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The main purpose of this paper is to study the conservative property and the 

recurrence of Markov processes on a separable locally compact space, following 

W. Feller's idea of sojourn sets (Feller [2], [3]) and combining them with Green 

measures. 

In §1 we shall give the definition of Markov procesœs and introduce several 

notions useful for later considerations. Here we took much from the lecture of 

Professor H. P. McKean at Kyoto University in 1957-8. Next, we shall derive 

sorne results from the hypothesis (H. 1) concerning Green operators which we have 

introduced at the beginning of §2; we shall impose this hypothesis throughout the 

subsequent sections. §3 is concerned with the conservative property of Markov 

processes. Here we shall establish a theorem which characterizes the conservative 

property using bath sojourn sets and Green measures, and we shall derive Feller's 

theorem concerning pu rely discontinuous Markov processes (cf. Feller [2; Theorem 

7]) as its special case. 

In §4 we shall characterize the recurrence either by Green measures or by 

sojourn sets, putting a new assumption (H. 2) on the continuity of harmonie meas­

ures. These results generalize sorne of the results by J. L. Doob [1] and by W. 

Feller [3]. In the last section we shall show some applications of the results of 

§4. 

The author wishes to express his hearty thanks to Professor K. Itô for his 

helpful suggestions. 

§1. Definitions of Markov processes and fundamental notions. 

Let E be a separable locally compact space. Adding an extra point = to E 

as an isolated one, we shall get a separable locally compact space E=E+=. 

W e denote a measurable function (sample pa th) from [0, + =] into if by w 

and its position at time t by Wt or Xt(w). Next, let W be the totality of the w's 

which satisfy the following conditions: 

(W. 1) Put 

(1. 1) a=(w)=inf(t;xt(W)==) if Xt== for sorne t~O, 

== otherwise. 

Then Xt(W)== holds for every t~a=(w). Especially we shall define x=(w)==. 
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(W. 2) Xt(w) is right continuous and, for t<a=, its possible discontinuity is of 

the first kind.1l 

The condition (W. 1) shows that every path has no return from = to E. 

Now, given an open or closed A of Ë, the passage time 11A for A is defined by 

(1. 2) 11A(W)=inf(t; Xt(W)EA) 

== 
if Xt(W)EA for sorne t~O, 

otherwise. 

Further we denote by sB, the smallest Borel field containing the sets (w;xt(W)EA), 

where t is an arbitrary fixed time and A is any Borel set of E. Then we see 

from (W. 2) that, if ,A is open, 11A is a measurable function from [W, sB] into 

[0,+=]. But we are not sure that, if A is closed, 11A is measurable with respect 

to sB. Hence we need extend sE to the Borel field I.B generated by si§ and by the 

sets [w; 11F(w)>t], where Fis any closed set of E and t runs over [0, +=]. It 

is clear that every passage time 11A is a measurable function (random time) from 

[W, I.B] into [0,+=]. Next, given a random time a, we shall define the stopped 

path w;; and the shifted path w; as follows: 

(1. 3) 

It is easily shown from the definitions of W and I.B that W~EW, (w; w~EB)EI.B 

and consequently I.B.,-CI.B, where B is any set belonging to I.B and \.B.,- is the totality 

of the sets (w; w-;.EB), i.e. the Borel field generated by the sets (w; (w;;)tEA) and 

(w; aF(w-;,)<t). 

W e shall now introduce the notion of a Markov time. 
DEFINITION 1. 1. A random time a(w) is called a Markov time if (w; a(w) 

2;t)EI.Bt for every t~O. 

We shall mention two lemmas necessary for later considerations without 

proof.'l 

LEMMA 1. 1. Every Markov time a(w) is measurable with respect to S.S.,-+ 

=&oi.Bt+o-. 

LEMMA 1. 2. Every passage time aA(w) is a Markov time. Especially, if A 

is closed, 11A is not only measurable with respect to \.B.,-é, but also to \.B.,-A. 

Next we denote by Pa system {P.,( •); XEÉ} of probability measures on (W, 

I.B) which satisfy the following conditions: 

(P. 1) P,(B) is measurable as a function of x for every fixed BEI.B. 

(P. 2) P.Cxo(w)=x)=l for every xEE. 

CP. 3) I.B coïncides with § up to P,-probability 0 for each x.31 

1) We don't assume the existence of the left limit lim Xt(w). 
t tcroo 

2) cf. K. Itô and H. P. McKean [6]. 

3) This means that the completion of 53 with respect to P., includes )5. For example, this 
is true under the hopothesis (A) in Hunt [ 4]. 
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(P. 4) (MARKOV PROPERTY) For every XEE, t~O and any bounded Borel function 

f(w) on (W, SS), 

(1. 4) E,(f(wt) ISSt)=E,tCfCw)) with P,-probability 1. 

A combination (W, SS, P) (or simply Xt) is called a Markov process on E. 

