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1. Introduction 

Let M be a 2-dimensional manifold imbedded in the 4-dimensional Euclidean 

space R 4 • Let '{J(M) be thefundamental group of R 4 -M. In the case that Mis 

a spinning sphere S, namely a sphere obtained by rotating an arc about a 2-dimen­

sional plane, the group iJ (S) was investigated by E. Artin [1], E. R. Van Kampen 

[2] and J. J. Andrews and M. L. Curtis [3]. 

The presentation of iJ (S) was discussed by R.H. Fox [ 4] and S. Kinoshita [5], 

where S is a knotted 2-sphere in general. Their method, the so called moving 

picture method, concerned with the slice knots or the null-equivalent knots, which 

appear as an intersection of S and a 3-dimensional subspace of R4 . 

This paper con tains the method of the Wirtinger's presentation of iJ (M) by 

the classical projection method as in the knot theory. In this direction the principle 

of the method has been given by S. Kinoshita [6]. 

As an application of this method, a parallelism between knots in R3 and 

knotted 2-spheres in R 4 will be discussed. 

2. Preliminaries 

Let R 4 be the 4-dimensional Euclidean space with a coordinate system (x, y, 

z, u). Let R 3 be the 3-dimensional subspace of R 4 defined by u=O. With every 

point P=(x,y, z, u) of a complex Min R4 , we associate the point P*= (x, y, z, O) 

and u=u(P). We cali P* the trace and u the height of a point P respectively 

and denote by P=[P*, u(P)]. The set of traces of points of M will be denoted 

by M*. The projection rp: P--? P* is defined as usual. 

Throughout this paper terminologies are used in the semi-linear point of view. 

Renee complexes are polyhedral and mappings are simplicial. 

Let M be a 2-dimensional closed orientable manifold. It is no loss of generality 

to assume the following condition : 

(2. 1) If P1, ... , Pm are vertices of M, then the system of points (P1*, ... , Pit,) 
is in general position in R 3 • 

Let P* E M*. If there exist at least two points of M such that their traces 
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coïncide with P*, then we say P* a cutting point of M*. The set of cutting 

points of M* is denoted by r(M*), and called the cutting of M*. 

In virtue of (2. 1), 2-dimensional simplexes of M* have an intersection only 

in the following cases (Fig. 1). 

( b) 

Renee r(M*) consists of segments, each of whose endpoints belongs to only one 

1-dimensional simplex. Notice that the common vertex of two simplexes in Fig. 

1,(b) is not a point of r(M*). We call such a point a singular cutting point of M*. 

We can also assume the following conditions by a slight modification of 

vertices of M 

(2. 2) A segment of r(M*) is the intersection of just two simplexes. 

(2. 3) There exist just three simplexes through a double point of r(M*). 

Since an endpoint of a segment of r(M*) belongs to only one 1-dimen­

sional simplex as shown in Fig. 1, we have: 

(2. 4) r(M*) consists of the following two kinds of polygons: 

(1) closed polygons, 

(2) polygonal arcs, whose endpoints are different or coincided singular cutting 

points. 

3. The linking 

Let M be a 2-dimensional closed orientable manifold in R 4 • Let f be a conti­

nuons mapping of the unit circle 

c1: x 2 +y2 =1 

into R 4 -M. Put c=f(c1). The vertices of c* may be considered to be in general 

position in R 3 • 

If f can be extended to F which maps the unit disk 

D1: x2+y2~1 

into R 4 - M, then we say that c does not link homotopically with M. Conversely, 

if such an extension does not exist, then we say that c links homotopically with M. 
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(3. 1) If c*nM*=O, then c does not link homotopically with M. 

Proof. Let (Q, r) be the polar coordinate of Db where Q E c1 and O~r~l. 

Let c1 12 be a circle of r= 1/2. Take a positive number h such that 

h> [max u(P) -min u(f(Q)) [· 
PêM QEC1 

Put 
F(Q, r)=[f(Q)*, u(j(Q))+2(l-r)h], 1/2~r~1. 

Since F(Q,r)*=f(Q)*, Fis a continuons mapping of D 1-D112 into R4 -M It is 

obvions that F(c112 ) is null-homotopic in the half-space defined by u~h+min 
QEC1 

u(f(Q)). Hence c is null-homotopic in R4 - M. 
Consequently if c links with M homotopically, then we have c*nM*+O. 

Suppose that c* nM* consists of two points A* and B*. Let A1 E c and A2 E M 

be the points such that A[=A;i'=A*. We define sgn A* as follows: 

{ + 1 if u(A1) >uCA2), 
sgn A*= 

-1 if u(A1)<uCA2). 

sgn B* is defined in the same way. 

(3. 2) If sgn A* ·sgn B*= + 1, then c does not link with M homotopically. 

Proof. Suppose that sgn A*=sgn B*= + 1, The same proof as (3.1) assures 
the statement. 

