition is interesting to him. (This problem will be partly
discussed in 4. 1.)

2. 4. Denote by ad’ the diffeomorphism K,/Kr_~S™® of Prop. 2.2. If we
identify K,/Kr_ with the unit sphere S™® of m, by ad’, then left translations of
K, on K,/Kr_ change to ad’ actions on S"®,

Now we shall look at the bundle (2.2). Thie bundle is the associated bundle
of the principal K,-bundle (T'p, I'ps, #) with the actions of K, on K,/K, by left
translations, where

Tr=K, X g Ko X gy oo X g K
the n-ple Xg,-product of Ky, ---, K, and the projection # is the map to drop off
the last factor. By the above mentioned remark, if we replace the fibre K,/K,
of the bundle by S™» pig ad’, then K, operates on S"(») orthogonally through
ad’ of 72.7).
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Thus we obtain

THEOREM 2.4. For every finite sequence P={py, ---, px} of singular planes in
t~, the fibre K,/K, of the bundle (I'p, T'pr, 7, K,/K,) is homeomorphic to an m(p,)
-sphere, where P'={py, -, po_1). If we replace the fibre K,/K, by S"*» via ad’,
then the obtained bundle (T'p, Tpr, S"#w) is a sphere bundle, of which the associated
principal orthogonal bundle is the ad’-extension of the principal K,-bundle (T p, Tps, 7).

(As to the extension of the structure group of a principal bundle by a homo-
morphism, we refer to [6], p. 477.)

CoROLLARY 2. 5. Every K-cycle I'p, P={p1, -+, p.}, associated with a symmetric
pair, is endowed with a structuve of a (n—1)-fold iterated sphere bundle, admitting
canonical cross-sections, over S™*V with successive fibres S™#2), .. S™n)

2. 5. The canonical cross-section of the bundle (2.2) gives in a standard way
a reduction of the structure group of the principal K,-bundle (I'p, I'ps, #) to K,
as well as that of the principal orthogonal bundle to O(m(p,)), where O(m(p,))
is the subgroup of O(m(p,) +1) keeping r,/1/ <z, ra> invariant, where p,=(1, m).
The former reduced K,-bundle is (f‘p/, T'pr, 7),

1;P'=K1 X g Ko Xk, 0 Xg Ky
the (n—1)-ple X -product of Ky, -+, K, 1 and the prodjection # is induced by
factorization of the last factor K, , —> K, 1/K,. And the latter reduced
bundle is the ad”-extension of the former one, where
ad”: Ko, —> O(m(p))
is the homomorphism obtained by restricting ad” to K, .

The map ad’ induces an isometry (up to a positive constant multiple) of
tangent spaces at distinguished elements of K,/K, and S™“#» for p=p, denoted
by 3’171’*. Identitify S™(») with the homogeneous space O(m(p,)+1)/0C(m(p,))
canonically and let us denote isotropy representations of homogeneous spaces
K,/K, and O(m(p,)+1)/O(m(p,)) respectively by :, and :,”. As is easily seen,
ad’ gives an equivalence between two representations :, and :,”cad” of K,, and
«," is equivalent to the identity map representation of O(m(p,)). Thus we have
seen that the represention ad” of K, is equivalent to .,.

Then, by the above discussions we obtain the following

ProrosiTioN 2.6 The reduced O(m(p,))-bundle over T'ps, defined by the canoni-
cal cross-section of the bundle (U'p, T'ps, S™®0)) in the standard way, is the -,
extension of the principal K,-bundle (f‘p/, Tpr, @), where -, is the isotropy repre-
sentation of the homogeneous space K,/K, .

2. 6. We say that a K-cycle I'p associated with a symmetric pair (G, K) is
totally orientable if, considering I'p as an iterated sphere bundle over a sphere (by
Cor. 2.5), the sphere bundles at each stage are all orientable.

The following statement is well known and easily proved by observing the
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top dimensional term of the Gysin sequence of integral cohomology :
(2.8) for every orvientable sphere bundle over an orientable manifold, the bundle
space is also an ovientable manifold.

As an immediate consequence of (2.8) and Cor. 2.5 we obtain

Prorosition 2.7. If a K-cycle T'p of a symmetric pair (G, K) is totally
orientable, then T'p is an orientable manifold and H*(I'p; Z) has no torsion.

Since the sphere bundles at each stage of I'» have cross-sections, their Gysin
sequences of integral cohomologies split, which shows the second assertion of
Prop. 2.7 by a stage-wise argument.

2. 7. Let P={p4, -+, p»y be a finite sequence of singular planes in {~. For
any subsequence P'={p; , -, p;,} of P, we shall embed its K-cycle I"p- as a sub-
manifold of I"p. Let

i: Wpr —> Whp
be an injection defined by
yoi(X;,, v, X;)=%; in case t€ {iy, -, T}
=¢ otherwise
for (x;,, -, %:;,) € Wpr, where 7n;,: Wp — K, is the natural projection onto the
t-th factor and ¢ the neutral element of K. Let
h:(Ko) —> (Ko)”
be a homomorphism defined by
mioh(k, -, ki)=e if t<iy

=ki1 lf l.1 §t<lg
=k;, if i,=t<i,+ for r<s
=k;, if i,=t
for (k;,, -, ki) € (Ko)®. As is easily seen, the pair (¢, 2) is a homomorphism of

principal bundles and induces and injection map

i:Tpr —> T'p
of base spaces. This inclusion is a natural one in a sense and, if P’'={py, -,
Pn-1), coincide with the canonical cross-section of the bundle TI'p ——> T'pr.

I'ps, identified with a submanifold of T'» by i, is called a sub-K-cycle of T'p
corresponding to the subsequence P'={p,,, -+, pi,}.

2. 8. If T'p is totally orientable, then evidently every sub-K-cycle T'ps of it is
also totally orientable.

Every sub-K-cycle T'p, P'={p;,, -+, p:,}, forms a cycle, mod 2 in general and
integral in case of T"p being totally orientable after choosing a suitable orientation
of I'p, of T'p of degree m(p;)+--+m(p;). The homology class of I'p, re-
presented by the cycle I'ps, is denoted by [i4, -+, is]o in general case as a mod 2
class, or by [i4, -+, i;] in totally orientable case as an integral class.
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ProPOSITION 2.8. For any P={py, -, p,} 1) the set of all [iy, -, is]2,
1=ii< - <i=n, forms an additive base of H.(T'p; Z2), and ii) if T'p is totally
orientable, then the set of all [iy, -, i,], 1=i1< - <i;=n, forms an additive base
of H.(T'p; Z), where we consider the generator of Ho(T'p; Z:) or Ho(T'p; Z) re-
presented by a point, denoted by 1, as represented by a sub-K-cycle corrvesponding to
a void subsequence.

Proof by induction on the length n of P. The case u#=1 is evident since I'p
itself is a sphere.

Put P’={py4, -, pn_1}. Since the sphere bundle I'» — I'ps has the canonical
cross-section «, its Gysin sequence splits ints a direct sum decomposition

(2.9) H;(Tp) = 8uHiomip,)(Upr) + 0, H{(T'pr),
where the ceofficient group is Z, or Z according to the cases i) or ii), and by is
the dual of integration over the fibre of cohomology [6].

Now by induction hypothesis a basis of H,(I'p/) is given by homology classes
represented by sub-K-cycles of I'ps, denoted by [y, -+, 412" or [i4, -, is]. We
see easily that

(2.10) ky[21, v, 81 =[i1, =, is] for i;<m,
where the suffices 2 are dropped in case i). (The same convention is used in
what follows since discussions in both cases i) and ii) are very parallel.)

In case i=dim(I'p’) we have §,.H;(T'p)=H;imep(Tp)
which implies that

(2.117) B.[1, -, n—1] = £[1, -, n].

For any subsequence P”={p;, ---, p;J} such that i,<n, we put P"'={p;, -,

bis» Du}- In the following diagram

FP”’ —_—> FP

Lo

Tpr — Tpr
vertical arrows are projections of bundles and horizontal arrows are natural in-
clusions as sub-K-cycles. As is easily seen the pair of horizontal arrows is a
bundle map, then the naturality of &, and the formula (2.11") implies that

(211) h*[ib ey, Z's]’=i[i.1, ey l.s, n]
for every basis element [y, -+, ;1" of H (I'ps). (2.9), (2.10) and (2.11) complete
the proof.

2. 9. We consider a basis of H*(T'p), P={p1, ---, p.} (the coefficient group
is Z, or Z according as the considered case is general or totally orientable one),
dual to the homology basis of Prop. 2.8. Let x;...;, be the dual element to
(i1, =, 412 or [iy, -, és]. First we note that x,, restricted to the fibre, gives a
generator of the top-dimensional fibre cohomology of the bundle T'p —> T'ps,
P’={py, -, pu_1}, and that £*x,=0, where £:I'pr — TI'p is the canonical cross-
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section of the bundle. Secondly we note that the cohomology map z* and the
map consisting of z* followed by cup-product with x, are injective, and define a
direct sum decomposition
(2.12) H*(Tp)=7*H*(Tpr)+x, w*H*(Tpr).
(Cf., [8]. p. 998, or [11], p. 273.) Then, by a more or less parallel discussion to
the proof of Prop. 2.8 using an induction on the length # of P, we see that
(2.13) X, -
for all 1=i{;< - <i;=n, which means that i) the cohomology ring H*(I'p) is
generated by

..,-s=ix,~l st Xig

{1, =, X},
and that ii) an additive base of H*(I'p) is given by
(2.14) {1, 2, xiy, 1=61< - <és=m}.

Thus, if we obtain relations p, to describe x,2 as linear combinations of basis
elements (2.14) for 1=k=mn, then the cohomology ring H*(I'p) is determined
completely.

In case I'p is totally orientable, summarizing the above and remarking that
x,2=0 if deg x, (=m(p:)) odd, we obtain

PRrROPOSITION 2.9 Assume that a K-cycle T'p, P={p1, -, D.}, is totally orient-
able, and that singular planes p;,, -, pi, of P have odd multiplicities and the rests
be,s =5 Dr,_, have evem multiplicities ; then

H*Tp; 2)=NAz(xs, -, %,) ® Z[x1,, = %1, 1/ Ip

where Nz denotes an exterior algebra over Z with generators denoted in parentheses,
and Ip is the ideal generated by the elements p,, 1=k=n—r, which represent rela-
tions to describe x.i as linear combinations of basis elements (2.14).

The same proposition holds also for the cohomology mod 2 of every K-cycle
T'» without the exterior tensor factor. In this case the relations p, can be deter-
mined completely if G is simply connected (cf., Theorem 2.10 below).

For each symmetric pair of (1.20), its all K-cycles are totally orientable and
their relations p, will be determined in §6.

2. 10. Take any K-cycle I'p, P={pi1, -, p»}. For two singular planes
Pi=(4,, m) pi=(Q2;, m,), A, 2j€v~", of P, using the Cartan integer

(2.15) a;;=2<2i, 2;>/<2j, 4;>
we define two numbers mod 2 b;; and ¢;; as follows:
(2.16) b;; =0 (mod 2) if m(p)sE=m(p;)
= a;; otherwise,
(2.17) ¢;; =0 (mod 2) if m(p)=1 or m(p;)s~1
= q;; otherwise.