Finally, we shall de fine several notions concerning Markov processes on E. 

DEFINITION 1.2. We consider two points x and y of E~ Then if P,(av< +co )>0 

for every open set V01y, y is said to be accessible from x and we use the notation 

X-"Y· If X-"Y and Y-"X, we say that x and y have communication. 

DEFINITION 1.3. If P, (w; a=<+=)=O, then we say that the process starting 

at x (or briefly x) is conservative on E. 

DEFINITION 1.4. x is called a recurrent point if P,{av(w~uc)<+=lauc<+=} 

=1 holds for any open sets U and V(VcU) containing x. 

DEFINITION 1. 5. X is called a trap if 

P.,{Xt(w)=x for every t~O} =1. 

According to this terminology, = is a trap. 

DEFINITION 1.6. An open or closed set S containing x is called a sojourn set 

with the center x, if 

or equivalently, if 

§2 Hypothesis (H. 1) and its results. 

First we introduce se veral notations; 

P(t, x, •) =P,(XtE • ), 

PA(t, x, • )=Px(Xtf•, aAc>f) for any open or closed set A, 

Ttf(x) =E,(f(Xt))= s f(y)P(t, x, dy) , 
E 

= = 

G.,,f(x)=E,(Je-"'tfCxt)dt)= Je-"'tTd(x)dt for œ>O. 
0 0 

Here /(x) is a Borel function on E. 

We now denote by Œ the totality of functions which are continuous, bounded 

on E and equal to 0 at =. In the sequel we always assume that our process Xt 

satisfies the next hypothesis: 

(H. 1) G, maps ~ into ~ for every œ> 0 . 

11 The complement of a set is always considered with respect to E. 
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This hypothesis is a little weaker than the continuity condition concerning Tt 

which is usually assumed1l: 

(H. 1)' Tt maps Œ into Œ for every t~O. 

We now prove sorne theorems under (H. 1). 

THEOREM 2. 1. (STRONG MARKOV PROPERTY) Jf Xt satisfies (H. 1), then for 

every Markov time a and for any bounded Borel function f(w) on (W,I.B), 

(2. 1) 

holds with P,-probability 1.2l 

Proof. Since co is a trap according to (P. 3), it suffices to show that for 

every jE[ and any BEI.Bcr+, 

(2. 2) 

Making use of (H. 1) and performing the same calculation as K. Itô [5; p. 15], 

we see that for any BEI.B<>+ 

= 

(2. 3) E,( J e-"''f(xcr+t!dt; B )=E,(E," ( J e-"''f(xt)dt );B). 
0 0 

Hence putting 

(2. 4) 

we have 
~ = J e-"'tg(t)dt= J e-"''h(t)dt. 

0 0 

According to the right continuity of the path, g(t) and h(t) are right continuous, 

so that it follows from the uniqueness of Laplace transform that for every t~O 

g(t) =h(t), 

which is what we wanted to show. 

THEOREM 2. 2. The accessible relation is transitive. Strict/y speaking, if x-è>y 

and y-è>z, then x-è>z. 

To prove this we shall first show 

LEMMA 2. 1. Suppose that x-è>y. Then given any open set VEy, there exist 

a k>O and an open set U"Jx such that for every tdf 4l 

(2. 5) E~;(e-"v)~k. 

1) G. Hunt [ 4, p. 360] has proved that (H. 1)' is equivalent to (H. 1) under sorne conditions. 
2) K. Ito [5] proved this fact under (H, 1)'. 

3) E,(f(w); B)=Jf(w) P,(dw) for BE'i8 and a Borel function f(w) on (W, 'i8). 
B 

4) (] means the closure of U, i. e. the sm::\llest closed set containing U. 
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Proof. We choose an open set V'Jy whose closure is contained in V. Since 

x-y, we have 

(2. 6) 

According to Urysohn's Lemma there exists a continuous function f~O which is 

equal to 1 on V' and to 0 on V". Now we shall show that 

(2. 7) E~Cf(x,,))>O for sorne to~O. 

For this purpose we assume that Ex(/( xt)) =0 for every t ~O. Then, since f is 

non-negative and equals to 1 on V 1, 

P,(x,EV')=O for every t~O. 

Hence it follows from the right continuity of the path that 

P,(XtE V' for some t~O) =cO, 

which implies P.(av'<+=)=O. This contradicts with (2. 6). Thus (2. 7) has been 

proved. Hence again using the right continuity of the path, we have 

(2. 8) ExCf(x,))>O for every tE(to,to+e), 

where e is a certain positive constant. From this we get 

= = 

(2. 9) Em( J e-'f(x,)dt )= J e-'ExCf(x,))dt>O. 
0 0 

Therefore making use of (H.l), there exist a k>O and an open set U 3X such 

that for every ~EU 
= 

(2. 10) E<( J e-tj(x,)dt )~k. 
0 

On the other hanà since /=0 on V", we get for any ~EÈ 

= = 
(2. 11) E<( Je-' f(x,)dt )~Eç ( J e·'dt) =Et(e-av) . 

o av 

Thus the lemma was completely proved. 