In the case that sgnA*=sgnB*=-1, take a negaive number h' such that 

h' < -j min u(P) -max u(j(Q)) j 
PEM QEC1 

instead of h in the proof of (3. 1). 

(3.3) sgnA*·sgnB*=-1, then c links with M homotopically. 

Proof. Suppose that sgn A*=+ 1 and sgn B*= -1. Assume that c does not 

link homotopically with M. Then there exists an extension F of f over D1 such 

that F(D1)CR4 -M Since c*nM* consists of two points A* and B*, F(D1)*nM* 

contains a cutting of polygonal arc, whose endpoints are A* and B*. Therefore 

there exist an arc a1 connecting A 1 and B 1 on FCD1), and an arc a2 connecting 

Az and Bz on M such that a[=af. 

Let P1 E a1 and Pz E az be two variable points su ch that Pt= P~. If P1 = A1 

and P2=Az, then we have u(P1)>u(Pz). If P1=B1 and P2 =B2, then we have 

u(P1)<uCP2). Therefore there exist points Pt on af=a~ and P01 E a1, P02 E a2 

such that P01=P0"-2_=P0* and u(P01)=uCPo2). Hence 

Po1 =Poz. This contradicts the assumption. 

We have the following corollary from (3. 2). 

(3. 4) Let c be a continuous image of an arc 

c1 in R 4 -M. Let A* and B* be successive points 

of c*nM* on c*, where A* and B* can be connected 

by an arc on M*-r(M*). If sgn A*=sgn B*, Fig. 2 
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then A* and B* can be cancelled, and vice versa. 

4: The fundamental groups 

In virtue of the conditions in § 2, r(M*) separa tes M* into several domains 

2'{, ... , 2'%, each of which has an orientation induced by the orientation of M. 

We represent the orientation of 2'[ by a small vector v; such that the direction 

of v; coïncides with the direction of a right-handed screw twisting along the 

orientation of 2'[. 

Let T* be a simple arc of r(M*). From (2. 2) there exist domains 2'[, l'TH; 

l'j, 2'}+1 such that T* is a common boundary of these domains. Suppose that 

i;niiT1=T;, ijnij+1=Tj are arcs in R4 such that T[=Tj=T*. If u(T;)>u(Tj), 

then we call l';U2ï+1 the over surface, and 2,'jU2'h1 the under surface. To 

represent the relation of these surface, we use the following notations, cancelling 

the vector of the under surface (Fig. 3). 

Fig. 3 

The direction of the vector corresponds to the orientation of the over surface. 

For each 2'[, we take a small circle c[ such that 2-'[nc[ consists of points 

A[, Bt where sgn At=+1, sgnBt=-1, and 2jnc[=O for j=/=i. We define the 

orientation of ct such that it coïncides with the direction of v; at the point AT. 
It is obvions that each ct defines a equivalent class of c; in R 4 - M. 

(4. 1) C; and Cj are homotopie in R 4 -M. 

Proof. If i=j, then the statement is obvions. Let us prove that c; and C;n 

in Fig. 3 are homotopie in R4 - M. 

Suppose that I.;;ui.;i+1 is the under surface. Let T be a tube such that T*= 

c~-c[+1 and T*n I.;[u I.;fH consists of two longitudes a*= A[A[H> !3*= B[Bi"u· 

Put a1=.;o-1(a*)nT, az=<P-1(a*) ni.;;ui.;;+1 andf31=<P-1(/3*)nT,/3z=.;o-1(/3*)n 

I.;;ui.;;+1· Deform T such that u(at)>u(a2) and u(j31 )<u(j32). Then we have 
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TCR4 -;,::,;~...;'::L;+1· Put o*=T*n;,::,)u;,::,JH and o1=rp-1 (o*)nT, oz=rp-1 (o*)n 

;,::,iu;,::,i+1· Deform T so far as u(o1)<uCo2) but u(a1)>u(a 2 ). Then we have 

TCR4 -M. Renee c; and c;+1 are homotopie in R 4 -M Other cases are proved 
successibly. 

Take a base point 0 in R 3 - M*. Let wi be an arbitrary pa th connecting 0 

and an arbitrary point P;* of c'[. We define the signs of points w'[.nM* be ali + 1. 

Fig. 4 

Denote the closed path 

o~Pt~Pt~o 
wf cj w{ 

by 117 . It is obvious that the equivalent class of the closed pa th 11; in R4 - M 

corresponding to 117 does not depend on the choice of w7 and c/. 

(4. 2) Theorem. 111 , ... , 11k form a generator system of \J (M) with the base 

point O. 

Proof. Suppose that w is an arbitrary oriented closed pa th in R 4 - M with 

the base point O. Let P* be a point of w*n;,::,'[. We make 11; correspond toP* 

in the following manner : 

1) If sgn P*=+1, then P* ~ 1, 

2) If sgn P* = -1 and the direction of v; coïncides with the direction of w* 

at the point P*, then P* ~ 11j1, 

3) If sgn P* = -1 and v; and w* have the opposite directions at the point 

P*, then P* ~ 11;-
Thus a word w(11) corresponds to w. It is obvious from (3. 4) that a representa­

tive of w(11) is equivalent to w. 

