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Abstract
For normal two dimensional hypersurface singularities oiegkorn type, con-
crete descriptions are given to both the fundamental cynk the maximal ideal
cycle on a star-shaped good resolution space. It is detednwrhen these two cycles
coincide.

Introduction

Let (V, 0) be a germ of a normal surface singularity apd (X, E) - (V, 0) a
resolution, where E= ¢1(0) denotes the exceptional set. Let=E|Ji_, E; be the
irreducible decomposition of E. A formal sui = Zi’:l AME (0 € Z) is called a
cycle on E. For a cycler, —Y is said to be nef on E iY § <0 for all i. Since the
intersection form is negative definite on E, the $¥t> 0| —Y is nef on B is non-
empty and has the smallest elemety, the fundamental cyclen E. The arithmetic
genus ofZg is called the fundamental genus d&f,(0) and we denote it byp;(V, 0).
Let m be the maximal ideal oDy ,. For any non-zerof € m, the zero divisor off o¢
can be written asf(o¢) = (f o ¢)x + D, where (f o¢)x is a cycle on E and is an
effective divisor which does not involve any &;'s. We call (f o ¢)x the cycle on E
led by f € m. The divisorial partMg of the scheme theoretic fibgf o is said to be
the maximal ideal cycleon E. If fi,..., f, € m generatan, then Mg = inf1<j <, (fi 0o¢)x
by [14, Proposition 2.12]. Since Mg is nef, we always have & Zg < M.

It sometimes happens th&g = Zg, as one can observe for rational singular points,
Kodaira singular points and singularities of typg = f(x, y)} (n > 2, f € C{x, y})
whenn > 0. As for the last type, Tomaru proved in [10, Theorem 4.1} tha cycles
coincide on any resolution wham divides ord(f), extending the well-known result for
n = 2 due to Dixon [2, Theorem 1]. However, even for a particulass of singularities,
a more systematic study will be required in order to clarifyen such a coincidence of
important cycles occurs.
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Fig. 1.

In this paper, we consider the normal 2-dimensional hyp&se singularities of
Brieskorn type,

(Vao,a]_,azl O) = {(X01 Xl! XZ) € U | Xgo + X:?l = ng}v

whereU c €2 is a small neighborhood of the origia = (0, 0, 0) and thea;’s are
integers with 2< ay < &y < ap, and give a necessary and sufficient condition for the
coincidence of the maximal ideal cycle and the fundamenyjelec

Before stating the results, let us introduce some notatioichwill be used through-
out the paper. We putx] := min{n € Z | n > x} for x € R. For integergd;, d, . . ., dr

(di > 2 for alli), we denote by [, do, . . ., d:]] the continued fraction:
1
[[di,dp, ..., d]] :=d1 — 1
d> —
? 1

d;— —

1

I

Let n and u be positive integers that are relatively prime andcQu < n. The

singularity
en O
= /(S 3))

wheree, := exp(2r~/—1/n) denotes the primitiver-th root of unity, is called a cyclic
quotient singularity. It is well-known (e.g., [4]) that, E = | J;_, E; is the exceptional
set for the minimal resolution o€, ,, then E; ~ P! and the weighted dual graph of
E is chain-shaped as in Fig. 1, whamgu = [[dy, da, .. ., d/]].

To the singularity Vaga,,a, 0) = {X’ + X" = x3?}, 2< ag < a1 < &, we associate
the integers

_ 9 A) B k= 10,1,2)

I = ng(aOl as, a2)1 li . I ’ i ||k|
J

Furthermore, we lefo, p1, p2 be the integers determined by

pajali +1=0 (modei), 0= p <o,
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Fig. 2. Weighted dual graph of ,E
wheref{i, j, k} =1{0, 1, 2. Whene,, > 1, we also put

Qyw/Pw = [[dw,L du),21 ceey dw,ru,]]

ande,,, :=[[dy,v,dw,vt+1s---, 0w, ]l (L <v =r,; w=0,1,2). With this notation, by [7],
there exists a resolution : (X, E;) = (Va,a,a,, 0) such that the weighted dual graph
of E; is as in Fig. 2. It is star-shaped withl branches of typeC,, ,, (w =0, 1, 2)
starting from a unique vertex. The non-singular cuBsg corresponding to that vertex
will be referred to as the central curve. We shall mainly work the resolutionr.
Note that, wheny,, = 1, the corresponding branches do not appear and we undé&rstan
Ci1,0 as a non-singular point ofy.

Now, we are going to state our results in this paper. Firstcaecretely describe
the fundamental cycle oveNg, a, a,, 0). We remark here that an algorithm comput-
ing the fundamental cycle from the exponemts a;, a was established by Tomari
(cf. [8, (3.3)]).
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Theorem 1.4. Let

2 Ty

1l
Z = 00E0 + Z Z Z ew,v,é Ew,u,%‘
£=1

w=0v=1

be the fundamental cycle for resolutian Then the sequenqcéhvm}ru“‘:O (w=0,1,2)
is defined by the following recurrence formula

1 Gw =0 = i
(1) w06 := o {aoallz it oz >l
() Owpe = [Owy-16/€p] LSV =Ty

agaiay  if ap <y,

To show it, we first study the chain-shaped configuration inbthby plugging one ex-
tra vertex to the configuration of typ€,,. We consider the condition which should
be satisfied by the smallest cycle > 0 such that-Y is nef on theC,, part, when
the multiplicity at the extra vertex is given. Then we appiyd branches of the star-
shaped configuration as in Fig. 2. To determine the mulitgliof the central curve
is our final task. Our method is so simple that it may apply dtsdhe other singu-
larities with C*-action in determining their fundamental cycles. As a bgdurct, we
can reprove in Theorem 1.7 the formula computing the funddéaheyenus which was
originally obtained in [8] and [9] by an entirely differentetinod.

