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Abstract
We consider real versions of Brauer’s k(B) conjecture, Olsson’s conjecture and

Eaton’s conjecture. We prove the real version of Eaton’s conjecture for 2-blocks of
groups with cyclic defect group and for the principal 2-blocks of groups with trivial
real core. We also characterizeG-classes, real and rationalG-classes of the defect
group ofB.

1. Introduction

Several authors have been investigating real classes, characters and blocks of finite
groups, see e.g. [1, 2, 5, 8, 9, 11, 13, 14, 15, 17, 19, 20, 21, 24, 25]. The aim of this note
is to formulate real versions of Brauer’s k(B) conjecture, see [3], Olsson’s conjecture,
see [28], and Eaton’s conjecture, see [10], for 2-blocks. Wegive special cases when
we can prove the real versions of them. The last part of the paper deals with fusion
of elements of defect groups.

2. Notations and terminology

In this noteG will always denote a finite group,p a prime integer, which is 2 ex-
cept for the last section of the paper. Let (R, k, F) be a p-modular system, whereR is
a complete discrete valuation ring with quotient fieldk of characteristic zero and residue
class fieldF of characteristicp. We assume thatk and F are splitting fields of all the
subgroups ofG. We may also assume thatk is a subfield of the complex numbers. Com-
plex conjugation acts on Irr(G). A character isreal if it is conjugate to itself, in other
words if it is real valued. An element ofG is real if it is conjugate to its inverse. An
elementx of a subgroupH of G we call H-real, if it can be conjugated to its inverse by
an element from the subgroupH .

We say that theconjugacy class C is realif it is equal to the class of the in-
verse elements of the class. We use the notation Clr (G) for the set of these classes.
A p-block B is called real if it contains the complex conjugate of an irreducible ordi-
nary character (and hence of all irreducible characters) inthe block. It is known, see
e.g. [23, Theorem 3.33], that a real 2-block always containsreal valued irreducible or-
dinary and Brauer characters, as well. We use the notation Irrr v(G) and Irrr v(B) for
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the set of real valued irreducible ordinary characters inG and in B, respectively. Let
kr v(G) and kr v(B) stand for the sizes of these sets. We use the notation ki ,r v(B) for the
number of real valued irreducible characters of heighti in the p-block B. By Brauer’s
permutation lemma the number of real conjugacy classes of the groupG is equal to
kr v(G). We use the notation Bl(G j D) for the set ofp-blocks of G with defect group
D, D(n) stands for then-th derived subgroup ofD. For constructing examples we used
the GAP system, see [7], and we also describe these groups with their GAP notation.

3. The real conjectures

Unless otherwise stated, letp D 2. Let G be a finite group,B a real 2-block of
G with defect groupD.

Conjecture 1 (Weak real version of Brauer’s conjecture).We conjecture thatkr v(B)
is bounded from above by the number of G-real elements of D.

Conjecture 2 (Strong real version of Brauer’s conjecture).We conjecture thatkr v(B)
is bounded from above by the number of NG(D)-real elements of D.

Conjecture 3 (Real version of Olsson’s conjecture).We conjecture thatk0,r v(B) is
bounded from above by the number of NG(D)=D0-real elements of D=D0.

Conjecture 4 (Real version of Eaton’s conjecture).We conjecture that
Pn

iD0 ki ,r v(B)
is bounded from above by the number of NG(D)=D(nC1)-real elements of D=D(nC1).

REMARK 5. One could not replace in Conjecture 2 theNG(D) by D. The small-
est example is a group of order 24 which is the pullback of mapsS3! C2 and Q8!

C2, (with GAP notations it isSmallGroup(24, 4)). In this group there are two 2-
blocks. The nonprincipal blockB has a normal defect groupD ' C4, where there are
just two D-real elements, however kr v(B) D 4. (In fact in this group all characters in
Irr(G) are real). However, we do not know any such example for the principal block,
or for blocks of maximal defect.

