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Introduction. The classification of real simple Lie algebras was given first by
E.Cartan [2] in 1914. Though his first classification lacked in general theorems, Cartan
himself [5] established in 1929 a general theorem suitable to simplify the classification.
Then Gantmacher [6] in 1939 gave a simplified classification depending on Cartan’s
general theorem by making use of his theory on canonical representation of automor-
phisms of complex semi-simple Lie groups.

In his earlier papers [5, 3] Cartan established a priori a one-one correspondence
between non-compact real simple Lie algebras and irreducible infinitesimal symmetric
spaces (compact or non-compact), where “infinitesimal”’ means locally isomorphic
classes. Hence the infinitesimal classification of irreducible symmetric spaces is the
same thing as the classification of non-compact real simple Lie algebras.

Let g be a real semi-simple Lie algebra and f a maximal compact subalgebra of g.
Then we have a Cartan decomposition

=t+p,

where D is the orthogonal complement of ¥ with respect to the Killing form. In the
classical theories of classification of real simple Lie algebras due to E.Cartan and
Gantmacher, one used a Cartan subalgebra §); of g whose torus part §; N f is maximal
abelian in ¥, whereas certain geometric objects (such as roots, geodesics etc.) of
symmetric spaces are related to a Cartan subalgebra Y) of g whose vector part ) N p
is maximal abelian in p (cf., Cartan [4], Bott-Samelson [1] and Satake [7]). The
two types of Cartan subalgebras mentioned above are not the same and even non-
conjugate to each other in general. So it seems preferable to the author to have a
classification theory by making use of the latter Cartan subalgebra, so as to connect it
more closely with the theory of roots of symmetric spaces, and this will be developed
in the present work.

If we denote by g, and Y, the complexifications of g and Y) respectively, the conjuga-
tion of g, with respect to g defines an involutive automorphism o of the system ¥ of
non-zero roots of g, relative to §),. In §1 are discussed some basic properties (Props.
1.1 and 1.3) of t endowed with the invlution ¢ which are more or less known.

In §2 we define root systems and ¢-systems of roots in the abstract, and are sketched
briefly some basic properties of them. Here is defined the notion that a g-system of
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roots 1 is normal, on the basis of Prop. 1.3, which covers the basic properties of the root
system of g 1elative to §, such that the Cartan subalgebra }) has a maximal vector part.
If v is normal, then the set v~ (No. 2.4) forms a root system called a restricted root system
(Prop. 2.1). In Nos. 2.6 and 2.7 are discussed some relations between multiplicities
of A=1~ and the inner products of roots of t associated with A for a normal g-system
of roots x. These relations are basic tools in the classification of normal ¢-systems of
roots with restricted rank 1 given in §3. In Nos. 2.9 and 2.10 are used the notions of
a g-order and a ¢-fundamental system of t due to Satake [7]. It is shown that two real
simple Lie algebras are isomorphic to each other if and only if their o-fundamsntal
systems are o¢-isomorphic, wvia Cor. 2.15 and Prop.1.2.  Consequently our task is
reduced to classify all normally extendable (No. 2.3) o-irreducible o-fundamental
systems up to g-isomorphisms.

Now it becomes important to determine whether any given o-fundamental system
is normally extendable or not. In §3 this problem is rduced to the case of normal o-
systems of roots with restricted rank 1 (Thec. 3.6). In §4 first o-fundamental systems
of normal o-systems of roots with restricted rank 1 are all classified, and then it is deter-
mined whether they are normally extendable or not, based on two Lemmas (Lemmas
4.6 and 4.7). Finally in §5 the complete classification is achieved.

§1. Preliminaries.

1.1. Let C be the field of complex numb=rs and g, be a complex semi-simple
Lie algebra. A real Lie subalgebra g of g,, whose complexification C & g can be
identified with g, by a map: a®@X— aX for a=C and X &g, is usually called a real
form of g,.

Let g be a real form of g,. The conjugation ¢ of g, with respect to g, defined
by ¢(aX)=aX for acC and X &g, is an anti-involution of g,, namely ¢ is an involu-
tive automorphism of g, as a real Lie algebra and is anti-linear as a map of a vector
space over C. Conversely, let ¢ be an anti-involution of g,. Then the set g consist-
ing of all fixed elements of g, by ¢ is a real form of g, and ¢ is identical with the
conjugation of g, with respect to g. Thus real forms and anti-involutions of g, are in
a one-one correspondence in the above natural way. A real form corresponding to an
anti-involution ¢ is denoted by g,. So, when we are considering a real form g,, o
always means the corresponding anti-involution of g,.

1.2. Let Y, be a Cartan subalgebra of g, and 1 the system of non-zero roots of
gc relative to §,. We have the well known decomposition:

gczf)o+ 2 ga:)

aEstr
where g, is the eigenspace of act. A “Weylbase” {E,, a1} of g, is defined as to
satisfy the following:
E,eq, for act,
[Es E_u] = —H,
where H, (€1),) is defined by (H,, H) = o(H) for all H&Y),,
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_ NugE,.q if a+-fer
[Ew Eg] = ()w o ifatp#0and &t

such that N, = N_, g is a real number for each pair (a, f).

Let g, be a compact real form of gy, i.e., the Killing form is negative definite on it.
We can choose a Cartan subalgebra Y), and a Weyl base such that 7Y, = ), and that
vE, = E_, for all a1 (cf,, [8], Exp. 11, théoréme 2.2). Let us once for all fix g, 9,
and a Weyl base {E,, a1} in these relations.

A real form g, of g, is said to be related to (g,, ;) if 0§y = Yy and o7 = 70. Let
g, be related to (g,, §,). Putting f, = g, N g, (a maximal compact subalgebra of g,),
we obtain the Cartan decompositions.

(11) Gr=te+Ds, g'r:fd"l_“/'_l Pss

where P, is the orthogonal complement of f in g, with respect to the Killing form.
g, and @, are invariant by 7 and o respectively, and o | g, (or 7|g,) is an involutive
automorphism of g, (or of g,), where | denotes the restriction of a map to a subset.
(8. £, 0| @,) (or (g, t,, 7|8,)) is an infinitesimal compact (or non-compact) sym-
metric pair corresponding to g,.

1.3. Let a real form g, of g, be related to (g,, ;) as in the above No. ¢ induces
an anti-involution ¢* of H¥ (dual space of Y),) defined by

(c%¢) (H) = ¢(cH)  for all HEY,.
For any a1, o*acst and o(g,) = o Putting
0E, == 0,E,  for each aer,
we see that

(1.2) 0uloia = 1, 004 = 1 for any a1,

(1.3) Cu+6NVup = 0u0sNoraoe for a, B, a+p € 1,
since ¢ is an anti-involution, and that

(1.4) 0w = 0—s for any a €1

since 07 = 7o. By (1.2) and (1.4) we see that

(1.5) | oo | =1 for any a € 1.

Put

(1.6) T, = {a€r; o*a = —a}.

1, is a closed subsystem of roots of 1. (1.2) and (1.5) imply that
1.7) On = 09 = &+ 1 for a €1,

Let f, and p, be the complexifications of f, and p, in g,. We have the follow-
ing orthogonal decompositions
(1.8) g0 = totbe, B = HE-+HY7,
where 97 =YH,Nfyand Y7 =H,Np,. o7 X =X for Xet,, whereas g7 X = —X
for Xe&p,. Letaer,; ifp, = 1, then E,, E_, ¥, since 07(E.,) = E.,; similarly,
if gp= —1,then E,, E_, &p,. Incase ac1r—1,, we see easily that E,+cE_, &f, and
E,—cE_, & P, and that

8ot Gocta = C{Ew+GE—m} +C{E,—0cE_,}

where C{X} denotes a 1-dimensional vector space over C generated by X. From these
we have the following decompositions
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(1.9) fo =054+ X2 6 + 3 C{Es+oE_u},
aEt;' asEL—1,
(1.10) Pe =03+ 3 6 + 3 C{E,—0E_.},
CZEIO_ AT —To
where 17 = {a€71,; 0, = 1}, 1; = {aET,; 0, = —1} and the last summations of

both formulas run over all unordered pairs (¢, —o*a) such that a=r—r,. (1.9) and
(1.10) imply immediately the

ProposiTiON 1.1 Y7 is maximal abelian in Y, if and only if o, = 1 for all acx,,.

The “only if”’ part of this proposition is the same as the Lemma 5 of [8], Exp. 11.

DerINITION. Let a real form g, be related to (g,, §)y). When §; is maximal ab-
elian in p,, g, is called to be normally related to (g,, b).

1.4. Letg,  beareal form of g, and ' be a maximal compact subalgebra of g,..
Then, as is well known, there exists a uniquely determined compact form g, of g,
such that g,, N g, =1 and that ¢'7' =1'¢". Let P’ be the orthogonal complement of §’
in g, with respect to the Killing form, and ¥)’~ be a maximal abelian subalgebra of P’.
Choose a Cartan subalgebra Y, of g, so that it contains §)’~. By conjugacies of compact
forms and of Cartan subalgebras of g, we have an inner automorphism ¢ of g, such that
¢8,-=@, and that ¢B/,=0,. Then, putting oc=go’p~1, we see that ¢g,,=g,, c7=10,
9y =Y, and that Y); = @, is maximal abelian in p, = ¢p,/, i.e., g, is normally
related to (g,, H,). Hence we have the

ProposiTION 1.2.  Any real form of g, is conjugate to a real form which is normally
related to the fixed (g,, Y,)-

This proposition justifies us to discuss only the real forms which are normally related
to the fixed (g,, Ho).

1.5. The following proposition, essentially due to Satake [7], is important for our
later discussions.

PRopostTION 1.3. Let a real form g, be normally related to (g,, Y,). Then

o*a—a et for all act.
Proof. 1In case a1, then o%a = —a and
oc¥a—a = —2a & 1.
In case a&Ex—1,: suppose that *a—a <1, and hence &1, then
(ﬁ) GEw—o*m = Ea*w—w

by Prop. 1.1. Now

[Ee» O'E-cw,] = [E,, Q—o&E—a*w] = Q—wNw,—v*mEm-a*m'
Applying ¢ on both sides of this identity, we see that

[cEs E_] = E:an,—a*wEa*w-w
by (). On the other hand we have that

[GEM) E—w] = Qo&Na*w,—wEo'*w—w
Hence we see that

éToaNm,—-a*w = QmNcr*w,—w = _QwNw,-—cr*w-
Therefore, ¢_, = —04 Wwhich, combined with (1.4), implies that g, = 0.  This
contradicts to the fact “o is bijective”. Consequently

o*a —a & 1.
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§ 2. o¢-system of roots.

