On the fundamental groups of knotted 2-manifolds
 in the 4-space

By Takeshi YAJIMA
(Received Dec. 14, 1962)

1. Introduction

Let M be a 2-dimensional manifold imbedded in the 4 -dimensional Euclidean space R^{4}. Let $\mathfrak{F}(M)$ be the fundamental group of $R^{4}-M$. In the case that M is a spinning sphere S, namely a sphere obtained by rotating an arc about a 2 -dimensional plane, the group $\mathfrak{F}(S)$ was investigated by E. Artin [1], E. R. Van Kampen [2] and J. J. Andrews and M. L. Curtis [3].

The presentation of $\mathfrak{F}(S)$ was discussed by R.H. Fox [4] and S. Kinoshita [5], where S is a knotted 2 -sphere in general. Their method, the so called moving picture method, concerned with the slice knots or the null-equivalent knots, which appear as an intersection of S and a 3 -dimensional subspace of R^{4}.

This paper contains the method of the Wirtinger's presentation of $\mathfrak{F}(M)$ by the classical projection method as in the knot theory. In this direction the principle of the method has been given by S. Kinoshita [6].

As an application of this method, a parallelism between knots in R^{3} and knotted 2 -spheres in R^{4} will be discussed.

2. Preliminaries

Let R^{4} be the 4 -dimensional Euclidean space with a coordinate system (x, y, $z, u)$. Let R^{3} be the 3 -dimensional subspace of R^{4} defined by $u=0$. With every point $P=(x, y, z, u)$ of a complex M in R^{4}, we associate the point $P^{*}=(x, y, z, 0)$ and $u=u(P)$. We call P^{*} the trace and u the height of a point P respectively and denote by $P=\left[P^{*}, u(P)\right]$. The set of traces of points of M will be denoted by M^{*}. The projection $\varphi: P \rightarrow P^{*}$ is defined as usual.

Throughout this paper terminologies are used in the semi-linear point of view. Hence complexes are polyhedral and mappings are simplicial.

Let M be a 2 -dimensional closed orientable manifold. It is no loss of generality to assume the following condition:
(2.1) If P_{1}, \ldots, P_{m} are vertices of M, then the system of points $\left(P_{1}^{*}, \ldots, P_{m}^{*}\right)$ is in general position in R^{3}.

Let $P^{*} \in M^{*}$. If there exist at least two points of M such that their traces
coincide with P^{*}, then we say P^{*} a cutting point of M^{*}. The set of cutting points of M^{*} is denoted by $\Gamma\left(M^{*}\right)$, and called the cutting of M^{*}.

In virtue of (2.1), 2-dimensional simplexes of M^{*} have an intersection only in the following cases (Fig. 1).

$\left(a_{2}\right)$

(b)

Fig. 1
Hence $\Gamma\left(M^{*}\right)$ consists of segments, each of whose endpoints belongs to only one 1-dimensional simplex. Notice that the common vertex of two simplexes in Fig. 1,(b) is not a point of $\Gamma\left(M^{*}\right)$. We call such a point a singular cutting point of M^{*}.

We can also assume the following conditions by a slight modification of vertices of M.
(2.2) A segment of $\Gamma\left(M^{*}\right)$ is the intersection of just two simplexes.
(2.3) There exist just three simplexes through a double point of $\Gamma\left(M^{*}\right)$.

Since an endpoint of a segment of $\Gamma\left(M^{*}\right)$ belongs to only one 1-dimensional simplex as shown in Fig. 1, we have:
(2.4) $\Gamma\left(M^{*}\right)$ consists of the following two kinds of polygons:
(1) closed polygons,
(2) polygonal arcs, whose endpoints are different or coincided singular cutting points.

3. The linking

Let M be a 2 -dimensional closed orientable manifold in R^{4}. Let f be a continuous mapping of the unit circle

$$
c_{1}: \quad x^{2}+y^{2}=1
$$

into $R^{4}-M$. Put $c=f\left(c_{1}\right)$. The vertices of c^{*} may be considered to be in general position in R^{3}.