REMARK 6. If every irreducible character is real in the groupG then we get
stronger versions of the non-real conjectures, see Remark 7, namely k(B) (k0(B),
Pn

iD0ki (B)) are bounded from above by the number of elements of the defect group D
of B, (D=D0 or D=D(nC1)) that are real insideNG(D) (NG(D)=D0 or NG(D)=D(nC1))
respectively. Of course Conjecture 4 implies Conjectures 1, 2 and 3.

REMARK 7. If every irreducible character of a groupG is real, it does not fol-
low that the normalizer of its Sylow 2-subgroup also has thisproperty. Let G D
SmallGroup(96, 185). This group has selfnormalizing Sylow 2-subgroups. In the
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principal block of G all the 14 irreducible characters are real valued, its Sylow
2-subgroup has also 14 irreducible characters, but only 12 of them are real. This ex-
ample also shows that an element can be real in one of the Sylow2-subgroups, but
not real in an other Sylow 2-subgroup, since one can find order4 elements in this
with that property. In this group all 32 elements of the Sylow2-subgroup are real in
G, but only 28 of them are real inNG(S) D S.

In the next remark we show that thep-analogue of Conjecture 1 is not true for
p > 2, and since the defect group is abelian the other Conjectures 2, 3 and 4 also
cannot hold:

REMARK 8. Let G D M11, pD 11 and letB be the principal block. ThenjDj D
11, kr v(B) D 3, but in D there is only oneG-real element. This group is also an
example for the fact that the number of real valued irreducible characters can be dif-
ferent in the Brauer correspondent blocks with cyclic defect group if p > 2. Let b 2
Bl(NG(D) j D) be the Brauer correspondent ofB. Then kr v(b) D 1. If p D 2 and
the defect group is noncyclic then Brauer correspondent blocks might have different
number of real valued irreducible characters: let us take the same groupG, then the
principal 2-block has 6, however its Brauer correspondent block has 5 real valued ir-
reducible characters.

4. Nilpotent groups, symmetric groups and blocks with central defect groups

Proposition 9 (The nilpotent groups). A stronger form ofConjecture 4 (hence3,
2 and 1) holds for nilpotent groups. If G is either a2-group or abelian, then in Con-
jecture 3there is equality.

Proof. If G is nilpotent then every 2-block is of maximal defect, and by [8] the
only real 2-block of maximal defect is the principal blockB0. Then Irr(B0) D Irr(G2),
where G2 2 Syl2(G). Characters of heightn of G2 are those of degree 2n. This is
at most then-th character degree ofG2. By [12, Lemma 5.12], all irreducible char-
acters of height at mostn contain G2

(nC1) in their kernels, hence
Pn

iD0 ki ,r v(B0) �

jIrrr v(G2=G2
(nC1))j, which is at most the number ofG2=G

(nC1)
2 -real elements in

G2=G2
(nC1).

Proposition 10 (The symmetric groups). Conjectures 2and 3 hold for the sym-
metric groups.

Proof. (a) Since every irreducible character of the symmetric group is real valued
and since its Sylow 2-subgroup also has this property by [16,Theorem 4.4.8], Conjec-
ture 2 for the principal 2-blocks reduces in this case to the non-real k(B) conjecture,
which holds by [28]. In [26] it is proved that the defect groupD of each blockB of
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weightw of Sn is isomorphic to the Sylowp-subgroup ofSpw and there is a canonical
height preserving bijection between the irreducible characters of B and that of the prin-
cipal block of Spw. Thus if p D 2 then in D each element is also real, and again by
[28], Conjecture 2 holds also for nonprincipal 2-blocks ofSn.

(b) Olsson’s conjecture also holds forSn by [28]. Thus by similar arguments as
above, Conjecture 3, also holds.

REMARK 11. A positive answer to Eaton’s conjecture forSn, would imply a posi-
tive answer to Conjecture 4.

