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This is a continuation of the paper [3], and deals with the mod p cohomology algebra
H*(S(m); Z,) of the symmetric group S(m) of degree m, where 1 < m < oo and
p is a prime. The author gave a basis for the homology module Hy(S (m); Z,) in
[3]. In the present paper, we try to describe the diagonal homomorphism

dy: Hy(S(m); Z,) —> Hy(S(m); Z,) @ Hy(S(m); Z,)
in terms of the basis, and by its conversion we derive some results on the cohomology
algebra H*(S(m); Z,). Throughout this paper a prime p is fixed.

1. Recapitulation.

For the convenience of the reader, the results which are proved in [2] and [3]
are recapitulated in this section.

(A) Denote by Ay, : S(m) —> S(n) the natural inclusion map, where m < n.
Then, for any coefficient group G, the homomorphism A%4: Hy(S(m); G) —> Hy(S
(n);G) induced by A% is a monomorphism and its image is a direct summand of
Hy(S(n);G); the homomorphism AZ¥*: H*(S(n); G) —> H*(S(m); G) induced by
A% is an epimorphism and its kernel is a direct summand of H*(S(n);G). If ¢ <
(m + 1)/2 then A% : H,(S(m); G)—> H,(S(m+1);G) and A @ HY(S(m+1);G)
—> HY(S(m);G) are isomorphisms.

(B) Letkbeafield, and let u: S(m) X S(n)—>S(m-n) denote a homomorphism
defined by

a(f) if 1<<i <m,

p(ax p)) (@)= .

pi—m) + m ftm<i<m-4n
where ae S(m) and < S(n). Then, for elements a & H,(S(m); k) and b & H(S(n);
k) we define a product ab & H,, (S(m+n); k) by

ab = M*(tl@b),

where uy 1 Hy(S(m); k) Q Hy(S(n); k) —> Hy(S(m—-n); k) is the homomorphism
induced by u. The product is bilinear, associative and (anti-) commutative. Denote
by S(co) the infinite symmetric group, i.e., the direct limit of {S(m), An}. Let
Am: S(m) —> S(co) denote the natural inclusion. Then the rule

(@) Ze(B) = Imens(ad)
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defines on Hy(S(c0); k) a multiplicative structure, and it makes Hy(S(c0); &) together
with the diagonal homomorphism dy a commutative associative Hopf algebra. Hy
S(o0); k) is of fiite type.

(C) A p-Sylow subgroup S(p’, p) of the symmetric group S(p”) is given by an
iterated wreath product of 7, where 7 is the group of cyclic permutations of order p
and degree p: S(p, p) = S(p”"?, p) [ w. Denote by () the usual generator of H,(s;
Z,). We associate to each sequence (ky, kg, . .. , k;) of non-negative integers an
element

| kv kz’ LN kfl EH*(S(p'T’ P)’ Zp)
of dimension ky + pko -+ ... + p’7'k, defined by

Vhy ko oo by | = | Ko oo, ky| [ elky),
where [ stands for the wreath product of homology classes. Using this we define for
a sequence I==(iy, i9, ..., i) satisfying
WD) i (p—1) (oot - + i) = 0
for 1 <s <f an element
al) = a(iy, iy, - .., i) € H(S(p"); Z,)

as ox | ky Ky o oy Ky | With k=i,—(p—1)(fsey + . . . + i), where o4 Hy(S(#7,p); Z,)
—> Hy(S(p%); Z,) is the homomorphism induced by the inclusion. The dimension
of a(I) is ¢y + i+ .. . + in

Denote by Q(p) the set of all sequences of (positive) integers I = (7, 7y, . . . ,
i), f >0, satisfying
(1.2) 4, = 0or —1 mod 2(p—1) for 1 <s<f,
(13) iy < i for 1 <5< £,
(L4 iy > (=) Gy + - . +ip).
Then the homology algebra Hy(S(c0); Z,) is a free associative commutative graded
algebra generated by {A(I), I € Q(p)}, where A(I) = Aepx(a(I))1) for I with length
I

