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The author once concerned himself to generalize the theories of bicompact 

spaces by I. Gelfand, A. N. Kolmogoroff1 ' and by I. Kaplansky,2' and he character

ized complete metric spaces and totally bounded uniform spaces by some systems 

of real-valued functions.3 ' About the same problem, the recent paper by T. 

Shirota has got more refined results.4 ' It seems, however, that their attentions 

have not yet been devoted to general complete uniform spaces. In this paper 

we shall characterize a general complete uniform space by a directed system of 

uniformly continuons functions from the space in a parallelotope and shall con

sider a more general case. 

Let R be a complete uniform space and let {liam 1 a E A ; n = 1, 2, · ··} be a 

uniform basis of this space satisfying the condition that ua-Ml< U, .... 5' We denote 

by D(R) the totality of uniformly continuons functions u(x) from R in to the paral

Jelotope P{Ia!aEA} (!"' = {x!x 0})6' satisfying the following two conditions, 

A) xE S(y, Uœ,.) implies !ua(x) -ua( Y) 1 ~ ~" (a sort of Lipshitz's condition\, 

B) there exist a finite number of a1 E A Ci c::= 1, ···, h) and a definite positive ,, 
number l such that U u" 1 (x) ;>, l, 

!~1 

where we denote by ua(x) the a-coordinate of the function u(x) ; hence u,.(x) is 

a real-valued uniformly continuons function. 

Remarks. We can replace condition A) with the condition, !uœ(x) -u,.(y) 1 

< ~~-, where k,.(a E A) are positive definite numbers. Condition B) is a 

stronger condition than the condition that u(x) c le {0} for every xE R, i.e. 

U Uœ(X) >O. 
«fA 

1) I. Gelfand and A. N. Kolmogoroff, On rings of continuous functions on topological 
spaces, C. R. URSS, 22 (1939). 

2) I. Kaplansky, Lattices of continuous functions, Bull. Amer. Math. Soc. 55 (1947). This 
paper was unknown by the author at the time. 

3) J. Nagata, On Iattices of functions on topological spaces and of functions on uniform 
spaces, Osaka Math. J. 1 (1949). 

4) T. Shirota, A generalization of a theorem of I. Kaplansky, Osaka Math. J. 4 (1952). 
5) Notations and notions in this paper are chiefly due to J. W. Tukey, Convergences and 

uniformity in topology, 1940. 
6) The notation P{l"' 1 œ E A} means the product space of l œ( œ E A). 
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Now we consider an ordering relation on D(R) by defining u(x) ~ u' (x) wh en 

and only wh en uœ(x) :;:;:; uœ' (x) for ali ac A. Th en the join uv v of two elements 

u, v of D(R) exists always in D(R), but the meet does not always exist in D(R).7) 

Renee D(R) is a partialiy ordered system and a directed system, but it is not a 

lattice. 

Definition. We call a non-vacuous svbset 11 of D(R) a characteristic ideal 

or c-ideal, if 

I) m';~ mc 1~ implies m'ct~. 

li) mc p, m'cp imply m" m' E D(R) and m" m'cp, 

III) for every u 0 c D(R) there exists mc p such that m ~ uo. 

Definition. If for a family {p} of c-ideals and for two elements u, u' of D(R), 

there exists p E {p} such that mE p implies u' 5 uv m, then we denote this rela

tion by u' < u ( {p}). This relation coïncides with u' 5-_u if every element of {tt} 

contains an element m such that m < u. 

Definition. We cali a family {p} of c-icleals a max jamily if {tt} satisfies 

the foliowing conditions, 

1) for every u E D(R) there exists u' E D(R) such that u' < u ({tt}) ; 

u'.J;:_p ({p}) and u'.J;:_q ({p}) 8 ) imply u$pVq for every elements p,q of D(R), 

2) JI :::J r~ E {r~l implies JI E {tt} for every c-ideal JI, 

3) if t~y E {tt} and n tty -1' cp, then n /~y is a c-ideal and it is contained in {tt}, 
y y 

4) {tt} is a maximum family satisfying 1), 2), 3). 