2.1. Let V be a finite dimensional real vector space with a positive definite inner
product , and t a finite set of non-zero vectors in V. 1 is called a root system if it satis-
fies the conditions: for any a,fE1, a) the number a,g = 2 {a, )/{f, f) is an integer
(named Cartan integer), and b) a—a, 1.

The following properties of a root system 1 are well known from the usual theory
of classification of complex simple Lie algebras.

1°) For any a, f&r, 0<a,4a5,<4. If o and § are not parallel to each other,
then 0<Ca, gag ,<<3.

2°) Let act and masyr (m<R), then m = +1/2, 41 or 42.

(To be seen from the fact that a,,, = 2/m and a,,,, = 2m are both integers.)

3°) Let a, &1 be such that {a, f> #0, and that o and f are not parallel to each
other. a) If a,pa5, = 1, then {a, a) = (B, f>; b) if aygaz, =2, then {a, a)/
B, By = 2 0r 1/2; c)if aypag, = 3, then {a, a)/{B, f) = 3 or 1/3.

4°) For a, f<1, consider the series

coy a—2B, a—f, a, a+p, a+20,....,
then every non-zero vector between a and a—a,gf is contained in 1.

(This property can be proved for an abstractly defined root system by making
use of the property 3°)).

5% If aex, then —aer.

A root system 1 is called a proper root system if it satisfies the condition that “‘if
a, moer (m&R), then m = +1”. The systems of non-zero roots of complex semi-~
simple Lie algebras are proper root systems. For a root system t, the following set

v ={aEr; o/2¢71}
is a proper root system which is called a canonical proper subsystem of 1.

2.2. Lett be a root system in V. A linear base of V* (dual space of V) defines
a lexicographic order in ¥ and hence in . The set A of all simple roots (in the usual
sense due to Dynkin) with respect to a lexicographic order is called a fundamental
system of t as usual. For any two a, f4, {a, f> << 0 because a—pfer. This
property of A shows firstly that the elements of A are linearly independent and any
element of ¢ can be expressed uniquely as a linear combination of simple roots with
integers of the same signs as coefficients, and secondly that A is isomorphic to a
fundamental system of roots of a complex semi-simple Lie algebra g, up to a ho-
mography, by the usual arguments in the classification theory of complex simple Lie
algebras. 'The image of the root system of g, by this isomorphism is the canonical
proper subsystem 1’ of r. In particular fundamental systems of t' and of t with
respect to the same linear order coincides to each other. And any proper root system
is isomorphic to a root system of a suitable complex semi-simple Lie algebra up to a
homography.

For a fundamental system of 1 the set {X& V*; a(X) > 0 for all a= A} is an open
Weyl chamber. Weyl group of 1 is the group operating on V* (or dually on V)
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generated by reflections across the plane o = 0 for all ¢ & 1, which is a finite group
and permutes simply transitively the Weyl chambers and henceforce the fundamental
systems of r. In particular the fundamental systems of a fixed 1t are isomorphic to
each other.

Two proper root systems 11 and Ty are isomoprphic to each other (up to a homo-
graphy) if and only if their fundamental systems are so.

2.3. Let 1t be a proper root system in V such that v generates V. When we are
given a linear isometry ¢:¥—V such that ¢ is involutive and ot = 1, then we say that
the pair (t, o) (or simply 1) is a g-system of roots.

Every o-system of roots T can be identified with the root system of a complex semi-
simple Lie algebra g, up to a homography. By this identification V is identified with
a real subspace of §),* which is generated by roots and metrized by the Killing form,
where Y),* is the dual space of a Cartan subalgebra Y),, and V* is identified with a
real subspace 1), defined by

h, = {HeY,; a(H)E R for all ac1}.
Y, becomes the complexification of §),. Hereafter we use this identification without
any comments. ¢ can be extended to an anti-involution of Y),* and induces an anti-
involution & of Y, such that &9, = §, and 6* = 6. Since &| 0, is involutive, it has
eigenvalues + 1. Let h} be the eigenspace of the value —1 and Y); be that of +1,
then we have an orthogonal decomposition
b, =9+ b5

with respect to the Killing form.

Let a Weyl base {E,, a1} and a compact form g, of g, be given so as to satisfy
the relations in No.1.2. When for a g-system of roots t the induced involution & of
9, is extendable to an anti-involution of g, such that it is normally related to (g,, o),
then we say that o (or t) is normally extendable for the sake of simplicity. We want to
obtain some sufficient conditions for ¢ to be normally extendable. A necessary con-
dition for this (Prop.1.3) is that
(») for any a1, ca—adtr.

Any g-system of roots satisfying the condition (v) is called a normal g-system of roots.

2.4. Lett be o-system of roots. We shall denote by 1~ the set of linear forms on
;- obtained by restricting the elements of t—r, to Y);, where 1, is the closed subsystem
of t defined by (1.6), i.e..t, = {a€t; a|fh; = 0}.

ProrosiTION 2.1.  Let a o-system of roots © be normal, then = is a root system
in (5;)*.

Proof. We identify (h,)* with a subspace of ¥),* which is the annihilator of HF.
Let us use the following notation:

1y, ={a€r; a|h; =y}

for each ye=r-. Let y=1~ and a1, By the condition (¥) only the following
three cases are possible:

case a) a=oca=y, then {a, ay = {y, p);

case b) az#oa and {a, oa) =0, then p = (a-t+ca)/2
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and (y, p> = {a, ay/2 = {oa, ca)y/2;

case ¢) az#oa and {a, ca)y < 0, then y = (a+oa)/2
and {y, p> = {a, ay/4 = {oa, ca)/4.

Let A=t~ and fer,.

In case a): arg =2(A, w)/<y, ¥) = 2{B, ap/{a, @)

=ag,, an integer.
Since f—ag 00,
(B—aga0) | By = A—arypEr.
In case b): @y =24 v)/<p, ) = (A atoay/{y, )
= (B, atoa)/<y, ¥)
— 2p, ay/<a, ay+2(p, aad/{oa, oa
= dgy+0a sy, a0 integer.
Put y = f—agast. Now
Ayga= 2{f—agua, oay/{oa, oay
= 2{B, oay/{oa, 6a) = agsq
since {a, oay=0. Consequently
0=y —ay,,00 = f—ag,0—0a5,,00E1,
and
0|9y =A—agap—ag ap=A—a pET~.
In case ©): ayy — 20k ¥)/<p, v = Ca-toa, /<y, p)
— 2AXa, By/<a, ay+2{oa, B)/{sa, oa))
= 2(agy+agq4), an integer.
Put " = f—ag,acst. Remarking that
Uy oo = 2{a, oay/{oa, oa)y = —1,
we see that
Ay su = 2{p’, o) /{00, 0a) = g utapy.
Next, put " = p'—ag 40041, then
gy = Qg 015
= Qpy—20p 0 A5 = dgou-
Finally put ' = f"—ap a1, then
B 187 = A—(agatdpua o)y
- l—z(aﬂ,a‘l"aﬁ,crw) v
= A—apET. g.e.d.

When 1 is a normal g-system of roots, 1~ is called the restricted root system with
respect to §);. Further when t is normally extendable such that ¢ == 7%, then the root
system 1~ in (;)* is usually called the root system of the corresponding infinitesimal
symmetric pair (g,, fs, &|g,) (or (g, £, 7|gs) ) with respect to the Cartan sub-

algebra y/—1 By of 4/ —1 p; (or 7 of ps).

2.5. For any root system ¢, a subset v'C1 is called a closed subsystem if it
satisfies that i) if o &1’ then —a & v/, and that ii)if q, § €1’ and a4+ € T then
a+per’, Closed subsystems are also root systems as is easily seen.

If a root system t is decomposable as a disjoint union of two subsets t’ and t” such
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that {t’,x") = 0, thent’(and 1") is called a factor of 1. Every factor is a closed sub-
system. A root system T is called #rreducible if every factor of r coincides with t or
is void. Every root system is decomposable into a disjoint union of non-voidal ir-
reducible factors; then each factor is called a component of 1. Any irreducible proper
root system is isomorphic to a rcot system of a complex simple Lie algebra. About
the length of roots of an irreducible proper root system t we have the following two
cases as is well known:

a) every root of r has the same length, (in this case 1t is called “‘simply-laced”
according to a terminology of R. Bott);

b) 1 is decomposed as a disjoint union of two non-voidal subsets T1 and rg such

that every root of t; (i=1 or 2) has the same length and that any root of 1ty is shorter
than roots of 1 (in this case t is called “doubly-laced”).
In case b) we have further two possibilities that the ratio of squares of length of
roots of v to that of ¥g is 1:2 or 1:3. We call 1 to be “doubly-laced of type (1:2)” or
“of type (1:3)” respectively. Every doubly-laced root system of type (1:3) is isomor-
phic to that of Gs.

If a factor v’ of a g-system of roots ¢ is invariant by o, then 1’ is called a g-factor.
A o-system of roots T is called g-irreducible if every o-factor of v coincides with 1 or
is void. Every o-irreducible o-system of roots consists whether of a single compo-
nent or of two isomorphic components. In the latter case ¢ permutes the two com-
ponents. A non-voidal g-irreducible o-factor of a g-system of roots is called a o-com-
ponent.

Let a g-system of roots ¥ be such that the associated involution ¢ of ), is extendable
to an anti-involution of g,. Then 1 is ¢g-irreducible if and only if the corresponding
real form g, is simple, or equivalently the corresponding symmetric space is irreducible.

Let 1 be a root system and ¥ D1’ a subset. 1’ is called to be commected if it cannot
be decomposed into two mutually orthogonal parts. Thus any two elements a, f of T
is connected if {a,f>#0. Every connected subset is contained in a single com-
ponerit.

Similarly we define the notion of g-connected subset of a g-system of roots. If
a g-invariant subset t’ of ao-system of roots T cannot be decomposed into two
mutually orthogonal parts which are g-invariant, then we say that t’ is ¢-connected.
Every o-connected subset is contained in a ¢-component.

2.6. Throughout this and the next Nos., g-systems of roots T are assumed to

be normal. For pe1-, we put
T, = {e€x; alh; = y}.