Next, we turn our attention to the maximal ideal cycle. Witle thelp of Tomaru’s
result in [12], we can determine the multiplicity of each gmwnent and give a formula
similar to Theorem 1.4 also fox{on)x (w =0,1,2). See, Theorem 2.1 for the precise
statement. This enables us to show in Theorem 3.1 thatf)yx is the maximal ideal
cycle for resolutionr (here, the assumptioay < a; < a, is essential).

Using the concrete descriptions thus obtained, we comperdundamental cycle
and the maximal ideal cycle on,Eand get the following:

Theorem 3.2. The maximal ideal cycle coincides with the fundamentalecyot
resolutions if and only if ap > |5.

In particular, this implies that both cycles coincide on thimimal resolution, when
ap is a prime number. Similarly, we obtain the following:

Theorem 3.11. The maximal ideal cycle coincides with the fundamental ecycl
for any resolution of(Va,a,,a,, 0), 2 <ay < & < ap, if and only ifay > |, and 1 <
a1/ay + gcd@o, a1)/ag. Furthermore if this is the casethen the fundamental cycle is
led by the holomorphic function,x

As an application, we give in Proposition 4.4 the necessadysaifficient condition
for (Vag,a,.a,» 0) t0 be a Kodaira singularity ([5], [6]), in order to supplemiea result
in [10]. We also describe the canonical cycle forin Proposition 4.6.



MAXIMAL IDEAL CYCLES 229

T Cr T

Fig. 3.

The paper grew out of the second named author's master thesdsaka Uni-
versity. The authors would like to express their deep grdétto Professor Tadashi
Tomaru for many helpful suggestions in the course of theystithanks are also due
to Professors Masataka Tomari, Tomohiro Okuma and Tadashikdga for offering
the second named author an opportunity to give a talk at #eiiting seminar and
for their precious comments.

1. The fundamental cycle

1.1. Minimal anti-nef cycle on a chain. Let n and 1 be integers that are rela-
tively prime and O< pu < n, and putn/u = [[dy, dp, ..., d:]]. We consider a con-
nected buncH_J_, Ei of irreducible curvesE; on a smooth surface whose weighted
dual graph is chain-shaped aiid + - - - + E; forms the configuration of typ€, , as
in Fig. 3. We pute :=[[di, diy1,...,d]] for L <i <r. Thend, = ¢ + 1/g 4 for
1<i <r,andd = e. For a positive integeky, consider the set

r
D(ho) := {Y: cycle on U E;

i=0

;
—Y is nef on U Ei, multg,(Y) = Ao}.
i=1

Lemma 1.1. Take a positive integeko and define the sequende;}|_, by the
recurrence formulax; = [Aj_1/g] for 1 <i <r. Then the cycle y:= Z{ZO ME is
the smallest element of (Bx).

Proof. Letp (0<i <r) be positive integers and pit = Y/ _, pi Ei. We first
claim that[pi_1/67 < pi holds for 1<i <r, if =Y is nef on U{zl E;. This can be
seen by induction as follows. For=r, we have > YE = p,_1—prd;. Sinced: = ¢,
we getpr_1/€ < pr which implies [pr_1/&7] < pr. Take an index with 1 <i <r
and assume thdto; /g 1] < pj+1 holds. We have @ YE = pj_1—pidi + pi+1. Then
pi—1/pi = —pis1/p = —1/641 =8, sincepi /6,1 < pi+1 by the hypothesis. It
follows pi_1/€ < pi and, hence[pi_1/€1 < pi.

We next consider the cycl¥,. We haveYoE, = A1 —diAr = A1 — €A Z0,
becauser, = [A_1/6] = Ar_1/€. Take any indexi with 1 <i < r. Sincei; =
[Ai—1/€] = Ai—1/&, we getri_1/A < =d —1/641, i€, A1 S didj —Ai/641. It
follows i 1 < diAj — [Ai/e 1] = diAj — Aj41, which showsYpE; < 0. HenceY €
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D(%o). Then, from the first half of the proof, it is clear th¥§ is the smallest element
of D(Xo). Ul

Note that we did not specify the self-intersection numberEgf As the proof
shows, if Yo and Y} are the smallest elements ID(Xo) and D(Ap), respectively, then
we haveYy X Y] if and only if Ao < Aj,.

Since the proof of the following lemma is elementary, we éeé#vto the reader.

Lemma 1.2. Let the sequencé)i}i_, be as in the previous lemma gnidr 1 <
i <r, take relatively prime positive integers rand u; satisfying n/u; = g. Put
Mgt i= Al — A1
(1) If Aj_1 = Aidi —Aj1 holds forl <i <r, theni; = (uro + Ary41)/N.
(2) If A0 =0 (modn), thenij = uiri—z/n; for L <i <r. If uro+ 1= 0 (modn),
thenii = (uiri—1 +1)/n; for L <i <r.
(3) If either 2o = 0 (modn) or urg+1 =0 (modn), thenii_; = Ajdi — i1 holds
for 1 <i <r. Furthermore A,,; = 0 whenio = 0 (modn), and A3 = 1 when
uro + 1 =0 (modn).
(4) If 2o =0 (modn), theni, = Ag/n. If uio+ 1 =0 (Mmodn), theni, = [Ao/N].

1.2. The fundamental cycle. We keep the notation in Introduction.

Proposition 1.3. There exists a resolutior: (X, E;) = (Vag,a,a,, 0) Such that
the weighted dual graph d&, is as inFig. 2 Furthermore the genus g and the self-
intersection number-dy of the central curve kare given respectively by

29 — 2 =I(lolsl2al =lo =11 —12),

2 oM 1
dO — | Z wlw + )
= aw oo

Proof. See [7, Proposition (3.5.1) and Theorem (3.6.1)]. shall prove it in the
course of the proof of Theorem 2.1 below. ]

In the sequel, we will work on the resolution spa¥ein Proposition 1.3, unless
otherwise stated explicitly.