Definition. We put {tt} (xo) = {tt! for all ao and e > 0, there exists u c 11 such 

that u,.0 (xo) < e ; 11 is a c-ideal}. 

Lemma 1. For every ao and xo, there exists ac-ideal 11 such thal 11 E {tt} (xo) ; 

mEtJ. implies m,.0(x)? i,. tor x$S(xo, U,Gn). 

Proof. For every positive integers i, n and for each a0 E A, we can define 

a real-valued uniformly continuons function 1 (x) such that 0 < 1 (xo) < ~, 
- z 

/(x)~ i,. (x$S(xo, U, 0")), /(x);:>/(xo); xcS(y,U,.0v.') implies j/(x)--/(y)! 

<fu. The method of defining such a function is the same as in the proof of 

Urysohn's lemma. 

Using such a function, we define m(i)(x) E D(R) so that 0 m~iJ(x0) < ~ , 
m~1J(x) ~ 21-+l (x$S(xo, Uœon+l)), m~O(x) =0 (a-=tc:a0 ), and so that mCt+DCx) 

<mCO(x) (i=l,2,-··). Then the family. t~= {miD(x)3m;>mC 0 for some i} 
-----------

7) We use the symbols \j, ,\ for joins and meets of elements of D(R) and for uniform 
covering3, and we use u, n for joins and meets of real numbers and for sets. 

8) u1 4:::" p means the negation of u' <p. 
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1s a c-ideal satisfying the condition of this lemma. 

Lemma 2. {tl} (xo) is a max family for each x0 ER. 
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Proof. We shall prove firstly that {tt} (xo) satisfies condition 1 ). Let u be 

an arbitrary element of D(R), then from condition B) of D(R), there exist ao E A 

and a positive integer n such that Ux 0 (xo) > i,. >O. For this n we define 
1 

u'ED(R) so that u~ 0 (x) =2'•+J:• u,' =0 (a~Fao). By Lemma 1 we denote by 

11 a c-ideal of {p} (xo) such that x$ S(xo 11.,0,.41) implies rna0(x) ~-:, 2!+1 for every 

rn E /1- Then since ux 0(x) > i,,. -- 2'~+1 = 21-ri for xE S(xô, 11.,0,.+1) from condition 

A), we get u 1 :<;;,rn vu for every rn E tt. Hence u1 < u ( {fl} ). 

Next assume that u' -t:: p ({tl}), th en from the above arguement we see that 

there exists xE S(xo, llaon+I) such th at Pa oC x)< u~o(x) = 2}+1-· Hence Pa 0(Xo) 

< 2}+1 + 2;+1 = i,. from condition A). In the same way we see th at u' -t:: q 

implies q 0(xo)< i,.. Hence Pa0(xo)uq.,0(Xo)<i,.<ua0(xo), and bence 

u$pvq. 

It is obvions that {;1}(x0 ) satisfies condition 2). Next we prove that {tt}(xo) 

satisfies also 3 )- Let fly E {tt} (xo) and n fly ~i~ cp. th en for n' E n tty and for every 
y y 

nzCYJ E fly we get mm À n' E fly from condition II) of c-ideal. Take mmE fly such 

th at m~~(xo) < e for arbitrary a 0 and e > 0, th en for sup (mCYJ À n1 ) = rn, 
y 

m~~(x0 ) = sup m~YJ(xo) < e. Since rn E D(R), we get rn E n f!y from condition I ). 
y y 

Hence il fly satisfies condition III) of c-ideal. Since n Jty satisfies obvionsly I), 
y y 

II), iltty is a c-ideal and is an element of {tt}(xo) from the above argnement. 
y 

Lemma 3. Il every tty are elements of a max /amlly {11}, then for a definite 

positive number k, p~ = {m'!D(R) 3 m' m À k = {ma(X)nkl, {m"'(x)} =mE py} 

and ,! p~ are c-ideals and are elements of {p}. 
y 

Proof. It is obvions that ~~~ satisfies conditions I), III) of c-ideal. Let 

m', m" E fly and let m';~~ rn A k, m" _rn'" k; rn, nE f!y, then m' =m'v (rn A k) 