The number of elements of 1, is called the multiplicity of y, and is denoted by m(yp).
The elements of t are called the roots of t associated to the restricted root yer-. We
shall discuss some relations between multiplicities of restricted roots &1, and the
inner products of roots of t associated to y, which are especially useful for the clas-
sification of symmetric pairs of rank 1 (§4).

We identify (§)* and (5;)* with the metric subspaces of §),* which are the annihi-



Symmetric spaces 9

lators of Y); and of §} respectively in the natural way. Then we have the orthogonal
decomposition
Bo¥ = (b)*+(hs)*.

We use the notations § and d for aE},* to denote each components of a, i.e., a=a+
d, ac(h;)* and ae (h;)*.

ProposiTiON 2.2.  For yet~, 1,2 if and only if m(y) is odd.

Proof. If act,, then gacrt,. Further, if aer,—{y}, then a#oa. Hence
t,— {9} is a disjoint union of pairs (a, oa), aEtr —{y}, and has an even number
of elements. q.e.d.

ProrostTioN 2.3, If wetr~ has an odd multiplicity, then 2pett-.
Proof. Suppose that 2per-, and let aE1y,. Then G=2y.
Now

{a, p) = {a+a, y) = 2y, p) > 0.
Hence

*) Ca, ay/<p, ) =1, 2 or 3
by 1°) of No.2.1 since 1 is a proper root system and {a, a)>{y, p>. On the other
hand

(o, ay = <&, y+<a, @y =<a, dy = 4y, v,
contradicting to (¥). q.e.d.

PROPOSITION 2.4. If w1~ has an even multiplicity and 2ywex~, then 2y has an
odd multiplicity.

Proof. Since y has an even multiplicity, we have an element a &1, such that
a##ca. If 2y has an even multiplicity, then there exists an element f&tg, such
that f£¢f. Since T is normal, {f, of><<0. If (B, of)> < 0, then 1= f+0p =4y,
whence 1~ =4y, contradicting to 2°) of No.2.1. Hence {f, of) =0. Then

B By = 2B, B =22, 29> = &y, y).
On the other hand, by the assumption that 2y has an even multiplicity and Prop. 2.2 we
see that
2y = a-toa & 1.
Therefore {a, ca)y = 0, and {a, a) = 2{p, p>. Consequently
By By = Ka, ay,
which contradicts to the proper-ness of 1. q.e.d.
Under the assumption of the above proposition, for any aet,
2y = atoaEr.
Here assume that {a, ca) =0, then {a+-oa, a+oa) = 2{a, a) and
Agroam = 2,
whence 15 0+00—ay, 54,0 = ca—a, contradicting to the condition (») of r. Since
the condition (v) implies that {a, ¢a)»<<0, we have a conclusion that
(**) {a, oa)y < 0.
Contrarily (**) implies that 2y = a+4-caE1y, and 2yer-.
Therefore we obtain the following

PROPOSITION 2.5. When weE1~ have an even multiplicity, i) 2ywe&x~ if and only
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if there exists an element a v, such that {a, cay < 0, and in this case {f, ofiy <0
Sor all By, i) 2w~ if and only if there exists an element a vy, such that {a,
oay = 0, and in this case {f, of}y = 0 for all f=1,.

PROPOSITION 2.6. Let ¢ & t~ have an odd multiplicity, then {a, cay = 0 for all

asT,—{y}.
Proof. 1If acst,—{y} satisfy that {a, oa)y < 0, then a+4cact and 2y = a+
gae1” contradicting to Prop.2.3. g.e.d.

PROPOSITION 2.7. Let w&t1~ be such that 2ye&x~, and a, f <1, satisfy that o #
B and as=of, then {a, #> > 0.
Proof. asca or B#of since a=pB. We may assume that f=0¢f. Then
{a, By 4<a, ofy = <@, f+of) = {y, Zy) = 2y, ) > 0.
By Props.2.5 and 2.6 we see that {f, o8> = 0, whence
$Bs By = <op, af) = 2y, v),
which implies that
(¥*%) AuptAyep = 2.
i) In case azoa: {a, cay = 0 by Props.2.5 and 2.6, whence
{a, ay = 2y, vy = (B, >,
which implies that
Gy = 0or + 1, a,,3 = 0or +1
by 3°) of No.2.1, which, combined with (***), implies that
Ay = Gyqp = 1, especially  (a, > > 0.
ii) In case a = ca: a=y, and
aup = 2{py FOI2{p, v) = 2y, /2y, yp=1,
in particular, <{a, > > 0. q.e.d.
Proros1TION 2.8. Let w1~ be such that 2yet~. Then for any a, f <1, satisfy-
ing that o= and aof we have that {a, f>=>0, and that {a, B> >0 if and only
if {a, off) = 0.
Proof. m(y) is even by Prop.2.3. And
{a, fHop) =<a, 29) =2y, y) > 0.
By Prop. 2.5.i), we see that {a, o) <0 and {f, of)> <0, whence
la, ay =B, By = <op, o) =Ky, ¥)-

Gugtaasg = 2a, f+of)[4y, py =1,
which implies that {a, > = 0 and {a, 6> >0, or that {a, > >0 and <{a, of)>=0.
2.7. Let v be a normal g-system of roots as in the above No.

Therefore

m(y) > 1, let v1 be the component of T containing Ty, then vy is doubly-laced of type
(1:2).

Proof. wer, and {y, ay = {y, p) > 0 for any a=r1,. Hence 1, is connected.
When m(yp) >1, for any acst,—{y} {a, ca) = 0 by Prop. 2.6, whence

{a, ay = 2y, y). g.e.d.
CoroLLARY 2.10. Let t be irreducible and simply-laced or doubly-laced of type (1:3).

PropoOSITION 2.9. Let wex~ have an add multiplicity, then x,, is connected. When
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If m(y) is odd for w1~ then m(y) = 1.

ProrostTioN 2.11. Let wex~ be such that 2yex~, then 1, is connected.

Proof. Leta, fE1, be such that a=f. Iff =oa, then (a, f) < 0 by Prop.
2.5. If B+#o0a, then {a, f> >0or{a, > =0 by Prop.2.8; in case {a, ) =0,
{a, o> >0 and <{op, > < 0. q.e.d.

PROPOSITION 2.12.  Let p&1~ have even multiplicity and 2peEx~. If m(y) > 2,
then v, is connected.

Proof. By assumptions, for any a1, 1, —{a, ca} #¢. For any fe v,—
{a, oa} we see that

Ca, B> >0 and (B, oa) >0
by Prop.2.7, which implies that {a, f, oa} is connected. q.e.d.
When m(y) = 2 and 2y~ for pe1-, then
1, = {a} U {oa} and {a, oa) = 0,
whence, by Props.2.9, 2.11 and 2.12, we have the -

ProrostrioN 2.13. For any wet~, 1, consists at most of two connected com-
ponents; 1, consists exactly of two components if and only if m(yp) = 2 and 2ypetx-.

2.8. Let 1t be a og-system of roots. Satake [7] defined the notion of a g-funda-
mental system of roots which is useful also for our abstractly defined o-system of
roots T. A linear order in v satisfying the following condition:

(o) if aex—1, and o > 0, then ca > 0,

is called a g-order. Putdim ), = [ (= rank of t) and dim §); = p. One of the typical
way to obtain a ¢g-order is to take a lexicographic order relative to a base {H4,. ... H}
of b, such that {Hy,...., H,} forms a base of §);. A fundamental system of v with
respect to a g-order is called a g-fundamental system. If A is a o-fundamental system
of 1, then A, = A Nx, is a fundamental system of t,. Denoting by [, the rank of
1,, let

4 = ay,. ..., Uy Wy e1r e o o}
be a g-fundamental system of ¢ such that 4, = {al_loﬂ,. ..., o}, The Lemma 1 of

[7] is applicable for 1, and we get an involutive permutation & of indices {1,
! — [} such that
(2.1) 0(0) = oy + 31y 1 € Pty P =0 for 1<i<I—1,

Let A~ be the set of distinct elements of (¥);)* obtained by restricting the ele-
ments of 4—/,to §;. As easily seen A~ forms a linear base of (§;)* such that every
element of v~ is a linear combination of elements of A~ with integers of the same signs
as coefficients. In particular, when T is a normal g-system of roots and 4 is a ¢-funda-
mental system of 1, then A- is a fundamental system of t~, in case of which A~ is
called a restricted fundamental system of 1~ according to a definition of [7].

To describe a o-fundamental system A we use the figure due to Satake [7], called
Satake figure, which is defined as follows: take a Schlifli figure of A; every root of
4, is denoted by black circle @ and every root of A—/, is denoted by white circle O;
if 5(¢) = jsuch that ¢ = j for 1 < ¢ < {—/{, then simple roots g; and a; are connected
by a curved arrow ¢ ).
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2.9. The propositions of [7] which are related only to the properties of root systems,
are all applicable for our normal g-systems of roots. For the proof of the following
statements we refer to [7].

In this No. t denotes a normal g-system of roots. Let W, W, and W~ denote
respectively the Weyl groups of 1, 1, and t~. Let W, be the subgroup of W con-
sisting of all s& W commutative with ¢. W, is a normal subgroup of W,. For any
seW,, s9; = 9;. Hence s|b; is a linear transformation of %;. Then s|f); = W-.
In this way we get a natural homomorphism

o: Wo—>W-.
(2.2) o is surjective with W, as the kernel.

Let 4 be a o-fundamental system of v and s& W, then sA is also a o¢-funda-
mental system.

(2.3) W, permutes transitively the o-fundamental systems of t.

Let t1 and 1o be two o-systems of roots with involutions ¢ and o5. We say that
14 and 1o are g-isomorphic if there is an isomorphism @: ¥y = Ty up to a homogra-
phy such that pgy = ga¢p. Correspondingly we define the notion of a g-isomorphism
of two o-fundamental systems.

(24) o-fundamental systems of a normal c-system of roots are o-isomorphic to each
other. For two normal o-systems of roots, they are g-isomorphic to each other if and only if
their o-fundamental systems are so.

2.10. Turorem 2.14. Let t be a normally extendable o-system of roots in HF of
a complex semi-simple Lie algebra q,. The real forms corresponding to anti-involutions
extending & such as to be normally related to (g, Y),) are conjugate to each other by inner
automorphisms of g, commuting with T.

Proof. Let g1 and o9 be two extensions satisfying the conditions of the Theorem.
Put

01Ey = 0uFsu, 02Ey = 0'4Ess
for all aEt. 04109 is an automophism of g, such that ¢y049|h, = identity map,
and that
GIGZEw - EQUA’IEN
for aex. By (1.2) and (1.5) we see that
Qs = Oa 20d 0’y = 0'gq-

Put
o0109E, = nwEm

then

(*1) Ne = Nea = Q_,wa = éTero'w for a1,
Ny = 1 for aErx,.