Now we shall state a theorem which will be proved in §7.
TueoreMm 2.10. Let (G, K) be a symmetvic pair with G simply-connected, and
P={p1, -, pu} a finite sequence of singular planes in t~. The cohomology ring
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mod 2 of the K-cycle 'y have n generators xy, -, %, with deg x;=m(p;), and
H*(Tp; Zy)=Zo[ %1, -, xa1/1Ip
where Ip is the ideal generated by the elements

k=1 k1
Pe=2p(xp+ Zizlbk;x,' + <Zi=1 Ckixi)m<pk))

for 1=k=mn.
§3. Connected components of Kr_.

3. 1. Let (G, K) be a symmetric pair, and use the notations of §1. To each
element « €t*, we associate an element H, €t defined by
<H,, H>=a(H) for all Het,
and r,€t defined by
to=2H,/<H,, H,>.
When a €t or €17, 7w is called a basic translation of t or of t~ corresponding to
a. For each subset 8Ct* we put
&= {ry; @ €8}.

Let ¢ be the neutral element of G. Discrete subgroups of 1, exp~*(e)Nt,
exp 1(e)Nt" and exp 1(e)N{, are called the unit lattices of 7, 7. and 7. respec-
tively. The lattices generated by %, o and 7, are contained in the unit lattices of
T, T, and 7. respectively. If G is simply-connected, then the lattice generated
by ¢, or {7, coincides with the unit lattice of 7T, or 7_ [15, 7].

Let 4 be a fundamental system of r. Since 4 is a basis of the lattice generated
by f,

(3.1) the set 4 form a basis of the unit lattice of T if and only if G is simply
connected.

In 3.3. we obtain a basis of the lattice generated by §.

3. 2. Let us denote the ranks of v and 1, respectively by / and /,. Let 4
be a o-fundamental system of r, and put

d=A{ay, =, a;}, do= {1141, 5 i},
Here we recall Lemma 1 of Satake [12], p. 80.
(3.2) There exists an involutive permutation G of the set of indices {1, ---, [—Ily)}
such that
o*ai=azay+ Doy Pay, P=0, for 1=i=1-1,.

According to this, we can choose the numbering of elements of 4—4, in such a

way that
o(i) = i for 1=i=p,,
= i+ps for pi+1=i=pi+p.,
= {+ps for pi+pet1=i=p,+2p,

as in [12], p. 80. Then [/—Ily=p;+2p,. Putting
p1t+pe2=p,
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and J;=a;|{t for 1=i=p, we see that
A7 = {21, =, Ap}.
Let p” be the number of roots of 4~ of multiplicity 1, then p'=p4, and we
can choose the numbering of roots of 4 and of 4~ further to satisfy that
m(A)=1 for 1=i=p’,
>1 for p'+1=i=p.
3. 3. The following assertions are routine proofs.
(3.3) The set of basic translations i~ is a root system (in the sense of [2]).
(3.4) If v~ is a proper root system (in the sense of [2]), then i~ is also a
proper root system, and 4 is a fundamental system of { .
For any root system 8, put
8 ={(1€58; 1/2¢8},
§"={1€8; 2235},

then
(3.5) & and 8" are proper root systems, and fundamental systems of & coincide
with those of 8. Furthermore, if a set F={(T1, -, T, is a fundamental system

of &, them the set F’"={c1T1, -, &7, defined by
&;=1 if 27:6€8
=2 if 27:€8
is a fundamental system of 8. Every fundamental system of 8" can be obtained in
this way.
8" is called a canonical proper subsystem of § in [2].

(3.6) G)'=r” and (F)'=r"
Finally, from (3.3)-(3.6), we conclude
ProrosiTiON 3.1. The set Z‘”={r51>\,,  Tepag)s

where

e,=1 if 22,6t
=2 if 22;€r,
is a fundamental system of i~ and, if G is simply connected, forms a basis of the
units lattice of T_.
In the sequel we abbreviate v¢;,; to 7; for 1=i=p, and s, to r; for 1=i=1
Thus
47" =z, =, 7, and d={ry, =, 7}
3. 4. We shall express 7; by basic translations of 4.
i) The case a;=);, which is equivalent to saying that m(1;)=1. We see
immediately that
T = T = —O0T;.
ii) The case <a;,c*a;>=0, which is equivalent to saying that 21;¢{  and
m(2;)5=1 by [2]. In this case
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Ai=(a;+o%a;)/2,

and
Ti=tr; = Hujrota/<(ai+0*a;) /2, (a;+0%a;)/2>
=2H,,/<a;, a;>+2H*,,/<c*a;, oa;>
=Tg; T To¥a; -
Thus

T; = Ti—0T;
because . %,=—o1, for any a€ft*.
iii) The case <a;, 6*a;><0, which is equivalent to saying that 21; € v~ by [2].
Then

22i=a;+d%a; .
And
Ti=1oy;=2H,, o#u;/<ait+o*a;, a;+o%a;>
=2H,, o#u;/<a;, a;>
=Ta; T To%a; -
Thus
Ti=Ti—0T;.

3. 5. In this and the next subsection we assume that G is simply connected,
To obtain a basis of the unit lattice of 7', first we change the basis 4 of the
unit lattice of 7.
By (3.2) we see that
OTp4i=—TpyapyriTApei fOr 1=j=ps,
where a,,_; is an integral linear combination of elements of 4,. Therefore,
putting
(3.7 Ady= {1, -, Tpyr OTpitds % OTp, Tiolgrds **s Ti),
the coefficient matrix of the change of bases: 4 —> 4, is a triangular integral
matrix whose diagonal elements are +1, hence is unimodular. And we conclude
that
(3.8) the set 44 is a basis of the unit lattice of T.
Next we put
3.9) A~2={71, ey Tpy OTp1tTpty o OTp+Th, Timigrt, = Ti)-
The coefficient matrix of the change of bases: 4; —> 4, is also unimodular as
is easily seen, and we conclude that
(8.10) the set 4y is a basis of the unit lattice of T.
Now
(3.11) the set dNt= {0Tp,41 T Tppst, o1, OTp+Tp, Tizigrt, =+, T2} 4S @ linear basis
of ",
since the number of elements of 4,N1* is equal to [—p=dim "
By (3.10)-(3.11) we obtain
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PrOPOSITION 3.2 The set {tp,41+0Tp 41, =+, Tp+0Ts, Tigg1, = T} forms a
basis of the unit lattice of T.. .
3. 6. Now we shall discuss Kr/Kr°. By [1], Prop. 1.5,
(3.12) Kr /Kr ® = KNT_/T.NT-.
KNT_={te T_;#2=1} is the image of the half unit lattice of 7_ by the ex-
ponential map. Hence, by Prop. 3.1 we see that
(8.13) KNT.=(Zy)? with generators exp (7;/2). 1=i=p.
Next we prove the following
ProrosiTION 3.3. T .NT_==(Z)*? with generators exp (z;/2), p'+1=i=p.
Proof. Take an index 7 such that p’+1=i=<p. By cases ii), iii) of 3.4
7i/2=(ri—07;)/2=(ti+07;)/2—01;
=(r;+0r;)/2 modulo the unit lattice of 7,
whence
exp (7;/2)=exp ((z;+o7;)/2) € T, for p'+1=i=p.
On the other hand, if we assume that
T exp (7:,/2) € T,
then (7;,+ -+ +7;,)/2 is congruent to an element of t* modulo the unit lattice of
T, which implies by (3.10) that there exists an element r € {* such that
r=(Ts,+ = +7)/2+ X 2_nry,
n; are integers. (Remark that last / —p elements of 4, belongs to t*.) Now
t=0r=—(T;,+ - +7;,)/2+ 2 nor;.
Therefore
Tiy+ oo 7 2 2mi(ri—or) =0.
Here we put
&;=0 for i€ {1, -, @)
=1 otherwise,
then, using the identities of 3. 4, we see that
2Ly (2ni+ €T+ Xy pa(mi+ )T =0.
Finally, the linear independence of 74, ---, 7, shows that
&;=0 for 1=i=p’. g.e.d.
By (3.12), (3.13) and Prop. 3.3 we obtain
THEOREM 3.4. Let (G, K) be a symmetric pair such that G is simply connected,
D' the number of roots of multiplicity 1 in a restricted fundamental system of the
pair (G, K), and 7,, 1=i=p’, the corresponding basic translations; then
Kr /K% =(Z,)"
whose p' generators are represented by exp(z;/2), 1=i=p’.
COROLLARY 3.5. Under the same assumptions as in the above theovem, the
number of connected components of Kr_ is equal to 27'.
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§4. Centralizers in K of singular tori in_7-.

4. 1. Let (G, K) be a symmetric pair. It is well known that, for any torus
subgroup T’ of G, Gy is connected. We shall first discuss whether G, is con-
nected or not for each singular plane p in t~.

Put p=(1, n), 2€17".

i) In case #=0, exp p is a torus subgroup of G; hence G, is connected by
the above remark.

i) In case n=2m (even), the fact that i(mr,)=# and exp r,=¢, implies that
exp p=exp (4, 0), whence G, is connected.

There remains the case n=2m+1 (odd) to be discussed. In this case

exp (4, 2m+1) =exp (4, 1)
by the same reason an in case ii), and the group generated by this set contains
exp (4, 0). Therefore
Gy C G, 0y -
This case is further divided into two cases.
iii) If i/2€t~, then by (1.11)-(1.12) their Lie algebras are
8, = 8o, 00 = gr_+E&,\.
In particular
dim G, = dim G,, o).
Hence G, is open and closed in G,, o), and the latter is connected. Therefore
Gzz = G(A, 0)»
and also in this case G, is connected.

iv) If 2/2€r7, then we put 1/2=2". By (1.11)-(1.12). Lie algebras of G,

and of G,, o) are respectively expessed as
8, = 9r+¢,
8r, 0) = Gr_+& €.
Put a=exp(r,/2). a®=e. Discuss the adjoint action of a on g, oy by (1.5)
and (1.9), then we see that
ad a|g, = identity map
and
ad a ¢, = — identity map,
which imply that
(4.1) (gqa, 0y, 9> ad @) is an infinitesimal symmetvic pair.
Correspondingly we Obtain
(4.2) (Gq, 0y, G»°, ad a) is a symmetric pair with the fixed group G,.

The last assertion of (4.2) can be proved as follows: let an element » of

Gr,0y be commutative with a. For any element x € exp p, xa € exp(2, 0). Thereby
xa = bxab™* = bxb la.
Therefore, x=bxb™1 and b€G,; and vice versa.
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Let g, 0)°° denote the semi-simple part of g, oy and t; its center. G, 0)"*
=exp (4u, 0y°®) and Ty=exp t; are respectively the semi-simple part and the con-
nected center of G,, o). As is well known

(4.3) Go, o) = G, 00"+ T,
and clearly
4.4) T1CG,.

(4.2) implies that
(4.5) (Gg, 0%, (GyNGey, 0y°*)°, ad a) is a symmetric pair with the fixed group
G,NGy, o).