If f can be extended to F which maps the unit disk

$$
D_{1}: \quad x^{2}+y^{2} \leqq 1
$$

into $R^{4}-M$, then we say that c does not link homotopically with M. Conversely, if such an extension does not exist, then we say that c links homotopically with M.
(3.1) If $c^{*} \cap M^{*}=0$, then c does not link homotopically with M.

Proof. Let (Q, r) be the polar coordinate of D_{1}, where $Q \in c_{1}$ and $0 \leqq r \leqq 1$. Let $c_{1 / 2}$ be a circle of $r=1 / 2$. Take a positive number h such that

$$
h>\left|\max _{P \in M} u(P)-\min _{Q \in C_{1}} u(f(Q))\right| .
$$

Put

$$
F(Q, r)=\left[f(Q)^{*}, u(f(Q))+2(1-r) h\right], \quad 1 / 2 \leqq r \leqq 1 .
$$

Since $F(Q, r)^{*}=f(Q)^{*}, F$ is a continuous mapping of $D_{1}-D_{1 / 2}$ into $R^{4}-M$. It is obvious that $F\left(c_{1 / 2}\right)$ is null-homotopic in the half-space defined by $u \geqq h+\min _{Q \in C_{1}}$ $u(f(Q))$. Hence c is null-homotopic in $R^{4}-M$.

Consequently if c links with M homotopically, then we have $c^{*} \cap M^{*} \neq 0$. Suppose that $c^{*} \cap M^{*}$ consists of two points A^{*} and B^{*}. Let $A_{1} \in c$ and $A_{2} \in M$ be the points such that $A_{1}^{*}=A_{2}^{*}=A^{*}$. We define sgn A^{*} as follows:

$$
\operatorname{sgn} A^{*}=\left\{\begin{array}{lll}
+1 & \text { if } & u\left(A_{1}\right)>u\left(A_{2}\right), \\
-1 & \text { if } & u\left(A_{1}\right)<u\left(A_{2}\right) .
\end{array}\right.
$$

$\operatorname{sgn} B^{*}$ is defined in the same way.
(3.2) If $\operatorname{sgn} A^{*} \cdot \operatorname{sgn} B^{*}=+1$, then c does not link with M homotopically.

Proof. Suppose that $\operatorname{sgn} A^{*}=\operatorname{sgn} B^{*}=+1$, The same proof as (3.1) assures the statement.

In the case that $\operatorname{sgn} A^{*}=\operatorname{sgn} B^{*}=-1$, take a negaive number h^{\prime} such that

$$
h^{\prime}<-\left|\min _{P \in M} u(P)-\max _{Q \in C_{1}} u(f(Q))\right|
$$

instead of h in the proof of (3.1).
(3.3) $\operatorname{sgn} A^{*} \cdot \operatorname{sgn} B^{*}=-1$, then c links with M homotopically.

Proof. Suppose that $\operatorname{sgn} A^{*}=+1$ and $\operatorname{sgn} B^{*}=-1$. Assume that c does not link homotopically with M. Then there exists an extension F of f over D_{1} such that $F\left(D_{1}\right) \subset R^{4}-M$. Since $c^{*} \cap M^{*}$ consists of two points A^{*} and $B^{*}, F\left(D_{1}\right)^{*} \cap M^{*}$ contains a cutting of polygonal arc, whose endpoints are A^{*} and B^{*}. Therefore there exist an arc a_{1} connecting A_{1} and B_{1} on $F\left(D_{1}\right)$, and an arc a_{2} connecting A_{2} and B_{2} on M such that $a_{1}^{*}=a_{2}^{*}$.

Let $P_{1} \in a_{1}$ and $P_{2} \in a_{2}$ be two variable points such that $P_{1}^{*}=P_{2}^{*}$. If $P_{1}=A_{1}$ and $P_{2}=A_{2}$, then we have $u\left(P_{1}\right)>u\left(P_{2}\right)$. If $P_{1}=B_{1}$ and $P_{2}=B_{2}$, then we have $u\left(P_{1}\right)<u\left(P_{2}\right)$. Therefore there exist points P_{0}^{*} on $a_{1}^{*}=a_{2}^{*}$ and $P_{01} \in a_{1}, P_{02} \in a_{2}$ such that $P_{01}^{*}=P_{02}^{*}=P_{0}^{*}$ and $u\left(P_{01}\right)=u\left(P_{02}\right)$. Hence $P_{01}=P_{02}$. This contradicts the assumption.