Proof of THEOREM 2. 2. We take an arbitrary open set V'! z. Since Y-""Z, 

replacing x by y and y by z in the previous lemma, we have 

(1. 12) 

where U is an open set containing y. 

We now put a~(w)=au(w)+av(W~u). Since it is evident that av~a~, we 

have 

(2. 13) 
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Here we have used the fact that XauEÜ and that E"(e-"u)>O. 

Finally, we shall give a lemma which is useful for §4. 

LEMMA 2.2. If x is not a trap, there exista k>O and an open set U:Jx 

such that 

EtC11u")~k for every ~EU. 

This lemma is essentially due to E. B. Dynkin. The proof of K. Itô [5] under 

the assumption (H. 1)' is also available to our case under (H. 1). 

§ 3. Conservative property. 

In this section we assume also (H. 1). 

THEOREM 3. 1. The following three conditions are equivalent to each other. 

(1) The process starting from xEE is conservative, that is, P(t,x,E) =1 for 

every t;;:;;;o. 

(2) For every sojourn set S with the center x, 

(3. 1) E,(!Jsc)= I Ps(t,x,S)dt==. 

(3) For every open sojourn set S with the center x, 

= = 
(3. 2) E"( S Xs(Xt)dt)= S P(t, X, S)dt==,l) 

0 0 

where Xs is the indicator function of S. 

Proof. First, it is easily shown that the condition (1) impies the condition 

(2). In fact, if (1) holds, then Pla===) =1. Hence by the definition of sojourn 

sets, P"(a8c==)>O. From this we get 

E"((J,c) =oo. 

Next it is evident that the second condition implies the third condition. Finally, 

we shall show that the third condition implies the :first condition. For this pur­

pose, suppose that the condition (1) does not hold, namely that E"(e-"=) > k for 

sorne k>O. 

Let XE be the indicator function of E. Then we have 

= 

1) G(x, •) = j P(t, x, • )dt is called Green measure, which may take + oo. 

" 
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E,( I e-txE Cxt)dt) =E,(J e-tdt )=1-E,(e-cr=). 
0 0 

But, since XE belongs to Œ, E,(e-cr=) is continuous in x. Hence we see that U = 
{y; yEE, EvCe-"=)>k} is an open set containing x. Thus it is enough to show 

that (i) U is a sojourn set with the center x and that (ii) 

(3. 3) j'P(t,x,U)dt<--~-.=. 
0 

(i) Suppose that U is not a sojourn set with the center x, that is, 

P,(lluc =a=) =0. Then we have 

so that noting that, U is open and that every sample path is right continuous, it 

is easily shown that 

Hence from the definition of U we get 

We now calculate E,(e-cr=). 

This is a contradiction. 

(ii) We have for any y of U 

k <Ev(e-"= )$PvCa=$t) +e-t, 

so that, for a large to 

holds whenever YEU. Therefore we get for every YEU 

P(to, y, E) =l-PliJ=~to) <1-k'. 

Hence it is evident that a Borel set A= {y; YE E, P(to, y, E) <1-k'} contains U. 

Thus it is enough to show that 

(3. 4) s P(t,x,A)dt<+=. 
0 

To do this, we shall prove that for any n;:;;o 
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(3. 5) Sn(t)= i; P(ito+t,x,A);;;_ ~ (1-k'); 
i=O i=D 

holds independently of t~O. Noting that co is a trap, we have by the definition 

of A 

P((n+ 1)to+t, X, E)= J P(nto+t,x,dy)P(to,y,E)+ J P(nto+t,x,dy)P(to,y,E) 
A E-A 

:;;_(1-k')P(nto +t,x,A) + P(nto +t,x, E- A). 

Consequently, 

P((n+1)to+t, x, E) +P(nto+t, X, A) 

:;;_(1-k')P(nto+t, X, A)+ P(nto+t, x, E). 

Repeating the same calculation as above, we get 

n 

Sn+l(t);;;_P((n+1)to+t, x, E)+ ~ P(ito+t, x, A) 
i=1 

n 

:;;_(1-k') ~ P(ito+t,x,A)+P(to,x,E) 
i=O 

:;;_(1-k')Sn(t) + 1. 

Since So(t);Sl, (3. 5) is obtained by induction. Now making use of (3. 5) to 

calculate th~; left side of (3. 4), we have 

to , J P(t,x,A)dt= J ,E P(ito+t,x,A)dt 
0 0 

This completes the proof of Theorem 3. 1. 

THEOREM 3. 2. If x is conservative onE and if X-"Y, then y is also conserva­

live on E. 