Let t, be the Cartan subalgebra of g, (,°° contained in t. T,=exp t; is a
maximal torus of G,, ¢)*°. Since A"€t™" we can choose a s-fundamental system
4 of v such that 2"€ 4. We put

dyr={a€d;alt-=2"}.
A slight modification of the proof of Prop. 3.4 of [2] shows that 4,Ud,’ is a
fundamental system of roots of G, 0)*".

Here we assume that G is simply connected; then the fact that a fundamental
system of roots of G, oy°° is a part of a fundamental system of roots of G shows
that a basis of the unit lattice of 7', is given by basic translations corresponding
to roots of a fundamental system of Gy, 0", which in turn proves that G,, o0y°® is
simply connected. Then by [8,9] the fixed group G,NG,, 0)*° of (4.5) is con-
nected. Now, since

G, = (GNG,,0°%) Ty
as is easily seen from (4.3)-(4.4), G, is connected as a product of two connected
groups.

By the above discussions we obtain the following

PROPOSITION 4.1. If G is simply connected, then G, is connected for any singu-
lar plane p in .

4. 2. We shall associate with each 1€t an irreducible symmetric pair (G(2),
K(2)) of rank 1, which will play an important réle in our subsequent sections.

Put

f,=the union of t,, such that mA€r~, m an integer.
toUT, is the root system of G, 1y by (1.12), and clearly closed by o. Using
terminologies of [2] f, is o-connected (Lemma 3.2 of [2]). By #, we denote the
o-component of roUE, containing f,. Corresponding to the decomposition of t,U%,
into os-components, we have the decomposition of g(,,1,°%, the semi-simple part of
d, 1y, into the direct sum of s-irreducible factors.

Let g(1) denote the s-irreducible factor having T, as its root system. The pair
@D, 1)), (A =tNg(2), is an infinitesimal symmetric pair of rank 1. Its
associated symmetric pair (G(1), K(2)), where G(1)=expg(2) and K(2)=expi(l),
is the above mentioned one, of which the involution is ¢|G(2) and, if G is simply
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connected, the fixed group is G(A)NK. t(1)=tNg(2) and {(A) =t(1) Nt are Cartan
subalgebras of g(1) and the pair (g(1), ¥(1)) respectively. (1)~ is one-dimensional
and generated by t,.

ProrOsITION 4.2. If G is simply-connected, then G(2) is simply conmected for

each 2€t, and K(A)=GQ)NK, the fixed group.

Proof. Once was proved the simply-connected-ness of G(2), then the last
assertion follows from [8, 9].

i) In case 1€t ; by [2], Prop. 3.4, 4*=4Nt, is a o-fundamental system of
roots of G(2) with respect to 1(1) for any s-fundamental system 4 of roots of G
with respect to . Then the same reasoning as in 4.1. iv) shows that basic trans-
lations of 1{(1) corresponding to roots of 4* form a basis of the unit lattice of
t(2), ie.,, G(2) is simply connected.

ii) In case 2&tr~’. There exists a root 1€t~ such that 1=2". First we
remark that the symmetric pair (G(2’), K(1’)) has A’ and i as its restricted roots,
and their multiplicities for the pair (G(1’), K(2’)) are the same as those for the
pair (G, K). Secondly we remark that we can define (G(1), K(1)) by starting
from (G(1"), K(1")) instead of (G, K), ie., G(A)=G(A)(2), and that G(1') is
simply connected as the result of case 1).

By discussions of multiplicities of restricted roots [2], §§2 and 4, m(1)=1,
3or 7.

a) The case m(2)=1. Then i€t and g(A)=R{r,}+¢,. It is well known
that, if G is simply connected, exp (R{r,} +¢,) is a 3-sphere for any a €tr. Thus
G(2) is a 3-sphere, in particular simply connected.

b) The case m(1)=3. By the classification of infinitesimal symmetric pairs
of rank 1 ((cf, [2], §4), a(A)=C;, I=3, and m((A’)=4(—2). Since G(1") is
simply connected, G(2’)==Sp(l), /=3. Consider the symmetric pair (4.2) for the
group G(1’), then we obtain the symmetric pair

(G, Gy, 1y, ad @), a = exp(r,/2).

Here

dim (GQ")/G(A)q, 1)) =dim é,/=8(/—2).
By the classification of compact symmetric spaces, if G=Sp (/) and dim G/K
=8(/—2), then we must conclude that K= Sp (2) xSp (/—2), ie.,

G, 19 = Sp (2)xSp (I—2).

Therefrom we see that G(2) is simply connected since it is the semi-simple part
of G(A), 1)-

¢) The case m(1)=7; then g¢(2’)=F, and m(A’)=8. Consider the symmetric

pair similar to the above; then
dim (G(1)/G(A), 1)) =dim &/=16
Therefrom by the classification of compact symmetric spaces we conclude that
G(H)=G(), 1)=Spin (9).
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In particular, G(2) is simply connected.

4. 3. Let p=(2, n), A€t~", be a singular plane in {~. A can be expressed as
A=eX, €t e=1 or 2. The symmetric pair (G(1’), K(2’)) has A, and possibly
22’, as its restricted roots. Now by the definition of the pair (G(1), K(1)),
m(2") and m(2") for the pair (G(2"), K(2")) are the same as those for the pair
(G, K). Consequently m(p) for (G(1"), K(2")) is the same as that for (G, K).

By the inclusion G(2")CG is induced the inclusions

K(l’)pCKp and K(X’)T(,\/)_CKT_,

where T(1")_=exp t(1")~. Clearly

K(Z')T(A')_ = Kr NK(Q1");.
Hence the map

K(I)p/K(Z’)T()\’)_ —> Ky/Kr_

induced by the natural inclusion is injective, and both homogeneous spaces of
this map are same dimensional by the above remark. Furthermore K,/Kr_ is
connected since it is homeomorphic to $S”® by Prop. 2.2. Therefrom we can con-
clude that the above map is bijective, i.e., we obtained

PROFOSITION 4.3. K(A")/K(A vy ~Ky/Kr_, diffeomorphic by the map induced
by the natural inclusion G(2)CG.

If 2=2" or if 2=22" and # even, then K(1")=K(1"),. Thus

(4.6) K(AD)/KADron. =~ Kp/Kr_
by the natural map, if A=2" or if 2=1" and n even.

If 2=22" and # odd, then K(21")=K(21"),; and the similar discussions as
above show that

4.7 KQ@aH/KQ@aDron. =~ Ky/Kr_
by the natural map, if 1=22" and n odd.

4. 4. Now we shall assume that G is simply comnected, and determine the
number of connected components of K, for every singular plane p in t.

LemMa 4.4. Let p=(2, n) satisfy A€r”" and m(A)=1, then K contains at
least two connected components of Kr_.

Proof. If we take a s-fundamental system 4 of t such that 4733, then we
see that

exp (r,/2) & Kr°
by Theorem 3.4. Hence, to prove the lemma it is enough to show that
exp (r\/2)€K§.

Because of m(1)=1, 1€t and g(2)=R{r,} +¢,. Let (U,, V,) be an orthogonal
frame of ¢, such that ¢U,=U, and ¢V,=—V, by (1.5). Then U, €¥,, and

exp (R{U,}) C K}.

Now G(2) is a 3-sphere, and exp (R{U,}) is the one of the great circles of
G(2), which passes through the anti-pode of ¢ in G(1). On the other hand, the
anti-pode of ¢ is idntical with exp (r,/2). Hence
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exp (r,/2)€K}j.

ProrosiTION 4.5. K(1'), is connected for every singular plane p in t~, where
=@, m), A€, a=¢eX, X €1, e=1 or 2.

Proof. Since G is simply connected, G(2’) is simply connected by Prop. 4.2.
Apply Theorem 3.4 to the pair (G(1’), K(2’)). Since the restricted fundamental
system of (G(1'), K(2’)) is of rank 1 and consists only of A, K(2")r/,_ is con-
nected if m(1’)1, and has exactly two connected components if #m(1’)=1. There-
fore, applying Lemma 4.4 to the pair (G(1’), K(1’)) in case m(2")=1, we see that

(4.8) K3 D KDrovy-
in all cases.

By Prop. 2.2 applied to the pair (G(1"), K(1')) we see that K(1"),/K(1 )roy.
is connected, which implies that every connected component of K(A"), contains
at least one conneccted component of K(i")r¢/,_. Then (4.8) implies the con-
nected-ness of K(1"),.

ProrOSITION 4.6. Let p=(1, n), A€r™", be a singular plane in t~. 1) In case
m()=1 and r€1r™", K} contains just two connected components of Kr_:

KiNKr_ = Ky °+exp (r,/2) K7 °.
ii) Otherwise
K{NKr_ =K}_.
Proof. Let 2 be expressed as 1=¢2’, 7’€r™’, e=1or 2. In case i) 1=21".
Consider the following commutative diagram

K(/I')Q/K(/t')m'>_°—a> K3/Kr °
I o 40
KD/ KX )ron- —> Kp/Kr_
induced by natural inclusions.

B is a diffeomorphism by Prop. 4.3.

Clearly 7 and ¢ are covering maps by definition of [14], p. 67. Then a must
be locally homeomorphic by the commutativity of the above diagram, and the
image of « is open and closed in the connected space K;/Kr °. Hence the image
of a coincide with K$/Kr ° ie., « is also a covering map.

Now by Prop. 4.5 K(2"),=K(1")}, and then by Theorem 3.4 applied to the
pair (G(1"), K(2")) we see that

deg () = 2 in case i),
=1 in case ii),
where deg ( ) denotes the degree (number of fibre elements) of the covering
map in parentheses.

Next, by Lemma 4.4 we see that

deg (6) = 2 in case i)
=1 in case ii).
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Therefore deg (7)=deg (4) in both cases.
On the other hand
deg (7) = deg (dca) = deg (d)-deg (a)
since B is bijective. Hence deg (7) = deg (4).

Thus
deg (7) = deg (),
and
deg (6) = 2 in case 1)
=1 in case ii).

Since K,/Kr_ is connected by Prop. 2.2,
K,/Kr_ ~ K$/K{NKr_.
Therefrom the conclusion of the proposition follows.
Now, by Theorem 3.4 and Prop. 4.6 the number of connected components of
K, can be counted immediately, and we obtain
THEOREM 4.7. Let (G, K) be a symmetric pair such that G is simply connected,
p=Q, n), 2€r7", a singular plane in t~, i=¢€2’ such that 2 €r~" and =1 or 2.
Choose a o-fundamental system 4 of v such that 4->2. Let p' be the number of
vestricted roots of multiplicity 1 of 47, and 7;, 1=i=p’, the corresponding basic
translations.
i) In case m(A")=1, take 71 as the basic translation corresponding to 1A', then
Ky/Kp = (Z)*"1,
whose p"'—1 generators are represented by exp(7;/2), 2=i=p’.
i) In case m(A")F~1,
K,/K§ = (Z)"',
whose p' generators are represented by exp(z,/2), 1=i=p’.

§5. Some reduction of K-cycles.