(D) Consider on Q(p) a linear order <. Then a basis for the homolegy module
H/(S(m);Z,) can be formed with all elements

@by Ca(lL)y® . .. a(l)®), t =0,
satisfying the following conditions:
1.5 I, <I, < ... <1, are elements of Q(p),
(1.6) ¢(k) is > 0 or = 1 according as pdima([,) is even or odd,
1.7)  e(l)dima(f)) + . .. + (f)dima(l,) = ¢ and c(1)p™® + . .. + ()P P<m,
where f(k) is the length of I,.

(E) The height of any element of the cohomology algebra H*(S(m); Z,), 1<
m < oo, is either co or < p if pis odd, and is co if p =2. The cohomology algebra

1) When p7 occurs as a (lower or upper) suffix, it will be denoted by &(f).
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H*(S(c0); Z,) is isomorphic as graded algebras to the homology algebra Hy(S(c0); Z;)
whose structure is known by (C).
(F) Let X be a complex® and let u & H¥(X; Z,) be even dimensional. Then
we have
Wt fab = (—1)"(u"|a)(u"[b)
for a € Hy(S(m); Z,) and b = H(S(n); Z,) ;
wPaiy , . .., i) = SD ... SDPy
where ¢ 3 0 mod p, i, +j(k) = qp” * (p — 1) for 1 <k < f, and St/: HY(X; Z,)—>
HJ (X; Z,) is the cyclic reduced power. The latter implies that a(é;, .. .,i,) = 0
unless 7, = 0 or —1 mod 2(p—1) for all .
(G) Denote by SP™(S% the m-fold symmetric product of a ¢g-sphere S% Let
u, & HY(SP™(S?); Z,) denote a generator, and assume ¢ is even. Then a homo-
morphism
o ? HI(S(m)’ Zp)Hqu—i(SPm(Sq); Zp)
given by
#m (@) = uy"[a

is an isomorphism for ¢ <_g. This is known as Steenrod isomorphism [5].

2. Diagonal homomorphism

Let I' C S(m) be a subgroup, and denote by dy: Hy(I"; Z,) —> Hy(I'; Z,)
& Hy(I'; Z,) the diagonal homomorphism.
TueoreMm 2.1. Let a € Hy(l'; Z,) and put

(1) d*(d) = Esasl ® as"~
Then, for any complex X and any even dimensional u,v & H¥(X; Z,) we have
(i) (wo)*/a = 3% (—DYOYS (u/a)) (v/a))

with d'(s) = dima, and d"'(s) = dima,’; if I' is the finite symmetric group S(m) the
converse is also true.

Proof. The first part can be proved by the arguments used by Steenrod to prove
the Cartan formula for the cyclic reduced powers (see pp. 219-221 of [4]). We will
omit the proof.

We shall prove the second part. Put Y=SP™S% with even ¢, and consider a
homomorphism

0 : H(S(m) X S(m); Z,)—>H™ " (YXY; Z,)
defined by

00 ® ') = (~1H 95 (&) @ wya”)
Then it follows from (G) that 0 is an isomorphism if /<(g. Denote by p¥ : H¥(Y;
Z,)—>H*(Y X Y; Z,) the homomorphism induced by the j-th projection p,: Y X ¥
—>Y (=1, 2). We have