=(m'v rn) A (m'v k) >(m'v rn) A k, rn" <(m" v n)Ak. Hence (m'Am") 

:>((rn'Vm)A(m"Vn))Àk. Since rn,nEpy, from conditions I), II), (m'Vm) 

A (rn" v n) E f!y. Therefore rn' À rn 11 E D(R) and rn' À m 11 E p~. Hence 11~ satisfies 

also condition II) and is a c-ideal. Since p~ =:J /ly , from condition 2) we 

get /l~ E {p }. If we take m'b = 11l' Y) A k, mm E /ly ' th en sup rn~Y) E n /!~ ; bence 
y y 

n p~ 4: cp. Therefore from condition 3) i1 tt~ is a c-ideal and it is an element 
y y 

of {p}. 

Let us assume that {p} is a max family, then for each a 0 E A and each posi

tive integer n putting u<'-"onJ = {uœ(x)}, u, 0(x) = j,.-, U00(X) = 0 (a ~je: ao), we get 

u'<'-"on) satisfying condition 1) of max family for this u<"'0"l and {p}. For these 

{tt}, u<"'0"l, u'<"'0"l, we shall prove the following lemmas. 
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Lemma 4. There exists Xo = x0(a0 n) ER such that u~b'"on)(x0) ;5:, u~~on)(x) 

= in , and for every p. E {p.} there exists mE p.: m,.o(xo) < u~~IXon)(xo), 
Proof. Firstly we show the existence of xo ER and o/ E A such that for 

every p. E {tA there exists mE p.: mœ/(Xo) < u~t(x0), where we denote u'<"'D") by 

u' and u<'"0") by u for simplicity. For if we assume the contrary, then for every 

x, a we get tlx, IX E {tl} such th at mE tlx, ,. implies m,.(x) ;:: u,.1(X ). For these 

flx' IX ' - n /1~,"' = /10 is to be a c-ideal from Lemma 3. If m E /!o ' th en for each 
X(:R,O:EA 

x and each a mEtl~•"'' and hence m,.(x)?-u'œ(X)nk. Therefore m-;"~u' 1\k, but 

since u' 1\ k E D(R) is obvions, this contradicts condition III) of c-ideal. Renee we 

see that for every fl E {p} there exists mE fl such that miX'Cxo) < U~'(x0 ). 

Next we show th at U~'(Xo) S:: Uœ'(Xo) for such a 1 , Xo. For if we assume the 

contrary: U~'(Xo) > U"''(Xo), then this formula combining with the above conclu

sion implies that for every 11 E {p} there exists mE fl such that u.,t(xo)umiX'(xo) 

< U~'(x0 ). Renee u' 4::: u ( {p} ). This conclusion contradicts condition 1) of max 

family, and hence it must be u~t(xo) S:: u.,t(xo). 

If we assume that a' =Fao, then from u.,,(xo) = 0, U~'(Xo) = 0 holds, but 

this contradicts the existence of mE tl such that m.,,(xo) < u~t(x0). Renee for 

every ao, n there exists Xo = Xo(ao n) ER such that for every tl E {p} there exists 

mE 11 such that m.,0 (Xo) < U~0(xo),;;;: u.,o(xo) = in , and the proof of this lemma 

is complete. 

Definition. Put V,. 0,. = {xl for every 11 E {tl} there exists mE 11 such that 

m.,0(x) < u'<<>on)(x)}, then by Lemma 4 Xo (ao n) E V,. 0,.. 

Lemma 5. Va·on C S2(xo(ao n), U.,0,.). 

Proof. Let us assume the contrary and let us assume that S(xo, U. 0,) 

nSCx', U., 0,) = r}J, x' E V., 0,.. For these Xo, x' we define the following two 

functions p,q in D(R):P={P.,(x)},p.,0 (xo)<u~0(xo),p.,0(x):;;c::~, for 

x$S(xo, 1!.,0,.); q= {q.,(x)}, q., 0(x')<u~0(x'), q.,0(x)::~ in for x$S(x',U.,0,.). 