5. 1. We assume that G is simply connected for every symmetric pair (G, K)
throughout this section.
Let (G, K) be a symmetric pair, and
(5.1) G=G1xXG?
be a decomposition of G into a direct product of two s-invariant subgroups G?*
and G2. Then we have a decomposition
(5.2) K=K1xK?
of K into a direct product such that K'=KNG?, i=1, 2. The pairs (G, K%), i=1
and 2, are symmetric pairs such that G’ are simply connected, with involutions
o;=0|G?, and
(5.3) G/K=G1/K1xG2?/K?
as a symmetric space.
The infinitesimal symmetric pair (g, ) of (G, K) is also decomposed into a
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direct sum
(5.4) g=01+gs, f=F +f5, m=my +mo,
where (g;, t;), i=1 and 2, are infinitesimal pairs of (G’, K*) and
gi=F1+my, go=Tr+m,
are their decompositions (1.1). We have also a direct product decomposition
(5.5) M = MtxMz2,
where M=exp m and M‘=exp m; for i=1, 2.

Cartan subalgebras t~ of the pair (g, ¥) and t of g containing {~ are also de-

composed into direct sums

(5.6) =iy +15, t=t; +1s,
where {7 =t"~m; are Cartan subalgebras of (g;, f;) and t;=t~g; are those of g;
containing 1{; for ¢=1,; 2. Correspondingly the maximal torus 7_=exp {~ of
(G, K) is decomposed into a direct product

(5.7 T =T®XT®
of maximal tori T =exp 7, i=1 and 2, of the pairs (G’, K%).

Root systems t (of g with respect to t) and v~ (of (g, ¥) with respect to 1)

are decomposed into disjoint unions of mutually orthogonal subsystems

(5.8) r=1yUt,, tT=t7U1ty,
such that t;|1; and tj |t; are zero forms for ¢%j. 1; and r;, identified with t;|t;
and 17 |t; respectively, are root systems of g; and (g;, ¥;) with respect to t; and
t7 for i=1, 2.

5. 2. Denote by pr;, i=1, 2, the projection onto the i-th factor in (5.1) (or
in (5.2), (5.3), (5.4) etc.).

Lemma 5.1. Let L be any subset of M=exp m, then

Ky = (KY)px(K?)e,
where L'=pr;L for i=1, 2.

Proof. Put g,=pr; g for any g€ G, i=1 and 2; then g=(g1, g2). For k=(ky,
k)€K and [=(l4, ls)€ L, k is commutative with / if and only if %, are com-
mutative with /; for =1 and 2, whence the lemma follows.

In particular, if L=7T_, then L'=T  for i=1 and 2. Therefore by the above
Lemma we obtain

ProrosiTION 5.2. Ky =(K1);m X (K2)r@ .

Next, let p=(A, #) be a singular plane in t~. By the decomposition (5.8)
A€ty or ty. If 2€1y, then p may also be regarded as a singular plane in {7, de-
noted here by p’ to distinguish it from the original one, and

exp p=exp p'xX T2,
Similarly, if 1€z, then we can regard p as a singular plane in f;, and denoting
it by p”’,
exp p=TD xexp p’.
Thus by Lemma 5.1 we obtain
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RROPOSITION 5.3. Let p=(2, n) be a singular plane in t~. i) If 1€y, then
Ky=(KY),x(K2)r®;
ii) if 1€z, then
Ky=(K')raw x(K?),,
where p is regarded as a singular plane in t~ as well as that in {7 or t;.
COROLLARY 5.4. Let p=(2, n) be a singular plane in t~. i) If A€y, then
Ky)/Kr ~(K1),/(K')r® ,
natural diffeomorphism induced by the inclusion KiCK. Similarly, ii) if 1€13,
then
K,/Kr ~(K?),/(K*®*)r®.
5. 3. Let p={p1, -, bu}, Pi=(A;, m;) be a finite sequence of singular planes
in t~. Under the decomposition (5.1)-(5.8) we assume that
A€y if 4€ {jy, -, i} (CHL, -, ;)
€15 otherwise.
Let {j1, ---, j,} and its complement {&4, -, k,,} be arranged in their ascending
orders; and put P'={p;,, -, p;} and P’"={p:,, -, ps, ), which are considered
as finite sequences of singular planes in t; and {; respectively.

Let us consider K-cycles I'p, I'pr and I'ps of the pairs (G, K), (G, K1) and
(G2, K2) respectively. If T'p is totally orientable, then T'pr and I'ps are also
totally orientable since they can be regarded as sub-K-cycles of I'p. Their homo-
logy bases described in Prop. 2.8 are denoted respectively by [ii, =, i5]2, 1=i3
< e Zds=m, [de, o G dh, 1S6< 0 <GS, and [y, oo, 4]y, 1S6< o <6,=n—7,
or dropping suffices 2 in case that I'p is totally orientable and H,.(T'p; Z) is
discussed ; and their dual cohomology bases are demoted by {x; ...;}, {x},....}
and {x},...;,} respectively.

PRrRO®OSITION 5.5. There exists a homeomorphism

Ip=~T'prxT'p» (direct product),
which is natural in the sense that, denoting by 7, and 1o the projections onto the
first and the second factors,
i (x5)=x;, for l=s=r
mE(x) =X, for 1=t=n-—v,
where 7} denotes the cohomology map (mod 2 or integral according to the cases)
induced by 7; for i=1, 2.
Proof. Put
W'=priKi X - xpriK,,
W”=pryK; x -+ xpryK,,
where K; denotes K,, for 1=i=n.

Abbreviating Kr_, (K');a and (K2)r@ respectively to K,, K3 and K2,

n-fold direct products (K,)", (Ki)* and (K2)" operate on Wp, W’ and W~
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respectively by the rules (2.1). The quotient spaces of W’ and W” by these
operations are denoted by I'" and I'” respectively; Wp/(Ko)"=T"p by definition.
The pairs of maps
((pro)", (pra)" : (Wp, (Ko)*) —> (W', (K",
((pr2)", (pra)M) : (Wp, (Ko)*) —> (W7, (K")
are respectively homomorphisms of principal bundles, and induce the maps of
base spaces
#F1:0p —> TV, #y:Tp —> T,
First we claim
(5.9) IT'p~IT"xI'” (direct product)
with 71 and 75 as its projections onto the first and the second factors.
Define the maps
qg: WXW —s Wp,
g: (KH")X (K" —> (Ko)"
by
qC(yts = 30, (1, = YD) =(V197, =, Yu )
for y; € priK,; and y; € pry,K,,, 1=i=n, and by
GUCty, = th), (@, - ) =18, -, 1, t5)
for #; € K§ and t/ € K3, 1=i=n. It is a routine proof to see that the pair (g, §)
is a homomorphism of principal bundles considering W’ x W” as a product bundle,
and that, denoting by
g: "< — T'p
the map of base spaces induced by g,
Go(T1X7Ts)
(TyX7y)oq

identity map,

Il

Il

identity map.
Thus (5.9) is proved.
Next define maps
g W —> Wpr, iy : (K)" —> (K"
by
ur (Y1, o V)= (Y5 Vi, Vigwn o Vo s Vipogsn =0 ¥5,)
ui(ty, =, ) =5, =~ t7,)
for y; €priK,,, t; € K§, 1=i=n. Also define maps
s . W —— Wpr, it . (K§)" —> (K"
similarly as aboves. Then we see easily that (#;, #,), =1 and 2, are homomor-
phisms of principal bundles, by which are induced the maps of base spaces
" —> Tpr, ity : T —> Ipr.
Using Prop. 5.3 we see easily that
(56.10) @1 and @y are homeomorphisms.
Put

TTy=U1°7TT1 and TTLo=Ug° Ts.
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Then, by (5.9)-(5.10) we see that

(5~11> Fp ~ PP'XFP//
with 71 and w, as the projections onto the first and the second factors, which is
the first half of Prop. 5.5.

As the effect on the top dimensional homology of the homeomorphism 74X 7,

we see that

(5.12) (1 X741, ey m]=£[1, -, 7T ®LL, o, m—r]",
where suffices 2 are dropped in case that I'p is general and H.(I'p; Z,) is dis-
cussed. Apply (5.12") to every sub-K-cycle of I'p, and use appropriate commuta-
tive diagrams similar to that in the proof of (2.11), then we see that

(5.12) (X 7wa)slin, -, is]=%[as, -, @ ®[by, -, bs-1]"
under the same convention as (5.12") for 1=i;< --- <i,=n, where

{i1, = &y N {1, o G = Uays s Jaths
{g1, = i N ARy, s Byt = ks, o, ko),
arranged in ascending orders. In particular
(5.12") (e X 7o)l Js1=[s1®1 for 1=s=v7,
(1 X 7o) [ B ]1=1Q[t]" for 1=t=n—r
under the same convention as above, where, in totally orientable case, signs be-
come unnecessary by choosing the same orientations to Ki/K3% and K;,/K,, or to
K?/K% and K,,/K, via natural homeomorphisms of Cor. 5.4.
Therefrom the last half of Prop. 5.5 follows.
If we remarrk that <i, #>=0 for 1€ty and p€r;, then we see easily the
following
COROLLARY 5.6. In the decomposition (5.1), assume that Theorem 2.10 holds
for the pairs (G*, K1) and (G?, K?2), then it holds also for the pair (G, K).
5. 4. In every symmetric pair (G, K), G can be decomposed into the direct
product of s-irreducible factors

(5.13) G=G'x - xG".
Correspondingly we have a decomposition
(5.14) K=K1x --- XxXK*

of K into a direct product such that K'=KNG' for 1=i=<s. The pairs (G}, K D,
1=i=<s, are irreducible symmetric pairs such that G* are simply connected, called
the irreducible factors of (G, K). Now the decomposition (5.13) can be achieved
as a result of a finite number of successions of decompositions of type (5.1).
Therefore, by Prop. 5.5 and Cor. 5.6 we obtain the following propositions.

ProroOsITION 5.7. In any symmetric pair (G, K) with G simply connected, every
K-cycle can be decomposed into a direct product of K-cycles of irreducible factors by
choosing one from each factor.

PROPOSITION 5.8. If Theorem 2.10 is true for every irreducible symmetric pair.
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then it is true for all symmetric pairs.

5. 5. We say that a symmetric pair (G, K) is of totally orientable type if all
K-cycles associated with this pair are totally orientable. We shall discuss a con-
dition under which a symmetric pair (G, K) (with simply connected G) is of
totally orientable type.

The following assertion is evident by definitions.

(5.15) In a symmetric pair we assume that, for cvery finite sequence P= {py, -,
D) of singular planes in =, the sphere bundle (I'p, Tpr, S"w), P'={p1, -, pu-1},
is orientable; then the pair is of totally orientable type.

LeMMA 5.9. In a symmetric pair (G, K), assume that any one of its restricted
Sfundamental systems of rvoots contains no roots of multiplicity 1, then the pair is
of totally orientable type.

Proof. For any P={p4, -, p,}, finite sequence of singular planes in t~, the
principal orthogonal bundle associated with the sphere bundle (I'p, T'ps, S™#),
P'={py, -, pu_1}, is the ad’-extension of the K, -bundle T'p — T'pr by Theorem
2.4. On the other hand K, is a connected group by Theorem 4.7.ii) since G
is simply connected and p’=0 by the assumption of the lemma. Hence

ad'(K, ) C SO(m(p,)+1),
ie., the structure group of the orthogonal bundle can be reduced to SO(m(p,)+1)
and the bundle (T'p, T'pr, S™2) is orientable. Therefrom the lemma follows by
(5.15).