2) By a complex we mean always a finite regular cell complex.
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#m(@) @ #n(@) = (u(@) @ 1)1 @ 2 (@) )
= (pF #n(@) )P xu(@”)) = (pF (u™/@)) (pF (ug"/a"))
= (o8 w)"/a) ((2F w)"/a) = ((uy @ V"/a') (1 @ u)"/a").
Therefore, putting X=Y XY, u=u, ®1 and v=1 ® u, in (ii), we obtain
(e Q u))"/a = 35, (—1)YOD y,(a)) R #la) = 03(a, @ a;”’).
Consequently the first part implies
(1 u)"[a = B(ds(a)).
Thus if we assume (ii) we have
0(dx(a)=0(3se ® a,”).
Taking a sufficiently large g, this establishes (1).
Lemma 2.2, For any even dimensional u, v € H¥(X, Z,) we have

oY D[V by ooy byl =@ |my, . . . mgl) (5] [y, .o mgl )
where & = g(my, ..., my ny, ..., ny) is —1 to the exponent
1
iy g+ plp—1) S oo(mit- . . A mp)(m . . 4ny)
and the summation extends over all sequences (my, . .., my;, ny, ..., n;) such that

my, + ny =k, pmn, =0 mod 2 (1 < i< f).
Proof. Note first that the arguments in p. 220 of [4] prove that
(o) |e(l)=(—1)r@=DE S (— 1)@= (2 [e(m))(v” [e(n))
where g=dim %, r=dim v and the summation extends over all (m,n) such that m-4n
=k, pmn =0 mod 2. Next note that
WD) N kyy ooy k| = @EID) | Ky ..oy Kyl )2/ e(ky)
with ¢/=—1 to the exponent (k, 4 ... -+ k;) p(p—1)/2. Then the lemma can be
proved easily by induction on f.
PropoSITION 2.3. We have
dgaliy, ... i) = 206ty oy by Sty oy S a(sy ooy 8 Qalty, ..., 1)
where the summation extends over all sequences (sy, .., Sy, by, ..., ;) such that
s;+t=t;, ps;t;=0 mod 2,
s; = (0—=1) Gjur + o0 Fs), £, = (1) (e + ... + 1)
forj=1,2, ..., f.
Proof. By a fundamental property of the reduced power, it follows from Lemma
2.2. that

(oY Plos| kyy o oo Ky |

=3le(my, . .y my, myy ooy ng) (B oy [ my, - mg|) (P oy (1, o).
Therefore, in virtue of Theorem 1.1, we have
Ok oo vy Ry |
D N P A L N A [ A

Noting that
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ky = t; — (p—1) (G40 + -+ - + )
i =k + (0—Ukjur + phjus + - + P77 k)
if iy, ..., i)=0%| k..., k| , rewrite the above formula in terms of a(i,, . . ., i;).
Then the required theorem is obtained.

Remark. In the above proposition we may restrict ourselves to elements a(z, ..., i)
such that i; = 0 or —1 mod 2(p—1) for 1 <<j < f (see (F)). In this case the con-
dition ps;z; = 0 mod 2 is superfluous.

PROPOSITION 2.4. For acHy(S(m); Z,) and b Hy(S(n); Z,), put

dy(a) =334’ @ a”,  dy(b)=21:b" ® b,

Then we have

dy(ab) = >, (s, t) a/b’ Q) a,"'b,”.
where &(s,t) is —1 to the exponent dimay’dimb,”.

Proof. The following diagram is commutative:

S(m)xSm) —* 5 S(m-+n)
Jdxd
S(m) X S(m) x S(n) X S(n) d
JIxTx1 p J
S(m) x S(n) X S(m) x S(n) — S(m-+n)x S(m-+n)
where 7 stands for the commutation of the second and the third factors. From this,

by the definition of ab (see (B)), the proposition is proved easily.
Denote by V,(m) the basis for the module Hy(S(m); Z,) stated in (D). If

a = A" (a(L)Y® ... a(L)®) €Vy(m),

we write
M(a) = Maxf(j)
1<4<t
where f(j) is the length of I,.
Lemma 2.5. Let a & Vy(m) and let dy(a) = > a Q a' with a/, a" & V (m).

Then we have

M(a)) < M(a), M(a") < M(a)
for all s.

Proof. Note that dyuAly = (A4 Q) A%4)dy, then the lemma is obvious by Proposi-
tions 2.3 and 2.4 and (D).