We have the following corollary from (3.2).
(3.4) Let c be a continuous image of an arc c_{1} in $R^{4}-M$. Let A^{*} and B^{*} be successive points of $c^{*} \cap M^{*}$ on c^{*}, where A^{*} and B^{*} can be connected by an arc on $M^{*}-\overline{\Gamma\left(M^{*}\right)}$. If $\operatorname{sgn} A^{*}=\operatorname{sgn} B^{*}$,

Fig. 2
then A^{*} and B^{*} can be cancelled, and vice versa.

4: The fundamental groups

In virtue of the conditions in $\S 2, \overline{\Gamma\left(M^{*}\right)}$ separates M^{*} into several domains $\Sigma_{1}^{*}, \ldots, \Sigma_{k}^{*}$, each of which has an orientation induced by the orientation of M. We represent the orientation of Σ_{i}^{*} by a small vector \mathbf{v}_{i} such that the direction of \mathbf{v}_{i} coincides with the direction of a right-handed screw twisting along the orientation of Σ_{i}^{*}.

Let γ^{*} be a simple arc of $\Gamma\left(M^{*}\right)$. From (2.2) there exist domains $\Sigma_{i}^{*}, \Sigma_{i+1}^{*}$; $\Sigma_{j}^{*}, \Sigma_{j+1}^{*}$ such that γ^{*} is a common boundary of these domains. Suppose that $\bar{\Sigma}_{i} \cap \bar{\Sigma}_{i+1}=\gamma_{i}, \bar{\Sigma}_{j} \cap \bar{\Sigma}_{j+1}=\gamma_{j}$ are arcs in R_{4} such that $\gamma_{i}^{*}=\gamma_{j}^{*}=\gamma^{*}$. If $u\left(\gamma_{i}\right)>u\left(\gamma_{j}\right)$,
 represent the relation of these surface, we use the following notations, cancelling the vector of the under surface (Fig. 3).

$u\left(\gamma_{i}\right)>u\left(\gamma_{j}\right)$

$$
u\left(\gamma_{i}\right)<u\left(\gamma_{j}\right)
$$

Fig. 3
The direction of the vector corresponds to the orientation of the over surface
For each Σ_{i}^{*}, we take a small circle c_{i}^{*} such that $\Sigma_{i}^{*} \cap c_{i}^{*}$ consists of points A_{i}^{*}, B_{i}^{*} where $\operatorname{sgn} A_{i}^{*}=+1, \operatorname{sgn} B_{i}^{*}=-1$, and $\Sigma_{j}^{*} \cap c_{i}^{*}=0$ for $j \neq i$. We define the orientation of c_{i}^{*} such that it coincides with the direction of \mathbf{v}_{i} at the point A_{i}^{*}. It is obvious that each c_{i}^{*} defines a equivalent class of c_{i} in $R^{4}-M$.
(4.1) c_{i} and c_{j} are homotopic in $R^{4}-M$.

Proof. If $i=j$, then the statement is obvious. Let us prove that c_{i} and c_{i+1} in Fig. 3 are homotopic in $R^{4}-M$.

