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The author once concerned himself to generalize the theories of bicompact
spaces by I. Gelfand, A. N. Kolmogoroff?> and by I. Kaplansky,?> and he character-
ized complete metric spaces and totally bounded uniform spaces by some systems
of real-valued functions.3> About the same problem, the recent paper by T.
Shirota has got more refined results.® It seems, however, that their attentions
have not yet been devoted to general complete uniform spaces. In this paper
we shall characterize a general complete uniform space by a directed system of
uniformly continuous functions from the space in a parallelotope and shall con-
sider a more general case.

Let R be a complete uniform space and let {U,|lacA; n=1,2--} bea
uniform basis of this space satisfying the condition that U%,.; << U,,.5> We denote
by D(R) the totality of uniformly continuous functions #(x) from R in to the paral-
lelotope P{I,lac A} (I, = {x|x-=0})® satisfying the following two conditions,

A) xeS(y, Uy implies |u,(x) —u, ()| < % (@ sort of Lipshitz's condition),

B) therve exist a finite number of a; € A (i =1,---, h) and a definite positive

13
numbey 1 such that \J u,,(x) =1,
i=1

where we denote by #,(x) the a-coordinate of the function #(x) ; hence #,(x) is
a real-valued uniformly continuous function.

Remarks. We can replace condition A) with the condition, |#,(x) —#,()]
ggg-, where k,(a€ A) are positive definite numbers. Condition B) is a

stronger condition than the condition that #(x):-|={0} for every x¢cR, i.e.
U #,(x) > 0.
@€

1) I. Gelfand and A. N. Kolmogoroff, On rings of continuous functions on topological
spaces, C. R. URSS, 22 (1939).

2) 1. Kaplansky, Lattices of continuous functions, Bull. Amer. Math. Soc. 55 (1947). This
paper was unknown by the author at the time.

3) J. Nagata, On lattices of functions on topological spaces and of functions on uniform
spaces, Osaka Math. J. 1 (1949).

4) T. Shirota, A generalization of a theorem of 1. Kaplansky, Osaka Math. J. 4 (1952).

5) Notations and notions in this paper are chiefly due to J. W. Tukey, Convergences and
uniformity in topology, 1940.

6) The notation P{f,|ec A} means the product space of Iy(aC A).
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Now we consider an ordering relation on D(R) by defining #(x) < «/(x) when
and only when #,(x) <#,/(x) for all «¢ A. Then the join #Vv of two elements
u,v of D(R) exists always in D(R), but the meet does not always exist in D(R).?
Hence D(R) is a partially ordered system and a directed system, but it is not a
lattice.

Definition. We call a non-vacuous subset x of D(R) a characteristic ideal
or c-ideal, if

1) m' >=mcp implies m’ €y,
II) mepu, m' €pimply mom’ € D(R) and m ,m’ € p,

III) for every #,€ D(R) there exists m < u such that m 2z u, .

Definition. If for a family {#} of c-ideals and for two elements «,#’ of D(R),
there exists #¢ {#} such that m¢< p implies ' <%V m, then we denote this rela-
tion by #’< = ({#}). This relation coincides with #’ <u if every element of {y}

contains an element m such that m < u.

Definition. We call a family {1} of c-ideals a max family if {u} satisfies
the following conditions,

1) for every #¢ D(R) there exists #' ¢ D(R) such that ' <wu ({¢});
w P (u}) and v’ 4 q ({¢})?® imply # £ pVq for every elements p,q of D(R),

2) v D pe€ {n} implies v€ {u} for every c-ideal v,
3) if py€ {u} and (;1 1y-1:¢, then Ny is a c-ideal and it is contained in {s:},
Y

4) {p} is a maximum family satisfying 1), 2), 3).

Definition. We put {u} (xo) = {1t] for all @y and ¢ >0, there exists # € st such
that a4y (x0) < e; s is a c-ideal].

Lemma 1. For every ag and xo, there exists a c-ideal y such that 1€ {1} (x0) ;

me p implies My (x) = % for x& S0, Uyen)-

Proof. For every positive integers 7,7 and for each ap¢ A, we can define
a real-valued uniformly continuous function f(x) such that 0< f (%) < %,
F@) = gx (6 G, W), £ () = F (50) 5 %€ Sy, Mage) implies | £ (x) £ ()]
< 21,,—, . The method of defining such a function is the same as in the proof of
Urysohn’s lemma.