3. Representation in terms of the basis.

In Proposition 2.3, even if a(iy, . . . , 4,) is an element of I (p"), the elements a(s,,

-» s)and a(t, . .., t,) in the right hand are not necessarily in V,(p”). Therefore

the determination of the cohomology algebra H*(S(m); Z,) from the coalgebra (Hy

(S(m); Z,), dy) will require to seek formulae to represent any a(iy, . . . , i) in terms of

the basis V,(p”). This is done in this section. For simplicity we shall explain it only
for the case p=2.



50 Minoru NAKAOKA

ProposITION 3.1.3) (I) If a(iy, ..., ;) = Sa(ss, - - -, ;) then a(iy 1y, ..., i)=
MNa(iy, s, - - -5 §;) for any iy.
(L) If i, >2i, then
iy iy i) = B 501 ) alitis—s, 5,0 )
1
with 2 < s < (i,-+4)/2.
(M) If & =iy + ...+ i then a(y, 1y ..., i) = a(ly ..., &)
Proof. In view of (G), the proposition is a direct consequence of the following:
@y If a(iy ..., 4) = > alsy ..., s, then
wEDPa(iy, iy, ...y d) = N uPla(iy, sy, -1, )
(A1)’ If 4,>2i, then
WD iy, .. i) = S s;;’%_zl) D aliytiy—s, 5, -« -, ).
(1LY If 4, = ¢ + ... + i, then
WD a(ty ..., i) = w5DPla(iy, ..., i)}
where u is any g-dimentional mod 2 cohomology class of any complex (g: even), and
&(f) = 2. Using (F) these are proved as follows.
If a(iy, ..., t;) = >la(sy ..., s;) then we have
Sqi® ... 8q¢P u = w9V a(iy, ..., i)
= VU9 Pa(s,, ..., s;) =) Sq'® ... Sq'P u
with 2, 4 j(R) = 2""*g and 5, + #(R) = 2" Fg for 1 <k < f. Therefore, if we put
i, = 277* ¢—j(1) we obtain
WD a(iy, iy, .. ., 1) = SPP SP@ ... S¢'Pu
= 315q'® Sq'® ... SqP u =3 wfD/a(iy, s5 - .., 5,
which is (I)’. Assume 7,>2i, then j(1)<2j(2). Therefore, in virtue of the well-
known Adem-Cartan relation, we have
WD a(iy, iy .. ., i) = Sq¢'® Sq/® ... Sq'Pu
- Zz(jj(%%;_tzl) SqO+IM-t3qISqI® . .. Sq/Py
= > 55;’12_11) Sq’Sq'Sq’® ... Sq'Pu
_ s (s_"z—.l) WD a(i iy —s, s, i i)
S 28-—11 17T % 1) 9 B3y e O,
with s=2""1¢g—¢ andj = 2/"'¢ — (4, + i, —s). Here we may assume that 25—,
=0 and 444 —s=s+4 +...4+ 1, =s Thus we obtain (II). Assume
iy =1y, + ...+ i, then we have
dim (Sq'®...Sq/P u) =27 — (i, + ... + i) = 2¢"*—i, = j(1)
in ufPfa(iy, . .., i) = Sq¢® ... Sq/Pu. Therefore we obtain

3) It is understood that @(iy, g2, ..., ir) =0 if i << ({j+1 +... +ir) for some j. It it easily
seen that under this convention (F) is still true.
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@ED/aliy, . . ., i)= (S¢'®...Sq'Pu)?
= D aliy ) = #Oaliy - i)

which is (III). This completes the proof of the proposition.

Lemma 3.2.  Using the properties (1) and (I1), any a(iy, .. ., 1) can be transformed
to a linear combination of elements a(sy, . .., s;) such that s;<< 25,4, for 1 <j < f.