Suppose that ${\bar{\Sigma} i \cup \Sigma_{i+1}}^{\text {is }}$ the under surface. Let T be a tube such that $\dot{T}^{*}=$ $c_{i}^{*}-c_{i+1}^{*}$ and $T^{*} \cap \overline{\Sigma_{i}^{*} \cup \Sigma_{i+1}^{*}}$ consists of two longitudes $\alpha^{*}=A_{i}^{*} A_{i+1}^{*}, \beta^{*}=B_{i}^{*} B_{i+1}^{*}$. Put $\alpha_{1}=\varphi^{-1}\left(\alpha^{*}\right) \cap T, \alpha_{2}=\varphi^{-1}\left(\alpha^{*}\right) \cap \overline{\Sigma_{i} \cup \Sigma_{i+1}}$ and $\beta_{1}=\varphi^{-1}\left(\beta^{*}\right) \cap T, \beta_{2}=\varphi^{-1}\left(\beta^{*}\right) \cap$ $\overline{\Sigma_{i} \cup \Sigma_{i+1}}$. Deform T such that $u\left(\alpha_{1}\right)>u\left(\alpha_{2}\right)$ and $u\left(\beta_{1}\right)<u\left(\beta_{2}\right)$. Then we have
$T \subset R^{4}-{\bar{\Sigma}{ }_{i} \cup \Sigma_{i+1}}$. Put $\delta^{*}=T^{*} \cap \overline{\Sigma_{j}^{*} \cup \Sigma_{j+1}^{*}}$ and $\delta_{1}=\varphi^{-1}\left(\delta^{*}\right) \cap T, \quad \delta_{2}=\varphi^{-1}\left(\delta^{*}\right) \cap$ $\overline{\Sigma_{j \cup \Sigma_{j+1}}}$. Deform T so far as $u\left(\delta_{1}\right)<u\left(\delta_{2}\right)$ but $u\left(\alpha_{1}\right)>u\left(\alpha_{2}\right)$. Then we have $T \subset R^{4}-M$. Hence c_{i} and c_{i+1} are homotopic in $R^{4}-M$. Other cases are proved successibly.

Take a base point O in $R^{3}-M^{*}$. Let w_{i}^{*} be an arbitrary path connecting O and an arbitrary point P_{i}^{*} of c_{i}^{*}. We define the signs of points $w_{i}^{*} \cap M^{*}$ be all +1 .

Fig. 4
Denote the closed path

$$
O \underset{w_{i}^{*}}{\longrightarrow} P_{i}^{*} \underset{c_{i}^{*}}{\longrightarrow} P_{i}^{*} \underset{w_{i}^{*}}{\longrightarrow} O
$$

by σ_{i}^{*}. It is obvious that the equivalent class of the closed path σ_{i} in $\mathrm{R}^{4}-M$ corresponding to σ_{i}^{*} does not depend on the choice of w_{i}^{*} and c_{i}^{*}.
(4.2) Theorem. $\sigma_{1}, \ldots, \sigma_{k}$ form a generator system of $\mathfrak{F}(M)$ with the base point O.

Proof. Suppose that w is an arbitrary oriented closed path in $R^{4}-M$ with the base point O. Let P^{*} be a point of $w^{*} \cap \Sigma_{i}^{*}$. We make σ_{i} correspond to P^{*} in the following manner:

1) If $\operatorname{sgn} P^{*}=+1$, then $P^{*} \longrightarrow 1$,
2) If $\operatorname{sgn} P^{*}=-1$ and the direction of \mathbf{v}_{i} coincides with the direction of w^{*} at the point P^{*}, then $P^{*} \longrightarrow \sigma_{i}^{-1}$,
3) If $\operatorname{sgn} P^{*}=-1$ and \mathbf{v}_{i} and w^{*} have the opposite directions at the point P^{*}, then $P^{*} \longrightarrow \sigma_{i}$.
Thus a word $w(\sigma)$ corresponds to w. It is obvious from (3.4) that a representative of $w(\sigma)$ is equivalent to w.
(4.3) If ${\overline{\Sigma_{j} \cup \Sigma_{j+1}}}^{\text {is }}$ the over surface, then we have the following relations:
(1) $\sigma_{j}^{-1} \sigma_{j+1}=1$,
(2) $\sigma_{i+1}^{-1} \sigma_{j}^{\varepsilon} \sigma_{i} \sigma_{j}^{\varepsilon}=1$,
where $\varepsilon=+1$ or -1 according as the direction of the vector of the over surface coincides or not with the direction $\Sigma_{i}^{*} \longrightarrow \Sigma_{i+1}^{*}$.

Proof. (1) is obvious from (4.1). Let us prove (2) in the case of $\varepsilon=+1$. Let T be the tube in the proof of (4.1). Take a curve $w_{i, i+1}$ connecting P_{i} and P_{i+1} on T. The closed path

$$
O \xrightarrow{w_{i+1}} P_{i+1} \xrightarrow{w_{i, i+1}} P_{i} \xrightarrow{c_{i}} P_{i} \xrightarrow{w_{i, i+1}} P_{i+1} \xrightarrow{w_{i+1}} O
$$

is represented by $\sigma_{j} \sigma_{i} \sigma_{j}^{-1}$. It is obvious that this closed path is homotopic to σ_{i+1} (Fig. 5). Hence $\sigma_{i+1}=\sigma_{j} \sigma_{i} \sigma_{j}^{-1}$.