Proposition 12 (Blocks with central defect groups). Conjecture 4 (and hence,
Conjectures 1, 2and 3) holds for central defect groups. In fact we prove a slightly
stronger statement: the strong forms of the conjectures holds for2-blocks with defect
group D, where GD DCG(D):

Proof. Let B 2 Bl(G j D) be a 2-block ofG, where G D DCG(D). By [23,
Theorem 9.12]jIBr(B)j D 1 and there is a bijection between Irr(D) and Irr(B) map-
ping � to �

�

, where �
�

(g) D � (g2)�(g20), if g2 2 D, otherwise it is zero. Here� is
the unique character in Irr(B) containing D in its kernel, and IBr(B) D {�0}. More-
over ht(�

�

) D n iff � (1) D 2n. If B is a real 2-block then� is a real valued charac-
ter and�

�

is real valued if and only if� is real valued. Thus kr v(B) D kr v(D) and
Pn

iD0 ki ,r v(B) D
Pn

iD0 ki ,r v(D) � jIrrr v(D=D(nC1))j by Proposition 9, this is at most the
number ofD=D(nC1)-real elements ofD=D(nC1).

REMARK 13. It is easy to see that if the above conjectures are true forthe direct
factors of a group then they are also true for the direct product: a tensor product of
characters is real iff each component is real, if we have defect classesC1 2 Cl(B1, D1)
and C2 2 Cl(B2, D2), then the pair (c1, c2) 2 C1�C2 is a defect class ofB1
 B2. The
defect of the character�1
 �2 is the sum of the defects of�1 and �2. The height of
the product of characters is the sum of the heights. The number of real elements in
D1 � D2 is just the product of the numbers of real elements in the direct components.

5. Blocks with cyclic defect groups

For a block B 2 Bl(G) we consider the pairs (x, �) with x 2 G a p-element� 2
IBr(b), whereb 2 Bl(CG(x)) such thatbG

D B. As in [21], we call theG-conjugacy
classes of these pairs, denoted by (x,�)G, the columns of B. A column(x,�)G is called
real if (x, �)G

D (x�1, �)G. In [21, Lemma 1.1] it is proved that kr v(B) is equal to the
number of real columns ofB.

We will use Dade’s description [6, Theorem 68.1] ofp-blocks with cyclic defect
groups only for the special casep D 2:

Let B be a 2-block with cyclic defect groupD D hxi of order 2a, Di D hx2i
i,

Ci D CG(Di ), Ni D NG(Di ), for i D 0, : : : , a � 1. Let B0 2 Bl(NG(D) j D) be the
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Brauer correspondent block ofB. Let b0 2 Bl(CG(D) j D) with bN0
0 D B0. Such blocks

are conjugate inN0. Similarly let bi D b0
Ci , then every block ofCi that inducesB

is conjugate tobi in Ni . Let � i be the unique irreducible Brauer character ofbi for
i D 0, : : : , a� 1. The inertia subgroup ofbi in Ni is Ci for i D 0, : : : , a� 1, and also
jIBr(B)j D 1. Let IBr(B) D {�}. First we prove:

Lemma 14. With the notation above, we have that(x, �0), (xk, �0) for k odd,
(x2, �1), (x2k, �1) for k odd, . . ., (x2a�1

, �a�1), (x2(a�1)k, �a�1) for k odd, and (1, �) are
representatives of the columns of B. If x2i

is the smallest power of x which is G-real
then representatives of the real columns of B are among thosecolumns whose first
component is a power of x2i

.

Proof. If the first components of two pairs generate different subgroups, then they
cannot be conjugate. Let us take the pair (y,  ), where y generatesD j and j < a.
Then the block of is conjugate tob j in N j , so  is conjugate to� j in N j . The

conjugation takesy to another generator ofD j , i.e. to x2 j k, where k is odd. If the
first component is 1, then the second component must be�.

Corollary 15. Let G be a finite group, let B be a real2-block with cyclic defect
group D. ThenConjecture 1holds for G.

Proof. We use [21, Lemma 1.1], Lemma 14 and the notations above. Then the
number ofG-real elements inD is exactly 2a�i .

We have that the representatives of real columns ofB are (1,�) and some of those
columns whose first component is an element ofDi and if it generatesD j then the
second component is� j . Their number is at most the number of elements ofDi , which
is 2a�i .