Using such a function, we define m®(x) € D(R) so that 0< m)(xo) < % s
m&‘&(x):z-z}—ﬂm; S(xo, Uagni1))s MP(x) =0 (a==ao), and so that m<+V(x)
=mP(x) (¢ =1,2,---). Then the family. x = {m|D(x) 3m > m for some 7}

7) We use the symbols \/, /\ for joins and meets of elements of D(R) and for uniform
coverings, and we use Y, ~ for joins and meets of real numbers and for sets.
8) ' 4 p means the negation of ' < p.
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is a c-ideal satisfying the condition of this lemma.

Lemma 2. {4} (x0) is @ max family for each xo¢ R.

Proof. We shall prove firstly that {u}(xo) satisfies condition 1). Let # be
an arbitrary element of D(R), then from condition B) of D(R), there exist ap€ A
and a positive integer 7 such that #,,(x0) > 5 2,3 >0. For this # we define
u’ € D(R) so that uf,(x) = —2-,}-;1, #, =0 (e=Fap). By Lemma 1 we denote by

/¢ a c-ideal of {z}(wo) such that x& S(xo Uygnsr) implies #,,(x) :‘i?gflle for every
1 1 1

on TR T gl
A), we get ' <mVu for every mec p. Hence o/ < au ({p}).

mé< p. Then since u, (%) > o+ for x € S(x8, Uggus1) from condition

Next assume that ' 4 p ({¢}), then from the above arguement we see that

there exists x€ S(%o, Uggn+1) such that py(x) < uf(x) = anﬂ . Hence p,q(%0)
1 1
< 2n+1 2n+1 271

implies q (x0) < % Hence  poo(%0)" @uy(%0) < 51,; < #y(%0), and hence
upVaq

It is obvious that {u}(x,) satisfies condition 2). Next we prove that {z}(xo0)
satisfies also 3). Let uy¢€ {#}(xo) and ﬂ sy =i=¢. then for n’ € ﬂ 1y and for every

from condition A). In the same way we see that #' 4(q

mP e p, we get m A’ € py from cond1t10n 1) of c-ideal. Take mM € uy such
that m{Y(xo) < e for arbitrary ao and ¢ >0, then for sup(mM \n')=m,
Y
mep(xo) = sz;p mGX(xo) < e. Since me D(R), we get m¢ Q 1ty from condition I).
Hence [ uy satisfies condition II1) of c-ideal. Since ) uy satisfies obviously I),
Y Y

I, N 2y is a c-ideal and is an element of {u}(xp) from the above arguement.
Y

Lemma 3. [f every uyare elements of a max famlly {u}, then for a definite
positive number k, 1 = {m' |D(R)2m’ Zmpk = {m(x)~k}, {m(x)} =m¢€ py}
and ;} U5 are c-ideals and are elemenis of {1}.

Proof. It is obvious that % satisfies conditions I), III) of c-ideal. Let
m',m’’ € puy and let m/ zmpak, m'’ =mak; mncuy, then m’ =m’'V(mpk)
= V) A (m VEY=(m' N m) Ak, m = (m Y n) k. Hence (m/ A m'")
ZmNm) A (m" V) A k. Since m,n¢py, from conditions 1), II), (m’Vm)
A(m’"Vn)e py. Therefore m’ xm’’ € D(R) and m’ xm’/ € pf. Hence pf§ satisfies
also condition II) and is a c-ideal. Since g% py, from condition 2) we
get py€ {ul. £ we take m} = m Ak m™®cpyy, then szzp m§> € Q #k; hence
Qu'.;‘:%;¢. Therefore from condition 3) Qu’; is a c-ideal and it is an element
of {u}.