Proof. Suppose tf'at y is not conservative on E. Then since E~(e-"=) is 

continuous with respect to r;, it is greater than sorne positive k on the closure of 

an open set V containing y. 

We now put a:a=av+a=(wtv). Noting that a:a~a=, we have 

(3. 6) E,(e-"= )~E,(e-"'=) 

=E,(e-"vE, (e-"=)) a-v 

~k·E,(e-o-v)>O. 

To get the last inequality, we have used the relation X-"Y· Therefore it turns 

out that x is not conservative on E, contrary 'to the assumption. 

Next we apply Theorem 3.1 to the Markov processes whose sample path has 
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only jumps with probability 1. Then we can obtain Feller's theorem concerning 

so called purely discontinuous Markov processes. But here, for short, we consider 

the case when E is a denumerable space, i.e. E= {1, 2, 3 .. · · .. }. In this case our 

processes defined in §1 automatically have the following properties. 

1. Every path w is a right continuous step function for t<a~. 

2. Since the hypothesis CH. 1) is trivially satis:fied, the strong Markov property 

holds for every Markov time (cf. Theorem 2.1). 

3. De:fine the :first jumping time by a1(w)=sup {t: Xo(w)=Xs(w) for every 
s::;t}. Since 1J1 (w) is a Markov time, it follows from 2 that 

(3. 7) 

where P(x) is a non-negative number which cannat take += (from the right 

continuity of path and (P. 2)). If p(x)=O, x is a trap. 

4. If x is not a trap, put 

(3. 8) II(x,y) =P,,Cx", =y). 

If x is a trap, put 

Then 

II- II x t · · ' ( x 1 1 2 ...... =) - c 'y), y--71. 2 . ...... , = 
is a strictly stochastic matrix on H. 

Further we denote by IIn(x,y) the element of the matrix IIn=II•II· .... ·II 

(n~l). II 0 is, by definition, the identity matrix on E. 
Finally we denote by II A the restriction of II to a set A which is de:fined by 

(3. 9) IIA(x,y)=II(x,y) if x,yc:A, 

=0 otherwise. 

We understand II'l(x,y), II'; in the same way as for II. 

W e shall now characterize the conservative property by means of p and II. 

These quantities, however, are determined by the generator of the process, so that 

we can say that the conservative property is characteaized by the generator. 

THEOREM 3. 3. (W. FELLER) The following three conditions are equivalent to 
each other. 

(1) The process starting at x is conservative, that is, 

P(t, x, E) =1 for every t~O. 

if x=y, 
otherwise. 
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(2) 

(3.10) 

and 

(3.11) 

Takesi WATANABE 

2.:.Ircx,y)=1 (n=O, 1, 2, ...... ), 
yEE 

= " 1 2.:. 2.:. II .... cx,y)~P (~y) =co, 
n-O yEA 

for A satisfying 

(3.12) lim 2.:. II"l(x,y)>O. 
n~= yE.A 

(3) (3. 10) holds and 

= 1 
2.:. 2.:. ll'"(x,y) p(y) =co, 

n-o yEA 
(3. 13) 

for A satisfying (3. 12). 

To prove this we shaH prepare two lemmas. 

LEMMA 3.1. Suppose that (3.10) holds. Then A is a sojourn set with the 
center x if and only if (3. 12) holds. 

Proof. It is enough to show that 

lim 2.:, II"l(x,y)=P,(d..._a=d=). 
n~oo yf.A 

For this we de fine jumping times: 

do(w) = 0 (0-th jumping time), 

d1(w) = first jumping time, 

dz(t?) = d1(~) +O'l(W~1) (sec~nd jumping time), . . . . . . . . 

Here if d~c = co, we put O'k+l = dk;+2"' =oo. 

First we shall prove that the condition (3. 10) implies 

(3.14) P,(dn<co, Xa,.=oo)=O. 

In fact, if (3. 14) is not true, we have 

O<P,( dn<co, Xan=co) 

=ll"(x, co). 

This contradicts (3. 10). 
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Next it follows from (3.14) that if /Jn-1 <= and if 11n==, then Xa,_1 are 

traps with P,-probability 1. Hence we have 

(3.15) P,(tJAc=a=)= lim{ 23 P.,(Xu;EA, i<k; ak-1<=, a"==) 
n~oo JG=l 

+P,(Xa;EA, i<n; an<=)}. 

To calculate the right side of the above equality we shall denote by T the totality 

of traps contained in A. Then we have 

= L: L: ll';;_-'(x,y)II(y, z) 
zfT yfA-T 

k-2 k-2 
= L: (L:ll A (x, y)II(y,z)- L: nA (x,y)ll(y, z)) 
~T ~A ~T 

P,(Xu.EA,i~n;an<oo)= L: ll'l-l(x,y). 
' yfA-T 

Therefore we have 
., 
L: P.,(Xu .EA, Î <k; lJIG-1 < =, dk = oo) + P.,(Xu /A, i :::;n; lJn < =) 
k-1 ' 

=~ L:CII~- 1 (x,z)-IJ~-·'cx,z))+ L: n"l-1(x,y) 
IG-lzET yfA-T 

=L: n"l- 1(x,y)+ L: II"l- 1(x,y) 
yfT y3A-T 

=L: ll"l-1(x,y). 
A 

Thus Lemma 3. 1 was proved. 