Proof. Thisis done by induction on the length f and the first term 7 of (7,...,
i;). By the hypothesis of induction, a(i, ..., 7,) is a linear combination of a(s,, ...,
s;) such that s, <C 2s,,, for 2 <<j < f. Therefore, by (I), a(éy, 4, ..., %) is a linear
combination of the elements a(7}, s, ..., ;). Thus we may assume 7; > 2i,, 7, <
2igy o vy 1y 20 for a(iy, . .., 4;), In view of (II) we have

. . —i,—1 L. .
a(y, ..., 4) = Zs(szslz—il ) a(ty+ig—s, 8, ..., 1)
where /2 < s < (i; + 4,) /2. Since s 2> 4,/2 > 4, we have 7, + i, — s < 7;. Therefore,

by the hypothesis of induction, a(; + 7, — 5,5, ..., %) and so a(s, ..., ;) can be
transformed as claimed. This completes the proof.

Tueorem 3.3, Using the properties (1) - (111), any a(ty, . . . , ;) can be transformed
to a linear combination of elements of V(s).

Proof. We use induction on f. In view of Lemma 3.2 we may assume that
a(iy, ..., i) satisfies ¢; << 2i;,, for 1 <j<f. Since a(s, ..., %) = 0 if 4, <,
4 ...+ i, we may further assume thats; =4, 4-... 4- 4. 'Then by (III) we have
a(ty, fgy ... ,2) = afly, ..., i)2. Therefore the hypothesis of induction proves the
theorem.

A special case of (II) is that
(3.4) a2s +1,0,...,0) =10
if the length is >> 1. A corresponding result is obtained for p >> 2, and this will
be used later.

Lemma 3.5. Letp > 2. Ifthelengthis >1 and s = 0 mod p then we have
a(2s(p—1),0,..., 0) = 0.

Proof. If we write the formula corresponding to (IT) in the case p >> 2, the lemma
will be its special case. However, we prefer to give a direct proof. In virtue of (G)
it suffices to prove
utP/a(2s(p—1), 0,..., 0) = 0
for any even dimensional ¥ € HYX; Z,). Put
v = D y = dim v = gp’2
Then by (F) we have

D [a(2s(p—1), 0, ..., 0)
= SEI-D=28)(0-1) EI-D
= Preir-syr,

Since Plo = 0 if 7 > /2, it follows from the Cartan formula that

%rplz—svp — Z (%"‘/2—3(1)7)) .. (%r!z—-s(p)v)
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summed over all sequences of non-negative integers (s(1), ..., s(p)) whose sum is s.
If s & 0 mod p this is clearly 0. Thus the lemma is proved.

4. Cohomology algebra H*(S(4); Z5)

We shall in this section prove

TueoReM 4.1.  The cohomology algebra H*(S(4); Z,) is a commutaiive associative
graded algebra generated by x,, x,, y subject to a relation x;y = 0, where dim », =1,
dim x,= 2 and dim y = 3.

By (D) it follows that a basis V,(4) for the module Hy(S(4); Z,) can be formed by
elements of the following type:

a(i + j)a(j) (i =0,j=0),

a(i + j, j) G=i>0
where we regard a(0) as the generator of Hy(S(2); Z,). Consider the dual basis
V*(4) = {a*, a €V,4)} for the module H*(S(4); Z,), and put

2, = (a(D)a(0))*, %, = (a(1)2)*, y = a(2,1)*.

For any ¢, order the subset of ¢g-dimensional elements of V/,(4) linearly as follows:

a(i +-j) a(j) < als +1a() it j <,

a(i +7, j) < a(s + ¢, 1) ifj <,

a(i +j) a(j) < a(s+ 1, 1)

Then the theorem is a direct consequence of the following.