Let wyer~. By Props. 2.7 and 2.8 we see that, for any two a, f&1, such that
a#f and a#of, a—f&r, or a—of &1,. On the other hand 7n,ns = 7u.p if
a, B, a+pf<t. These and (*¥1) imply that
(*2) 94 = np for any two q, fET, (PET7).

Let A be a o-fundamental system of t and A~ = {14,...... Jpp be the asso-
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ciated restricted fundamental system of t=. Since Ay,....,4, are linearly indepen-
dent, we can choose an Hey—1 b so that 4,(H) take arbitrarily given pure ima-

ginary values. In particular we can choose H=4—1 ) so that

(*3) I = g, for any s, , 11K p,

because of (¥2). “Hey—1 Y, implies that “p(H) = 0 for all y=1,”, whence
(*4) adM =1 =y, forall yer,.

Since ACx,Upr-1(4-), where pr: §*—>(h;)* is the restriction, we see that

(*5) e = g, for all a4,

by (*3) and (*4). Then (*5) and the fact that 0169 | §, = the identity map imply that
(*6) D = g for all fer.

Now, put & = Exp(Ad(H/2)), which is an inner automorphism of g, such that
fr = 1&. And

§09f1F, = Eoy(e "7/ IE,) = &(“1/¢/,E,,)
:Qlwem(H/z—&H/z)Em — Qlwew(H)Ew — QlwnwEw — QwEw

for all aet. Hence o9é~1 = 0. q.e.d.

This Theorem and (2.4) imply immediately the

COROLLARY 2.15. Let two real forms 9o, and g, of a complex semi-simple Lie alge-
bra go be normally related to (g,, Yo). Then, g, = G, if and only if their o-funda-

mental systems are oc-isomorphic.
Thus the classification problem of real simple Lie algebras is reduced to the classifi-
cation of their g-irreducible ¢-fundamental systems of roots.

§3. A reduction to the case of restricted rank 1.

3.1. Let g, be a complex semi-simple Lie algebra, ), a Cartan subalgebra of g,
1 the system of (non-zero) roots of g, with respect to §, and {E,, a1t} a Weyl base
of g, relative to B, and g, be a compact form of g, such that 7§, = §, and 7E, ==
E_, for all aex. Now we quote the following well-known theorem:
(3.1) For any automorphism ¢ of T, there exists an automorphism g of q, such that
whe = By, v = vy and that w* = @ as a linear map: H,*—>9,*, ie., (pa) (H) = aly
(H)) for all ae Y, * and HeYy,,.
The automorphism o of (3.1) satisfies that
VAo = Gp-lo for a1,
Put
yE, = EwEga“lm
then the condition that g7 = 79 is equivalent to saying that
(3.2) [ & | =1 Jor all acr.
Let 4 be a fundamental system of t. The proof of the following statement is also
contained in the usual proof of (3.1).

(3.3) The automorphism v of (3.1) can be chosen to take arbitrary pre-assigned values
&, satisfying (3.2) for ac A; by these values &, for a= A, v is determined uniquely.
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Now let T be a g-system of roots in ) *, and 4 be a o-fundamental system of 1.
Apply (3.1) and (3.3) to o7 with the assignment that &, =1 for all a4, (&, is
arbitrary ior ac A4—A4,). Then we obtain an autoinorphism v of g, satisfying (3.1) such
that y* = o7r*. Since 4, is a fundamental system of 1, and &£, = &, for a, §, a
+peE1, we see that &, =1 forall aet, If we put = yt, then # is an anti-
automorphism of g, (i.c., an automorphism of g, as a Lie algebra over R and an anti-
linear map of g, as a vector space over C) such that #* = ¢, and that, if we put yE, ==
04E.y for acsrx, o, = 1 for all acy,. Namely we obtained the

ProposiTION 3.1, Let © be a o-system of roots in §),*. There exists an anti-auto-
morphism 1 of gy such that nY, = Y4, n|Ye = & and nv = vy, and that, if we put
nEy = 04E,, for all acz, then p, = 1. for all acrx,.

The next question is to seek conditions whether the anti-automorphism # of Prop.
3.1 can be chosen to be involutive or not.

3.2. Let t be a g-system of roots in §*. When rank(x~) = p, we say that t
is of restricted rank p. For each A&t~ let I, denote the union of t,,, m&R, such
that mAer~ . Clearly 1,U7T, is closed and ¢-invariant in T.

Lemma 3.2 T, is g-connected.
Proof. Let asr, and fE1,, (mAct™), then
{a+oa, f+aop) = (24, 2mly = 4m{d, Ay > 0.
Hence <a, >#0 or <a, o8> 0. q.e.d.

Let T, denote the g-component of 1, ¥, containing ,, and 0, be a subspace of Y,
generated by all H, such that a<1,. Then %, is a g-irreducible g-system of roots in
9, (considered as a subspace of §),*¥) with the induced involution oy = o |b¥ . Put
B — By N6y and B = §7 NBy, then G — (5% @ (5% and (By)* (or (B)%) is
the eigenspace of the value 41 (or —1) of o,. Since (H7)* is of dimension 1,
generated by 1 as is easily seen, we have the

LemMma 3.3. 1, is a o-trreducible o-system of roots of restricted rank 1.

Take a ¢g-order in r. Let A be the ¢-fundamental system of t relative to the
g-order, and A,, 4- be fundamental systems of 1, 1~ respectively defined as in No.
2.8. This g-order induces a g-order in T, for each A= t~. Let 4%, A} and (4*)~ be che
corresponding fundamental systems of T,, (I,), and (£,)~. If A& 4, then (4*)-={4}.

ProposiTioN 3.4, Let AcA-, then A = ANT, and A> = A,N7T,.

Proof. It is sufficient to prove that every simple root of A* is a simple root of A.
Assume that a root y & A" is non-simple for the original g-order of t. Then there
exists a, B &1 such that ¢ >0 and >0 and that y = a+f.

Puta|h; = p and f|h; =9, then y, vEr- and p=>0, »=>0. We have two
cases: y|Ph; =O0or A

i) Incasey|bh; =0: p+» =0, u=>0 and »>0. Hence p==y=0. And q,
per, Asis easily seen, {a, yp7#0or {(f, y)#0. If {a, y>+0, then a is connected
with T, and contained in t,. Hence a&1t,. Since T, is closed in 1, pET.. Similarly
“UB, y»=+0" implies also that a, T,. A contradiction.



Symmetric spaces 15

ii) Incasey|b; =2A: u+v = 4, u=>0and »=>0. Since A is simple for A-,
u = 0ory=0. We may consideras y = 0, thenaecr, and f&1,. Hence fET,,
and a &1, by the closed-ness of T, int, which contradicts to the assumption that y&
A q.e.d.

By this proposition we see easily the

PROPOSITION 3.5. When we are given a o-fundamental system A of t, then A con-
sists of pr1(A) N A plus all elements of A, which are A ,-connected with pr=1(1) N A4 for
each A& A-, where pr: A—A, —> A~ is the restriction map.

For the definition of “A -connected,” ¢f., [7], No.1.3., p.81.

3.3. Let t be a o-system of roots in f)*. Using the notations of the above
No. and choosing a g-order in 1, let g,, denote the semi-simple part of the centralizer of
the plane

pn = {HED; a(H) = 0 for all et}
in g, for each A= 4-, ie.,
o= O + 2 G

aA=Ta
(9,); is a Cartan subalgebra of g,,, T, the root system of g,, with respect to (§,)q, {E,,

a&T1,} a Weyl base of g, relative to (§,). gy, is invariant under 7. Put 7|g,, =7,
for l&A-. Then g, =g,Ng, is a compact form of g, such that 7,(9,), = (9)¢

and 1,E, = E_, for act,. Further we put |0, = é,.

TuEOREmM 3.6. Let ¢ be a o-system of root in §,*. Using the above notations, t
is normally extendable with vespect to (a,, Y),) if and only if I, with o, is normally
extendable with respect to (g, , (O2)s) for each A& A-.

Proof. “‘only if” part is clear.
Assume that each &,, A& -, is extended to an anti-involution of @,, such that it
is normally related to (g,, (h\)s). Put
A™ = A —A> for 1e4-.
Then, 4 is decomposed into a disjoint union
A =4,U( U 4™
A=

by a reason of Prop. 3.4. Next we put
6 By = 03B, for all a1, As4d-.
Then
on = 1 for all a4}, led-.
Hence, if we define &E, = g,E,, by putting g, = 1 for a4, and g, = g} for ac A™,
then g, is defined for all a4 and & is extended uniquely to an anti-automorphism of
g¢ by (3.3) and Prop. 3.1, which coincides with &, on @, for all A&A-. Now
6k, = E, for all ac 4,
by our definition and the assumption that ,6, = 1 for all A& 4-.
Therefore
&6 == the identity automorphism of g,
by the uniqueness of (3.3). q.e.d.
This theorem reduces our problem to the classification of normally extendable
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o-systems of roots of restricted rank 1.
By Prop.3.5 and Theo.3.6 we see easily the

ProposiTioN 3.7. Let A be a o-fundamental system of a normally extendable o-
system of roots. Let A=A~ and A" be A—A* plus all elements of A, which are A,-
connected to an element of A—A*. Then A’ is also a o-fundamental system of a normally
extendable c-system of roots.

This proposition will be used frequently in §5.

RemaARk. In case o =1* t=1, and 4 =4, Hence 4~ = ¢ and the condi-
tion “‘normally extendable” of Theo. 3.6 is trivially satisfied. Actually we have that

G =1
Hence g; = g, and the corresponding symmetric space is reduced to ‘‘a point”.

This trivial case will be omitted out of our subsequent discussions, i.e., hereafter

o #7* always and g, is non-compact if ¢ is normally extendable.

§4. Classification (Case of rank 1).

4.1 First we classify o-fundamental systems of ¢-irreducible normal ¢-systems
of roots of restricted rank 1. Let v be such a g-system of roots. Choosing a ¢-order
in 1, put 4~ = {A}. By discussions of §2 we have the following three cases:

1) m (1) is odd, then v~ = {—A, A}:
ii) m (1) is even and 2Aetr~, then v~ = {—1, A};
iii) m (A) is even and 241, then v~ = {21, —4, 4, 24}.