Lemma 5.10. Let (G, K) be a symmetric pair, and assume that any restricted
fundamental system A4~ of the pair contains only one root of multiplicity 1 and all
other roots of 4~ have even muliiplicity. Then the pair is of totally orientable type.

Proof. As in the proof of the above lemma, it is sufficient to show that

ad'(K,) C SO(m(p)+1)
for all singular planes p in t~.

Put p=(2, n), 2=¢€}’, 27€r’, e=1 or 2.

i) In case m(1")=1, K, is connected by Theorem 4.7.i) since p'=1 by the
assumption of the lemma. Hence

ad'(K,) C SO(m(p)+1).

ii) In case m(1") 51,

K, = K)+exp (./2) K}
by Theorem 4.7.ii) after choosing a s-fundamental system such that 4- 32" and
denoting by 2 the root of multiplicity 1 of 4-. Now

my = Rir,} +&Nm
by (2.5) and
g,Nm = €,yNm in case ¢=2 and n odd
= &/Nm+¥;yNm otherwise.

Using the basis (1.5") for &, and é,,’, compute ad’(exp (r./2)) on ¢,»Nm, and
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¢s,vNm (if 227 €t7). Then, remarking that 2'(c,) is an integer and 21°(r,) is even,
we see that
ad'(exp (r,/2))|&yNm = +identity map,
ad'(exp (r./2)) |ésy»Nm = identity map.
Furthermore
ad’(exp (r./2))|R{r,} = identity map
as is immediately seen.
By the assumption of the lemma m(2") is even. Therefore, by the above
discussions we see that
ad’(exp (7,./2)) € SO(m(p)+1).
On the other hand
ad'(K3$) C SO(m(p)+1)
Hence
ad'(K,) C SO(m(p)+1)
also in case ii). Thereby is proved the lemma.

By Prop. 5.7 and Lemmas 5.9, 5.10 we obtain the following

THEOREM 5.11. Let (G, K) be a symmetric pair such that G is simply con-
nected. And assume that every restricted fundamental system 4~ of all irreducible
Jactors of (G, K) satisfies that either it contains no root of multiplicity 1, or contains
exactly one root of multiplicity 1 and every other rvoot of A~ has even multiplicity.
Then the pair (G, K) is of totally orientable type.

By the classification of irreducible infinitesimal symmetric pairs (cf., [2], the
table at the end), we obtain the following

COROLLARY 5.12. Let G/K be a compact symmetric space such that G is simply
connected and that every irreducible factor of G/K 1is isomorphic to one of
the following spaces: compact Lie groups, complex grassmann manifolds (type
Alll, AIV), quaternion grassmann manifolds (type CII), spheres (type BII, DID),
S0(2n+2)/S0(2) xS0(2n) (type DI of restricted rank 2), SU(2xn)/Sp(n) (type
AIl), SO(2xr)/U(n) (type DIII), Eq/Spin(10)-T* (type EIII), Eq¢/F, (type EIV),
E;/Eq¢+T?* (type EVID) and octanion projective plane (type FII). Then every K-cycle
associated with (G, K) is totally orientable.

We can see via classification and case-by-case discussions that the condition
of Theorem 5.1 is also sufficient for a symmetric pair with simply connected G
to be of totally orientable type.

Finally, applying Theorem 5.11 to the theory of [8], Theorem I and its con-
sequences, we see that, for every symmetric pair (G, K) of totally orientable type,
the integral cohomologies of the loop space 2(G/K) and any space K/Kr,, T' a
torus subgroup of M=exp m, have no torsion.

5. 6. For any singular plane p=(4, #), 2€t™”, we put again 1=¢R’, 1’ €17,
¢=1 or 2. Further we put
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(G(p), K(p))=(GQ", K(1)) if e=1 or if ¢=2 and » even
=(G(21"), K(22")) if €é=2 and » odd,
using the notations of 4.3. Then by (4.6)-(4.7)

(5.16)

(56.17) K(p)/K(p)r_ ~ K,/Kr_,
by the natural map; and since G is simply connected Prop. 4.2 implies that
(5.18) K(p) = KNG(p).

LemMma 5.13. For every k€ Kr_, k- K(p) -k 1=K(p).

Proof. o(p) and #(p) denote Lie algebras of G(p) and K(p) respectively.

Using a standard argument with Weyl base of ¢°, the complexification of g,
we see that

[ew, ep] C Cuypteap
for @, S €r, where e, ;=0 (or ¢, p=0) if a+ B (or a— B)¢r. Further, for a €1,
and B €ty (or fau/)

at BEty (or t2,/)
if they belong to r, beause “F €1, (or tz,/)” means that B is connected with f,/
(or T5,7) in to, and then a+ /A is connected with i,/ (or Ts,/) in 1.

Hence by (1.9) adjoint operations of gr_ in g make the space n= X2 invariant,
where the summation runs over all roots of f, (or f2,/), and consequently adjoint
actions of exp (gr_)=Gr_ make n invariant. Since the latter adjoint actions are
homomorphisms, they make invariant the Lie algebra generated by 1, which is
equal to g(p).

Finally the adjoint operations of Gr_NK make g¢(p)Ni=f(p) invariant, and
do also K(p)=exp f(p) invariant. Thus the lemma is proved.

5.7. Let P={p4, -, P, be a sequence of singular planes in {~. Using the
notations of 2.1, K;=K,, and K,=Kr_ for 1=i=n. Here we put

K@) =K(p:), K@Do=K(pir._
for 1=i=n. For any subgroup L of K,
(5.19) LK) =K(@L and LKG)o=K(@)oL
by Lemma 5.13, which are respectively subgroups generated by {L, K(i{)} and
{L, K(i),}, for 1=i=n.
Next we put
(5.20) Kuy=K(1)oK(2)o - K(i—1)oK(i), K’ =K(1)oK(2) -+ K(i)o
for 1=i=mn, which are respectively subgroups generated by {K(1),, ---, K(i—1)o,
K(3)} and {K(1)o, -, K(¢)o} by the above remarks.
(5.21) Kh/Ks¥~K;/K, Jor 1=i=n,
by the maps induced by the natural inclusions.
Proof. Consider the map
a; : K(D)/K()o —> Kuy/ K
induced by the natural inclusion K(i)CK,. Because of (5.17) it is sufficient to
see that «; is bijective. Since
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K(i)=K(i)K(1)oK(2)o -~ K(i—1)¢
by (5.19), a; is surjective. On the other hand
K)o SKONKPSK({I)NKo=K(i).o

Thus K({)NK>=K(7),, which shows that «; is injective. ged.

Put

F}=K(1)><KO(1)K(2)><K‘§2> XK(()”"l)(K(n)/K.E”))~

By dropping off the last factor we obtain a fibre bundle (I'p, I'pr, Ken/K§™),
where P'={p1, -+, po_1}. The inclusion K 1,X K(2yX -+ X K(,,C Wp induces a map
B, T —> I'p. And the pair (B8,, B.-1) is a bundle map with the inclusion
K"V CK, as homomorphism of structure groups, where we regard their as-
sociated principal bundles as reduced ones as in 2.5. In this bundle map the
fibres are mapped homemorphic onto by (5.21). Therefore, if 8,_4 is a homeomor-
phism, then B, is also so. By an induction on the length # of P and making use
of (5.21) we can see that 8, is homeomorphic.

Thus the pair (f,, F,-1) is an isomorphism of fibre bundles, and we see the
following

PRrO20OSITION 5.14. The structure group of the bundle (U'p, T'ps, K,/Ky) is re-
ducible to K.

§6. Symmetric pairs of splitting rank and K-cycles.

6. 1. In this section we shall discuss K-cycles associated with symmetric
pairs (G, K) of splitting rank with simply connected G.

As an immediate corollary of Prop. 1.2 and Theorem 5.11 we obtain

ProrosiTiON 6. 1. For every symmetric pair (G, K) of splitting rank with
simply connected G, all singular planes in 1~ have even multiplicities and the K-cycles
associated with it are all totally orientable and even dimensional.

This proposition, combined with the theory of [8], implies

COROLLARY 6.2. For every symmetric pair (G, K) of splitting rank with simply
connected G, H*(K/Kr_; Z) and H*(Q(G/K); Z) have no torsion, and their sub-
groups of odd degrees vanish.

6. 2. Let (G, K) be a symmetric pair of splitting rank with simply connected
G. We shall consider the operations of W~ on K/Kr_ derived from right transla-
tions as in 1.9, and the representation of W~ on H*(K/Kr_; R) induced by
these operations.

By Cor. 6.2 every odd dimensional cohomology of K/K,_vanishes, and

dim H*(K/Kr_; R) = dim H*(K/Kr_; Z,).
On the other hand
dim H*(K/Kr_; Z,) = order of W~

by [8], Chap. IV, Cor. 2.13, p. 1022. Since W~ operates on K/K; without fixed
points, we get a proof of the following proposition in entirely the same manner
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as that of Leray [10], Prop. 11.1, p. 113, by making use of the above facts and

the Lefshetz fixed point theorem :
PROPOSITION 6.3. For every symmetric pair (G, K) of splitting rank with

simply connected G, the representation of W~ on H*(K/Kr_;R) is equivalent to

the regular representation of W~.
In case the symmetric space is a Lie group, this proposition reduces to Prop.

11.1 of [10] as will be seen by a remark in 1.9. Therefore this proposition is

an extension of Prop. 11.1 of [10].
6. 3. For every irreducible symmetric pair of the considered type, the multi-

plicities of its restricted roots are all the same as will be seen from [2], the
table, which we denote by 2m; that is, i) m=1 in group cases, ii) m = 2 for
(SU(2n), Sp(n)), iil) m = n—1 for (Spin(2xn), Spin(2z—1)), and iv) m =4 for
(Es, Fu).

Here we shall distinguish singular planes p=(1, #) and —p=(—2, —n) as
oppositely oriented ones. (How to orient them is immaterial.)

THEOREM 6.4. For every symmetric pair (G, K) of splitting rank with simply
connected G, we can orvient K,/Kr_ for each singular plane p in t~ in a suitable way
so that K,/Kr_ and K_,/Kr_ are oppositely oriented and that, for each K-cycle T'p,
P={py, -, D} and p,=(1:, n;),

H*Tp; Z) = Z[x1, -, x,1/Ip,
where Ip is the ideal generated hy the elements

pe=%(xp+ Dt tawn), 1=k=mn,
@i =2<, Ai>/<Xi, i>, and x4, -+, x, ave generators described in Prop. 2.9, and,
if (G, K) is irreducible, form a basis of H*"(I'p ; Z).

In case the symmetric space is a Lie group, this theorem reduces to Prop.
4.2 of [8], Chap. III, p. 996.