Next we shall introduce severa! notations: 

(
p(l) ü) 

P= 0c2Î .... __ , J=identity matrix, 

P (t)=(P Ct x y) x t1, 2•3•"',=) 
A A ' ' 'y-1,2,3, .. ·,= ' 

G C ) (G ( ) x t 1, 2, 3, ... ' = ) 
A a = A a, x, y' y-1,2,3, ... , = ' 

= 

where GA(a,x,y)= s e-"'tPA(t,x,y)dt. 
0 

LEMMA 3. 2 For any set A and a2:;0 , 

(3.16) GA(a) = i:; ((al+ P)-1 P·II A)"'• (al+ p)-1• 
n-o 

If a=O, the both sides of (3.16) may take +=. 
Proof. Define 
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P';t>(t, X, y) =P,,(Xe=Y, dn;;;;,_t<dn+l), 

then we can see that it is equal to 

tl t-tl t-tl-tz-· .. -t n-1 

(fe-Pt 1PII..tdtlf e-Pt'Pli...tdtz··-5 e-Pendtn )cx,y). 

Renee we have 
= 

G~)(œ, x, y)= S e-""eP1"'\t,x,y)dt= ((al+ P)-1PJI A)n(al + P)-l(x,y). 
0 

Noting that P..t(t,x,y)=r,P~"'\t,x,y), (3.16) is obtained immediately. 
n=O 

Proof of THEOREM 3. 3. Summing up Theorem 3.1, Lemma 3.1 and Lemma 

3. 2, it is evident that the condition (3) implies the condition (1). Renee it suffices 

to show that the condition (1) implies (3.10). But this is directly derived by the 

definition of II. 

§4. Recurrence 

In this section we shaH assume the following hypothesis (H. 2) besicles (H. 1): 

CH. 2) Given any closed set F for every fE Œ, 

(4. 1) E.,(f(xuF))= S f(y)hF(x, dy) 
A 

belongs to Œ. 

Here hF(x, •) is the distribution of x"F which we call the harmonie measure 

over F ineuced by the process Xe, since this measure is exactly the function­

theoretical harmonie measure in case Xe is the two-dimensional Brownian motion. 

Using this notation, we have 

(4.2) 

THEOREM 4. 1. x is a recurrent point if and only if 

= 

(4.3) s P(t, x, U)dt== 
0 

for every open set U containing x. 

Proof. (i) First we shall show that if x is a recurrent point, then ( 4. 3) will 

hold. Suppose in the contrary that for sorne open set U JX 

= 

(4.4) s P(t,x,U)dt<=. · 
0 
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The condition ( 4. 4) implies E.,(duc) <oo, because 

~ ~ 

s P(t,x, U)dt=E.,( s Xu(Xt)dt) 
0 0 

uuc 

;;SE.,( S Xrr(Xt)dt )=E"(tJua), 
0 

where Xu is the indicator function of U. 

Let f be a continuous function which equals 1 at X, 0 on u• and lies between 

0 and 1 elesewhere. Then we have 
~ 

lim Gœj(x)=Go+f(x);;S J P(t,x, U)dt<+co. 
aH•O 

0 

Therefore, given any small e>O, there exists an ao such that 

Gœ0 f(x)>Go+f(x) -e. 

Renee using (H. 1), we get 

GœofC~)>G+of(x) -e, 

whenever ~ runs over a certain open set V containing x such that VCU. But 

since G,f(~) is monotone non-increasing as a function of a for any fixed ~. we 

have 

(4. 5) G,f(~)?';;G+of(x)-e for every ~dl and for every O;;Sa;S;ao. 

On the other hand it follows from the definition of recurrence and from E.,(tJua) <oo 

that 

(4. 6) 

For short we denote duc by tJJ and tJu•+tJv(W~uc) by tJ2, repectively. Then accord­

ing to (4. 6), 

(4. 7) lim E"(e-"'",) =Px(d2 < + oo) =1. 
ao-;.O 

We now calculate G.,f(x) for O<a;S;ao. 

~ 

G+of(x)"?;Gmf(x)=E.,( J e-<>tj(xt)dt) 
0 

11t 

?;E.{ J e-œtj(Xt)dt) + E.,(e-"'"'Gœf(x"2)) 

0 

a, 

"?;E.,( S e-"'tj(Xt)dt )+ (G+of(x) -e)Ex(e-"'"2 ). 