As a ¢-order in T we use a lexicographic order with respect to a linear base {Hy,
... H} of Yy, such that H; &Y, thioughout this paragraph. The convenience of
usage of this order is that t_,<{r,<x, in cases i) and ii), and T_pH<T_\<2,<tr<_
T, in case iii).

The next lemma will be used sometimes in the sequel.

Lemma 4.1, Every root 7y of 1, is connected with sonie root of T, T, (Where 1, =
¢ in cases i) and ii) ).

Proof. Since 1 is g-rreducible and hence o-connected, there exists a chain {y,,
Yy -+ vy Ypp InT, which connects » to some root o/ €1, ULy, ie., {y, v, »#0, {y,
Py 70 for 1<<i < n—1and (yp,, a’>#0. Assume that » >0, and put y = y,. If
{WPu_1, @'Y # 0, then the length n of this chain can be reduced by 1. If {y,_;, a’>=
0, we put o/ == a’—aw,,(,,ny)n, then o’ €1, Uty and {y,_;, a”>=0. Thus {y,....,
Yp_1f is a chain in 1, to connect y to a” &1y UTy, and the length of the chain is
reduced by 1. Continue this process up to =0, then the Lemma is proved.

4.2. Case i). Put m = m()) and m = 2m’—1. Let the roots of
(4.2.1) Tyo= {O ,- vy Oprgeneey Ot
be arranged in the increasing order with respect to the given g-order, ie., o<la; if
i<(j. Since o;4-0a; = a;4-00; = 24 for a;, a; T,
(4.2.2) a;<a; if and only if ca,>o0a;.
In particular,
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(4.2.3) 00 = Op_js1 forl1 i m,

OOy = Oy = M
By Prop.2.6 we see that
(4.2.4) oy iy = 244, Ay  for izm/,

: ey Oy = A 4),

and by Prop.2.7 we see that
(4.2.5) {ag a,) >0 if ihj#Emt1;
in particular,
(4.2.6) Vi = Qg1 —0 E Ty for 1<i<m
(xj denotes the set of positive roots of r,). And
(4.2.7) o v = X 2y if 1< ¢ <m' —1,

Ymr-1> me—1> = {4 A).
Further, from (4.2.3) and (4.2.6) we see that
(4.2.8) Vrei = VYwr—iea  for 0 <7< —1.

By the property of the used g-order stated at the middle of the above No., we

see that
(4.2.9) Oy—i+1 1S the 1-th root from the highest root for 1< i <m.
Then (4.2.6), (4.2.8) and (4.2.9) prove that
(4.2.10) Vise v e s Yoy @F€ simple roots.
On the other hand.
(4.2.11) a, is a simple root,
since it is the lowest root of 1,. By (4.2.4)-(4.2.7) we see easily that {a;, y5,....,
Vmr—1p form a fundamental system of roots of type B,,, if m’=2. Cleaily every root
of 1, is expressed as a linear combination of a;, 1, .... Vm_y, €8,

O, = g +2(p+. oY)
Let yex}; by Lemma 4.1 there exist a;, a;ET, such that y-+a; = a; Then

Yy =2t Vs

i.e., it is expressed as a linear combination of yy,...., yp,_y if m'=2. Thus we
obtain the

PROPOSITION 4.2. Normal g-systems of roots of restricted rank 1 of case i) are clas-
sified by their o-fundamental systems described by Satake figures as follows.

A4i) 2 with oo, = a, and m(}) = 1,
1
Bi) O—@— --- —0—0 forall | =2
&1 71 Yi—z Vi1

with ooy = a; + 2(y, + . ... + y,_,) and m(A) = 21—1, where the arrow = directs
from the longer root to the shorter one.
As is easily seen, thus defined ¢ are involutive automorphisms of 1 and the o-sys-
tems of roots defined by the above o¢-fundamental systems are actually normal.
4.3. Caseii). Putm(l) = m = 2m’. By Prop. 2.5. ii) all roots of 1, have the
same length and
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(4.3.1) {a, ay = 2{A, A) for all aer,.

Let the roots of 1, = {a;,...., a,} be arranged in the inc.easing order with respect
to the given o-order, and discuss of them in a parallel way to No. 4.2 using Prop. 2.7.
Then first we obtain:

4.3.2) 00; = Op_jr1 for 1< 7 <m,

(4.3.3) {ag, a,y >0 if 145 # m—+1.

Here we put

(4.3.4) Qie1— 0y = Y3 for 1< ¢« < m/,

O/ 417 A 1 == Y
then
(4.3.5) ey and {yy, yip = 2{A, A for 1 < i <m.
Now all differences a;—a; (j >> 7) are expressed as a linear combination of y,,... .,
Ymr3 iR particular

Uy = 003 = +2(p3+ 0.t Vo) FVmr 1 F Vo

Next, every element of 1) is expressed as a linear combination of yy,...., y,, by a
reasoning of use of Lemma 4.1. Finally, discussing {y;, ;> and {a,, y,> by (4.3.3)-
(4.3.4), we see that {a;, y,, ...., Yt form the fundamental system with respect to

the given g-oider if m’ > 1. They are of type D, ., if m' = 3 and of type 43 if
m' = 2. Ifm =1, then 1, = ¢ and 1, = {ay, oa,} is not connected. Thus we
obtain a classification of o-fundamental systems of case ii). It is easy to see thus
obtained ¢ are involutive automorphisms of T and that the ¢-systems of roots defined
by these g-fundamental systems are all normal.

PRroPOSITION 4.3.  Normal o-sytems of roots of restricted rank 1 of case ii) are clas-
sified by their o-fundamental systems described by Satake figures as follows:

F\
A X Ayii) 21 % with ooy = a, and m()) = 2,
Asii) e—OCO—© with oa; = ay+y;+y, and m(l) = 4,
71 a4 Va2
®
D) o0 —@f ! .
4G N 71_3\.%_1 forall L2 4

with ooy = o, +2(y 4. ... +yy) Fyiatyiy and m(d) = 21 — 2.

4.4. Case iii). Put m(2) = 2m’ and m(2}) = 2m’”’—1, and let the roots of
(4’.4’.1) r)\ = {al’ ey azm/}, rz}\ == {ﬁl" ey ﬁm”, caeey /32,,”//__1}‘
be arranged in the increasing order with respect to the given g-order. By Prop. 2.13
1, and 1,, are connected. Hence T must be connected since it is g-irreducible. As in
No. 4.2 we see that
(4.42) OQ; = Ogpri1—g for 1<17 < 2w/,

0B, = Bomr—; for 1< < 2m'"— 1.
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By Prop. 2.5. 1) and Prop. 2.6 we see that
(4.4.3) {ag, oa;y < 0 for all ¢,
By oy =0 for jm,
(4.4.4) 20 = B = qt+0gmrirs for 1< 1 <m'.
Then we see that
(4.4.5) ag, iy = LPurr, Purry = KA 2 for lel 7,
By B> = 80 7 for j=m".

Levmma 4.4, In case m” = 11 is simply-laced, and in case m' ™> 1 t is doubly-laced
of type (2:1).

Proof. The assertion for the case m”>1 is clear from (4.4.5).

In case m'" = 1, assume that 1 is not simply-laced. Since the roots of 1, T, have the
same length, there must exist a root y&1, such that {y, > # {a;, a;>. Then, by
Lemma 4.1 there exists a root a &1, T, such that {y, a>0. We may assume that
{y, ay <0 by replacing v by —+ if necessary. Now put

0= YP—ye0 € T U Lo,
then {4, 6) = <y, y> # {ay, ;> which contradicts to the fact that all roots of 1, U Ty
have the same length. q.e.d.

Now the case iii) is further divided into two cases; case a) m’’ =1, and case b)
m"” > 1.

4.4.a. Caseiiia). (3, is the highest root, and @, is a simple roct since it is the
lowest root of 1, UY,. Let n be the coefficient of @, in the expression of f§;, asa
linear combination of simple roots. Since f;|Y); =24 and o, |y =4, n=1or 2.
And, in case n=2 all simple roots other than q; must belong to 1,; in case =1 only
one simple root differing from @, belongs to r, and all other simple roots must be-
long to x,.

Further we note that
(446) By ad>0
since f; = a;+oa;. This determines the possible simple roots which can be ¢, in
the given Schlifli figure. Simple roots of r, will be denoted by ;.

In the present case ¢ is simply-laced by Lemma 4.4, hence of type 4,, D, or E,.

Type A;. By (4.4.6) o, must be the one of the external roots in the Schlifli
figure of 4,, Thenn=1. Leta’ be another simple root of t,, then (f;, a’> >0
since §; = o/+o0a’. Hence o’ must be the another external root than @, in the
Schlafli figure of 4,. Therefore the possible o-fundamental system is determined uni-
quely. It is described by Satake figure as follows:

& ™\
Ajiii) O @ — - —8—0 -
P Vs o for every | = 2

with oa; = o'+ (y1+ . ... +y,_y) and m(d) = 2(I—1), m(22) = 1.
It is easy to see that each one of the above o¢-fundamental systems determines
a normal o-system of roots.
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Type D,. By (4.4.6) a; is determined uniquely in the Schlifli figure of D, and
n=2. Hence the possible g-fundamental system is determined uniquely, which is des-
cribed by

/.Vz—2
D) o O—0— - _.\ for every [ =4
Y O Y2 YVi-s Y -
Vi1
with oy = y1+0,+2(p+- ... .. FYie) Vst and m(A) = 2(21—4).

As is easily seen each one of the above ¢-fundamental systems atcually makes t
a normal g-system of roots.

Type E,. Discuss parallelly to the above ones, then the possible o-fundamental
system is determined uniquely for each /=6, 7 and 8, which is described as follows:

Y1 Y2 Vs Vi Vs

Eyiii) o0 o o
Ot
with g, = a1+71+27/2+373+27/4+753

Eqiii) O——0—0—0—9

with ooy = oy+3y,+4y, 4352y, +y5+2v6
G Y1 Y2 Vs Y Vs Ve
Egiii) O—.—.—.—.‘—.—.
@Y7
with ooy = 043y, +-4yy+5ys+6py,+4ys+2ys+3yr.
These o-fundamental systems gives normal g-systems of roots as is easily checked.
4.4.b. Caseiiib). 1 is doubly-laced of type (2:1) by Lemma 4.4, hence is of type
B, C, or Fy. [ay-_y is the highest root and f,,,,_; is the i-th root from the highest
root for 1 < 7 < m' with respect to the given g-order. For roots of 1,, we can apply

Prop. 2.7, and we see that

4.4.7) Bamrr—i» Bamrr—jy >0 forl i <j< m.
Hence
(4.4.8) Vi = Powr—i — Pamrr—icy (E1F) is a simple root for 1 < i< m”.