Then since Xo, x' E V., 0,., obviously u' {:p ({tt}), u' {:q ({tl}). From S(xo, 1!.,0,.) 

n S(x', U.,0,.) = rjJ, u < p v q is obvions, but this contradicts condition 1) of max 

family. Renee it must be V., 0,. C S 2(xo, U~ 0,.). 

" Lemma 6. For every a,, n 1 Ci= 1, ···, h), n S2(x0(ai n.1), U.,t,.J -lee ifJ holds. 
i=l 

h 

Proof. 1. Let us assume the contrary, i.e. n S 2(x0(ai ni), U.,t"t) = r}J, then 
i=l 

for every xER there exists i such that x$S2(x0(ain,), U., 1,.,). For each xER, 

we fix one of such i. Since from Lemma 5, for such i, x$ V.,,,., holds, noting 

the definition of V.,,,..,, we see that there exists p(x, i) E {tl} such that mE tl(X, i) 

implies m,.;(x) ":2:, u~;"'i",)(x ). For a =Fa, , from the proof of Lemma 4, there 
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exists tJ(X, a) ( {.a} such tbat mE /!(X, a) implies m,.(x) > u~cru,n,\x). Putting 

tl( X, ai) = tJ(X, i) for a = a't , we get tl( X, a) E {tl} for every a E A having the 

property that m,.(x) :>: u~~œ,n;)(x) holds for every mE tJ(X, a). From Lemma 3 we 

get n 11k(x, a)= 11'(x, i) E {11}. For this r/(x, i), mE r/(x, i) implies m,.(x) 
OiE A 

u~cœ,n,,\-..,k for every a. 

2. Next putting v= sup {in! {m lm E tJ'(x, i)} lx ER}, we show that v.E D(R). 

It is obvious that v bas a definite value for each point of R, and that v satisfies 

condition A) of D(R). We shall show that D(R) satisfi.es also B). Since 

u'<"•·"'·) E D(R) (i = 1, ···, h), there exist finite subsets Fi (i = 1, ... , h) of A and 

positive numbers li Ci= 1, ···, h) such that U u~<"l'"~)(x) ;;c: li> 0 (i = 1, ···, h). 
k ~tEF; 

We put U Fi= F; F is a finite subset of A. Let x be an arbitrary point of R 
i=l 

and let i be the fixed number for x such that x$ S 2(x0(ai ni), U.,1,.1 ), th en 

U inf{m_(x)lmEt/(x,i)};:;- U (u~ca:;n,)(x)nk);:Z 1 nk from the property of 
a>EF; a>EF; 

tl(x, i) decided in 1. Hence for each xE R, U v .,(x) '2' U in/ {ma( x) 1 mE t1 1(x, i )} 
a>EF "'EF; h 

>Z1nk for sorne i. Thereforefor every x we get U va(x)?( n l;)nk>O, i.e. 
r<EF i=l 

v satisfies condition B), and bence v E D(R). 

3. From Lemma 3 and from 1 of this proof, n tl(x, i) is to be a c-ideal. 
xEN 

rn En 11'(x, i), however, implies rn E 11'(x, i) for 
x ER 

m :::-:in! {m 1 m E tl'(x, i)}. Therefore m ~v for every 

every x, and bence 

mE n t1 1(x, i), but this 
:rER Il 

contracts condition III) of c-ideal. Thus the first assumption: n S 2(xoCat ·ni), 
l:=l 

U.,1,. 1 ) := .p is impossible. By this lemma {S2(xo(a n), Uan)laEA, n = 1,2, ... } i::; 

a chauchy filter, and hence by the completeness of R, this ftlter converge::; to a 

point of R. 

Lemma 7. Il the chauchy jilter {S2(xo(a n), Uan)JaEA, n=1,2, .. ·} con

verges ta aER, then {tt}= {!l}(a). 