0 
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Hence we have 

a, 

E,( J e-"tf(xc)dt )-eoE,(e-""z)1l · 

(4. 8) G+of(x) ?;,_----"o--1.,.----E---,--c e---cœa=-,--) -----

As a tends to 0, the right si de of ( 4. 8) goes to co. This is a contradiction. 

(ii) Suppose that x is not a recurrent point. According to Lemma 2. 2 and 

the definition of recurrence, we can choose sorne constant k>O and two open sets 

U, U' (U'C U) containing x su ch that 

(4. 9) 

and that 

(4. 10) P.Cau•+aw(w~u•)<+oo)= J huc(X, dy)hu'(y,U')<l. 
u• 

Using (H. 2), it is easily shown that the right side of (4. 10) is continuous in x, so 

that, for a certain e>O and for sorne open neighbourhood V(VCU') of x we have 

(4. 11) 

whenever ~ runs over V~ Hence noting that 

we g2t from (4. 11) 

(4. 12) P~(du•+av(W~u.)<+co):;S;1-e for every ~EV. 

W e now define 

ao(t?) =0, 111(w) =auc(w), 11z(w) =111(w) :+nv(W~1), . . . . 
( 4. 13) ~ ~ . . 

if a;=co, then we put 11i+I=11;+z=···=co. 

According to ( 4. 12) we get 

P,(t1zn <+co ):S;(1-e)". 

Using this and (4. 9), we shall calculate GœXv(x). 

= ~n~ 

GœvX(x) =E.{ j' e-"'tXv(Xc)dt )= .. fa E,( J e-"'tXv(Xc)dt). zJ 

0 u2n 

1) The first term of the numerator is positive, decreasing as a function of a and indepen­
dent of the é. Hence we may assume that it exceeds é for every a~ao . 

2) Added in proof: Here we have used the fact that fTn t (]"- with P,-probJ.bility 1, which 
we shall show in the proof of Lemma 4.2. 
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<T?n+l at 

E,( J e-"'tXv(Xt)dt );;;;E,(e-"'"2nE,"2n( f e-"'tXv(Xt)dt )~k(1-e)n. 
a2n 0 

Renee we get 

(4. 14) 

But since the right side of (4. 14) is independent of a, 

S P(t, X, V)dt=Go+Xv(x) =lim GœXv(x)<_k_ < +oo, 
œj,o - e 

0 

which is what we wanted to show. 

CoROLLARY. Every recurrent point is conservative. 

Combining Theorem 3. 1 and Theorem 4. 1, our statement is evident. 

Next we shall give two lemmas useful for the subsequent theorems. 
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LEMMA 4. 1. If x and y have communication with probability 1,1) both x and 

y are recurrent. 

Proof. lt is enough to prove that x is recurrent. For this purpose, given 

any pair of open sets U and U' containing x such that U'CU and that Ub, we 

shall show 

(4. 15) 

Using the assumption Py(11u-,<+oo)=1 and (R. 2), given an arbitrary small e>O, 

there exists an open set V containing y such that 

(4. 16) 

With no loss of generality we may assume U.,V=r$. But since P,(11v<+oo)=1 

by the assumption, we have 

P, {qv +11Ui(w~v) < +oo} =E,(P,"/11ui< +oo))2;;1-e. 

Renee noting that 11ue+t1iJ,(wtua);'S;t1v+t1rr,(w&v), we get 

P,(11ua +11;;,Cw;ua) < +oo )2;:1-e, 

which shows (4. 15). Thus Lemma 4. 1 was completely proved. 

LEMMA 4. 2. Suppose that x is a recurrent point which is not a trap and 

that U is an open set containing x whose closure is compact and Ex(11ua)<+oo. 

Then given any open set V (VCU, V3x), 11,. defined by (4. 13) is finite with P,­

probability 1 for every n, and as n goes to oo, 11n t oo with P.-probability 1. 

1) Strictly speaking, for any open U3 x and for any open V3 y 

P,(t1v < + oo )=Py(t1u < + oo )=1. 
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Proof. (1) To prove the first statement it is enough to show that O"zn<+=. From 

the definition of recurrence, 112 < +=. Renee according to (H. 2), given an arbitrary 

small e>O, V'={~; ~EV, PE(trz<+=)>1-e} is an open set containing x. Putting 

a;=auc+av'(w~uc), 11~=a;+a2Cwt~) and noting that 11:~114 and that P.(a;<+=)=1, 

we have 

P,.(a4< += )~P,.(64 < +=) =E,.(P,.,A(Jz< += ))~1-e, 
2 

which shows P.,(a4<+=)=1. By the same argument, we have P,.(6zn<+=)=l. 