Since Pynr_gy 1 < £ < m”, are long roots and 5, is a short root, by (4.4.7) we see
that
(4.4.9) Vise+ e s Vmer_g are long roots, and y,,._, is a short root.
Furthermore,
(4.4.10) ay s a short simple root,
since it is the lowest root of r,; and
(4.4.11) {ay, Bu> >0
since f,, = a-Foa.
Type B,. By the above generality &, and v, _, are different short simple roots,
and every fundamental system of roots of type B, contains only one short root. Hence
there does not exist any normal g-system of roots of type B, belonging to the considered
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case.
Type C,. The Schlifli figure of type C, is described as
O—0O0— --- —0&=0
P Pa Y1 Pre

The highest root

Bowr1 = 2(@1t- - . F@uy) +u
By (4.4.7)-(4.4.8) {Paw_1, 71y > 0 and p; is simple. Hence p; is uniquely
determined as y, = ¢,. Here we note that ¢, is a short root, then by (4.4.9) m'’—1
=1, i. e, only “m” =2 is possible. Hence

B’ = Bonr—s = ¢1+2pat- ... 1)t
Now, by (4.4.11) a; is uniquely determined as a; = ¢,.  Since the coefficient of «; is
2 in the above expression of (3. as a linear combination of simple roots, the possible
o-fundamental system is uniquely determined, which is described as follows:

Ciii) & O 0 - —0—0 for every [ = 3
Vi 1 Y Viea Vi
with ooy = y3+a+2pe+. o i) +vii1, m(A) = 4(1—2) and m(2)) = 3.
This figure gives certainly a normal ¢-system of roots for every [ = 3 as is easily
seen.

Type F4. The Sclifli figure of type Fy is described as
O—0=—=0—7"20
P1 P2 Pz P
with the highest root
[32m”—1 = 2‘P1+3‘Pz"|‘4‘l)3+2§04-
By (4.4.7)-(4.4.8) {Bamr_1> y1p > 0 and y, is simple. Hence y;, = ¢;, a long root.
Next
Bomr—a = Pamr1—P1 = ¢113pat+4e,+20,
and, by (4.4.7)-(4.4.8) {Bomr_s vay > 0 and y, is simple. Hence v, = ¢,, a long root.
Then
Bamr—s = Panr1—@2 = @1120,+4@,1+2¢,.
By (4.4.7)-(4.4.8) {Bomr_3 ysy > 0 and y, is simple. Hence y, = ¢,, a short root.
Now, by (4.4.9) m"—1 = 3, i.e., only “m"=4" is possible. And
.Bm” = ﬁ2m”—4 = ‘P1+2¢2+3¢3+29”4~
Then, by (4.4.11) a, is uniquely determined as &, = @,. And the possible ¢-funda-
mental system is determined uniquely, which is described by Satake figure as follows:

o 0—0 O _ with ooy = 1429, +3y;+ay,

41ii) o v v m(2) =8 and m(23) = 7.

This figure determines certainly a normal g-system of roots as is easily checked.

Summarizing the discussions of No. 4.4 we obtain the following

PRrOPOSITION 4.5. Normal o-systems of roots of restricted rank 1 of case iii) are
classified as follows: Ayii) for =2, Dygii) for (=4, Egii) for 1=6, 7 and 8, Cyii) for
=3, and F4iii).
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4.5. In Nos. 4.2, 4.3 and 4.4 we classified all normal o-systems of roots of res-
tricted rank 1 by their o-fundamental systems. Now we shall determine whether they
are normally extendable or not. For this we need two lemmas (Lemmas 4.6 and 4.7).

First we quote two propositions about the structure constants N,z (, f 1) of a
complex semi-simple Lie algebra with respect to a Weyl base {E,, a1t} which are
well known since H. Weyl. We use the convention that N,z = 0 if a4 0and 1.
(45.1) Let a, 3, y be non-zero roots such that a+pf-+y = 0, then

Nypg=Ngy = N,,.
(4.5.2) Let a, B, y and 6 be non-zero roots such that
a+p+y+6 = 0, B4y =0, y+0-0 and 6-+5#0, then
Ny pNys+Ny yNs g+Ny sNgy = 0.
Let ¢ be a normal g-system of roots of restricted rank 1, # be any anti-automor-
phism of g, extending & in the sense of Prop. 3.1.
Put
nE, = 0uEqu for each ae1.
Then g, = 1 for any a1,

LEMMmA 4.6. Let acr, and y, 0, such that {a+y, a+0} Ct, y+35+0,

N,s = 0 and oa = a-+y-+0. Then

Oaloa = 1.
Lemma 4.7. Let acy, and y, 0, e<1, such that ca = a+y-+o-+e,
{a+y, a+6, ate, ca—y, ca—0, ca—e} C 1, y+0+#0, d+e+#0, y+e+#0 and
NY,S B NS,S S N'ng = 0. Theﬂ
E_’chm = —1
Proof of Lemma 4.6. Apply n on both sides of
[ [:Ean Ey]’ EB:I = Nm,yNw+-y,aEa-m°
And compare the coefficients of both sides remarking that N,z = N_, =R, |04 |
=1, o, =95 = 1. Then we obtain
(41) 0o = (Naa+y+8,~7Na+8,—8)/(NM,YNN+Y,S)‘
Here, apply (4.5.2) to the 4-ple {a+y+0, —a, —y, —0}, then we see that
Nw+y+8,—yN—8,_w+Nw+y+s,—8N—w,—y = 0.
Therefore
(4‘-ii) Nw+y+5,—y/Nw,y = w+y+6,—8/Nw,8'
Next, apply (4.5.1) to triples {a+y-+d, —0, —a—y} and {a+d, —6, —a}. Then
we see that

(4111) Nw+y+3,—8 = N-s,—w-—y - —Nw+y,8y
and that
(4.iV) Nw+8,-—8 = N—a,—w = —INggs-

From (4.1)-(4.iv) we conclude that
@ﬁgg-u, - 1- q.e.d.
Proof of Lemma 4.7. Apply 7 on both sides of

[[[Em Ey:L Esjy Ee:l = Nw,va+7,8Nw+y+s,sEm,
and compare the coefficients of both sides. Then we obtain
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(4‘V) Eon-w = (Nw+y+8+s,—yNw+8+e,—st+E,-—s)/(Nw,-yNw+y,8Na+y+8,s)~
Apply (4.5.2) to the 4-ple {a+y-+0+e, —a—05, —y, —e}, then we see that

Nw+y+s+s,—yN—e,—w—8 +Nw+'y+s+e,—sN—w—8,—y =0,

hence

(4'Vi) Nw+y+8+s,-—'y/Nw+s,y = w+y+8+s,—s/Nw+8,s'

Next apply (4.5.1) to the triple {a+y+0d-4-¢, —e, —a—y—0d}, then we see that
(4"Vil) Nw+‘l+3+s,—e = N—s,—w—y-s = ‘—Nw+'y+8,e-

From (4.vi) and (4.vi’) we obtain

(4‘Vii) Nm+y+5+e,—y/Nw+y+s,s = - w+5,y/Na+s,e~

Similarly, applying (4.5.2) to the 4-ple {a+d+e, —a, —d, —e} and then applying
(4.5.1) to the triple {a+dJ+4¢, —e, —a—0}, we see that

(4V111) Nw+s+s,—5/Nw,8 = —Na+8,s/Nw,e°
Further, apply (4.5.1) to the triple {a+¢, —e, —a}, then we obtain
(41X) Nw+s,—s = N—s,—w = —Nw,a-

Finally, since [ E,, E5|=0 we have the equality
[[Ew Ey]y ES] = [[Ew ES]’ E’Y]’

which implies that
(4.x) Nous/(NayyNosps) = 1/ No 5,0

Multiply (4.vii)-(4.x) side by side, and then compare with (4.v). Then we con-

clude that
Q_wgo’w = —1L qed

4.6 THeoREM 4.8. a) The following normal o-systems of roots of restricted rank 1:
Aqi), Bi), Ay X Aqii), Agit), Dyji), Aypii), Cgii) and F4iii), are normally extendable.
b) The following ones: Dyii) and Ejgii) (61 <8), are not normally extendable.

Proof. For the g-fundamental system A of the normal ¢-system of roots t of res-
tricted rank 1 of each type, choose an anti-automorphism # satisfying Prop. 3.1 such
that o, (|4, | =1) is arbitrary, and that g,, = g, for Ay X Ayii), gu = (Nary
/Noar,—y)0a, for Ajit) by putting y = p,-+. ... +y;_s.

First we see easily that

Oou0a, = 1 for Aii),
Coa,0u, = OouyOoa, = 1 for A; x Aqii),
Oow,0a; = OowOar = 1 for Ajiii).
Further, applying Lemma 4.6 for a = «;, we see that
Qoafa, = 1

by putting y =0 = y,+....+y,_, for Bi), y =y, and § =y, for Agii), y=y,+....
+yis e and 6 =y .. 4y gty for Dyi), y=y, and 6 = 2(y,+. ... +y,,)
+yi1 for Ciii), y = y1+y,+v; and 6 = y,+2y, for Fii). Hence
mmEg = Eg
for every simple root f&A of each former type. Therefore
71 = the identity automorphism of g,
for each former type by the uniqueness of (3.3).
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Next apply Lemm 4.7 for A of Dyii) by putting a == ay, y=y;,  =9,+....+
yi_styis and e=y,+. ... +y,_+y,_y; for Egiti) by putting a=a,, y=y,, 0=y,+y;
+y, and & = y1+ya+ystyatys; for Eqiid) by putting a = ey, y =y, +y2+ys 0 =
y1tyatye and & = yi+2y, 42y, 42y, -y +y,; for Egiii) by putting a = ay, y =9
Fyatystyatys 0 =yitntystyctyr and e =y 2y, 3y, +4y,+3yst+2yet
2y,. Then we see that

0"‘”1@”1 = —1
for each latter type. Hence # cannot be involutive for any choice of Oa, for each lat-
ter type.
By the above Theorem we obtain a classification of irreducible infinitesimal
symmetric pairs of rank 1 by their o-fundamental systems.

§5. Classification (General case).