Theorem 1.4. Let

2 1yl
Z = 6oEp + Z Z OwveEwve
1&=1

w=0v=

be the fundamental cycle for resolutian Then the sequenqcéhvm}ru“‘=0 (w=0,1,2)
is defined by the following recurrence formula
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AU 10(2 if (0% < |21
1 =bo = i
(1) bw,0s := 6o {aoallz if oz =lo,
(2) Owve = [Owv-16/€00] (L= =1y,).

Proof. By Lemma 1.1 applied to each branch of typg p, plugged toEg, we
obtain (2) once is given. So, it suffices to show (1). Lat, (w = 0,1,2) be the inte-
ger determined by,,60p+u, =0 (mode,,), ] 0 <u, < ay. Thenb,, 1 = [6o/€y 1] =
(pwbo + Uy)/ay, by (2). By substituting the formula fody in Proposition 1.3, the in-
equality fodo > Y2 o 34!, 6,16 coming from—Z Eg > 0 becomes

2 2
wlw 1 u,G + Uw
GOI( p n ) Z p 0
w=0 O

Hot102

It follows 6y > a1aalgUp + aoaral U1 + sl U, Put

A > aqalgUg + agasliug + agarqlous,
A:=4r>1 .

Pur + U, =0 (Moday), 0<u, <o, (w=0,1,2)
Then, sinceZ is the fundamental cyclé)y = min A. Sincewo, «; anda, are mutually
coprime, we have mii. € A | Ug = U; = Uy = 0} = oparp. AlSo, sinceagaily, <
ool < aqalg by A < a < ay, we get mifr € A | (Uo, Uy, Uz) ;é (0, 0, 0)} = agaql ).
Therefore,

apagory  Iif o <1y,
agagly  if ap > o,

This shows (1). []

We puté,, , := 0,,,¢, because it does not depend gnandb,, , +1 := Oy r, ur, —
Owr,—1. Furthermore, we sometimes write, , for E, ,, when the indext is not
important. By Lemma 1.2, we get the following:

Lemma 1.5. Let the situation be as above. Then
Qw,ufl = ew,vdw,v _ew,erl (U) =0,1,21<v= rw)-
Furthermore the following hold
(1) If ax <1, then6,,, = ajox ({i, j.k} =1{0,1,3) and Oy, 11 =0 (w =0, 1, 2)

(2) If ap =1y, thenbyy, = ailz, 01y, = aola, O2r, = [aoal2/a2], Oorgr1 = 015,41 =0
and 92,r2+1 =1
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Proposition 1.6. The self-intersection number of the fundamental cycleviergby

72 _ logaian if ay <ly,
Lol faoaslo /2] if a2 = la.

Proof. By Lemma 1.5, we havéE,, =0 forw =20,1,2, 1<v <r, —1.
We first consider the case wherg < |,. We already know thaZ E,,;, = 0y, r,+1 =
0 w=0,1,2). Since

2
4 Eo = 90d0 — Z |w|9w,l

w=0
= | (poaraalo + pragoaly + poagaalz + 1) — lol poasaz — l1l pragarz — lol poaoay

=1,
we obtain—Z2 = 16y = lagoiaa.

Next, we consider the case wherg > l,. We haveZ Ey, = 6os,+1 =0, ZEs1,, =
011,41 = 0 and ZE,,, = 62,,+1 = 1. Furthermore,

2
~ZEy = todo— » _ lulfu1

w=0
2
wlw 1 (0744104 | + 1
= apaalal (Z P + ) — lol pooal2 — 14l F310l0|2—|2|p20;2
—oa,  aomar a2
=0.
Therefore,—22 = |2| 9212 = |2| |—C(0(X1|2/Ol2-|. O

Theorem 1.7 ([9, Theorem 2]). The fundamental genus; pof (Va, a8, 0), 2 <
ay < a; < ay, is given as follows.
Q) If az <l5, then

1
ps = EI {lcm(ag, a1, a2) — a1aolg — ageral 1 — cgoraly — apagrn + 1} + 1.

(2) If az =1y, then
b = 5{(ao -1 (Z[%'ﬂ _ 1) godee, an) + 1}.
2 (0]

Proof. We consider the case wherg o1, > > 2. The other cases can be treated
similarly. Let K be the canonical line bundle oK. SinceE, , ~ P! for v # 0, we
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have KE, , = —(E,,)? +2x 0—2=d,, — 2. Similarly, sinceEy is of genusg,
KEo=—E2+29—2=dy+ 29— 2. It follows

I

2
KZ = GO(dO + Zg - 2) + Z le Z Qw,u(dw,u - 2)

w=0 v=1

2 My My
= 6o{do + I (lolalal —=lo =11 = 12)} + > 1| (Z(ew,v_l +Ouu1) — ) zew,u)
w=0 v=1 v=1
2
= 6o{do + I (lolal2l —lo =11 =12)} + D 1wl (B0 = 61— Our,, + Our,41)

w=0

2 2
= Oololalal? + (eodo -y leew,l) = 1ulOur, + 12162,

w=0 w=0

2
= ololalal® = ZEo = > lulOuyr,, + 12102y,
w=0

(1) If ap <5, thenOy = aga1atp, —ZEy =1, GO,ro = o102, 91’,—1 = U2, 92,r2 =
a1, Oar,+1 = 0 andZ? = —lagaiap by Lemma 1.5 and Proposition 1.6. The assertion
follows from the formula s —2 = K Z + Z2.

(2) If ar = |2, then 90 = O[()Ol]_'z, ZE() = 0, GO,ro = Ol]_|2, el,rl = 0[0'2, 92,r2 =
[aoailp/az], Oar,11 =1 and Z2? = —lyl [agayl,/a2] by Lemma 1.5 and Proposition 1.6.
Therefore, we obtain the assertion. ]

REMARK 1.8. An algorithm computingZ from the exponentsy, a;, a; was first
obtained by Masataka Tomari (cf. [8, (3.3)]). Based on it, faemula for p; was
shown by Tomaru in [8, Theorem 4.3] in the special case: dgn#;) < a,, and later
completed in [9, Theorem 2]. However, the hypothesis of [Bedrem 2 (1)] needs
a small correction fromrh = 1," to “m =1, > 2". Indeed, whena, =1, = 1, [9,
Theorem 2 (1)] yields B —2 = (ap — 1)(ag — 1) — (20ovs + 1)l — 1, while it should
be 2p; —2 = (ap— 1)(as — 1) — (2px; — 1)l — 1 according to Theorem 1.7.