By virtue of Props. 5.5 and 5.7 and the fact that a,;=0 if 2, and A; belong
to mutually different irreducible factors, to prove Theorem 6.4 it is sufficient to
prove the following

ProrosiTION 6.5. Theorem 6.4 holds for every irreducible symmetric pair.

This will be proved in 6.6 after some preparations.

6. 4. In the present discussed cases, for each singular plane p=(2, #) in t°,
we have K,=K(,, o), independent of #, as is easily seen by Cor. 1.3 and 4.1,
i)-iii), so that we shall write it simply as K,.

Let w€ W~ and # be a representative of w in Ng(7_). Denote by ¢, the
conjugation of K with respect to #»1. By an easy calculation we see that

0. (K\)=K,*, and ¢n(KT_)=KT_.
Then, passing to quotients we obtain homeomorphisms
oy K\/Kr_ & Ky /Kr_ and ¢, K/K;r & K/Kr_.
¢; is homotopic to the action of w on K/Kr_induced by right translation. If we
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change the representative #» of w by another one #’, then ¢; and ¢, is homotopic
to each other ; hence the induced homology map is determined only by w, denoted
by ¢.. Therefore we obtain the commutativity of the following diagram

H(K/Kr_; Z) ﬁ H.K/Kr_; Z)
(6.1 oo i
H(K\/Kr_; Z) —> Hy(K,x/Kr_; Z)
for we€ W~ and 1€, where w, denotes the homology map induced by the action
w on K/Ky_ and i,, i,*, those induced by natural inclusions.

We say that the set {K,/Kr_; A€t~} is coherently oriented when every K,/Kr_
is oriented in such a way that i) K,/Kr_ and K_,/K;_ are oppositely oriented
and ii) ¢, is orientation preserving for all we W~ and A€1".

PRO?OSITION 6.6. For every irreducible symmetric pair (G, K) of splitting rank
with simply connected G, we can give a coherent orientation for the set {(K,/Kr_;
A€}

Proof. i) Group cases. v~ and W~ can be identified with the root system and
Weyl group of K with respect to 7,. For each 1€t (considered as a root of K)
we orient K/ 7T, by the rule of [8], Chap. III, § 4, i.e., the image by the homology
transgression of its fundamental class is r,, considered as an element of Hy(T,;Z).
The pair of maps

(0w, w 1) 1 (Ky, Ty) —> (Ku#r, T4)
is a homorphism of principal bundles (K,, K,/T,, T.) to (K,*,, K,*/T., T,),
and w™lr,=r7,%, for every {w, 1}, which show the proposition in this case.

ii) (SU(2#n), Sp(n)). Express every element of Sp(#) by # X # unitary
matrix of quaternions. The inclusion Sp(n#) C SU(2n) is interpreted as a map
sending (s, t)-elements a;; of A€Sp (n) to (s, t)-boxes of the forms

<xst “5’31>

Vst Xst

by partizing elements of SU(2%#) into 2x2 boxes, where ay==xy+j*¥s, % and vy
are complex numbers and j a usual quaternion unit.

Let T be the maximal torus of SU(2n) consisting of all diagonal matrices,
and T.=TnNSp(n). Every element H of the Cartan subalgebra t, tangential to
T, is expressed as

H=(t1, =, ton), LER, t1 +-+ 12, = 0,
and

ezwv;Ttl 0
exp H=

0 22TV Tty

Then
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(6.2) HEL if and only if te;1=—t2; for all 1=i=n,
as will be-seen by the inclusion 7,.C7. Consequently

(6.3) Het if and only if tai_1=ts; for all 1=i=n,
since 1~ is the orthogonal complement of t* and the invariant metric on t is given
by the quadratic form #;2 +--- + £,,%.

Let w4, -+, w2, be the weights of identity map representation of SU(2z) with
respect to t, ie.,

w;(H)=t; for all Het and 1=i=2n.
Then t={w;,—w;;i5%j} and to={* (02,1 —w2;), 1=i=n} as will be seen by (6. 3).

Any linear order in t* satisfying

W1 >me> o Sway
is a g-order as will be seen by (6.2)-(6.3), and the os-fundamental system 4 of t
with respect to this order is
4= {w1— w2, @3 —wg, *+, w2n—1—w2n}y

and

do={w2i_1 —ws;, 1=i=n},

A7 = {21, =", An-1}
by putting li=we;—w2:41[1". t7 is of type A,_1, and every positive root A€t~
can be written as

A=At e Ay, 1Sisi=sn—1.
Then

1= {02 —Wsji1, Wai_1—®2ji1, W2~ D2ji2, O2i 1~ O2ji2).

By an easy computation we see that Kr_is the subgroup of Sp(#) consisting
of all diagonal matrices. Let Sp’(1) donote 3-dimensional subgroup of Sp(x) con-
sisting of diagonal matrices whose elements are all 1 except the i-th. Then

Kr_ = Spr(1)x - xSp*(1).

For each (4, j), 1=i<j=#n, we denote by Sp‘ ”(2) the subgroup of Sp(n)
consisting of such matrices that their matrix elements are the same as the unit
matrix except the i-th and j-th rows and columns, which is isomorphic to Sp(2).
Now by a short calculation we see that

Ky =Sp1(1) X w4 o jH1 o x SP*(1) x Splis i*1(2)
if £a=0++24;, 1=i=j=n—1, where { means to omit the i-th factor. Furthermore
K(D=Sp%*D(2) and K(A)r_=Sp'(1)xSp*1(1)
for £a=4+ - F2;, 1=Sisj=n—1.

Choose an orientation of Sp(1) once and for all fixed. Since Sp(1) has no
outer automorphism the group of all automorphisms of Sp(1) is connected, which
means that every automorphism of Sp(1) is orientation preserving. Now we can
orient Sp?(1), 1=i=n, such that every isomorphism Sp(1)=Spi(1) is orientation
preserving. Then every isomorphism Sp’(1)=Sp?(1) is also orientation preserving
by the same reason as above. Denote by s, 1=i=#n, the homology fundamental
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class of thus oriented Spi(1).

For each A€tr~, +1=2A;+ - 4;, denote by J, a matrix of Sp®¥ /*1(2) which
has 0 as the (4, ©)-th and (j+1, j+1)-th element and 1 as the (7, j+1)-th and
(j+1, ©)-th. Clearly

JL € Ne(T).
By an easy computation we see that (ad J,)* permutes ws;_; with wz;,1 and ws;
with wsz;.2, and fixes all other weights, which implies that J, is a representative
of R,, an element of W~ defined by the reflection across the plane (3, 0), in
Ng(TO).

The conjugation by J,, denoted by J,, is involutive, mapping Sp*(1) isomorphic

onto Sp’*1(1) and leaving Sp*(1) invariant for k¢ (i, j+1}. Hence

(6.4) Juws'=s"1 and [ us'=s* for k&, 7+1)
by our choice of orientations of Sp*(1) as above. On the other hand

Jaw o H(Sp770(2) 5 Z) —> H(Sp%71(2) 5 Z)

is an identity map since J, is an inner automorphism of the connected group
Spt i 1(2). Thus

(6.5) Brs(si—s7t1) =0
where £, : SPI(1)xSpit1(1)CSpth +1(2) is the inclusion.

Here we put
Spth +1(2)/Spi(1) x Sp?+1(1)=S}, 4-spheres, for 21€1~ such that +21=2;+ - +1;.
(6.5) implies that

(6.6") 0+H4 (S} ; Z)=the subgroup generated by s'—s'*1,
where 6, is the homology transgression of the bundle Sp@ 7 *D(2) — S). We
shall orient S} such that its homology fundamental class, denoted by s}, satisfies
(6.6) 0xS)=s'—sit1 if 2>0
=g/t1—gt if 2<0.
Thus S;* are oppositely oriented. By the canonical homeomorphism
K,/Kr_~K()/K()r_~ S,
we orient K,/Kr_ so that the above map becomes orientation preserving.
Now the pair of maps
(Ja, ) i (K, Kr ) —> (Kg,u, Kr)
is a homomorphism of bundles (K,, S% Kr.) to (Kg,., SFr*, Kr_) for each
A, #€r7. By an easy discussion of the induced homomorphism of integral homo-
logy spectral sequences making use of {6.4) and (6.6), we see that the induced
map of base spaces is orientation preserving. Thus the proposition was proved in
case ii).

iii) (Spin(2x), Spin(2n—1)). This is a symmetric pair of rank 1; K=K,
=Spin(2n—1) for each 1€, Kr_=Spin(2rn—2), and K/K;_ is a 2(n-1)-sphere.

In this case W™=Z7,, and by Prop. 6.3 the operations of W~ on H2" 2(K/Kr_;
Z)=Z 1is non-trivial. Hence the operation of the generator of W~ on K/Kr_
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must be orientation reversing. Therefore, by the commutativity of (6.1)

¢ Ho(K\/Kr_; Z)S H(K_\/Kr_; Z)
is orientation reversing, where J is the generator of W~, the reflection across the
plane (4, 0), A€r~. Thus, if we orient K,/K;_ and K_,/Kr_ oppositely, then the
set {K./Kr_, K ,/Kr_} is coherently oriented.

iv) (B, F,). This is a symmetric pair of rank 2, whose restricted root
system is of type A,. For each 1€t7, K,=K(2)=Spin(9), and K;_=Spin(8).

In this case t~ contains 6 roots, and the operations of W~ permute the roots
of ™ transitively since the roots of r~ have all the same length. Now the order
of W~ is 6, which implies that W~ permutes the roots of ¢~ simply transitively,
i.e., for each pair {2, #} Ct~, there is only one element wé€ W~ such that w*i=x.
Hence, choosing a root 1€t~ we take and fix an orientation of K,/K;_; and then
for each # €t take a unique w€ W~ such that w*1=zx and define an orientation
of K,/Kr_ so that

¢0: Ky/Kr_ —> K,/Kr_
becomes orientation preserving. Thus we could define an orientation for each
K,./Kr_ such that ¢, is orientation preserving for every wé€ W~ and ux€1r.

Next, for every 1€t~, G(A)=Spin(10), and the symmetric pair (G(1), K(2))
becomes isomorphic to the one of case iii) for n=5. Its restricted root system
becomes the subsystem of t~ consisting of + 2, and its restricted Weyl group be-
comes the subgroup of order 2 generated by the reflection across the plane (4, 0).
By the discussion of case iii) we know that ¢;: K(1)/Kr_ —> K(2)/Kr_ is orienta-
tion reversing, where J is the element of W, defined as the reflection across the
plane (4, 0). Therefore K,/Kr_ and K_,/K,_ is oppositely oriented for every

A€r™. And the set {K,/Kr_, 1€t} is coherently oriented. q.e.d.
6. 5. Let (G, K) be an irreducible symmetric pair of splitting rank with simply
connected G. We shall orient every K,/Kr_ coherently by Prop. 6.6.
For every 21€t~, consider the natural inclusion
i, K,/Kr_ C K/Kr_.
The image of the fundamental class of K,/Kr_ by i,* defines an element of
H;,.(K/Kr_; Z), denoted by [[4]]. By the definition of coherent orientations

(6.7 —[LA11=[[—a]1],
and by the commutativity of (6.1)
(6.8) [Lw*2d]=w.[[2]],

for each we W_.