Proof. Take arbitrary a 0 E A and a positive integer n, then for xo = x0 (a0 n), 

there exists mE 11 such that m., 0(xo) < in for every tJ E {tt}. Since 
----·-·-~---·- . . 1 1 1 

a E S 2(x0(ao n), U.,0,.), from cond1t10n A) we get m.,0(a) < 2''+-zn+ m,.0 (xo) <2,.-=-2. 

Hence {tl} C {tt}(a). Therefore from condition 4) of max family. we get 

{p} = {,t!}(a). 

If {p}(xo) C {11} and if {tl} is a family of c-ideal satisfying conditions 1), 2), 

3), then {tt} C {p}(a) for some a ER. Hence {t!}(xo) C {tJ}(a), but this is pos

sible obviously only wh en Xo =a. Hence {tJ} (x0 ) = {tJ} ; bence {p} (x0 ) satisfies 

4), too. 

Denoting by TJ(R) the totality of max families of R, we get a one-to-one 

correspondence between R and TJ(R) from the above conclusions. We shall 

denote by TJ(A) the image of the subset A of R in TJ(R) by this correspondence, 
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Definition. We call a covering {SD(Uy)Jr E C} of SDCR) a uniform covering 

of SDCR), ifandonlyifthere existsuEDCR)such that if {,u}Cay)$DCVy)CrEC), 

th en for sorne two points a1 , az of ay CrE C), there exist .U1 E {,u} ( a1 ), Pz E {,u} ( az) 

such that m1 E /~1 , mz E t~z imply u .s:;: m1 v mz . 

Lemma 8. In arder that {SDCVy)} is a uniform covering of SD(R) it is 

necessary and sufjicient that {Uy} is a uniform covering of R. 

Proof. N ecessity. Let {V y} be a uniform covering of R and let U,.0 , be a 

uniform covering of the uniform basis of R such that u;-;, < {V,}. For these ao 
1 

andn, weputu= {u~(x)}, U 1 o(x)= 2", u,.(x)=O (accpa0 ). If {,u}(a,)EI:SD(V,), 

then we take a1 , az from ay so that a 1 is an arbitrary point of a, and 

S 2Ca1, Ua 0n)CV,$ay=--=az. From Lemma 1, we get .U1E {,u}(al), ,uzE {tt}(az) 

such that m1 E 111 implies m~0(x) _ -~~ for x$ S(a1 , U,.0,.), m11 E ttz implies 

m':o(x) ~;; forx$SCaz,U~0,). SinceSCal,Ux0n)nSCaz, U,.0,.)=if>, us;.m'Vm" 

holds for every m1 E 1~ 1 , m11 E p 2 • Renee {SD(U, )} is a uniform covering of SDCR) 

by the above definition. 

Sufjiciency. Let us assume that {V,} is not a uniform covering of R. If u 

is an arbitrary element of D(R), then from condition B) of D(R) there exist a 
h 

finite number of a; Ci= 1, ... , h) and a positive integer n such that U u,.,(x) 
i~l 

1 . h • • • Il. 
_ -2,. >O. Smce for these a;, n, (\ llœ;n+l 1s a umform covermg of R .. 1\ Uœ;>>+l 

i=l h z=l 

<t {V,} holds. Renee there exists V E (\ llœ;n+l such that V nUr ~ic if> for all Ï· 
i~l 1 

We take a defini te point Xo E V. Th en there exlsts a; such th at u,.;(Xo) ::?' 2,. . 