2. Cycles led by coordinate functions

The purpose of the section is to show the following:

Theorem 2.1. Let Z® := (x o 7)x be the cycle orE, led by x (k =0, 1, 2),
and put

ry ol

2
20 =20B+ Y Y Y A, e

w=0v=1 &=1
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Then the sequenc@»‘u‘j’)uyg} (k =0, 1, 2)is determined by the following recurrence
formula.

K K K
2 =2y, -2

w,v,EHW, w,v+1,E7
2890 =1 = aajle (fi, 1.k = (0, 1,2),
® 1 it w =k,
whetls 0 if w # k.

In particular, for {i, j, k} = {0, 1, 2,

pkO('Ol'h( +1
L

a
K K ajajly
|

We divide the proof into three steps. During the proof, we winstruct the reso-
lution 7= and show Proposition 1.3. Pdi, j, k} = {0, 1, 2 and denote the primitive
n-th root of unity bye,.

Step 1. The resolution of the branch locus. We putC := {x* er]lej =0} C C2

First, we compute the minimal embedded resolutionCof Though there are sev-
eral methods for computing such resolutions (see [1]), we aigesult in [11] here.
Putd := lcm(a, a;), n1 := & /gcd@;, a;), ny := a;/gcdf@, a;). Furthermore we put
C:={x! +x{ =0} C C? and letw: C& ;) — C{ ., be the holomorphic map
defined byx = X2, x; = X?l. Sinced = aa;/gcd@, aj) = an2 = ajn;, we have
W(C) = C. The mapW¥ can be regarded as the quotient map by the natural action to

C? of the group
f{e, O\ (1 O
=((% D6 )

Let ®: N — C? be the blowing-up at the origin of thexi( X;)-plane. We denote by
E the exceptional £1)-curve for®. Then N is covered by two open setd, and U,
each of which is isomorphic t@2. The action ofG is lifted onto N through ®. Let
11, M2 be non-negative integers defined by

Nop1+1=0 (modng), O0<pu <ng
Ny, +1=0 (modny), 0= s <ny.

Then, from [11, Theorem 2.3], we can easily see that the gubgpaceN /G is cov-
ered by two cyclic quotient singularity spacdg/G andU,/G whose respective types
are Cp,,, and Cy, ,,; also those singular points are located ¢iiE) ~ P*, where

¥: N — N/G is the quotient map. Lep: N — N/G be the minimal resolution



MAXIMAL IDEAL CYCLES 235
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Fig. 4. Weighted dual graph af*C.

of those two cyclic quotient singularities anbl: N/G — C? the natural map to the
(%i,xj)-plane. Then the composite= ®on: N — C? gives us the minimal embedded
resolution ofC.

Second, we describg*C. The strict transform®;C of C by ® consists of dis-
joint d branches each of which intersedEs transversally at a point. Thetr(®;*C)
consists of gcdf, a;) irreducible components each of which intersegtE) transver-
sally at a point. Forf := % +x¢, the multiplicity of f o® alongE is d. If f denotes
the holomorphic function o /G induced byf, then the multiplicity of f alongv (E)
is alsod. Furthermore, the multiplicity off along each component af(®;'C) is one.
Since f = (x* + x?‘) o @, the dual graph of the divisap*C becomes as in Fig. 4. In
that figure, Fo is the strict transform ofy (E) by n and Fr,,, (M= 1,21 < vy, <s,) is
the exceptional curve arising fro@, ., with self-intersection numbe#cy,,,, where
Nm/im = [[Cm,1, Cm,2, - - -, Cms,]]- FOr m=1,2, we denote by, the multiplicity of
¢*C along Fp,,,,,. Since Fp,,, ¢*C =0, we have

(21) Pmvm—1 = Pm,vmCm,vm = Pm,vm+1s 1=<vm=sm

with pmo = d and pms,+1 = 0. Then, by Lemma 1.2 (1), we 9@ty 1 = umd/Nm,
that is,

(2.2) P11 = 18, p2,1= K28 .

We also havepi 1 + po2,1 4+ gcd@, @) = d by Fep*C =0, since—F02 = FoF11 =
FoF21 =1 and Fo¢p;1C = ged@a, ;).

Step 2. The resolution of the cyclic covering. We consider the resolution of
X" +x" = %) regardingVay,a, , as anac-fold cyclic covering ofC2. Let ¢: N — C2
be the holomorphic map constructed in Step 1. We considentimalizationW of
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L0 L1 Ps Ps+1

*4@ ....... *

Fig. 5.

the fiber productVy, a2, Xc2 N. For this purpose, we use the following result due to
Tomaru [12].

Theorem 2.2 ([12]). Let (U, o) be the cyclic quotient singularity of type,¢,
and m the maximal ideal ofOy,. Assume that the zero divisor of the pull-back of
h € m on the minimal resolution ofU, o) has the weighted dual graph as kig. 5,

where ' = [[cy, ..., Cs]] and the pj’s denote multiplicities. For a positive integer
a, put
3= a A= ng(ai PO, PLy -+ - pS+1)n
ng(a'! |Cm(p01 IOS+1)), ng(a’l £0, IOS+1)

and o = an. Furthermore let p be the integer defined by

1B Ps+1
ged@, ps+1) gcd@, ps+1)

p y (moda), 0<p<aq,

where 8 and y are integers determined by

a - Po
) po)ﬂ = 1 (mod po/gcd@ po)), 0= p < 9od@. o)’

Po y = a B-1
ng(a-! IOO) ng(av /Oo)

Then the normalization of the a-fold covering of U defined By=zh has exactly
gcd@, po, . . ., pst+1) cyclic quotient singularities of type .G.

