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Recently Professor Keizo Asano has shown to the author that P-components of
normal ideals in rings can be characterized as follows:

Let G be a Brandt’s groupoid of normal ideals in a ring R with a unit element,
P a set of prime-spots, and ar the P-component of a in G. Then the mapping ¢s:
a—¢@p(a) =ap gives a homomorphism form G into the multiplicative semigroup &
consisting of all submodules of R, and it satisfies ep(a)2a. Conversely, let ¢ be
a mapping from G into © which satisfies ¢(a) 2a and ¢(ab) =¢(a)e(b) (ab: proper
multiplication). Then ¢ coincides with some ¢». Hence the set @ of all ¢ satisfy-
ing ¢(a)2a and ¢(ab)=¢(a)e(b) forms an atomic Boolean algebra under ¢<yr,
where <y means ¢(a)<y(a) for all a in G.

In the present paper we shall generalize the above facts for the case of

semigroups.

1. Let o be an order of a (noncommutative) semigroup S with an identity 1.
A subset a of S is called a left s-o-ideal if (1) raZa, (2) a contains a regular ele-
ment? and (3) alSo for a suitable regular element 2 in S. Right s-o'-ideals are
defined in a similar fashion, where o/ denotes an order of S. If a is a left s-~-ideal
and a right s-“-ideal, then a is called an s--Y-ideal. An s-:-:-ideal is called an s-:-
ideal. '

Let { % -} be a system of orders which are equivalent? to a fixed order o of
S. Then any two orders in the system are equivalent to each other. The product
ai®gt of an s-i*-o%-ideal a and an s-p’-o-ideal b is called proper if k=j. If o, 1%, .-
are maximal orders, then the set G of all v-idels,® defined on this system of the
orders, forms the Brandt’s groupoid with respect to asb=(ab)*, where ab is proper.

We shall now impose that

1. o, of -+ are maximal orders of S.

2. A fixed order ¢ is regular®.

1) An element of S is called regular if it satisfies both right and left cancelation laws.

2) Two subsets M, N of S are called equivalent if there exist regular elements A, u, A, 4’
in S such that AMuCN and A'Ny'= M. Two orders are called equivalent if they are
equivalent as subsets of S. See [1]. [2] and [3].

3) An s-ideal a is called a v-ideal if a*=a"'"'=qa. See [3].

4) An order vof S is called regular when, for any x in S, there exist two regular elements
« and g in o such that xcaSo and gox So. See [1], [2] and [3].
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3. Ascending chain condition (A.C.C.) holds for integral two-sided v-p'-ideals
for a fixed order o'

Then it may be seen that every order o* in the system is regular, and the
A.C.C. holds for integral two-sided wv-o®-ideals. Moreover it is verified that the
A.C.C. holds for v-oi-p*-ideals which are contained in any fixed s-o-0*-ideal. Using
this fact we can prove that there exist, for any s-oi-o*-ideal a, a finite number of
elements ¢i, -, €, in a such that a* is generated by ¢i, --+, ¢,. That is, a¥=[cy, -,
cn] =(UT-10'cn™)*.

A subset A of S is called an of-o%set if o’4Ao*c A and A contains a regular
element of S. For any vi-o*-set A we define a closure operation as the set-theoretical
sum of all »-vi-o*-ideals generated by a finite number of elements in 4, i.e.

E(ilc)= U (Dialolcu.., Y g, 00)*,
aycA

LEMMA 1. If an oi-0*-set A is an o)-o'-set, then AU =AUV,

Proof. Let x be any element in AUY. Then there exists an v-0/-p-ideal ¢
=[c1, ***, Cm), cv€A, which contains x. Since a=0!(p/c;0'" - Poic 0¥ CSoiAo¥=A,
and a¥=[ay, -+, @n], av€aC A, we obtain xecCa*C A6, j.e. AUV CAG®, Similarly
AG® C AUD, Therefore we have AW =400 q.e.d.

Now we define 4 by A=A =AU, Then the operation A—A has the fol-
lowing properties:

1) AcA,

2) A=A,

3) If A, B are oi-o*-sets then AC B implies ACB,

4) If A and B are oi-o*-and o*-o--sets respectively, then A BC AB.

An o-of-set A is called closed if A=A. For s-ideals, the closure operation
coincides with the *-operation: a=a* Hence a is a closed ideal if it is a v-ideal.