Let us assume that {u} is a max family, then for each ao€ A and each posi-
tive integer # putting #¢*™ = {u,(x)}, #,,(x) = -21;, u %) =0 (a=ap), we get
u/ (" satisfying condition 1) of max family for this #(** and {u}. For these

{1}, 2™ 347%™ we shall prove the following lemmas.
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Lemma 4. There exists %o = xo(ao #)ER such that uf§o™(xo) < ulio™(x)
= 71,,—, and for every p€ {u} there exists me p: my(%0) < w0 x0),

Proof. Firstly we show the existence of x¢ R and a’€ A such that for
every p€ {¢} there exists m€ p: my(x0) < ui(%), where we denote 2/(*0™ by
u’ and #(* by « for simplicity. For if we assume the contrary, then for every
x,a we get pg,,€{n} such that m¢cpy,,, implies m,(x) > u,/(x). For these
I “’zeRQeAﬂ‘k’“ =— pp is to be a c-ideal from Lemma 3. If m € no, then for each
% and each @ m€ uf ,, and hence m(x) = w ,(x)~k. Therefore m = u’  k, but
since #’ A k€ D(R) is obvious, this contradicts condition III) of c-ideal. Hence we
see that for every € {u} there exists m € x such that m,’(xo) < #4/(%o).

Next we show that #/(x0) <, (x0) for such a’,xo. For if we assume the
contrary: #4/(x0) > #,/(%0), then this formula combining with the above conclu-
sion implies that for every u€ {u} there exists m € u such that u,/(x0)“my(%0)
< ur(%0). Hence ' < au ({u}). This conclusion contradicts condition 1) of max
family, and hence it must be #4/(x0) < #,/(x0).

If we assume that &’ ==ap, then from #,(x0) =0, #4/(x0) =0 holds, but
this contradicts the existence of =z € u such that m, (xo) < #4/(%0). Hence for
every ao, # there exists xo = xo(ao #) € R such that for every p¢ {u} there exists
m € p such that Mige(wo) < #f(x0) < thay(%0) = 7177» and the proof of this lemma
is complete.

Definition. Put V,,. = {x| for every n¢€ {1} there exists m € o such that

M%) < ' P (%)}, then by Lemma 4 xo (ao 7)€ Vigu »

Lemma 5. V,.u C S%xo(ao 1), Uggn).

Proof. Let us assume the contrary and let us assume that S(xo, Wign)
AS(x", Uggn) = b, %" € Vayou. For these xo, x° we define the following two

. . 1
functions p,¢ in  D(R): p = {Pa(®)}, Puo(®0) < 250 (%0), Paolx) =5  for
1

% ¢ S(xo, agn); @ = {22}, Quo(a”) L #og(x7)s Quo(#) = 5 for  x ¢ S(a7, Usgn)-
Then since %o, " € Vagn, obviously «'4p ({u}), #’q ({#}). From S(xo, Uugn)
~S(x7, Uggn) = @, # < pV q is obvious, but this contradicts condition 1) of max

family. Hence it must be Vg C S %0, Wygn)-
Lemma 6. For every a,, n, (1 =1,---, h), {'I‘L‘lsz(xo(ai 1), Uaym,) 1= ¢ holds.
§=

Proof. 1. Let us assume the contrary, i.e. r’ﬁ S2(xoa; 1), Unyn,) = ¢, then
for every x € R there exists ¢ such that x& Sz(xo(i;: 9;), Uan; ). For each x€ R,
we fix one of such 4. Since from Lemma 5, for such 7, x¢ V,,;s, holds, noting
the definition of V,,.;, we see that there exists u(x,7)¢€ {¢} such that m ¢ u(x,7)
implies 7, (%) = #*™Xx). For a=ka;, from the proof of Lemma 4, there
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exists p(x,ad¢ {p#} such that me (x, &) implies m,(x) - u/ ™) x). Putting
(%, ) = (%, 2) for ¢ =a;, we get p(x,a)€ {n} for every a€ A having the
property that m,(x) == (%" (x) holds for every m ¢ u(x,a). From Lemma 3 we
get p 2%, ) = p'(x,i)€ {n}. For this p/(x,2), mep'(x,7) implies m,(x)
,_Zu;(“f:ﬂhk for every a.