In our application, we always hawe= a and pg = d = lcm(a;, a;). So, g andy
are determined by

(2.3) ap =1 (mOd(XiOljlk), 0<pB < aiajlk; aiajlkV =axpB — 1.

CAsE 1. We studyW over a neighborhood oFy N ¢.C on N. Letu =0 and
v = 0 be local analytic equations d%, ¢,C in a small neighborhood of each inter-
section point ofFy and¢,'C. Recall that there are gai(a;) = Ix| such points in total.
The a,-fold cyclic covering is locally isomorphic to the singuitgr {udv = xlf“}. Then,
by Theorem 2.2 applied ta(r) = (1,0),s = 0 andh = u%v (pp = d, p1 = 1), we see
that W has one cyclic quotient singularity of tyg,, p for each point ofFy N ¢;1C,
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where py is the integer defined bpx = y (mod «) (see also [10, Lemma 2.5]). Hence
it is determined by the propertpcaiajlc + 1 = 0 (mod ), 0 < px < ax by (2.3).
By resolving thesdyl singular points according to [3], we easily see that the reént
curve Eg, which is nothing more than the proper inverse imageFgf has a simple
intersection with the curvés, 1, (1 < § < Iil) of self-intersection numberdy 1 as in
Fig. 2, where we puty/px = [[dk 1, - - -, dr,]] @s before. Similarly, the proper inverse
image of¢_C has a simple intersection with ead, .

CASE 2. We studyW over a neighborhood ot,, ,, andC,, ,, on N. We con-
sider W over a neighborhood oy, ,, by applying Theorem 2.2 t&o + F11+ -+
Fis, that is, the curve- on the left side in Fig. 5 ido and ps,+1 = 0. We take the
pull-back toN of the equationx* + xjaJ of C as the functionh. Thenpy = d, pj =
pi (L =i =s). By (21) and (2.2), we have gai( d, p1,1, ..., P15, PL8+1) =
gcd@y, d, p11) = lil. Then, sincefy = o and & = 1, Theorem 2.2 implies thaV
hasl;l cyclic quotient singularities of typ&,, ,, where p; is the integer defined by
pi = n1p (mod o), 0 < pi < ;. Note thatp; satisfiespijorli + 1 =0 (mod «;)
by the choice ofu; and (2.3). Similarly, by considerin@,, ,,, we see thalWW also
hasl;jl cyclic quotient singularities of typ€,, p,, where p; is the integer defined by
Pj = 2B (Mmod «j), 0 < p; < «j. Then, p; satisfiespjajaxl; +1 =0 (mod«;).

From Cases 1 and 2, we know that hasl(lo+11+12) cyclic quotient singularities
in total. Then we obtain the desired resolutian X — Vg, 4,5, by performing the
minimal resolutions of all such cyclic quotient singula#t of W. Now, it is clear that
the resolution dual graph is just as in Fig. 2.

Step 3. The cyclez® and the central curve Eo. In this final step, we deter-
mine Z®¥. We also calculate the gengsand the self-intersection numberd, of the
central curveEp, and complete Proposition 1.3.

As in Step 2, we regar¥y, .2, @S anac-fold cyclic covering of the X, x;)-plane.
We saw in Step 1 thap, 'C meets the {1)-curve Fy at gcdé;,a;) = Il distinct points,
and the multiplicity of¢*C along Fy is d = Icm(a;,a;). Then we obtainEg as anl;l;l-
fold cyclic covering ofFy, because gcdg,lcm(a;,a;)) = gediudil 1, aiorjlolalal) = 1151,
Moreover, the vanishing order of o = along Ey, i.e., the multiplicity of Z& along
Eo, is given byd/lil;l = aajlc =: A%, With this, we can determine the sequence
{A(k) P (w=0,1,2,v=1,...,r,; E=1,...,1,01). In fact, since the intersection

w,v,&

number of E, ., with (X o ) is zero, we obtain

K K K
W0 e =, ey =28,

i W .0 _ Q) — K —0,.® —
with 4,70, 1= 4" =aiajle andiir . =A70 10 =007 41, =1 (recall thatEy,,

meets the proper inverse image ¢f'C at a point). Note that one can compute all
A9 from these data. In particulak® ; and A(U'fy)r“wé are determined by Lemma 1.2

w,v,& w,1,

(1) and (4).
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Let us calculateg and dyp. In order to computey, we observe how ramifies the
liljl sheeted covering mafo — Fo >~ P*. Since there argl branches of typeC,, p,
there existlil points onEq of ramification indexl;. Similarly, consideringCs, p,, we
havel;l points of ramification indexX;. Also, consideringCs, p,, there existiyl points
of ramification indexl;l;| over Fo N ¢.1C. Hence, by the Riemann—Hurwitz formula,
we get

20-2=Iil1(2x0—=2)+ LiI(l; = 1)+ 1;1(li = 1) + Ll (1;1 = 1)
= 1(lolalal = 1o =11 —15).
Since the intersection number & with (xx o ) is zero, we get
21,
)‘-OdO = Z Z )"w,l,g-
w=0&=1

Hence,

1
do = (piaj|k|i|+pj0li|k|j|+
aiajlk

- i pwlw + 1
S\ o aomar )

In sum, we have shown Theorem 2.1 and Proposition 1.3.

pkaiajlk +1
——
ax

3. The maximal ideal cycle

We keep the notation in the previous section, but/}:fm =28 for simplicity,

w,v,&
because it does not depend &n

Theorem 3.1. 2@ < z®W < 7O |n particular, Z@ is the maximal ideal cycle
for resolutionr.