LemMA 2. Let A, B be o-o%, oi-pl-sets respectively, and M a subset of S. If
AMCB and AASB for a regular element A, then AMCB. Particularly, if a, b
are s-0i-0%-, s-o-o--ideals vespectively, then aMCb implies oa* M b*,

LemMA 3. Let a, b be v-0i-0°, v-oi-o™-ideals respectively, and M a subset of S.
If aMcb then (cea)MCceb for any v-o-v-ideal ¢. If particularly axSb then
xealeh,

The proofs of the above two lemmas are similarly obtained as in [3, §5].

From now on ‘ideals’ will always mean v-ideals and °‘c-ideals’ closed ideals,
respectively.

Let p=pi be a prime ideal. The set p of all (prime) ideals which are con-
junctive to p is called a prime spot of S. Let p’=p* be a prime ideal conjunc-
tive to p=p#, then (a*“p)*=0' implies (a’*“-p)*=p* and conversely, In such a



On P-components of normal ideals in a semigroup 3

case a=a’* is called coprime to p. Let P be any set of prime spots in S. Then a
is called coprime to P when a is coprime to all prime spots in P.

We now define, analogously to the case of rings®, the P-component ap=0p"*
of an ideal a=a'* as the set of all elements # in S such that nxCSa for a suitable
integral ideal n=n# which is coprime to P. If n=n"* is conjunctive to n, then by
Lemma 2 nxCa implies xn’Ca and conversely. Hence ap is defined symmetrically
with respect to the left and the right orders of a, and represented as the set-
theoretical sum of all n-tea=qen’~! with n(n’) coprime to P.

Let P be any set of prime spots in S. Then {04, o0f, ...} forms an another
system of orders (equivalent to one another) of S. Our main object is the closed
oh-pk-ideals, In the following n, v/, ... will denote ideals which are coprime to P.

LEMMA 4. Let a=a'* be an ideal. Then ap forms a closed (c-) ob-0k-ideal, and
0p =050 =00E==0L a0k,
Proof. This is similarly obtained as in [3, §5J.

LEMMA 5. 0, 0f, ... form a system of regular orders equivalent to one an-
other.

Proof. Regularity was proved in [3, §5]. Equivalency is evident by Lemma 4.

LemMa 6. If U is an s-ob-oi-ideal, then N is a c-oi-ok-ideal.

LeEMMA 7. Let a and b be any two ideals Then

((@b)*)p=azbp.
The proofs of the above two lemmas are similarly obtained as in [3, §5].
LeEMMA 8. Let N be an s-vi-oi-ideal. Then .
Aol s A (o)) p s AT oL,

Proof. Suppose that % Coi. Then 050i% 0505 C 0805 ok ok S 0F Uoh S 0E050L =050

This implies 2 Cppop! = [(00)*)p] 1= ((0*0)* 1) =((0"")")p. Hence ASob

implies A< ((00i)~1)p. The converse is evident. The other part is similarly
obtained.

THEOREM 1. Let W be an s-oi-oi-ideal contained in ob. Then
a=U ~ (ofp?)1
is an s-vi-0*ideal, and

W = <Q*)P.

5) See [1] and [2].
6) Let a be any ideal. Then the mapping a—ap gives a groupoid-homomorphism from G of
all v-ideals onto the P-components of all ideals in G. Hence (a!)p=(ap)
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Proof. a is evidently s-pi-o*-ideal. Since a<?, W contains n—la for all n=n.
Hence A2n-tea for all n, hence A2 (a*)p. Suppose that aeA. Then there exist
aveN(=1, ..., n) such that ae€la, ..., a,]. Since ACo: by Lemma 8 ave (0%0)z
Hence there exists n=n# such that na»< (%) (y=1, ..., #). On the other hand,
naSo'A=U We obtain nav W~ (0%0)1=aqa, aven-lea*(v=1, ..., ). Hence ae€la:,
e @r] Srtea* S (a%)p, as desired.

CorROLLARY. Let U be a c-oi-oi-ideal contained in vh. Then there exists an
o-of-ideal o such that W=ap.

ReEMARK. Let U be an s-pb-0¥-ideal contained in pi. Then evidently ai=%~poio®
is an s-pi-p*-ideal and it is proved that A=(a¥)r. Hence by Theorem 1, we obtain
W= (") p=(0F)p=(0F)p=(0})p, where a;=U~0, az=U0"

THEOREM 2. The c-ob-0%-ideals N, B, ... form a groupoid Gp with rvespect to
the product WB=U_B, where N is a c-oi-ok-ideal and B a c-of-oo-ideal. Ge is homo-
morphic to G of all ideals as groupoids: G=Gp.