5.1 In this paragraph we classify o-fundamental systems A of o¢-irreducible
normally extendable o-systems of roots. This will give us a classification of infinitesi-
mal irreducible symmetric pairs via Prop. 1.2 and Cor. 2.15. Let 1 be such a o-system
of roots. T consists at most of two components.

If v consists exactly of two components t; and tg, then oty =1y, and a o-
fundamental system consists of two connected-ness components Ay and Ag such that
A; forms a fundamental system of 1; for each 7 =1, 2, and ¢4; = 4. Hence 4~ =
A;, and A* is of type A1 X A1) for each A4~ by a notation of No.3.2. Therefore
T is normally extendable by Theorems 3.6 and 4.8. This is the case that the cor-
responding compact symmetric space is the space of a compact simple Lie group of
the same type as 4~

In subsequent Nos. we discuss the cases of © being connected, and hence of g,
being simple.

Theorem 3.6 is the key theorem for our classification, by which only g-fundamental
systemns of normally extendable ones are possible as A*, A4~

In the sequel we use the following arguments frequently: under some assumptions
about a o-fundamental system 4, gg; and o, are determined for two simple roots
@i, @; of A in such a way that

{ogi, o) # {po P>
which contradicts to “c is isometric”’; hence there exists no ¢-fundamental system
which is normally extendable and satisfies the given assumptions. This type of argu-
ment is called an “isometry argument” for the sake of simplicity.

To describe the types of real simple Lie algebras g, we use the usual notation due
to E.Cartan.

ol . 0—0—---—0—0
5.2. Type A,. Schlifli figure of 4: o Qi1 P

Since A*C A for each A& A~, A* must be of types Aqi), Agii), Andii) or Ay X Aqii).
Our discussion is divided in four cases.

a) The case that at least one external root of A belongs to A,, We may assume
that p,e4,. A, A€ A4~, containing ¢, must be of type Agii) since in the remaining
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possible three types every external root does not belong to A4,; then gp,&4,, and ¢, e
4, by Prop. 3.5. Next A*, A& A4~, containing ¢, must be of type Agii) by the same
reason as above since it contains ¢, by Prop. 3.5, and ¢,&4,, @;¢£4,; the same
arguments continue iteratedly; finally / must be odd, and we obtain a normally exten-
dable o-fundamental system

o—CO—0—O0—---—0—0—0

2 P Pa+1-
In particular: [ =2I'+1 (I'=21), g4, 0ZIZ), pugd, (1 ZiLI'), and

OQ2 = Qg1 Qo tPassr (I=igl).

The corresponding real simple Lie algebra g, is of type AIL

In the remaining cases two external roots of A belong to 4—A4,. We put ¢, |
= A, le, g4,
b) The case that AM is of type A gi7). If m<l, then g, & 4, by Prop. 3.5.
Since
0 >4 Pms1y Pm) = OPmiss 0Pm) = {O@pi1s 1+ -+ +Pm_s)s
there exists an z<Xm—1 such that
OPm+1 i <0,
which becomes impossible after discussing possible types of A* such that A*>¢,,.,
Hence [ =m, and A4 = AM with [=2. The corresponding g, is of type AIV.
c) The case that A™ is of type Ay X Aqii). Put AN = {g,, ¢,}, then m > 2.
{p2 @m_1} cA4—A4, (and ¢, e4—A4,if m<1 ) by Prop. 3.5. Here
OPm-1, 1) <0,
and, if m<C/, then
oPm+1, 1 <0 4
similarly as in the above case. Putting ¢,_,|9; = 4/ and @,.,|h; = 17/, we see
from the above formula that
Vo=gq|h; =1
by checking the possible types of A" and of A4*. But this is impossible. Hence it
must be that m=I[.
Now A—AM is a normally extendable ¢-fundamental system by Prop. 3.7, and
|9 = @ually = 4.
If [ = 3, then AY = {g,} is of type Ayi). If I>3, then A" is of type 4, oiii) by
b) or Ay X Aqi) with [>4. In case A" being of type A1 X A1#%) we can iterate the
same discussion as above. Continue the same discussions iteratedly. Finally we ob-
tain the following ¢-fundamental systems normally extendable:

P1 2 Ps_1 Ps

for 2<5<1/2,
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P P2 Pv

00— ---—&
r r r \O<Pz’+1 in case [ = 2I'+1.
Soy S

The corresponding g, are of type AIIL
d) The case that A™ s of type Aqi). A = {p,} and op, = ¢,. Hence ¢,

& A, by Prop. 3.5, and

{p1, oy < 0.
Since A*, 4 = @,|0;, is of type Aqi), Ay X Aqii) or A,ii), the above formula
implies immediately that

A2 = {@,} and op, = @,.
Similarly we see that @, = ¢,, and so on; thus we obtain a normally extendable o-
fundamental system

4: O0—0O0—---—0—0.

The corresponding g, is of type Al (normal form of g,).

5.3. Type B,. Schlifli figure of 4: (pCl)— . —“%T—(?O .

AM, A€ A-, can be only of types Aq7), A1 X A1), Agit), A,tit) or B,i). Our discussion
is divided in two cases.

a) The case g, Put @ |h; = 4. A must be of type Ay7) as is easily
seen. Then A—AM isof type 4, ;, and is a normally extendable g-fundamental sys-
tem by Prop. 3.7. Since

0@ @) =g g1 <0,
we see easily that A*, containing ¢,, is of type 417) and o, = @,. Then, as in No.
5.3.d), we see that
0P = 1
for all i</. Thus we have a normally extendable ¢-fundamental system
A: O—0O—+--— 0=—=0.
The corresponding g, is the normal form of g, and is a special case of type BI.

b) The case p,;=A,. There exists an m<l such that {g,,...., ¢,} C4, and
Pume1E A, Then, putting @, |h; =4, 4 must be of type B,, ;7). Now discuss
parallelly to the above case, then we see immediately that

op; = @; for m+1<j <.
Thus we have normally extendable ¢o-fundamental systems

. O—0— " —O0—0—::-—0—70 <
A: ? Frs1 P e for 1< m <.
Corresponding g, are of type BI for m</—1, and of type BII for m=[—1.

5.4 Type C, Schlifli figure of 4: gi_ . —g&%

AN, A4, can be only of types Aq7), Ay X Aqii), Agii), A,4ii), Boi) or C,iit). The
discussion is divided in three cases.

a) The case py&=4,. There is an m=2 such that {g,,...., ¢,_,} ©4, and
Pn&A,. Then, putting ¢, | §7=1,, 4™ must be of type C,,,.i). Hence, m=<I—1,



Symmetric spaces 27

A = {p,. ..., Puri}s Pu1 €A, and @ &EAy. Now {@ni1, Qg - @} 15 2
o-fundamental system of type 4,_,, such that ¢,.,&4,, which is normally extenda-
ble by Prop. 3.7. Therefore the remaining discussions are reduced to the case of No.
5.2. a). For each A=A~ suct that 151, A* is of type Agii). Thus we obtain a
normally extendable o-fundamental system

4. O—O0—@0— —O—0—0—0—---—0—0

@ Pm+2 Pm+1 Pm 21
for 2<m<1—1 such that [—m is odd. The corresponding g, is of type CIL

In the remaining cases ¢,¢£4,. Putting ¢, |9, = 4;, 4" must be of type Byi)
or Aqi).

b) The case A being of type Bgi). Then AM = {g,, ¢}, ¢,€4, and ¢,
&4, {py...., ¢} form a g-fundamental system of type A, ; which is normally
extendable by Prop. 3.7. Since p,&4,, the remaining discussions are reduced to
the case of No. 5.2.a). A4* AeA™— {4}, ate all of type Agif). Thus we obtain a
normally extendable ¢-fundamental system

ViR O—O0—0—---—0—0—=0
for [ even. The corresponding g, is a special case of type CIL

c) The case AM being of type A17). By a discussion similar as in No. 5.3.a), we
obtain a normally extendable ¢g-fundamental sytem

Aa: O— --- —0&&=0.

The corresponding g, is of type CI (normal form of g,).
OPr1

55 Type D, Schlafli figure of 4: O— - — o/

1 ‘Pz-z\O(Pz .
A, A=A, can be only of types Aqi), Ay X Aqi), Agii), A,ii) or D,ii). The dis-
cussion is divided in three cases.

a) The case p=A,. When [ >4, the possible type of A* containing ¢, is
only Agit). Hence the same discussion as in No. 5.2.a) continue until og,_, is
determined.

If [ is even, then ¢,_,e&4,. Put ¢_,|h; = A". Since ¢,_sj=4, A" must be
of type Agii). Therefore, ¢, 4, and ¢4, or ¢,_,e£4, and ¢,=4,. Thus
we obtain a normally extendable o-fundamentsl system

e e e
A: o—O—e—O .O\O.

If [ is odd, then ¢,_,=4, And {@,_1, ¢, s ¢} is a o-fundamental system of
type Ag which is normally extendable by Prop. 3.7. Therefore it must be of restricted
rank 1 and of type Agiii) as is easily checked. ~We obtain a normally extendable
o-fundamental system

e e e/
4: e—0—e o O\OD
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The corresponding g, are of type DIII for the above two o-fundamental systems.
In the remaining two cases @, &4, Put ¢, |h; = 4,
b) The case p,=4,. AN must of type A,ii) or D). If AM is of type 4,,

iii), then A = {¢y,...., @,,}. First we see that m=<[—2, since otherwise m=[—1
and A* containing ¢, has by Prop. 3.5 the following Satake figure:
o—-----—0—0O
P2 P2 P>

to which there corresponds no normal ¢-fundamental system of roots of restricted
rank 1 by discussions of §4. Now ¢, 4,, and applying an “‘isometry argument’
to the pair (@, Pm+1) We arrive to a contradiction. Hence 4™ can not be of type
A,4it), and must be of typc Dyi). Thus we see that

v oo
A=A : O—@ 0\.

The corresponding g, is of type DII.

c) The case g, A, A* must be of type A7) or A X Aq#i). If A™ is of type
Ay X Aqid) such that AM = {g,, @,}, then discussing {o@,_;, ¢;> and {o@,.y, @1>
we arrive readily to a contradiction. Hence A must be of type A4i). Then, 4—
{p:} is by Prop.3.7 a normally extendable o-fundamental system with @,e£4, and
of type D,_, if [>>4, or of type Ag if [=4. In case [=4, by the classification of No.
5.2, the Satake figure of A — {p;} must be

£
O—O—0, O—0O0—C0O or O—O0—O.