Proof. (1{9,}1, satisfiesr®d, = 2% _ /e, 1. Sincerd < 1§’ <2 by a0 <
a; < a,, we obtain inductivelyz® < z(1) < 7O, Needless to say, the maximal ideal
m of Oy, . .0 is generated by, X1, Xo. It follows from [14, Proposition 2.12] that
Z® is the maximal ideal cycle. O]

Theorem 3.2. The maximal ideal cycle coincides with the fundamentalecyof
resolutions if and only if ap > 5.

Proof. By Theorems 1.4, 2.1 and Lemma 1.5, we see Zi¥tis the fundamental
cycle if and only ifa, > I,. SinceZ@ is the maximal ideal cycle by Theorem 3.1, we
obtain the assertion. O



MAXIMAL IDEAL CYCLES 239

2

[11] )

Fig. 6. Weighted dual graph a®@); (ag, a1, ay) = (6, 15, 20).

EXAMPLE 3.3 (@2 >12). If (ag, &1, &) = (2, 3, 4), thenl =lg=1,=1,1; = 2,
=1 a1=3,00=2, pp=0, pp =2, p» = 1. The maximal ideal cycleZ®@ is
nothing more than the fundamental cycle of a rational doyldt of type E.

EXAMPLE 3.4 (@2 < 13). If (ag, a1, a2) = (6, 15, 20), then =1, 1o =5, I; =
2,1, =3, 00 =a1 =1, a0 =2, pp = p1 =0, pp = 1. Hence the weighted dual
graph of the maximal ideal cycl&® is as in Fig. 6. It is clear thaZ® is not the
fundamental cycle.

Lemma 3.5. If 7 is not the minimal resolutignthen | = 1, {lg, I1, 12} = {1, 1,n}
for some n> 1.

Proof. Assume thatr is not the minimal resolution. Since, in.E the self-
intersection number of any component excéptis less than or equal te-2, we see
that Eg must be a £1)-curve: g = 0 anddy = 1. By the formula in Proposition 1.3,
we haveg = 0 if and only if (g, l1,12,1) = (1, 1,1, 2) orl =1, {lo, I1,12} = {1, 1,n}.

Assume thatlg, I1, 5, 1) = (1, 1, 1, 2). We have Zpoiap + prooos + pPoooay +
1) = apazap by do = 1. Note thatagayop divides poaias + progas + poaoas + 1 by
the choice of thep,’s. Hence one hagooiay + propas + Paaoos + 1> apgan =
2(poa1crz + praoaz + Paaoar + 1), which is absurd. Thereforelp(l1,12,1) # (1,1, 1, 2)
and we are left the casé:= 1, {lo, I1, |2} = {1, 1,n}. ]

Theorem 3.6. The maximal ideal cycle coincides with the fundamentalecyaot
the minimal resolution 0{Va, 4,.a,, 0), 2=<ay < & < &, if and only ifay > I,.

Proof. Assume thatr, > |,. It is obvious that the fundamental cycle coincides
with the maximal ideal cycle also on the minimal resolution the assumption and
Theorem 3.2.

Assume thate, < |,. If 7 is not the minimal resolution, then, by Lemma 3.5,
lo=1l1=1=1,1,>2, becausé, > o, > 1. Then we would havey, = as < |, < ay,
which is absurd. Hence is minimal. By Theorems 1.4, 2.1 and 3.2, the maximal
ideal cycleZ® cannot be the fundamental cycle. O]



240 K. KONNO AND D. NAGASHIMA

Corollary 3.7. If ag is a prime numberthen the maximal ideal cycle coincides
with the fundamental cycle for the minimal resolution(\d§, a, a,,0), 2 < ag < a1 < a.

Proof. It can be checked directly thap > |, holds, whenag is prime. O

Lemma 3.8. —(Z0)? = Il [aijlk/ax], where {i, j, k} = {0, 1, 3. In partic-
ular, —(Z@)? = ay = mult(Oy, , .,.0) holds if and only if[aoalz/aa] = aoly, i€,
1 < a;/a; + gedao, a1)/ao.

Proof. By Lemma 1.2 (4) and Theorem 2.1, we ha\(@kﬁ = [ajajl/ak]. Then

the self-intersection number &® can be computed similarly as in the proof of Prop-
osition 1.6. Hence we omit the detail. Note that

I I
(@) = 1, [Wi—‘: 2 o ’7(10(11 2-‘: woly
a2

o2
aoalo

aoalo

<l < + 1.

o2

In the last inequalities, we need not care the left hand side because it always holds
true bya; < a,. As to the right hand side inequality, we have

ooyl aqlolol 15l a cd@o, a
wly < 012_‘_1<:>1< 1l2lo d _ & gcd@o, ap)
o2 Cl2|1|0| Ol()|1|2| ap ag
from which the assertion follows. O

Proposition 3.9. Put § := agl; — [agaal2/a2] > 0. The base points ok, of the
linear systemOx(—Z@)| can be resolved by a successionstdl simple blowing-ups.
In particular, the linear system{Ox(—Z@)| has no base points oR, if and only if
§=0.

Proof. The second assertion is clear from Lemma 3.8, becZ(fsds the max-
imal ideal cycle and one hasOx ~ Ox(—Z@). See, e.g., [13, Theorem 2.7].

Now, we prove the first assertion. Note that we ha\x%]2 = wgl; and ’\(22,22 =
[apal2/a2] by Theorem 2.1. Hencé, is nothing but the difference of the multiplici-
ties of ZM and Z@ along Ey,, . Assume that > 0 and putD = (Xp07) — (X2 0 7)x.