Next we take a, so that a, EV n Ur, i.e. {11} (u,) $ SD( V,). If a1, az are two 

points of a, and if 111 E {tl}(a1), 11zE {t1}Caz) then there exists m'E,u1. m 11 E,uz 

1 ( / _ _!____ 11( ) / ___!_ . v,.. (\11. such that m.,,_ a1)--..___ 2"+1, m.,; az --..___ 2,+1. S1nce a1, az, Xo E \~ 1 U,.;n+1 

< U f d. · B) 1 ( ) < , ( ) 1 / !_ "C , x;n+ 1 , ron1 con 1t1on we get m.,,. Xo m.,,. a1 + 2,+1 ~- 2, , m,, Xo 1 

< 1/c ) 1 / 1 1 c )U "C ) / 1 .-"' c ) d h m.,, az + 2,+1 --..___ 2" . Renee m,.i Xo m.,,_ x --- 2,. ::---c Uœ; Xo , an ence 

u $ m'v m 11 for every m' E 111 , m 11 E 112 • Therefore {SD( V,)} does not satisfy the 

condition of the ab ove definition, and bence {SDC V,)} is not a uniform covering 

of SDCR). 

From this lemma we get the following 

Theorem 1. In arder that complete uniform spaces R1 and Rz are uni

formly homeomorphic it is necessary and sufjicient that D(RI) and D(Rz) are 
order-isomorphic, where DCR1), D(Rz) are directed systems of all functions 

satisfying conditions A), B). 

Next let us consider a uniform space without completeness property. Let 

Uœn and P {1,. Ja E A} have the same meaning as in the case of complete space. 
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We denote by D'(R) the directed system of all the uniformly continuons functions 

from R into P{I.,!aEA}-{0} satisfying condition A). We regard this directed 

system as having real numbers {3 such that 0 < {3 ;;:;:, 1 as opera tors, and define 

{3u == {{3u.,(x )}. We call a subset p. of D'(R) a c-ideal as in the previous case, 

if 11 satisfies conditions I ), Il), III). In this case, max family is a family of 

c-ideals satisfying conditions 2), 3), 4 ), and condition 1) is unnecessary. 

We can prove in the same way as in the previous case that {,~tl (xo) = {pl 

for every a, e > 0 there exists u E 11 such that u.,(xo) < e, tt is ac-ideal of D'(R)} 

satisfies condition 2), 3). Conversely, if {tt} is a max family of c-ideals satisfying 

conditions 2), 3), 4 ), then {tt} C {p} (xo) for sorne Xo ER. For if we assume the 

contrary, th en for every Xo é R there exist a(x0 ) E A, e(xo) > 0 and fl(Xo) E {tt} 

such th at rn c.,0lxo) >:o: e(xo) > 0 for every rn E tt(Xo ). Th en as in the previous 

case n ttk(x0 ) is to be a c-ideal of D'(R) for a positive number h·. Putting 
"oER 

snp{in!{rnAklrnEt~Cxo)}!xoER}=u. we see easily tbat u(xo)•e(xo),.k>O. 

Since obviously u bas a finite value at every point of R, u is an element of D'(R). 

If rn E C 11k(x0 ), th en for every x 0 , rn . m 0 1\ k for sorne mo E p(xo ), and bence 
xoER 

rn_> in! {rn A k 1 rn E p(xo )} for ev er y xo ER. Tberefore it must be rn_> u, but this 

contradicts condition III) of c-ideal. Hence we get {tt} C {,u}(xo) for sorne xo ER 

and {tt} = {,u}(xo) from condition 4) of max family. 

It is obvions that in order that for every {3: 0 < {3;;:;:, 1, there exists u' E D'(R) 

such that {3u 1 =.= u it is necessary and sufficient that ua(x) is a definite number 

J.:"' -. 0 for each a E A. We denote by 'S./(R) the totality of max families of D'(R). 

To define uniform coverings of 'JJ'(R), we replace "tbere exists u E D(R) ···" in 

the previous definition of uniform covering of 'JJ(R) with "there exists u E D'(R) 

such that {3u' = u for ev er y [3 and for sorne u 1 E D'(R)''. Th en we can show 

easily that {'JJ(Uy)} is a uniform covering of 'JJ(R) if and only if {Uy} is a 

uniform covering of R. Thus for a general uniform space we get the following. 

Theorem 2. In arder that twa uni lann spaces R 1 and R 2 are uni/arrnly 

harnearnarphic it is necessary and sufficient that D'CR1) and D'(R2 ) are operatar

isarnarphi c. 