In case [>>4, the discussions of b) and c) can be applied again to 4—{¢,;}. Con-
tinue these arguments iteratedly, then finally we obtain the following normally exten-
dable g-fundamental systems:

P1 P Po+1 /.
o—0O0—---—0—@— --- —.\ for 2< p <2,
o
o O
Oo—0O—--- —O< O—CQO— --- —O< D
o, o,
O
o—0O— --- —-O<
O.

The corresponding g, are of type DI.

P P2 Pz Qs Ps
O—0O0—O

Ps .
O

5.6 Type Eg. Schlifli figure of A:

A*, A€ 47, can be only of types Ay7), A1 X Ayii), Agii), or D).

Assume that ¢, &4, then 4* coutaining ¢, must be of type Ag#); hence g,4,
and {gs, @s @} C4—4, by Prop. 3.5. Then, putting ¢,|9; = A', 4~ must
be of type Agiii) such that o, = @;+¢,, and @;e4,; finally, putting ¢; | b, = A7,
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A = {p;} must be of type Ai). Now, applying an “isometry argument” to the
pair (g, @s) we arrive easily to a contradiction. Therefore we see that

(5.6.1) o &4,
Similarly we sece that
(5:62) Pa A,
Here we put ¢,|9; = 2,. Subsequent discussions are divided in two cases

according as @, 4, or not.

a) The case p,=4,. If we assume that @ye£4,, then A must be of type
Agiii), {g, o CA4—A,, and o, is a linear combination of ¢,, ¢, and ¢, Now
an “isometry argument” of the pair (¢g, @g) leads to a contradiction. Hence

pse A,

Next, if we assume that ¢,&£4,, then A must be of type Ayi), and @yt A,.
Then we must have a A=4~, such that the figure of A* is O——@—@® by Prop.
3.5, which is impossible. Hence

pe4,.

Thus we obtain the following two normally extendable g-fundamental systems

according as g, 4, or not.

£ X\
O—0—0—0—0O O—0—0—0—O
. and
® O .

The former figure corresponds to g, of type EVI, and the latter to that of type EIIL
b) The case .4, 1f g,=4,, then by a discussion parallel to that of a) we
must conclude that ¢, 4,, which is impossible by our assumption. Therefore
P&,
If we assume that g,& A, then, putting ¢, |9, = 4,, 4 must be of type Ag
iii), and @yt 4,. Then we must have a A4~ such that the figure of A* is O—@
by Prop. 3.5, which is impossible. Hence
P54,
Further we see readily that

%EEAo-

Thus 4, = ¢, and o]/ must be an involutive automorphism of A so that we
obtain the following two normally extendable o-fundamental systems

#~ £ XN\ N\
O—0O—~0O0O—~0—->0 O—0O0—O—~0O—-=0
and
O O

The former figure corresponds to g, of type EI (normal form of Eg), and the latter to
that of type EIL

P P Ps

v o—=0

5.7. Type E;. Schldfli figure of A4:
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First, the same discussion as in the proof of (5.6.1) shows that
(5.7.1) Qe E A,

a) The case g4, A containing ¢, must be of type Agii); @,&4,, s
€4, and ¢, 4, Then A* containing ¢, must be of type Agi), and ¢,&4, or
@, 4, If we assume that g,&4,, then A", ¢;|H; = A/, must have a figure
O——@ by Prop. 3.5 which is impossible. Therefore

g4, and g4, .
Thus we obtain a normally extendable o-fundamental system

4: o—O—0—0O0—0—O0

L
The corresponding g, is of type EVIL

b) The case ¢EA,. Put @ Y, = 4. If we assume that @,&4,, then
the possible type of A™ is A4,4ii), 3<m<6, or Dgii). In case A is of type Dgir),
AN, i = @, 9;, must have the figure

o—0—0—0 O

®

by Prop. 3.5, which is impossible. Similar arguments or ‘‘isometry arguments” show
that all other possible types of A* do not occur, and hence we obtain
(5.7.2) g A,

Now A must be of type A7) or A; X Aif). Checking all possibilities of A™
being of type A X Aqi) by “‘isometry arguments”’, we see that
(5.7.3) AM is of type Aqi).
Then A—{p,} is a normally extendable ¢-fundamental system by Prop.3.7, and
must have one of the four figures of No. 5.6, two of which become impossible after
applying “‘isometry arguments” to the pair (¢;, @,).

Thus we obtain the following two normally extendable g-fundamental systems A:

O—0O0—0—0—0—O O0—"0—"0—0O—0—=0
and
® O

The former corresponds to g, of type EVII, and the latter to that of type EV (normal
form of E7).

5.8. Type Eg. Schlifli figure of 4: O_O_O_O*C’)— —
Ofs
In the same way as in the proof of (5.6.1), first we see that
(5.8.1) pEd, and @A,
Next, parallelly to the discussions of No. 5.7. b), we see that
(5.8.2) @A, and @4,
and that

(5.8.3) AN, @ | Yy = 4, is of type Aqi).
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Then A— {p,} is a normally extendable o-fundamental system by Prop. 3.7, which
must have one of the two figures of No. 5.7. b) since (5.8.2).
Thus we obtain the following two normally extendable o-fundamental systems A:
O—O0—O0—0—0—0—0O O—0O0—0O0—0O0—0—0—=0
and .
® O
The former corresponds to g, of type EIX, and the latter to that of type EVIII (nor-
mal form of Eg).
5.9. TypeF,. Schiafli figure of 4: ) O=="07C)
AM, A€ 47, can be only of types Aqi), Agtii), B, i) (m = 2 or 3), Cgiii), or F4iit).
a) In Case ¢4, 'Then only F4iii) is possiblle as a type of A* as is easily
checked; hence we obtained a normally extendable g-fundamental system
A=A e—0—0—O
which corresponds to g, of type FIL

b) Incase peEAd,. 1If weassume that g,&=4, then gp;=4, since otherwise we
have a figure O——@ for A* containing @, by Prop. 3.5, which is impossible. Then
@, A, since otherwise we obtain a figure O—@=——=@—® which is impossible.
Now A* containing ¢, has the figure ®——@——0O which is also impossible. Hence

(5.9.1) QA
And A, 4, = ¢,|b;, must be of type A7) necessarily. Then, 4—{p} form a
normally extendable o-fundamental system by Prop.3.7.
By the classification of No.5.4 and (5.9.1), 4— {¢;} must be of type CI.
Thus we obtain a normally extendable o-fundamental system
4:  O—0O0=>0—=0
which corresponds to g, of type FI (normal form of Fy).

5.10. Type Gy. Schlifli figure of 4: %%22 . Since every normal o-sys-

tem of roots of restricted rank 1 is simply—laced or doubly-laced of type (2:1), we see
immediately that ¢,e£4, and @,&4,; and we obtain only one normally extendable
o-fundamental system with Satake figure.

O0==0 .
The corresponding g, is of type G (normal form of Gy).

5.11. Finally we give a table of ¢-fundamental systems described by Satake figure,
and multiplicities m(1) and m(21) of simple roots A=A4~, for all irreducible symme-
tric spaces such that g, are simple. Some simple roots of A—A, are denoted by
letters a;, and simple root of A~ which is obtained as a restriction of a; to §; is
denoted by A;. [ denotes the rank of A.
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A a- m(d;)  |m(2y)
O — O— - —Q
Al ay o A 2 1 0
e O @®— - - — O— --- —
arr| @ 2 L4 O—®e A 91,, 4 0
‘ (=20+1, I'>1)
ajg ag Oy
7T Y 2 0
S T
l . 2(0—2p+1)| 1
AIII it C=r=—) (for i = p)
|
O—0— --- —0
e G Q—---—0&=0 | dri<p| O
7 P | B | Gor 1=
—_ ’ 7 1
oo 4 (=2 +1, I'=1) Gerin | O
& T\ O
ALV o—e— - —0—0 2, 20-1) | 1
1
O— - —O—O— - —0=0 for By | Gy | O
i oy O 58 2-0)+1 | ¢
(=2, 2=p<D) (i=p)
| Q& 0= o8 211 0
O—---—0&=0, O— ---—0&=0
cr ay 2 =5 1 0
2 4
e 00 00 =0 _____ o=l i<p |°
' ’ =3 1=p< 50 G2 |3
cIr
0o ---—-O—ec=0| h ol Gory |0
aq ap’_q az’ O__ T Oé:O 3 0
(=2, r=2) G=0)
1
p Iy 0
O— - —O—@— - -~ —o< O —---—0=20" | =P
ay ay -~ 0
(=4, 2= p<i—-2) (i=p)
Qapq 1
—_— 3 0
pr | o— - —0 ) < 0= =
o1 %-2 G=1-1)] °
Qa1 Ohi_y
O— ---—O0 O— --- —0 1 0
ay az-g Og A1 11—2<OZZ
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O q
DII e - — 2 (-1 o |
o—e o ,11 (-1 |
b d A W X 0
& O0—0—---—0 O—---—0&=0 | {
* W1 Oy (=2, I'z2) (=) 0
DITI
O 2 |l 0
0o - —0—& D O—---—0=0 P
a a;’ 4 R 1
1 -1 0,00 (=20'+1, I'>2) (=0
O—0O0——O0——~0O—-~o0 O—0O0—O0——~0—-~=0
EI 1 0
O O
O—0O—0—0—0 o—0=0—0o | L]0
EI ‘02 ag 04 M Ay Ay Ay
2(i=3,4) | 0
Ouay
& N 6 (i=1) 0
EIIT O—0—0—0—O 0=0
ag 1-1 }*2
8 (i=2) 1
Oay _
O——0—0—0O
| T Fa S I
@
O—0—0—0—0—0 | 6-0-0-0-0-0
EV [ | 1 0
O O
o O 0388 1G=1,2) | 0
OO0 O—0=0—0 |16=1
EVI | PR Rl A e 0
i=3, 4)
[ ] I
O—O0—0—0—0—O .
gvi 4 % | a5 O=0—0 ti=n |0
°® 1 2 8 8(i=2,3) | 0
oO—O0—0O0—"0O0——0O0—0—-20 O—O—O—0O—0—0
EVIII | l 1 0
O O
O—O0—0O—0—0—8—0 LGt 2)
EIX| @t % | a| O—Q==0—0 =5
® e (i=3,4) | O
FI O—0O0=—=>0—-o0 O—0O=—=>0—-~20 1 0
FII o—0—e O 0 8 7
a A
G O0=0 0=0 1 0
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