It is clear that the base points ¢Dx(—Z®@)| on E, arel,l intersection pointsP: =
Eor,e ND, 1<¢& <1). Let ¢: X — X be the composite of blowing-ups (performed
§ times for eacht) at P: and the§ — 1 points infinitely near to it on the proper trans-
form of D (see, Fig. 7). Thusg blows updl,l points in total. PutA := Ky — ¢*Kx
and let A be the (1)-curve overP: lastly appeared inp. Then the multiplicity of
A along A: is §, and the cycle onX led by x, is Z® := ¢*Z@ + A. We have
muItAg(Z(Z)) = Af}z + 8 = [agailz/az] + 8 = aoly for eaché. Then,x; om0 gives us
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/_ Cazypz \

TR R 2,45
Ey Es e Es g A ¢.'D

Fig. 7. A branch of the cycle led by, on X.

a section 0fO4(—Z®@) that is a non-zero constant on eadh, becauseZ®? < ¢*z®M),
multa, (¢*ZW) = agly and &, o 0 ¢) = ¢*ZM in a neighborhood of th&l branches
containing theA:’s. Therefore,|O(—Z®)| has no base points on,E. Needless to
say, Z®@ is the maximal ideal cycle otX and —(Z®)2 = a,. O

ExAmMPLE 3.10. |If (ao,a]_,az) = (6,10,15), therh =1, |0 =5, |1 =3, |2 =2,00=
a1 =ap =1, pp = pp = p2 = 0. The exceptional set is a non-singular cuBgof genus
11, anddy = 1, o = 2. ThenZ = E and Z@ = 2E,;. We have—(Z®)? = 4, while
mult(Oy; ,0.50) = 6. TWo intersection point&y N D, whereD = (Xpom) — (X2 0m)x, are
base points ofOx(—2Ey)|. Indeed, since the vanishing orderxfo = along Ey is ex-
actly 2, it induces a non-zero element ldf(X, —2Eq)/HO(X, —3Eg) € HO(Eo, —2Eo).
On the other hand, dirdl®(Eo, —2E) < 1, becauseE, is a non-hyperelliptic curve.
Therefore, H(Eq, —2Ey) is generated by the image @ o 7 which vanishes at two
intersection pointsP;, P, mentioned above. Lep be the blowing-up aP;, P,, and put
A= A+ Ay, where A = ¢~1(P) fori =1,2. Then *Ey+ A is the cycle led by,
and we obtain (2*Ey + A)? = —6.

Theorem 3.11. The maximal ideal cycle coincides with the fundamentalecyot
any resolution of(Vy a,,5,,0), 2=< a9 <& < ap, if and only ifa, > 1, and1 < ay/a, +
gcd@o, a1)/ag. If this is the casgthen the fundamental cycle is led by the holomorphic
function .

Proof. The fundamental cycle on a resolution is obtainechaspull-back of that
on the minimal resolution. The same holds for the maximadlidgcle, if the minus of
it defines a free linear system on the minimal resolution. rétoee, the first assertion
follows from Theorem 3.6, Lemma 3.8 and Proposition 3.9. $keond assertion is
clear, becaus€® is led by x,. O

EXAMPLE 3.12. For {23 x+1,0), the above implies that the maximal ideal cycle
coincides with the fundamental cycle for any resolution wine= 1, 2, while it holds
not for all but for the minimal resolution whem > 3.
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4. Further remarks

4.1. Kodaira singularities. Let S be a non-singular complex surface abdcC
C a small open disc around the origin. A surjective holomarpimiap ®: S— D is
said to be a pencil of curves of gengsif it is proper and connected, and fibe®s:=
®~L(t) (t #£ 0) are smooth curves of gengs

DerINITION 4.1 ([5]). A normal surface singularity/(,0) is said to be a Kodaira
singularity, if there exists a pencil of curvas: S— D such that, after a finite number
of blowing-ups at non-singular points in non-multiple campnts of the central fiber
S, V: S — S, there is a holomorphic map: M — V from an open neighborhood
M of the proper transform of Supf() in S which defines a resolution of/( 0).

Proposition 4.2 ([5, p.46], [6]). Let¢: (X,E)— (V,0) be the minimal good reso-
lution of a normal surface singularity ang the maximal ideal 0®y ,. Then(V,0) is a
Kodaira singularity if and only ifmultg;(Zg) = 1 holds for every component; Batisfy-
ing ZeEj < 0 and there exists an elementefm such that the diviso(f o ¢) is normal
crossing and(f o ¢)x = Z.

Now, we return to the situation we are interested in. Comsibe singularity of
Brieskorn type and lefr: (X, E;) = (Vag.a,,5,, 0) be the resolution as before.

Lemma 4.3. 7 is not the minimal good resolution if and only i & a; = 2,
a, = 2m+ 1 for a positive integer n(the rational double point of typéon).

Proof. Clearly,7 is not the minimal good resolution if and only Hy is a (~1)-
curve and the number of branches plugged to it is at most two.

Assume thatr is not the minimal good resolution. Then, sinEg is a (—1)-curve,
we havel =1, (;,1;,k) =(1,1,n) (n>1, {i, j,k} ={0,1, 2) by Lemma 3.5. First,
assume thah = 1. Thenaog, a1, @z > 2, because X ag < a3 < a,. But, this implies
that there are three branches, a contradiction. Secondimasthatn > 3. Thengoy > 2
and, we obtain a contradiction, because the number of besnishat least] = n > 3.
Finally assume that = 2. Thenay > 2. Furthermoreg is odd, because it is coprime
to Iy = 2. We havey; = oj = 1, becausdyl = 2 and the number of branches must be
at most two. Therefore, by 2 ag < a; < ap, we seeay = a; = 2 anday, is an odd
integer not less than three. Then it is a rational double tpoirtype Aoy (M > 1).

Conversely, assume thay = a; = 2 anda, = 2m + 1 for some positive integer
m. Thenl =lg=11 =1, =2, g =1 =1, ap =2m+ 1, Po=pP1=0, p=m.
Henceg = 0, dy = 1 by Proposition 1.3, and exactly two branches are pluggelyto
So, we obtain the minimal good resolution by contractig ]

The following shows that the sufficient condition given inO[1Corollary 4.6] is
also necessary.
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Proposition 4.4. (Va a3, 0), 2=< a < & < a, is a Kodaira singularity if and
only if aparslz < ap, i€, IcM(ag, a1) < a. If this is the casgit is associated to a pencil
of curves of genu¢l/2){(ap — 1)(a1 — 1) — gcd@o, a1) + 1}.