2. Next putting v = sup {inf {m|me n/(x,7)} |x € R}, we show that v.€ D(R).
It is obvious that v has a definite value for each point of R, and that v satisfies
condition A) of D(R). We shall show that D(R) satisfies also B). Since
w' > D(R) (i =1, -+, ), there exist finite subsets F; ( =1,---,h) of A and
positive numbers I; (¢ =1,---, k) such that LI}V w@mX(x) 2> 1; >0 (i =1,-,h).
We put iQFi = F; F is a finite subset of A.u ) Ifet x be an arbitrary point of R
and let 7 be the fixed number for x such that x¢ S2(xe(a; 1;), Us;n;), then
U z'nf {m (x)\me p'(x,2)} = U (u’("‘i"fr)(x)mk) > 1;~k from the property of
/4’(x, 7) decided in1. Hence for each x€ER, U V%)= U nf {ma(x)lm €n'(x, i)}
> 1;~k for some 7. Therefore for every x we get U vw(x) =>( ﬂ IN~AkE>0, i.e

v satisfies condition B), and hence » € D(R).
3. From Lemma 3 and from 1 of this proof, N #/(x,Z) is to be a c-ideal.
rER

meN p'(x,7), however, implies mecu’(x,7) for every & and hence
m\zezl;zf {m|me p'(x,2)}. Therefore m_=v for every mEH u’(x,z), but this
contracts condition III) of c-ideal. Thus the first assumptlon ﬂ Sz(xo(a, n),
Us,;n,) = ¢ is impossible. By this lemma {S2(xo(a %), Usm)|a € A, n =12} is
a chauchy filter, and hence by the completeness of R, this filter converges to a
point of R.

Lemma 7. If the chauchy filter {SXxo(a n), Uw)lacA, n=12 -} con-
verges to a< R, then {1} = {u}(a).

Proof. Take arbitrary a, ¢ A and a positive integer #, then for xo = %o (o 1),
there exists méep such that my (%)< 217. for every u¢€{ul. Since

a € S (xo(ao 1), Uyyn), from condition A) we get my(a) < 31,7+ % + My (%0) <2’}_-2 .

Hence {yx} C {¢#}(@). Therefore from condition 4) of max family. we get
{1} = {n}(ad.

If {u}(x0) C {¢} and if {u} is a family of c-ideal satisfying conditions 1), 2),
3), then {u} C {p}(a@) for some a¢ R. Hence {u}(x0) C {u#}(a), but this is pos-
sible obviously only when xo =a. Hence {u}(x¢) = {#}; hence {u}(xo) satisfies
4), too.

Denoting by ®(R) the totality of max families of R, we get a one-to-one
correspondence between R and D(R) from the above conclusions. We shall
denote by D(A) the image of the subset A of R in ®(R) by this correspondence,
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Definition. We call a covering {D(U,)|r € C} of D(R) a uniform covering
of D(R), if and only if there exists # € D(R) such that if {x}(ay)¢ D(Uy) (7€ C),
then for some two points a1, @ of ay (7 € C), there exist u1 € {u}(a@), p2€ {u}(a2)
such that my € p1, mg € po imply 2 < my Vm,.

Lemma 8. In order that {®D(Uy)} is a uniform covering of D(R) it is
necessary and sufficient that {U,} is a uniform covering of R.

Proof. Necessity. Let {U,} be a uniform covering of R and let U,,, be a
uniform covering of the uniform basis of R such that UZ¥ < {Uy}. For these ao
and m, we put & = (0}, wag®) = 55 #a®) = 0 Cahran). I {u}(ar) & DU,
then we take @i, @; from @y so that @, is an arbitrary point of @y and
S%ay, Uygn) CUyéay =a>. From Lemma 1, we get € {u}(ar), u2€ {u}(az)
such that m’ €y implies m;o(x)f>,—2-1—,-; for x¢S(ar, Uugn), M’/ € 2 implies
my (%) = 2,,, for x ¢ SCaz, Uugn). Since S(a1, Uugn)~S(@2, Uugn) = ¢, u < m' YV m'’
holds for every m’ € p, m’’ € 2. Hence {D(U,)} is a uniform covering of D(R)
by the above definition.