Choose a fundamental system 4= {4y, -, ,} of ™. If we realize the additive
basis of H(K/Kr_; Z), [8], Theorem VI and Cor. 2.13, p. 1022 (interpreted as K-
orientable case by our Prop. 6.1), by cycles in K/K;_ directly, then we see that

(6.9 {{([a:1], -, [L2,01 forms an additive base of Hzn(K/Kr_; Z).

We denote basic translations in t~ corresponding to A, by z;.
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PROPOSITION 6.7. For each A€t~, express the basic translation v, correspond-
ing to A as an integral linear combination
TA=a1T1+ = +a,7,.
Then
[([A1l=as[[2401+ -+ +a,[[4,1].

Proof. 1t is enough to prove the proposition for a suitably chosen 4~ since
the Weyl group W~ permutes restricted fundamental systems transitively and we
can apply (6.8), and for a suitably chosen coherent orientation since the change
of coherent orientation changes [[1]] to its minus for all 1€t~ at the same time.
So we use as 4~ and the coherent orientation those used in the proof of Prop. 6.6.

1) Group cases. In the fibre bundle (K, K/T., T.) the homology transgression

0« Ho(K/T, ; Z) —> H((T,; Z)
is bijective. And
9+«L[[A1]=7, by our choice of orientations
=Xar;=2a;0.[A:]],
ie., [(Ladl=as[[A11]+ - +a,[[2,]].

ii) (SU(2x), Sp(n)). In the bundle (K, K/Kr_, Kr_) the homology transgres-

sion
0. Hi(K/Kr_; Z) —> H3(Kr_; Z)
is injective. And, if 2>0 and 1=+ - +1;,
04L[21]1=04s50=5"—s""1

=(sf—§F1) 4 (s —5"2) 4 o 4 (sF—5TH1)

=0x[[A:1]+0+[[Air1 1]+ -+ +0.[[4,]],
ie, (CAJ]=CLA03+ - (L4100,

On the other hand
TA=Ti+ e Ty

since all roots of +~ have the same length. That is, Prop. 6.7 was proved in case
ii) for 2>0. The case 1<0 can be also discussed in the same way.

iil) (Spin(2n), Spin(2n—1)). In this case t™= {1, —A}, and (6.7) completes
the proof.

iv) (Eq¢, Fy). Put 4 ={i4, 22}. Then

tT={t 1, £, A1+ 22)}.

Put

a=[[2:111+[[221]1-[[41+ 2211,
and apply every operation of W~ to a. Then, by making use of (6.7) and (6.8),
we see that the set {¢, —a} is closed by the operations of W~-. Hence, if a=40, «
generates a one dimensional W-invariant subspace of the 2 dimensional space
Hg(F,/Spin(8) ; R). Now H.(F,/Spin(8);R) is the space of the regular re-
presentation of W~ by Prop. 6.3 and the representation of W~ on Hg(F,./Spin(8); R)
is one of the irreducible components of the regular representation of W~. (Cf,,
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also [5], p. 333.) Therefore a=0. That is,
[LA:J1+[[A=]1=[L2: + 4211,
which completes the proof in case iv). q.ed.

The above proposition implies that, if there holds a linear equation among r,,
then there holds a linear equation among [[4]] with the same coeflicients. In
particular,

COROLLARY 6.8. For any 1, n€r~, there holds the equality

[[RE I1=[[a1]—a(z0l[4]],
where R, denotes the reflection across the plane (£, 0).

6. 6. Proof of Proposition 6.5. By Prop. 2.9 it is sufficient only to prove the
relations p;, 1=k=n. Choose a coherent orientation for the set {K,/K,_ ; A€t }.
Then, for every K-cycle I'p, P={p4, -, p.} and p;=(A; n;), the basis [1], ---, [n]
of Hs,,(T'p; Z) is well defined, and also its dual basis x4, ---, x,. Furthermore,
for every sub-K-cycle T'p, P'={p;, -, b,,}, of Tp,

i k] =Tix] for 1=k=vr,
and

i*x,=x) if j=i;
=0 if j&{iy, -, 0,

where i:I'p»» —> I'p is the natural inclusion of 2.7 and the 2m-dimensional
basis elements of homology and cohomology of I'ps are expressed with " added.

Thus, if we prove Prop. 6.5 for every K-cycle I'p» with P” of length 2, then
we can see that Prop. 6.5 is true for every K-cycle I'p by evaluating x,2, 1=k=mn,
on each sub-K-cycle of dimension 4m.

Now we shall consider a K-cycle I'p with P={p1, p2}, p1=(2, ny) and
b2=(v, ng).

Since x4 € 7*H,,,(K,/Ky_;Z) where 7 :T'p —> K,/K;_ is the projection, it
follows that

x2 =0.

To prove the relation p, we proceed the more or less parallel way to the

corresponding proof of [8], Chap. III, §5. First we remark that
(G(v), K(v))=(Spin(2m+2), Spin(2m+1))

as symmetric pairs, and its restricted Weyl group can be identified with a sub-
group of W~, generated by R,, the reflection across the plane (v, 0). Then we
can choose a representative j of R, in Nx(T_)NK(»). Let J: Wp —> Wp be the
map sending (y1, ¥2) to (4, y27). This is a homomorphism of the bundle
Wp — T'p into itself relative to the homomorphism J : (K7 )2 — (K )%, defined
by J(ky, ko) =(ky, 7 1k.j7). The induced map of I'p into itself is denoted by J.
Since j€ K, by our choice and K, is connected, J map the sub-K-cycle K,/K;_ into
itself and J|K,/K;_ is homotopic to ¢}, the map defined at the biginning of 6.4.
Thus J|K,/Kr_ is orientation reversing, i.e.,
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(6.10) J«[2] = —[2].
Next we discuss J,[1]. The map 5: Wp—K, defined by p(y1, y2)=21y2, induces
amap p:I'p — K/K;_, and
(6.11) px[11 = [[#]], pul2] = [[v]].
Since poJ=¢jop evidently, where ¢} : K/K;_ — K/K;_is the map defined by
the right translation by j, we obtain
peJo[1]1 = R, [[£]1] = [[#1]—v(zD[[¥]]
by (6.11), Cor. 6.8 and (6.8). Thus
Pet[1] = p([1]—v(z)[2D).
If #% +v, then # and » are linear independent, and p, is injective in degree
2m. Therefore we obtain
(6.12) J«11 = [1]-wv(z[2].
In case #=xv, the map £: Wp—> Wy, defined by &(y1, ¥2)= (¥1, ¥1¥2),
induces a homeomorphism
ETrETS
where I'p=(K,/K; )x(K,/K;_), the direct product. Denote the elements of
H,,(T'p; Z), represented by the first and the second factors as oriented ones, by
[17" and [2] respectively. Then it is easy to see that
& [1]1 =[11+[2] and ¢&.[2]=[2],
where the sign + coincides with the sign of #=+w». Let j operate on I', as a
right translation of the second factor. The obtained map we denote by +». Then
Y [1] = [1] and Y [2] = —[2]"
And evidently J=£&1o+ro&. Therefore
J11 = &1V F[2])
= [1]F2[2] = [1]—w»(=w)[2],
ie., (6.12) holds also for the case #=4u.
Now by the same way as in [8], p. 999, we see that
Xo+J¥ x2=10.
And, (6.10) and (6.12) implies that
Jxe=—2s—v(zu%1;
consequently Xo(xo+v(ru)x1) =0. qg.ed.
§7. Proof of Theorem 2. 10.

7. 1. This section is directed to the proof of Theorem 2.10. Hence we assume
that G is simply connected throughout the section. The only task is to prove
the relations p; for 1=k=n.

Let P={p4, -, p.} be a sequence of singular planes in {~, and put P"={pi, -,
P}, k=n. (T'p, T'p», 7) is a fibre bundle with a cross section, where 7z : T'p —> T'p7,
the projection of the bundle, is a map obtained by dropping off the last (n—%)
factors. Using cohomology (mod 2) bases (2.14) for I'p and T'p~, and considering
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their relations with respect to z*, we see that the relation p; to describe x,2 as
the linear combination of basis elements (2.14) of H*(I'p; Z,) iS obtained as the
r*-image of the corresponding one for I'p». In particular, x7 is described as a
linear combination of x;, -+ x;, such that 1=iy< - <i,=k.

, such that 1=i;< - 4,<k, its restriction
to the sub-K-cycle I'p7s, P"'={p; , -+, bi,}, is non-zero, and the restriction of x2 to
Tpvs is zero since x,|I'p7/ is zero. Hence x;, -+ x:, 1=i;< -+ <i,<k, do not appear

On the other hand, for any x;, -, x;

igr
in p;. Thus we obtain
Lemma 7.1 x2 is expressed as a linear combination of

. x,vl x;sxk
such that 1=i;< - <i,<k and deg (x;, - x;)=deg x.. In particular
x12 = 0.

Next we state the following

LemMa 7.2 For any K-cycle T'p, P={p1, -, D}, associated with an irreducible
symmetric pair (G, K) such that

m(ps)+ - +m(p,_1)=m(p,),
the velation p, holds in the same form as that of Theorem 2.10.

Once were proved Lemma 7.2, then Theorem 2.10 would hold for every
K-cycle T'p associated with irreducible symmetric pairs as is easily seen by
evaluating the values of p;, 1 ={ = n=the length of P, on each sub-K-cycle of T'p
of dimension 2m(p;) using Lemmas 7.1 and 7.2. And then Theorem 2.10 is
proved in its full generality by Prop. 5.8.

Proof of Lemma 7.2. We shall divide our discussions into five cases: A) r=2
and m(pp)=1; B) r=3 and m(py)= - =m(p,_1)=1; C) »=3 and m(p;,)>1 for
at least one 7, 1=i<r; D) r=2and m(p,) odd>1; E) »=2 and m(p,) even. We
put p;=CA;, m;), ;i €t7", li=¢2;, &;=1or 2, and A} €7 for 1=i=r, and P’ = {p4, -,
Dr1}.

7. 2. Case A). In this case, using notations of 5.7, G(i) is a 3-sphere and
K(i) is a circle {exp tU;, t€R} for i=1, 2, where {U; V;} is an ortho-normal
basis of e,; such that ¢U;=U; and ¢V;=—V; (by (1.5)). Furthermore K V=Z,
generated by exp(r,,/2) (cf., also Theorem 4.7). By Props. 2.6 and 5.14 the
structure group of the circle bundle (I'p, I'ps, S1) is reducible to (K §{Y), where
¢o is the isotropy representation of K,/K,.

Now, since ad(exp(r,,/2))|e,, is a rotation through the angle 72.(ry,) in ¢,,,
we see that

ad(exp(ry,/2)) Us=U; or — U,
according as the Cartan integer az1=1:(r,,) is even or odd. That is, :2(K{) is
trivial or non trivial, and hence the bundle (I'p, T'ps, S1) is orientable or not
according as a»; is even or odd.