Proof. The mapping a—a,(a€G) is a homomorphism of G into Gp. If A is a
c-ob-0%-ideal contained in oi, then there exists a=a"*€G such that A=ap. If € is
a c-0b-0f-ideal not contained in 0%, then there exists ap(a=a?) such that ape®Coi.
Hence by the above corollary there exists b=>0%* in G such that ap+®&=0,. Hence
C=azplebp=(a"1eb)p, and the proof is complete.

THEOREM 3. Let a=a* be an integral ideal in G. Then the following con-
ditions are equivalent.

1. a is coprime to P.

2. a(o'®)-1 is coprime to P.

2. (o'o*)~la is coprime to P.

3. ap=nh.

3. ap=0%.

Proof. 1-2: ae«(po*)1=c is evidently a two-sided of-ideal contained in a.
Suppose that a is coprime to P. Then (a“p)*=p’ for any p=pii in p (peP).
Hence we have (¢“p)*=(a“p+(0io®)*) « (oio®)~1=(a“poin®)* « (oi0")-1=((a“p)o®)*s
(oi®)~1 = ((a“Yp)*o®)*e (0ip?)-1 = (00*)* o (pi¥)1=pi, 2 —>3: From ¢p = 06b20p2Cp,
we obtain ap=0%. 3—1: If ap=0}, then ap31. Hence there exists n=n’’ such
that lenea. Hence nZa. Thus a is coprime to P. Similarly we obtain
1-2/—3'—1.

The groupoid-homomorphism G3Gpr in Theorem 2 is characterized by the fol-
lowing

THEOREM 4. Let G be a groupoid of v-ideals defined on the system {vi, 0%, ...},
and M the set of all closed vi-o%-sets” of S. Then the mapping ¢p: a—ep(a)=ap

7) If S is a ring, then I coincides with the set of all céi-v¥-modules, each of which contains
a regular element. See [3, §5].



On P-components of normal ideals in a semigroup 5

from G into M satisfies ¢p(a)2a and @p(ah) =pp(0) +@p(6), a=a®, b= Con-
versely, if a mapping ¢ from G into M satisfies

D el@=2g,

2) e(ah)=¢(®e(),
then ¢ coincides with some ¢p. Hence the set @ of all ¢ satisfying 1) and 2)
forms an atomic Boolean algebra under o<\, where ¢<\lr means ¢(a)Syr(a) for
all a in G. Moreover, ap coincides with the set-theovetical sum of all inverse
image of ¢,(a).

Proof. The first part is easy. We now prove the latter part. Since ¢(o?) 20
and ¢(0)e (o) =p(0?), ¢(v?) forms a closed oi-semigroup®. Hence there exists a
set I; of prime oi-ideals such that ¢(o))=0},”. We shall now use P(i) to denote
the set of all prime spots which contain p=pii in ;. Then P()=P(k) for arbitrary
indices 7 and k. Because if P(B)_P(i), then we can take )’ such that P ep’,
peP(k), and po=c-tep/sc(¢c=c*) is not contained in every p in P(:). Hence
@(0)Coh,. This implies ps?Ce(0).10 Therefore P-1=cepriec!Ce(O@)e(c) S
@(copiec ) =¢(0%) =og§kgo’§/, i.e. p1Co}. This is a contradiction. Hence P(k) S P(%).
Similarly P(?) < P(k). Hence we obtain P=P(i)=P(k), as desired.

Next we prove that ¢(a) =ap.  Since 0j = () Ce(d)asa? = (0 )aa 'S
e(e(@aT=p(@aSel@plan) =p(aa) =) =¢(), we have vh=¢(a)a" and
ap=00=gs(a)ata=¢(a)o*. On the other hand, since ¢(0)Se(a)o*Se(a)p(®) Ce(a),

we have ¢(a)=¢(a)o°. Therefore we obtain ¢(a)o=0,=0p(0).