Corollary 16. Let D be a cyclic normal2-subgroup of G. ThenConjecture 2
and henceConjecture 4also holds for blocks B2 Bl(G j D).

REMARK 17. Using similar arguments for thep > 2 case, one gets for block
with cyclic defect groups that kr v(B) � l(B) � j{G-real elements inD}j. This could be
considered as some kind of real analogue of the so called “Trace inequality” in [27,
Proposition 2, p. 272].

To prove Conjecture 2 for 2-blocks with cyclic defect group we will need the
following lemma (thep-analogue of it forp > 2 is not true, and ifp D 2, but the
defect group is noncyclic then the analogous result is not true either, see Example 8):
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Lemma 18. Let G be a finite group, let B 2 Bl(G j D) be a real 2-block with
cyclic defect group D and let B0 2 Bl(NG(D) j D) be its Brauer correspondent block.
Thenkr v(B) D kr v(B0).

Proof. We use the same notation as in the introduction to thissection. By [21,
Lemma 1.1] and Lemma 14 it is enough to prove that if (x2 j k, � j ) represents a real
column of the blockB, (recall that� j

2 IBr(b j ) and b j 2 Bl(CG(D j ) j D)), and Qb j 2

Bl(NCG(D j )(D) j D) D Bl(CNG(D)(D j ) j D) is the Brauer correspondent ofb j containing

the single irreducible Brauer characterQ� j , then (x2 j k, Q� j ) belongs to a real column of
B0 and this correspondence defines a bijection of real columns of B0 and B.

Let z2G such that ((x2 j k)z, � j z
)D ((x2 j k)�1, � j ). Then � j

2 IBr(b j ). This block’s

Brauer correspondent inNCG(D j )(D) is Qb j , that contains the unique irreducible Brauer

characterQ� j . Since blocks ofCNG(D)(D j ) that induceB0 are conjugate inNNG(D)(D j )D

NG(D), there exists an elementz1 2 NG(D) with Qb j
z1
D

Qb j . Thenb j
z1
D b j and Q� j z1

D

Q

�

j . But thenb j
zz1
D b j . But the inertia group ofb j in N j is C j , thus zz1 2C j and so

(x2 j k)zz1
D x2 j k, and (x2 j k)�1

D (x2 j k)z
D (x2 j k)z1, and hence ((x2 j k)z1, Q� j z1)D ((x2 j k)�1, Q� j ).

Thus it represents a real column ofB0. The remaining column ofB containing (1,�) is
real and the corresponding column containing (1,Q�) in B0 is also real. So we are done.

Now we have:

Theorem 19. Let G be a finite group, let B 2 Bl(G j D) be a2-block with cyclic
defect group D. ThenConjecture 2and henceConjecture 4also holds for B.

Proof. Using Lemma 18 and Corollary 16, we have thatjIrrr v(B)j D jIrrr v(B0)j
is bounded from above by the number of theNG(D)-real elements ofD, thus we
are done.

6. Groups with odd real core

In [11] we defined thereal core R(G) of G as the subgroup generated by the real
elements of odd order.

Our main result is the following:

Theorem 20. If jR(G)j is odd thenConjecture 4holds (hence alsoConjectures 3,
2 and 1) for the principal 2-block of G. In particular if any of the following cases
occur Conjecture 4holds for the principal2-block of G.
(a) The commutator subgroup G0 is 2-nilpotent.
(b) G D O20,2,20(G). (In fact this is equivalent tojR(G)j being odd.)
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(c) G is solvable and its Sylow2-subgroup is abelian.
Moreover, we may replace inConjecture 4NG(D) by D.

Proof. If jR(G)j is odd then by [11]G D O20,2,20(G), in particularG is solvable.
Let B0 be the principal 2-block ofG. Then Irrr v(B0) D Irrr v(G=O20(G)). Let NG D
G=O20(G). Then NS2 Syl2( NG) is normal.