As is well known the first whitney class ws of the bundle (I'p, T'ps, S1) is
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zero or non-zero according as the bundle is orientable or not, (e.g., cf., [14], p.
197). And by Massey [11], p. 274, Theorem III (which is true also for non-orientable
sphere bundles and their cohomology mod 2 as is easily seen from his proof,
through it is stated for orientable sphere bundles),
x2 = ¥ (wy)x2

where 7 : I'p —> I'ps is the projection of the bundle. Therefore

(7.1) xf = ba1X2%y,
which proves Lemma 7.2 in case A).

7.3. Case B). Similarly to the above case K(i),==Z> with generators exp(z,,/2)
for 1=sisr—1. And KV =K(1), - K(r—1), is a finite group generated by
exp(ry;/2), 1=i=r—1. By Props. 2.6 and 5.14 the structure group of the sphere
bundle (I'p, T'ps, S™?9) is reducible to +(K{ ), where ¢ is the isotropy re-
presentation of K,/K,.

Using the bases (1.5) of &, and &,. we see that

ad(exp(ry,/2)) &, = (—1)*ri identity map
for 1=i=7—1, where a};=1;(r,;) as in the above case, and that
ad(exp(r,;/2)) |€2,, = identity map
since 22; (r,;) is even always, which implies firstly that,

i) if m(24,)=%0, then the structure group of the sphere bundle (I'p, T'p/,
Sm(#r)) can be further reduced to O(m(p,)—1) and m(p,)-th Whitney class W,
(mod 2) vanishes. Then, by [11], Theorem III,

(7.2) XA =T (Wm(p,) %, =0.
Now this case i) is possible only for the irreducible symmetric pairs with the
following types of infinitesimal structures: AIIl, AIV, DIII, EIII, as will be seen
from [2], the table. Furthermore, in each possible symmetric pair, all roots of
odd multiplicities, up to signs, are mutually orthogonal. In particular a,;=2,(cy;)
=0 or +2, ie,

(7.3) i =0
for 1=i=<r—1. Thus, by (7.2)-(7.3), Lemma 7.2 was proved in this case B)i).

ii) If m(24,)=0, then A,=/,, and the vector bundle, associated with reduced
S(¢r-1.hundle over I'ps (by the canonical cross-section »:I'pr —> T'p), splits as
a Whitney sum of m(p,) copies of a real line bundle with the following actions
of K™ on R:

exp(r,;/2) +t = (—1)%it, tER.
for 1=i=r—1, where a,,=1,(r,,). Denote this line bundle by 7, and its first
Whitney class by wy;. Then m(p,)-th Whitney class w,,,, of the sphere bundle
(Tp, Tpr, S™0) is
(7.4) Wy = (W)™
by the Whitney duality theorem. On the other hand, consider the restriction of
7 on each K;/K, regarded as a sub-K-cycle of I'ps, of which the structure group
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is reduced to K(7), with the operation
exp(ry,;/2)«t = (—1)%it, tER.

Therefrom we conclude as in case A) that

(7.5) wy = Xi=icaxt,
where x; are the basis elements (2.14) of H*(T'pr; Z>). Thus, by [11], Theorem
ITI, and the fact that z*x! =x;, (7.4)-(7.5) implies

(7.6) %2 = x,(2izic,x)"™
which proves Lemma 7.2 in case B)ii).

7. 4. Case C). This case is possible only for such an irreducible symmetric
pair that m(p) may take three different values. Therefore by [2], the table, its
type must be either one of the following fours: AIIl, CII, DIII and EIII. Then,
by Cor. 5.12 we see that every K-cycle T'p of case C) is totally orientable and
consequently that H*(I'p ; Z) has no torsion; on the other hand we see also that
m(p,) is odd, because it is the largest multiplicity and hence ¢,=2. From these
two facts we conclude immediately that

(7.7 ‘ x? = 0.

Now the result of case A) implies that for every 1-class we H1(I'p; Z) its
t-th power w’ can be expressed as a linear combination of x;, - x;,, 1=iy<< -
<i,<7, such that deg x;,=1 for 1=s=¢, which means, in particular, that w"" =0
since the number of singular planes of multiplicity 1 in P is smaller than m(p,)
by our assumption, whence we have

(7.8) Py = X7
By (7.7)-(7.8) was proved Lemma 7.2 in case C).

7. 5. Case D). First we remark that, in the present case, K{¥=K(1), is
connected by Theorem 3.5 applied to the pair (G(1), K(1)). Since the structure
group of the bundle (I'p, T'pr, S”(#2)) is reducible to the connected group (K§V)
by Props. 2.6 and 5. 14, we see that I'p is orientable and H*(I'p ; Z) has no torsion.
On the other hand, deg x, is odd by the assumptions. Therefore we see that

(7.9) 2 =0
as (7.7).

The case D) is possible only for the following types of irreducible symmetric
pairs : AIII, AIV, BI, BII, CII, DIII, EIIl, and FII. In either case t™” is of type
C, or B; (doubly laced) except the case of restricted rank 1; and A;, =1 and 2,
are long roots of v if it is of type C;, and are short ones otherwise. Therefore

(7.10) as1=0 or +£2
From (7.9)-(7.10) follows Lemma 7.2 in case D).
7. 6. Case E). By the assumption of case E), 2;€r™" for =1 and 2.
i) If 21==%2,, then
(7.11) (G, K(1))=(G(2), K(2))
is a symmetric pair of splitting rank. And we can regard I'» as a K-cycle of
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the pair (7.11) by natural homeomorphisms and identifications. Then, we can
apply Theorem 6.4 to I'p. Since az1=+2, by reducing mod 2 the integral relation
ps we obtain the proof for case E)i).

ii) In case 115~ +1., we shall reduce our discussion to the case of rank (G,

K) = 2. Denoting dim t~ by p, choose a basis {Hj, -+, Hy} of {~ so as to satisfy

{Hy, -+, Hy_5} C (1, 0ON (A2, 0).

The lexicographic order with respect to the basis {Hj, -+, H,} defines a funda-
mental system 4~ of . By our definition and assumption 4~ contains two simple
roots, denoted by #; and #., such that 1; is a linear combination of #; and %,
for i=1, 2. Let 4 be a s-fundamental system of t such that its restricted funda-
mental system becomes 4~. By notations of 4.2 ,; is the root system of G(#)),
i=1, 2. And 4*i=4N%,, is the s-fundamental system of f,; by [2], Prop. 3.4.

Let 8 denote the subsystem of t generated by 4*:1Ud4*:, ie. the set of all
roots of t which can be expressible as linear combinations of roots of 4*:1U 4"
Clearly 8 is a o-system of roots with induced involution, and has 4*:U4*: as its
os-fundamental system and hence the set {#4, #,} as its restricted fundamental
system.

Let G’ denote the semi-simple part of the centralizer in G of the intersections
of all planes (a, 0) such that «€8. Since G’ has 4*:Ud4": as its fundamental
system of roots which is a part of 4, we see that G’ is simply connected. G’ is
clearly o¢-invariant and the pair (G', K') with the induced involution,® where
K’=KNG’, is a symmetric pair of restricted rank 2 with {4, #,} as its restricted
fundamental system.

Considering &7, the restricted root system of (G’, K’), as a subsystem of 17,
we see easily that

(G(»), K(»)=(G"(»), K'(»))

for each » €3, which proves diffeomorphisms

K, w/K7 ~ K¢, n/Kr_
induced by natural inclusions for all »€8 and » integer via (4.6)-(4.7), where
T’ is the maximal torus of the pair (G’, K’) contained in 7, which in turn
defines natural isomorphism

Tp = Kj Xy (Kj,/K7/).
Thus we can regard I'p» as a K-cycle associated with the pair (G’, K").

Therefore it becomes sufficient to prove Lemma 7.2 in case E)ii) under the
assumption that rank(G, K) =2 (where (G, K) is not always irreducible), so we
assume it hereafter.

a) If the pair (G, K) is of splitting rank, then we can apply Theorem 6.4
to I'p, and by reducing mod 2 the integral relation ps, we obtain the desired proof.

Here we remark that, if (G, K) is reducible, then it is necessarily of splitting
rank since each irreducible factor is isomorphic to (Spin(2m+2), Spin(2m+1))
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as symmetric pairs by putting m(p;)=2m.

b) Symmetric pairs of restricted rank 2, not of splitting rank and having I'p
of case E)ii), are as follows (cf., [2], the table): AIIl (=3, p=2), CII (I=4,
p=2), DI (I=4, p=2), DIII (I=4, 5) and EIIl, where ! = rank G and p = rank
(G, K). For each symmetric pair listed here, its root system t~” is of type Bs;
furthermore long roots of r” have odd multiplicites and short roots have the
same even multiplicities, say 2#. Thus A;,i=1, 2, must be short roots of r~” since
m{ p;) =m(A;) even. Then, since short roots up to signs are mutually orthogonal,
the assumption A;5=+ 1. implies

(7.12) az1 = 0.
As one of the properties of root systems of type B, there exists a long root
A" of v such that
Ao = 21+ 2.
Then <11, ’><0. Now we put
t=1{al, -, ab, o¥al, -, o¥ak}
for i=1, 2. Since m(1") is odd, 1"€r and, for each j, 1=j=m, <a}, '>=<14, I'>
<0, ie.,, at+1"€r,,. Thus we can choose a%, 1=j=m, so that ae?=cel+21’. Then
o*a%=c*a}+2". Therefore
(7.13) al—o*a} = a%—o*a? for 1=j=m.
Consider g(4;). Its root system t,; is decomposed as
fy; =Nty Uty Uty
Hence its Cartan subalgebra 1(1;), contained in t of g, is generated by

{ry ; TEroNT Ulrad, -, 7al,, 0Tal, =+, 0Tai,}.
And ()" = t(2;) Nt is generated by
(7.14) {ry, T€roNEIU {raioxai, 1Sj=m).
Next we show
(7.15) : to Ny, =To Ny, .

Let 7€roNt,,. By [2], Lemma 4.1, there exists an element a €r,, such that
<7, a>%0. Then <7, ¢+2">50 since <7, ’>=0, and a+1€z1,,, ie,
T €t1oNE,,, and vice versa.

Now

) = 12"+ Zey,
where the summation runs over all 7€toNr1,,. Then (7.13), (7.14) and (7.15)
imply that f(11)r_ =¥(2=)r_, i€,
(7.16) K(ir. = KQ22)7_.

Let # be an element of Nx(T_) representing R,» of W-. (7.16) implies that
the conjugation ¢, with respect to #»71, gives an equivalence between two re-
presentations ¢1|K(21)r_, and ¢»|K(21)r_ where ¢; is the isotropy representation
of homogeneous space K,,/Kr_ for each i=1, 2. Therefore by Prop. 5.14 we see
that the principal bundle associated with the bundle (I'p, T'ps, S™#2)) is equivalent
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to :y-extension of the bundle (K, , K, /K , Kr_), which is in turn equivalent to
the principal tangent bundle of K, /K, (=S™?Y) by [6], p. 481. Thus the
m(p2)-th Whitney class w”?2 of the bundle (I'p, I'ss, S™#2)) vanishes as a mod
2 class. Hence, by [11], Theorem III,

(7.17) 2 = m¥(w"PNxy = 0.
(7.12) and (7.17) prove Lemma 7.2 for the case E)ii)b). q.ed.
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