Fig. 5
(4.4) Theorem. The relations (4.3) corresponding to all arcs of $\Gamma^{\top}\left(M^{*}\right)$ form a system of defining relations of $F(M)$.

Proof. If there exist no singular cutting points, then the statement is obvious. Suppose that there exist some singular cutting points. Let σ be a closed path which is null-homotopic in $R^{4}-M$. There exist continuous mappings f, F such that $f\left(c_{1}\right)=\sigma, F\left(D_{1}\right) \subset R^{4}-M$ and $F \mid c_{1}=f$, where c_{1} and D_{1} are as in §3. By a slight modification of F we have $\left.F\left(D_{1}\right)^{*} \subset R^{3}-\overline{\left(\Gamma\left(M^{*}\right)\right.}-\Gamma\left(M^{*}\right)\right)$. Hence σ can be represented as a consequence of relations (4.3).

5. Spheres in R^{4}

Let k be a knot in R^{3}. A construction of a 2 -sphere S in R^{4}, whose fundamental group $\mathfrak{F}(S)$ is isomorpic to $\mathfrak{F}(k)$, was given in [3] by rotating an arc along a plane in R^{4}. Let us discuss the same problem by the projection method.
(5.1) Let k be a knot in R^{3}. There exists a torus T_{k} in R^{4} such that $\mathfrak{q}\left(T_{k}\right)$ is isomorphic to $\mathfrak{F}(k)$.

Proof. In the Wirtinger's presentation, the defining relations of $\mathfrak{F}(M)$ are given in the same form as the defining relations of $\mathfrak{F}(k)$. So we construct T_{k} in the following correspondence (Fig. 6), where tubes represented by dotted lines, which show that they go through the other tubes, correspond to the cross points of the under-going arcs of k. The inessential generators are omitted.

$$
s_{i+1}=s_{j} s_{i} s_{j}^{-1}
$$

$$
s_{i \dashv 1}=s_{j}^{-1} s_{i} s_{j}
$$

$\sigma_{i+1}=\sigma_{j} \sigma_{i} \sigma_{j}^{-1}$

$$
\sigma_{i}=\sigma_{j} \sigma_{i+1} \sigma_{j}^{-1}
$$

Fig. 6
It is obvious that $\mathfrak{F}\left(T_{k}\right)$ is isomorphic to $\mathfrak{F}(k)$.
Now let us construct a knotted 2-sphere S_{k} in R^{4} from T_{k} as follows. Let P be an arbitrary point of k. Take a meridian circle c on T_{k} corresponding to the point P. Cut the torus T_{k} into a tube T_{k}^{\prime} by a plane through c, and add two disks to the terminals of T_{k}^{\prime}. Then we get a knotted sphere S_{k} in R^{4}. We say that T_{k} and S_{k} are similar to k.
(5.2) Theorem. If S_{k} is similar to k, then $\mathfrak{F}\left(S_{k}\right)$ is isomorphic to $\mathfrak{F}(k)$.