STEP 1: For every real elementx there exists a 2-elementg such thatxg
D x�1:

Let g D g2g20 if xg2g20
D x�1, then an appropriate 2-power ofg is already a

20-element, which centralizesx. Thus g20 acts onx trivially, and we are done.
STEP 2: R( NG) D 1:
If x 2 NG is a real element of odd order, then by Step 1 there is a 2-element g

inverting x. Since NSG NG, [x, g] 2 NS\ hxi D 1. Thusx�1
D x, and sox D 1.

STEP 3: Every real element inNG is a 2-element, hence it lies inNS2 Syl2( NG):
Let x D x2x20 be a real element inNG. Then x2

�1x20
�1
D x�1

D xg
D x2

gx20
g, thus

x2 and x20 are both real. By Step 2,x20 D 1.
Thus jIrrr v(B0)j D jIrrr v( NG)j D jClr ( NG)j � j{x 2 NG j x real}j D j{x 2 NS2 Syl2( NG) j

x real in NS}j.
We prove Conjecture 4 by induction onr . Let r D 0. An irreducible character� 2

Irr(B0) is of height zero iff its degree is odd. We have that� 2 Irr( NG), and�
NS has only

linear constituents, henceNS0 � ker(�). Thus k0,r v(B0) � jIrrr v( NG= NS0)j D jClr ( NG= NS0)j �
j{x 2 NG= NS0 j x real in NG= NS0}j. If there would be a real 20-element inG= NS0 then by
Proposition 5.3 in [11] there would be a real 20-element in NG n NS0, which is not the
case. Thus there are also no real elements inNG= NS0 whose 20-part is not 1. Thus each
real element belongs toNS= NS0, and by Step 1 this element isNS= NS0-real. Thus we are
done for r D 0.

Let us suppose that Conjecture 4 is true forr < n. If � 2 Irr(B0) is of height
n, then its degree has 2-part 2n. Then all constituents of�

NS have degree 2n. By [12,
Theorem 5.12], they contain in their kernelsNS(nC1), thus� also contains it in its ker-
nel. Similarly all irreducible characters ofNG of smaller height also contain it in their
kernels. Hence

Pn
iD0 ki ,r v(B0) � jIrrr v( NG= NS(nC1))j D jClr ( NG= NS(nC1)

j � j{x 2 NG= NS(nC1)
j

x real}j D j{x 2 NS= NS(nC1)
j x real in NS= NS(nC1)}j. Hence Conjecture 4 holds.

(a) SinceR(G) � G0 by [11], if G0 is 2-nilpotent, thenjR(G)j is odd.
(b) This is equivalent tojR(G)j odd by [11].
(c) By the Hall–Higman lemma,NS is normal, thus we have case (b).

Corollary 21. If S2 Syl2(G) is normal thenConjecture 4holds for G, since then
each block is of maximal defect, and the only real2-block of maximal defect is the
principal block, hence we can applyTheorem 20 (b).
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7. Computer results

We have checked Conjecture 4 for the principal 2-block with GAP [7] for the
small groups library. We also checked Conjecture 2 for the principal 2-block for the
26 sporadic simple groups. For these blocks the respective conjectures were true.

We also checked Conjecture 2 and Conjecture 3 with the help ofGAP for all
2-blocks of groups up to order 1536 except for groups of orders 856, 1048, 1112,
1192, 1304, 1352, 1384, 1432, 1448, where our computationalmethods did not work
(Conway polynomials are not yet known). We did not find any counterexamples for
these conjectures among the investigated groups.

8. B-classes andG-classes ofD

Let now p be an arbitrary prime number.
First we prove the following

Lemma 22. Let B be a p-block of G with defect group D. Then for every x2 D
there exists a� 2 Irr(B) with �(x) ¤ 0.

Proof. Let us suppose by contradiction that there exists an element x 2 D with
�(x) D 0, for every� 2 Irr(B). If we can prove that there exists a trivial sourceFG-
moduleM in this block with vertexD, then by [18, p. 175, Lemma 2.16] this is liftable
to a trivial sourceRG-module QM and its character is nonzero on the elements of the
vertex of M, contradicting our assumption.