( 4. 3) If ~iu ~J+1 is the over surface, then we have the following relations: 

(1) 11j111i+1=1, 

(2) 111.A11/ 11;11}E = 1, 

where E = + 1 or -1 according as the direction of the vector oj the over surface 

coïncides or not with the direction ~/ -·---> ~,:j: 1 . 

Proof (1) is obvious from ( 4. J). Let us prove (2) in the case of t = + 1. 

Let T be the tube in the proof of ( 4. 1). Take a curve w;, i+l connecting Pi 

and P;+1 on T. The closed path 
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is represented by rJjrJ;rJj 1 . It is obvious that this closed path is homotopie to r1;+1 

(Fig. 5). Renee ,;i+1 =rJjr1;rJ] 1 • 

Fig. 5 

( 4. 4) Theorem. The relations ( 4. 3) corresponding to all arcs of l'CM*) form 

a system of defining relations of F(M). 

Proof. If there exist no singular cutting points, then the statement is obvious. 

Suppose that there exist sorne singular cutting points. Let r1 be a closed path 

which is null-homotopic in R4 - M. There exist continuous mappings~ f, F such 

thatj(c1)=,;,F(D1)CR 4 -MandFic1=/, where c1 and D1 are as in §3. By 

a slight modification ofF we have F(D1)*CR3 -(r(M*)-r(M*)). Renee r1 can 

be represented as a consequence of relations ( 4. 3). 

5. Spheres in R4 

Let k be a knot in R 3 . A construction of a 2-sphere S in R 4 , whose funda­

mental group '{J(S) is isomorpic to '{J(k), was given in [3] by rotating an arc 

along a plane in R 4 • Let us discuss the same problem by the projection method. 

(5. 1) Let k be a knot in R 3 • There exists a torus Tk in R 4 such that '{J( T.) 

is isomorphic to 'iJ(k). 
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Praaf. ln the Wirtinger's presentation, the defining relations of \J(M) are 

given in the same form as the defining relations of \J(k). So we construct Tk in 

the following correspondence (Fig. 6), where tubes represented by dotted lines, 

which show that they go through the other tubes, correspond to the cross points 

of the under-going arcs of k. The inessential generators are omitted. 

Fig. 6 

' ' 

It is obvious that j'y( Tk) is isomorphic to \J(k). 

Now let us construct a knotted 2-sphere Sk in R 4 from Tk as follows. Let 

P be an arbitrary point of k. Take a meridian circle c on T" corresponding to 

the point P. Cut the torus Tk into a tube T', by a plane through c, and add 

two disks to the terminais of T~. Then we get a knotted sphere Sk in R 4 • W e 

say that Tk and Sk are similar to k. 

(5. 2) Theorem. If S" is similar ta k, then \J(S") is isomorphic ta '{J(k). 

Proof. Suppose that the presentation of \J(k) is given as follows: 

Genera tors: 

(r 1 ~o±l) 

Let P be a point of a segment sm of the projection of k, and Q, R be the 

endpoints of sm. Let s~, and s;;. be the subsegment of sm such that s~,=QP and 
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s:n=PR. If we take a system of generators (si, ... ,s:,, s;,, ... ,sn) instead of (si, ... , 

sm, ... , s.), then we have relations CR~) replacing Sm in (Rk) by s:, or s:.' and a 

new relation s:n=s,/,' as a system of defining relations of 'iJ(k). By a geometrical 
consideration, we can prove that the relation s:n=s,/,' is an induced relation of the 

relations of (Rk). 

On the other hand the presentation of 'iJ (Sk) is given by the generators (11i, 

... , 11:,, o;,, ... ,11.) and relations corresponding to (R~ ). Renee 'iJ(Sk) is isomorphic 

to 'fj(k). 

Example 1. 

Generators: si, s2, s3. Genera tors: 11i, 11~, 11f, 113 

{
Si =SaS2S81 

Relations: s2 =sisas!i 

Sa =S2SiSzi 

Fig. 7 

The :first relation of 'fj(S) in Fig. 7 is cancelled. We can prove that the projec­

tion S* in Fig. 7 is deformed into the projection S'* in Fig. 8 by a deformation 
of S into S' in R 4 • 

It is worthy of notice that if T is not a similar torus of knots, 

not always isomorphic to 'fj(T) as shown in Example 2. 

B 
Fig. 8 Fig. 9 

then 'iJ(S) is 

A 
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Example 2. We get the torus Tin Fig. 9 by changing the relation of heights 

of the torus in Fig. 7. If we eut the torus T by the plane A, then we get the 

same sphere as in Fig. 8. But if we eut T by the plane B, then we get a 

sphere which is the same as Example 10, p. 135 in [4]. Obviously the funda­

mental groups of these spheres are not coïncide. 
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