Proof. Suppose that the presentation of $\mathfrak{F}(k)$ is given as follows:
Generators: $\left(s_{1}, \ldots, s_{n}\right)$
Relations : $\left(R_{k}\right)\left\{\begin{array}{l}s_{1}=s_{i}^{\varepsilon_{1}} s_{2} s_{i_{4}}^{\varepsilon 1} \\ \ldots \ldots \ldots \ldots . . . \\ s_{n}=s_{i_{n}}^{\varepsilon_{n}} s_{1} s_{1}^{s_{n}} \varepsilon_{n}\end{array} \quad\left(\varepsilon_{i}= \pm 1\right)\right.$
Let P be a point of a segment s_{m} of the projection of k, and Q, R be the endpoints of s_{m}. Let s_{m}^{\prime} and $s_{m}^{\prime \prime}$ be the subsegment of s_{m} such that $s_{m}^{\prime}=Q P$ and
$s_{m}^{\prime \prime}=P R$. If we take a system of generators $\left(s_{1}, \ldots, s_{m}^{\prime}, s_{m}^{\prime \prime}, \ldots, s_{n}\right)$ instead of $\left(s_{1}, \ldots\right.$, s_{m}, \ldots, s_{n}), then we have relations (R_{k}^{\prime}) replacing s_{m} in $\left(R_{k}\right)$ by s_{m}^{\prime} or $s_{m}{ }^{\prime \prime}$ and a new relation $s_{m}^{\prime}=s_{m}{ }^{\prime \prime}$ as a system of defining relations of $\mathfrak{F}(k)$. By a geometrical consideration, we can prove that the relation $s_{m}^{\prime}=s_{m}{ }^{\prime \prime}$ is an induced relation of the relations of (R_{k}^{\prime}).

On the other hand the presentation of $\mathfrak{F}\left(S_{k}\right)$ is given by the generators (σ_{1}, $\left.\ldots, \sigma_{m}^{\prime}, \sigma_{m}^{\prime \prime}, \ldots, \sigma_{n}\right)$ and relations corresponding to $\left(R_{k}^{\prime}\right)$. Hence $\mathfrak{F}\left(S_{k}\right)$ is isomorphic to $\mathfrak{F}(k)$.

Example 1.

Generators: s_{1}, s_{2}, s_{3}.
Relations: $\left\{\begin{array}{l}s_{1}=s_{3} s_{2} s_{3}^{-1} \\ s_{2}=s_{1} s_{3} s_{1}^{-1} \\ s_{3}=s_{2} s_{1} s_{2}^{-1}\end{array}\right.$

Generators: $\sigma_{1}, \sigma_{2}^{\prime}, \sigma_{2}^{\prime \prime}, \sigma_{3}$
Relations: $\left\{\begin{array}{l}\sigma_{1}=\sigma_{3} \sigma_{2}^{\prime \prime} \sigma_{3}^{-1} \\ \sigma_{2}^{\prime}=\sigma_{1} \sigma_{3} \sigma_{1}^{-1} \\ \sigma_{3}=\sigma_{2}^{\prime} \sigma_{1} \sigma_{2}^{\prime-1}\end{array}\right.$

Fig. 7
The first relation of $\mathfrak{F}(S)$ in Fig. 7 is cancelled. We can prove that the projection S^{*} in Fig. 7 is deformed into the projection $\mathrm{S}^{\prime *}$ in Fig. 8 by a deformation of S into S^{\prime} in R^{4}.

It is worthy of notice that if T is not a similar torus of knots, then $\mathfrak{F}(S)$ is not always isomorphic to $\mathfrak{F}(T)$ as shown in Example 2.

Fig. 8

Fig. 9

Example 2. We get the torus T in Fig. 9 by changing the relation of heights of the torus in Fig. 7. If we cut the torus T by the plane A, then we get the same sphere as in Fig. 8. But if we cut T by the plane B, then we get a sphere which is the same as Example 10, p. 135 in [4]. Obviously the fundamental groups of these spheres are not coincide.

References

[1] E. Artin, Zur Isotopie zweidimensionaler Flächen in \boldsymbol{R}_{4}, Abh. Math. Sem. Univ. Hamburg 4 (1925), 174-177.
[2] E.R. Van Kampen, Zur Isotopie zweidimensionaler Flächen in \boldsymbol{R}_{4}, Abh. Math. Sem. Univ. Hambrug 6 (1927), 216.
[3] J. J. Andrews and M. L. Curtis, Knotted 2-spheres in the 4 -sphere, Ann. of Math., v. 70, No 3, (1956), 565-571.
[4] R.H. Fox, Topology of 3-manifolds, edited by M.K. Fort Jr., Prentice Hall (1962), 133.
[5] S. Kinoshita, On the Alexander polynomials of 2 -spheres in a 4 -sphere, Ann. of Math., v.74, No. 3 (1961), 518-531.
[6] S. Kinoshita, Alexander polynomials as isotopy invariants, I, Osaka Math. Jour., v. 10, No. 2 (1958), 263-271.