If D is normal in G then by [18, p. 247, Lemma 10.3] all simple modules in B
are trivial source modules inB with vertex D. If D is not normal then the Brauer
correspondentb 2 Bl(NG(D) j D) of B has the property that every simple moduleS
in it is a trivial source module with vertexD. Let us lift a simpleF NG(D)-module S
in b to an RNG(D)-module QS. Then its Green correspondent,f ( QS) is a trivial source
module with vertexD and by [4, p. 466, Theorem 59.9],f ( QS) belongs to the blockB.
So we are done.

DEFINITION 23. Let B be a p-block of the finite groupG with defect groupD.
We say that two elementsx, y 2 D are in the sameB-class, iff for every irreducible
character� 2 Irr(B), �(x) D �(y).

We have the following result:

Theorem 24. Let G be a finite group with p-block B2 Bl(G j D). Then the B-
classes of the defect group D are exactly the G-classesClG(D) of D under conjugation.

Proof. If two elementsx, y 2 D are conjugate inG, then of course they are
also in the sameB-class. Let us suppose now thatx, y 2 D are in the sameB-class,
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but they are not conjugate inG. Then by the strong block orthogonality relation, see
[23, p. 106, Corollary 5.11]

P

�2Irr(B) �(x)�(y) D 0. Using thatx, y are in the same

B-class this gives us
P

�(x)2Irr(B)j�(x)j2 D 0. Hence�(x) D 0 for every� 2 Irr(B). By
Lemma 22, this is not possible.

DEFINITION 25. Let B be a p-block of a finite groupG with defect groupD.
We say that the elementx 2 D is B-real if �(x) is real for every� 2 Irr(B). An
elementx 2 D is B-rational, if �(x) is rational for every� 2 Irr(B).

Corollary 26. Let B 2 Bl(G j D) and let x2 D. Then x is B-real iff it is real
in G.

Corollary 27. Let B 2 Bl(G j D) and let x2 D. Then x is B-rational iff it is
rational in G.

Corollary 28. Let F be a field containing Q. Let B2 Bl(G j D) and let x2 D.
Then�(x) 2 F for every� 2 Irr(G) if and only if �(x) 2 F for every� 2 Irr(B).

We have also the following

Theorem 29. Let B2 Bl(G j D). The restrictions�D of � 2 Irr(B) to the defect
group D generate the vector space of the restrictions of all complex G-class functions
to D.

Proof. Let us choose representativesxi 2 Ci \ D, i D 1, : : : , t of G-conjugacy
classesCi intersectingD. We want to prove that if we restrict the character table ofG
to these columns and to those rows which belong to the blockB, then these columns
are independent. It implies that this submatrix has rankt , hence, it has alsot independ-
ent rows. But then any complex vector of lengtht can be expressed by these rows and
we are done. Let us suppose that the above mentionedt columns are dependent. Then
there are coefficients�1,:::,�t , not all zero with the property that

Pt
iD1�i�(xi )D 0, for

all � 2 Irr(B). By [22, Lemma 4.6, Chapter 5] the subsum, wherexi -s belong to any
p-section is also zero. But thexi -s all belong to differentp-sections, thus�i�(xi ) D 0
for every i D 1, : : : , t and every� 2 Irr(B). By Lemma 22 we see that there is noxi

where every� 2 Irr(B) vanishes. Hence�i D 0 for all i D 1, : : : , t . Thus the columns
of the above restricted matrix are independent and we are done.

In this way we get another proof of the following:

Corollary 30. For a block B2 Bl(G j D), the number of G-conjugacy classes
jClG(D)j of its defect group, is a lower bound for the numberk(B).
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EXAMPLE 31. It is not true, however thatB-classes (henceG-classes) of the de-
fect group D are the same asb-classes (henceNG(D)-classes) for the Brauer corres-
pondent blockb 2 Bl(NG(D) j D) even for 2-blocksB 2 Bl(G j D) with cyclic de-
fect group. LetG D SmallGroup(288, 375). Then the third 2-block has cyclic defect
group of order 8, it contains fourG-real (henceB-real) elements and only twoNG(D)-
real (henceb-real) elements.
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