LEmMmA 4.2. Fori > 0,7 2> 0,k > 0 and a € V,(4), we have
1 ifa = a(i + j)a(mj),
i) <wiw)a> = { T = ol o)
0 if a < a(t + j)a(j);
1 fa=a2k+j,k+j
@ <sha>={ T2
0 ifa<a2k+j,k+7j);
(i) xy =0
Proof. It follows from Propositions 2.3 and 2.4 that
L'y, a(s + £at) > = < '/ & x, dy(a(s+0)a(?)) >
= < x'x" a(s + ¢t —1) a(z — 1) >.
Therefore induction on 7 -+ j proves (i). In view of Lemma 2.5 we have
< 2y, a(s+0)a(t) > = < #/y" 7 Qy, delals + 1) a(t) ) > = 0;
since a(3,0) = 0 by (3.4), it follows from Proposition 2.3 that
< x2jyk7 a(s + t’ t) > = < xzjyk_l ®J’» d*a(s + t’ t) >
= < xy* Y a(s + ¢t =2, 1—1) >,
hence induction on j4-k proves (ii). The element of T,(4) with dimension 4 are
a(4)a(0), a(3)a(1) and a(2)2. Therefore we have <  %,9, a > = 0 for any a&V,(4),
hence %,y =0. This completes the proof.
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5. On the cohomology algebra H*(S(p"); Z,)

Consider the dual basis V¥ ={a*, acV,(p")} for the module H*(S(p"); Z,)
and put
x= (AP (a(1)*,  y=(@, ..., 2, 1)* for p =2,
x= (AL a2p —2))*, y= (a2p"(p—1), ..., 2p(p—1), 2p—1))*
for p > 2.

‘Then we have
Lemma 5.1. xy =0 if f > 1.

Proof. It follows from Lemma 2.5 that <xy, a> = 0 for acV,(p’) such
that M(a) < f. If a & V(p’) and M(a) =f then a = a(iy, . .., 7). Thereforeit
suffices to prove that

<y, a(ty, ..., 1) > =
for a(iy, . ..,4i;) € Q(p). For this purpose we show that there is no element a(f) =
a(ty, . .., i) € Q(p) such that dima(l) = dim xy = 2(p” + p —2). Since the proof
for the case p = 2 is similar we assume p > 2. It follows from (1.3) and (1.4) that
P4+ (T4 D) < dima(l) < (P4 ...+ 1) i
Therefore if i, > 4(p—1) — 1 then dima(I) < 2(p” + p — 2), and if 7, < 2(p — 1)
then dima(l) < 2(p” + p — 2).4 By (1.2) this shows that if a(, ..., i) € Q
(p) then its dimension is not 2(p” + p — 2). Thus the proof is complete.

Tueorem 5.2. For f>1 the cohomology algebra H*(S(p%); Z,) can not be a
Hopf algebra.

Proof. Since the result for p = 2 is proved similarly, we assume p > 2. Suppose
that H*(S(p”); Z,) is a Hopf algebra. Then, by Borel’s theorem, H*(S(p"); Z,) is
isomorphic as algebra to a tensor product of 4, (i € 1), where A, is a canonical Hopf
algebra with one generator x; (see [1]). Since it follows from (D) that 2p—2 is the
least of even j such that HI(S(p”); Z,) = 0, we may regard that x==x; for some i & [.
Therefore it is easily seen from Lemma 5.1 that there is 2 & H*(S(p’); Z,) such that
y = xz. It follows from Lemma 3.5 and (F) that if a(s, . . ., 7,) has dimension 2p—
2 then a(7y, ..., i) = 0. Therefore by Proposition 2.3 we have

<y, a4 > =<x2,ao>=<x®z,d*a0> =0
for ay = a2p”™ Y (p — 1), ..., 2p(p — 1), 2(p — 1)). This contradicts with the defini-
tion of y. Thus H*(S(p"); Z,) can not be a Hopf algebra if f > 1.
6. On the cohomology algebra H*(S(c0); Z,)

By Borel’s theorem it follows from (B) and (E) that if p is odd the algebra H*(S
(c0); Z,) is isomorphic to a tensor product of
(1) exterior algebras with one generator of odd dimension,

4) In these proofs the assumption f>>1 is needed.
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(2) polynomial algebras with one generator of even dimension,

(3) truncated polynomial algebra with one generator of even dimension and
height p.
(see [1]). Obviously the type (1) and (2) actually appear in the decomposition. In
this section we shll prove that the type (3) also actually appears. Comparing this with
(C) it follows that the algebra Hy(S(c0); Z,) and H*(S(co); Z,) are not isomorphic if
pis odd. Recall that if p = 2 these are isomorphic (see (E)).