Suppose that A is the inverse image of cpp(a); If ced, then ¢p=ar. Hence
¢Cap, UcCap. Conversely let @ be any element in ap. Then there exists ¢ such
that aceecAzn—l-a. Since cp=ngpleap=pbeap=0ap, we have c€A. Hence ap=Uc. This
completes the proof. “

2. We now consider a lattice-formulation of P-components of two-sided p-ideals
in a semigroup. Let L be a lattice-ordered group (Il-group) with the ascending
chain condition for integral elements,'® and P a set of prime elements of L. A
P-component of an element of L can be defined as follows:

DeFINITION. The ideal generated by {ap=; pe P} is called a P-component of
aeL. Symbol: ¢pr(a).

The object of this paragraph is to prove

THEOERM 5. Let L be an I-group satisfying the ascending chain condition for
integral elements. Then the mapping ¢p: a—er(a) gives a homomorphism from

8) See 8§ in [3].

9) See §5 in [3]. If ¢ (0i)=S, then we define @(ci)=v$, where ¢ denotes the vacuous.

10) See §5 in [3].

11) An element x of L is called integral if x is contained in an identity of L. By the
ascending chain condition for integral elements, L forms a commutative group.
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L into the I-semigroup'® I consisting of all ideals of L, and it satisfies ¢p(a)3a.
Conversely, let ¢ be a mapping from L into X which satisfies ¢(a)3a and ¢(ab)
=g(@)p(b). Then ¢ coincides with some ¢p. Hence the set ® of all group-homo-
mor phisms ¢ from L into I, each of which satisfies ¢(a)2>a for every element acL,
forms an atomic Boolean algebra under an inclusion relation <, wheve ¢ <+r
means ¢(x)Cr(x) for all x in L.

LemMA. Let J(#I) be an m-ideal'> of L. Then there exists a suitable set P
of prime elements such that J=¢r(e).

Proof of Lemma. Since J2I and J+I, we can take a non-integral element ¢
in J. Let ¢c'~e=p: - P, be the factorization into prime elements p;. Then since
pi=>ct~e, we have p;ii<<c“ee]. Hence 'p,-‘le J. That is to say, P={p; p~teJ} is
non-void. We now prove that ¢p(e)=]. Evidently ¢,(e) is contained in J. Let
¢p(e)+] and take an element a€/J such that aéep(e). Then a“eipr(e). Let

(aue)'1=a—1me=_[{ p:i e the factorization into prime elements p;. Then a“e
i

= fl]lp;l. If p, -, Pt are contained in ¢p(e), then a“Yeegppr(e) and aegpr(e), a
cor;tradiction. Hence there exists p;! which is not contained in ¢p(e). On the
other hand, since p;j'<<a“ee], we have p;teJ. This is a contradiction. Hence
J=o¢p(e), as desired. ‘

Proof of Theorem. The first part of the theorem is easily obtained. We now
prove the later part of the theorem. Evidently ¢(e) forms an m-ideal of L. If
¢(e)#1, then by Lemma, ¢(e)=¢r(e) for a suitable set P of prime elements of L.
Since ¢(e)=a"tap(e) Sap(a)p(e)=a"p(a) Sp(a¢(a)=¢(a'a)=¢(e), we have
alop(a)=¢(e)=¢r(e). Hence ¢p(a)=appr(e)=¢p(a). Conversely, for any set P of
prime elements, the mapping ¢: a—¢(a) gives a group-homomorphism satisfying
o(@)3a. Itis easily verified that ¢p(e)=¢q(e) implies P=@. Hence the mapping
¢— P(p=¢p) is one-to-one between @ and T, where { is the set of all prime ele-
ments of L. If ¢p(x)S¢q(x), then PC Q. Hence the mapping ¢—P gives a lat-
tice-isomorphism between @ and $. @ forms therefore an atomic Boolean algebra.
This completes the proof.

REMARK. By the proof of Theorem 5, we obtain that @ is lattice-isomorphic
to the lattice € of all the /-ideals'® of L, and also to the lattice 2t of all the m-
ideals of L. Hence of course R is lattice-isomorphic to . In details this isomor-
phism is represented as follows:

12) A multiplication J+ J' of Jand J’ in § is defined as an ideal generated by ‘{xx’; x € 7,
x'€ J'}. Then § forms an /-semigroup ([4]) under this multiplication and set-inclusion
relation.

13) An ideal of an /-group is called an m-ideal when it forms a semigroup containing the
identity e. Then the set I of all integral elements forms an m-ideal, any and m-ideal
contains I.

14) Cf. [4] Chapter XIII.
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N—J=J(e, {p7*; peN}), (Ne&),
L—>N=JA\J*, (Jeh,

where J* denotes the dual ideal of J, and A denotes the intersection.
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