(2) Since a,(w) is an increasing sequence of n for any fixed w, lim a .. (w) 
nt~ 

=6(w) is weil defined for every w. To prove the second statement it is enough to 

show that P,.(a=co)=l. In the contrary, if we assume that P,.(a<=)>O, noting 

that P/6===)=1 (from Corollary to Theorem 4. 1) we have P.,(6<a~)>O. There­

fore, the set {w;a(w)<a=(w)} is not null. If WE{w; a(w)<a=(w)}, according to 

(W. 2), Xo--(w)=limXo-n(w) exists. But from the definition of 6zn and 6zn+r, Xo--(w) 
n'~ oo 

has to belong bath to ·y and to uc. This is impossible_Il 

THEOREM 4. 2. If x is recurrent and if x-y, y is also recurrent. 

Proof. It is enough to show that the condition of Lemma 4. 1 is satisfied. 

(1) y is accessible from x with P,.-probability 1. 

By the assumption, givenanyopen set.V containing y,k=P,.(av<+=)>O. It 

remains only to show that k=l. Now we take U as in Lemma 4. 2 and given 

any small e>O, choose an open set U1(Ü'CV) containing x which satisfies 

PE(av<+co)>k-e for every ~E U1 

Then by the second statement of Lemma 4. 2,2> there exists a certain constant r 
independent of e such that for sufficiently large n>no 

(4. 17) 

Therefore, using the first statement of Lemma 4. 2, we have 

~r .. +(1-rn)(k-e). 

Noting that Tn~r>O, we obtain 

k 1-r.. 1-r ;::::: 1----•e;::::: 1--- •e. - rn - r 

This shows that k=l. 

1) This part of the proof was suggested by K. Itô. 
2) Lemma 4. 2 is applied, replacing V by U'. 
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(2) x is accessible from y with Py·Probability !. 

Suppose that for sorne open set U1 3 x 

Pl au-,< +oo) <œ<1 . 
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Here we may further assume that Ü' is contained in a certain open set U for 

which P,(11u•<+co)=l. Using (H. 2), we can take an open set V:Jy such that 

V nU=,P and 

P"(aü,<+oo)~œ for every 1}EV. 

Next we can see that for a small open U 11 (CU') cantaing x 

(4. 18) P,{a-v<au 0 +a ,,(w; )} ={1>0 .ll u uc 

On the other band, noting that V nU=q, and U 11CU1, we have 

(4. 19) 

Now putting 11z=11uc+l1ü,(Wtuo), we shall calculate the left side of (4. 18). 

{j=P,(av<az) =P,{az=a-+a-"(w;_), a-v<az} v u v 

This is a contradiction. Thus Theorem 4. 2 was completely proved. 

Next we shall characterize recurrence by means of sojourn sets. For this 

purpose we shall define a special sojourn set. 

DEFINITION 4. 1. A sojourn set S is said to be minimal if S contains no proper 

sojourn sets. Here we say that S' is a proper sojourn set of S if S' is a sojourn 

set and if S1CS(f_S1• 

We now put A,.= {y; x-+ y}. Then it is almost evident that A, is a closed 

sojourn set and that P.(aAg,=a=)=L 

THEOREM 4. 3. x is recurrent if and only if x is conservative and if A, is 

minimal. 
Proof. (1) Supposing that x is recurrent, we shall show that P,(a==oo) =1 

and that A'" is minimal. First, if x is a trap, our statement is trivial. Next, if x 

is a recurrent point which is not a trap, according to Corollary of Theorem 4. 1, 

x is conservative. Further as was shawn in the proof of Theorem 4. 2, any two 

points which belong to A, have communication probability-1. This shows that 

A,. bas no proper sojourn sets. 

1) Define tr2n as in (4.13), for a pair of U and U'. Then if .e=O for every open U"(CU'), 
by the consideration analogous to the first statement of Lemme 4.2, we have 

Px(IJ"v<tT2n)=0 for every n>O. 

This contradicts the facts that tr21, t oo and that P,(~rv<+=)>O. 
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C2) If x is conservative, it-follows from Theorem 3. 2 that aU the points be­

longing to Am are conservative. Hence if A., has no proper sojourn sets, x and 

any fixed y E A have communication with probability 1. Therefore, according to 

Lemma 4. 1, x is recurrent. 

THEOREM 4. 4. If a compact set K contains no recurrent points, then for 

every XEE 

C4. 20) f P(t, x, K) < +oo. 
0 

Proof. Let y be not recurrent. Then it follows from the proof of Theorem 

4. 1 that there exists an open neighbourhood U(y) of y such that 

(4. 21) f P(t,r;, U(y))dt<ky<+oo 
0 

holds independently of r;E UCy). 

We now take such open sets for every YE K. By compactness of K, it is possi­

ble to cover K with a finite number of U(y). We shall denote these sets by Ur, 

U2, Un and calculate J P(t, x, U;)dt, using the passage time 11; to U;. 
0 

= = = J P(t, x, U;) dt=E.,( J Xu;(Xt)dt) = E.,( J Xu;Cxt)dt) 
0 0 ai 

= 

=E.,(E"'"i(J Xu;Cxt)dt);a;<+oo )::::::k;<+oo, 
0 

so that we have 
= = 

f P(t,x,K)dt;;;;:; ;~ f P(t, x, U;)dt;;;;:; ;~ k;<+oo. 
0 0 

This completes the proof. 