Sufficiency. Let us assume that {U,} is not a uniform covering of R. If «
is an arbitrary element of D(R), then from condition B) of D(R) there exist a

I/
finite number of «; (Z =1,---, k) and a positive integer # such that .L;Jluwi(x)

13 3
- i,,, >0. Since for these a;, %, /\ Us;2.1 is a uniform covering of R. /\lu,,.m
i=1 n i=
< {Uy} holds. Hence there exists UE/\IL,MH such that U~ U;=i=¢ for all 7.
1
= i -
Next we take ay so that ayc¢ U~ Us;, i.e. {p}(uy)EDUy). If @, az are two
points of @y and if u, € {#(@), r2€ {1} (az) then there exists m’ ¢y, m”é,uz
such that m/ (a) < —2-371 » myl(a2) < o 2,,+1 Since @, a» , X0 € U € /\ Ue;n1
< Uy;ne1, from condition B) we get m (x0)<mw,(a1)+2nﬂ< 2“’ m /(%0
1 1 1
<m”(a2)+?—+‘l<§ﬁ . Hence mf (xo)Ymf/(x) < o
um’'Vm/ for every m’ €y, m’’ € py. Therefore {D(Uy)} does not satisfy the

We take a definite point x € U. Then there exists a; such that #,,(x0) =

<u,,(x%0), and hence

condition of the above definition, and hence {®(Uy)} is not a uniform covering
of D(R).
From this lemma we get the following

Theorem 1. In order that complete uniform spaces R, and R. are uni-
formly homeomorphic it is necessary and sufficient that D(R,) and D(R,) are
order-isomor phic, where D(R,), D(Ry) are directed systems of all functions
satis fying conditions A), B).

Next let us consider a uniform space without completeness property. Let
Uue and P{I,la€ A} have the same meaning as in the case of complete space.
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We denote by D/(R) the directed system of all the uniformly continuous functions
from R into P{I,|a<c A}-{0} satisfying condition A). We regard this directed
system as having real numbers [ such that 0< 8 <1 as operators, and define
Bu = {Bu,(x)}. We call a subset » of D'(R) a c-ideal as in the previous case,
if u satisfies conditions 1), II), III). In this case, max family is a family of
c-ideals satisfying conditions 2), 3), 4), and condition 1) is unnecessary.

We can prove in the same way as in the previous case that {1}(xo) = {#|
for every a, ¢ >0 there exists # ¢ z such that #,(x0) < ¢, 2 is a c-ideal of D’(R)}
satisfies condition 2), 3). Conversely, if {¢} is a max family of c-ideals satisfying
conditions 2), 3), 4), then {x} C {#l(x0) for some xp¢€ R. For if we assume the
contrary, then for every xo¢ R there exist a(xo)€ A, «(x0) >0 and p(xo) € {1}
such that m ¢,p(x%0) -2 e(x0) >0 for every m¢c u(xo). Then as in the previous
case ﬂRu"’(xo) is to be a c-ideal of D/(R) for a positive number % Putting
snp {?;lef {makime p(xo)} |%0€ R} = u. we see easily that u(xo)->e(xo)~k >0.
Since obviously # has a finite value at every point of R, # is an element of D’(R).
If me C 2% %), then for every xo, m_=mg sk for some my€ (%), and hence
m_- z;}\fm,\ Elme u(xo)} for every xo€ R. Therefore it must be m > %, but this
contradicts condition III) of c-ideal. Hence we get {1} C {#}(xo) for some xo€ R
and {u} = {#}(xo) from condition 4% of max family.

It is obvious that in order that for every 8: 0< 3 <1, there exists #’ € D'(R)
such that fu’ — u it is necessary and sufficient that #,(x) is a definite number
k, >0 for each a¢ A. We denote by T/(R) the totality of max families of D'(R).
To define uniform coverings of ©®(R), we replace “there exists #< D(R)---" in
the previous definition of uniform covering of ®(R) with “there exists # € D'(R)
such that S#’ —u for every 8 and for some #/ € D'(R)”. Then we can show
easily that {®(U,)} is a uniform covering of D(R) if and only if {Uy} is a
uniform covering of R. Thus for a general uniform space we get the following.

Theorem 2. In order that two uniform spaces R, and R» are wuniformly
homeomor phic it is necessary and su fficient that D'(R.) and D'(Ry) are operator-
isomor phic.