Proof. (i) We first assume thaV{ ., a,,0) is not a rational double point of type
Aom (m > 1). Thenn is the minimal good resolution by Lemma 4.3. L&tdenote
the fundamental cycle forr. Assume thatx, < |,. Let m be the maximal ideal of
Ovao,al,azvo' We have nof € m such that § o 7)x = Z, becauseZ is not the maximal
ideal cycle by Theorem 3.2. Henc¥( 4, 4,, 0) is not a Kodaira singularity by Prop-
osition 4.2. Assume that, > I,. We already know thatxg o ) is a normal crossing
divisor, andZ® = (x, o r)x = Z by Theorem 3.2. Furthermore, we have

=1 if w= 2, vV =Ty,
ZEuve = {o otherwise.

Hence, by Proposition 4.2,V{ a, 4, 0) is a Kodaira singularity if and only if
muIthyrZVE(Z) = [agailz/a2] = 1, i.e.,apa1ls < as.

(i) Next, we consider ¥2,2.an+1, 0). Thenapail, =2 < ap =2m + 1. Let Z/
be the fundamental cycle on the minimal good resolution X" — V5 2 any1. By The-
orem 3.11,Z" is led by x, and it is clear thatX; o n’) is normal crossing. Hence
(V2,2,.am+1, 0) is a Kodaira singularity, by Proposition 4.2.

The last assertion for the genus follows from [8, Theoren} dr3Theorem 1.7 (2).

O

4.2. Canonical cycle.

DEFINITION 4.5. Let¢: (X,E)— (V,0) be a resolution of a normal surface sin-
gularity. A Q divisor Zx with support in E= | Ji_, E; is said to be the canonical
cycle, if —Zx Ej = KE; holds for any irreducible componeif;.

For the singularity of Brieskorn type, we can express in terms of some previ-
ously known cycles.

Proposition 4.6. Let Zx be the canonical cycle for the resolution: (X, E;) —
(Vag.ar,2» 0) in Proposition 1.3 Then

Zk = E +1glylal Zg— 2@ -z _ 7@,

where E is the reduced exceptional divisor

ry ol

2
E=Eo+»_ > Y Euue

w=0v=1 £=1
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and Z is the cycle withmultg,(Zo) = o102 appeared inTheorem 1.4as the funda-
mental cycle for the case, < I,.

Proof. We only consider the case wherg a1, oz > 2, because the other cases
can be carried out similarly. For short, we pHl,, := E, ¢, and E, o := Eo. By
Proposition 1.3 and the fact th&,, , ~ P whenv # 0, we have

do + I {lolalal —lo—11—12) if v=0,

K Ew,v = {dw’U _ 2 OtherWlSe

On the other hand, as in the proof of Theorem 1.6, we have

d0—|0|—|1|—|2| if 1)=0,

—-E Ew,v = dw,v -1 if v= lw,
dw,v -2 otherwise,
I if v=0,
~ ZoBuy = {O otherwise,
1 if w=k v=r
_ Z(k) Ew L, = ] ’ w
' 0 otherwise
in view of Theorems 1.4 and 2.1. Hence, for aZig, it can be checked directly that
—Zk Ey,, = KE,,, holds for allw and v. ]
References

[1] E. Brieskorn and H. Kndrrer: Plane Algebraic Curves,kBé#user, Basel, 1986.
[2] D.J. Dixon: The fundamental divisor of normal double points of surfadecific J. Math.80
(1979), 105-115.
[3] A. Fujiki: On resolutions of cyclic quotient singularitieBubl. Res. Inst. Math. Sci0 (1974),
293-328.
[4] F. Hirzebruch: Uber vierdimensionale Riemannsche Flachen mehrdeutigatyischer Funk-
tionen von zwei komplexen Veranderlichéfath. Ann. 126 (1953), 1-22.
[5] U. Karras: On pencils of curves and deformations of minimally elligiiegularities Math. Ann.
247 (1980), 43—65.
[6] U. Karras: Methoden zur Berechnung von Albebraischemiianten und zur Konstruktion von
Deformationen Normaler Flachensingularitaten, Haltibtaschrift, Dortmund, 1981
[7] P. Orlik and P. Wagreichisolated singularities of algebraic surfaces wi@f action, Ann. of
Math. (2) 93 (1971), 205-228.
[8] T. Tomaru: On Gorenstein surface singularities with fundamental gempg > 2 which satisfy
some minimality conditiongPacific J. Math170 (1995), 271-295.
[9] T. Tomaru: A formula of the fundamental genus for hypersurface sinida of Brieskorn type
Ann. Rep. Coll. Med. Care Technol. Gunma Unlv/ (1996), 145-150.
[10] T. Tomaru:On Kodaira singularities defined by'z= f(x, y), Math. Z. 236 (2001), 133-149.
[11] T. Tomaru: Pinkham—-Demazure construction for two dimensional cygliotient singularities
Tsukuba J. Math25 (2001), 75-83.



MAXIMAL IDEAL CYCLES 245

[12] T. Tomaru: C*-equivariant degenerations of curves and normal surfacedarities withC*-
action, preprint.

[13] P. Wagreich:Elliptic singularities of surfacesAmer. J. Math.92 (1970), 419-454.

[14] S.S.T. Yau:On maximally elliptic singularitiesTrans. Amer. Math. So@257 (1980), 269—-329.

Kazuhiro Konno

Department of Mathematics

Graduate School of Science

Osaka University

Machikaneyama, Toyonaka

Osaka 560-0043

Japan

e-mail: konno@math.sci.osaka-u.ac.jp

Daisuke Nagashima

Meiji Yasuda Life Insurance Company
2-1-1 Marunouchi, Chiyoda-ku

Tokyo 100-0005

Japan

e-mail: sm4032nd@yahoo.co.jp