CoROLLARY. Suppose that E is compact, that at !east one point belonging to 

E is conservative and that any two points of E have commumication. Then 

every point of E is recurrent. 

§5. Applications of §4. 

In this section we shall apply the results of the preceeding section to special 

cases. 

I. Case of E= {1. 2. 3·· .......... }. 

In this case ali the processes defined in §1 trivially satisfy the hypotheses 

CH. 1) and CH. 2). Therefore the criterion of recurrence by Green measures 
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(Theorem 4. 1) is always true. Furthermore, since the topology in E is discrete, 

.x is recurrent if and only if 

(5. 1) 
r 

.J P(t, .x, .x)dt==. 
0 

First we shall consider the case in which x is not a trap. Then, putting A=E 
and a=O in Lemma 3. 2, we have 

= 

(5. 2) S -( = n '\ 1 P(t, x, x)dt- .,E;/1 (x, x)/ p(x). 
0 

But P(x)>O, as x is not a trap. Therefore the condition (5.1) is equivalent to 

(5. 3) :L; IJn(x,x)==. 
n=O 

Next, even if x is a trap, (5. 3) holds by the definition of II. Thus we have 

THEOREM 5. 1. Let Xe be a Markov process on a denumerable state space. 

Then the point .x is recurrent if and only if (5. 3) holds. 

This theorem shows that the recurrence property does not depend on p( •) 

which describes the speed of our process. Analogously, using only Il, we can 

easily reformulate the criterion of recurrence by sojourn sets (Theorem 4. 3) in 

the more concretP- form, though the detail is omitted. 

II. Diffusi:m processes with Brownian hitting probabilities. 

Let E be n-dimensional Euclidean space. The process Xe on E defined in §1 

is called a diffusion process with Brownian hitting probabilities1l if the harmonié 

measures of .Xe coïncide with those of n-dimensional Brownian motion, i. e. with 

the n-dimensional classical harmonie measures. In this case it is easily shown 

that sample paths are continuous with probability 1. Further the continuity of 

classical harmonie functions implies that the following condition which is stronger 

than (H. 2) is satisfied: 

(H. 2) 1 hF(.x, •) maps any bounded Borel function f into Œ:. 
Next, it follows from the definition that any two points on E have communica­

tion and that the recurrence property of Xe is the same as that of n-dimensional 

Brownian motion. But since n-dimensional Brownian motion is recurrentll for 

n;:S2 and not recurrent for n>2, assuming that our process .Xe satisfies (H. 1) 

we have 

THEOREM 5. 2. Let .Xe be a diffusion process with Brownian hitting prob­
abilities. Then, 

1) This terminology is due to K. Itô and H. P. McKean. 
2) A Markov process xe is said to be recurrent if every point of E is recurrent with respect 

to Xe. Analogously, the non-recurrence of a process is defined by that of every point in E. 
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(1) if n~2, every point of E is recurrent and hence we have for every x 

and for every open set U (not necessarily containing x) 

(5. 4) s P(t, x, U)dt=oo; 
0 

(2) if n>2, every point of E is not recurrent and hence we have for 

every x and for every compact set K 

(5. 5) J P(t,x,K)dt<+oo. 
0 

III. Green measures of killed processes. 

Let Xc be a Markov process which satisfies (H. 1) and CH. 2). Furthermore 

we assume that any two points of E have communication. Given an open set A, 

the killed process x~ on A is defined as follows: 

(5. 6) X~=Xc if t<aA, 

=00 if f?;_11A, 

Now we denote the transition probabilities and the Green measures of x~ by 

P 0 (t, x, • ) and G0(x, • ), respectively; namely 

= 

G0 (X, • ) = J P 0(t, x, • )dt. 
0 

Since it results from Corollary to Theorem 4. 1 and from our assumption that 

every point of E-A is not recurrent with respect to xL it is expected that for 

every compact set KCE-A 

(5. 7) 

In fact, if Xc is not recurrent, our statement is clear by G0 (x, K)~G(x, K) and 

Theorem 4 .. 4. On the other band, if Xc is recurrent, using the same technique as 

in Theorem 4. 1 and Lemma 4. 2, we see that, for every xE E- A and for sorne 

open set U containing x, G0 (~, U) is uniformly bounded whenever ~ runs over U. 

From this we can easily derive (5. 7) in the same way as in Theorem 4. 4. Thus 

we have 

THEOREM 5. 3 The Green measures of the killed process are finite for every 
compact sets. 

1) We cannot derive this fact directly from Theorem 4. 4, because we are not sure that the 
killed process x1 satisfies (H, 1), though (H. 2) is always satisfied. 
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