It is obvious that the above statement is a direct consequence of the following:
TueOREM 6.1. If p is odd there exists an even dimensional element x in H*(S(co);
Z,) such that
0 (1Zk<p), «* =0

and x is not decomposable.

Proof. Let V, denote the set of all elements

A = A@)Y® ... AL)y®
satisfying the conditions (1.5) and (1.6). Then it follows from (C) that V,, is a basis for
the module Hy(S(o0); Z,). Consider the dual basis V¥ for the module H*(S(c0);
Z,), then it will be proved that
(AQ(p—1)2—1, 2p—D)—D)* & HK(S(c0); Z,)

has the properties requested for x.

For simplicity of notation, we put 4, = A2(p — 1)2 — 1, 2(p — 1) —1). The
dimension of A4 is 2(p*—p—1). We shall first prove that

Axg=k! A%} for 1 < k < p,
namely, for 4 € V,, we have
k! if A=A,
0 if 4 x 45

Let A(iy, ..., 14) € O(p) and f > 3, then it follows from (1.2) and (1.4) that
iy + ... i, > 2p3—2p2—3, so that we have

dimA@y, ..., &) —dimdl = (2p3 —2p2—3)—p(2p2 —2p—2)= 2p—3 > 0
because of 1 <<k <p. Consequently we may assume that the length of each I; in
Ais £ 2.

To prove (6.2) we use induction on k. Let
6.3) deA(I)= ... +b;4,Q B;+ . ..
be the represntation of dyA(I) in terms of a basis {4’ X A", A’, A" & V,} for the mo-
dule Hy(S(c0); Z,)QH(S(c0); Z,). Then it follows from (B) that

<A3HC,A > =< A?@Agék—l’ d*A >
= < AFF bBAILYOTALYO L L ALY >
+ < AR BALYY ALY .. ALYOB, >

Assume now < A¥* A > > 0. Then the hypothesis of induction implies that

(6:2) <A, A> =
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6.4) Abt=cb,B;AL)Y® ... A(LYD™r ... A(L)®
for some j, say j(0), where ¢ = 0. Since Af >0 by (C), we have b, = 0.
Therefore we see from (6.3) that the length of I, is 2. Multiplying A(Z;,) to (6.4)
we have
(65) A5 A1 j0y)=cb 0y B0y A-
It is seen from (6.3) that B, A(I,q,), consequently B, =Ay"" for some m (1 < m
< k). Now (6.3) implies

dimA(I,,) = dimA, +-dimB, g =mdimd,=2m (p2—p—1).
However, since I, &Q(p) and its length is 2, it follows from (1.2)—(1.4) that

2tp2—t—1) = dimA(L,,) = 2(tp2—tp—1) (t=1, 2,...).
This shows that m must be 1. Hence B,y =1, and by (6.3) we have A(I,q)=4,-
Thus by (6.5) we obtain A=Ak Namely we have proved that < A%, 4 > =0 if
A=A}, On the other hand, since dy(4)=1 & 4,+4, @ 1, we have

dy(A) =1 R ASHRAR A+ ... +45 @R 1,
and so
<A Ay > = < AF @ AP, ddl > =k < AP 45> = Rl

This ends the proof of (6.2), and we proved AF* x 0 (1 <k < p) and AF*=0.

Next we must prove that A is not decomposable. Assume that AF =>1,y,2;
with dimy; > 0 and dimz,>0. Then, since dyAd;=1K A4, + 4, 1, we have

I=<45, 4y > =20, <yrp 4y > =21, <5, %;, dx4y > =0,

which is a contradiction. Thus AF is not decomposable. This completes the proof.
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