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Abstract
We consider a fourth-order nonlinear parabolic type eguaton a two-
dimensional bounded domai@. This equation governs the evolution of the height
profile of a thin film in an epitaxial growth process. We shovattlsuch equation
endowed with no-flux boundary conditions generates a difigsgp dynamical system

under very general assumptions 6 on a phase-space df?>-type. This system
possesses a global as well as an exponential attractor. diticex] if 9Q is smooth
enough, we show that every trajectory converges to a singldlilerium by means
of a suitable tojasiewicz—Simon inequality. An estimatetlof convergence rate is
also obtained.

1. Introduction

A well-known and relatively simple model to describe thetaxial growth process
leads to the formulation of the following fourth-order niovar equation

Vu

1.1 du+Au=—uv.——"—
(1.1) U+ " (1+|VU|2

) in  Q x (0, c0),

in a two-dimensional bounded domaid, 1 being a (positive) constant called surface
roughening coefficient. Here denotes the height profile, measured in a co-moving
frame, of a thin film in epitaxial growth. The biharmonic oggr accounts for the
surface diffusion (the diffusion coefficient has been seta¢do one), while the diver-
gence type term was firstly proposed in [9] to model the befragf adatoms (i.e.,
adsorbed atoms). We refer the reader to [12] and refereremein for further de-
tails on equation (1.1) as well as for an analysis of its qatiie properties (see also
[11, 15]). We also mention that a similar equation where tiverdence type term has a
rather general form has been considered in [10] (cf. alsereates therein). However,
the present nonlinearity does not satisfy the coercivityuagption [10, (H2b)] which
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is needed to prove the existence of a weak solution. Thus rthgept equation is not
a particular case of the one studied in [10].

More recently, equation (1.1) has been investigate withenttreory of dissipative
dynamical systems in a series of papers [5, 6, 7] where furéferences on (1.1) can
also be found. More precisely, the authors have considerctdation subject to the
initial condition

(1.2) u@ =up in
and to the boundary conditions
(1.3) ohu =0, Au=0 on 9 x (0, ),

where 9, stands for the (outward) normal derivative d&. In [5] well-posedness and
regularity results for (1.1)—(1.3) have been establistese (also [11, Section 3] for the
periodic case). Such results lead to the definition of a klétdynamical system which
possesses the global attractor. Existence of exponertrakctrs and the analysis of
w-limit sets have been the subject of [6]. Then, in [7], thebBity properties of the
null solution with respect tqu has been analyzed in order to find a lower bound for
the dimension of the global attractor. All these resultsehbgen obtained by assuming
aQ of classC* and working with rather smooth solutions. However, from ghysical
viewpoint, 3Q can be nonsmooth (for instance, a polygon). Thus it seemsssary

to extend the analysis of the longterm behavior to more gérsgratial domains and to
weaker solutions. This is our first goal, namely, to providether general and simple
proof of the existence of a global and an exponential atirasthich allows to take
nonsmoothd2. In addition, we show that each solution converges to a sistgtion-
ary state, provided thai€2 is smooth enough. This is done by means of a suitable
version of the tojasiewicz—Simon inequality. An estimafetlte convergence rate is
also obtained.

2. The dynamical system inL?(R)

Let H be the (real) Hilbert spac&?(2) endowed with the usual scalar product
(-, -) and the related nornj- |. Then, we consider the Hilbert triplaf = HY(Q) —
H = H* — V* and we conside~A: W — H where

(2.1) W={weV:dw=0, Aw e H}

endowed with the graph normj#]|? + ||Aw|?)Y2. We recall thatW < H%2<(Q)
for all € € (0, 1/2), when a2 is only Lipschitz (see [14, Theorem 4]). Otherwise, if
Q is a polygonal domain, then we haW — H%?2(Q). Moreover, if 3Q is of class
C11, thenW — H?(Q). Here and by, for the sake of convenience, we replacky:
with the shorter notatior - ||x, for any spaceX? = X x X, X being a Banach space.
Besides( -, - )x: x denotes the duality coupling.
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Let up € H. Our definition of weak solution to is the following (cf. aldal,
Definition 3.1])

DEFINITION 2.1. A functionu € C([0, o0); H) N L2((0, +00); W) is a weak so-
lution to (1.1)—(1.3) if

(2.2) (Bw, Z)w-w + (Aw, AZ) = u((1 + |Vu>)~Vu, Vz),
Vze W, a.e. in (0,00),
(2.3) u(0) = ug, a.e.inq.

As a consequence, the total massugf) is conserved, that is,
(2.4) (u(t), 1) = (up, 1), Vvt >0.

We first prove the following continuous dependence estinfatenpare with [5,
Proposition 4.3])

Theorem 2.2. Let w, vg € H and denote by u and the corresponding weak
solutions to problen{1.1)+1.3). Then for any time T> 0, there exists a positive con-
stant C also depending o2 and u, such that the following continuous dependence
estimate holds

(2.5) I(u = v)®)% + /OIIIA(U — V)@ dv = CETluo — woll?,
for any te [0, T].
Proof. Setw = u— v and observe that (cf. (2.2))
(2.6) (Biw, Z)w+w + (Aw, AZ) = u(F(u, v, w), Vz), Vze W, a.e.in (0,00),

where

Vw — (Vw - Vu)Vu — (Vw - Vu)Vu — |Vul]2Vw

(2.7) Fu, v, w) = 1+ VU@ + Vv

Taking w(t) as test function, we get

S qtlwl? + law]? = u(F(u, v, w), Vw),

It is immediate to realize that

1+ 4|Vul* + 4|/Vo|*
1+ [Vul?)?(1 + [Vv]?)?

(2.8) | F(u, v, w)|? < /Q |Vw|?dQ < ¢||Vw||?,
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since the function, y) — (1 + 4x* + 4y")(1 + x3)~3(1 + y?)~2 is globally bounded.
Therefore, from (2.6), we deduce

d 1
(2.9) allwll2 +llAw|? < [Vw||® = EIIAwII2 +clw?,

for somec > 0 depending on2 and . The thesis follows from the standard
Gronwall lemma. ]

It is now standard to prove the existence of a weak solutiohis Tan be done
through a Galerkin scheme (see, e.g., [11]). From now theofisich an approxima-
tion scheme will be tacitly assumed.

Then we can summarize the consequences of Theorem 2.2 witfoltbwing

Theorem 2.3. Problem(1.1)«1.3) generates a strongly continuous semigroup) S
on the phase-space H.

Property (2.4) lead us to define, for all> 0, the bounded-average (complete met-
ric) spaces

Hy={ueH:|(uD|<a), Vo=VNHy W,=WnH,.

Accordingly, from now on we sefl = u — (u, 1) (Ho-projection ofu € H). On ac-
count of (1.3), we haveu(t) = S(t)ug € H, for all timest > O, if up € H,, i.e., the
metric spaceH, is invariant under the action di(t). Moreover, the dynamical system
(Hy, S(t)) is dissipative. Indeed, recalling the proof of [5, Coanyl 4.1], we have

Theorem 2.4. Let wy € H,. Then for all R > 0 there exists positive constants
Co and «p, depending onu, |©2] and o but independent of Rsuch that

(2.10) suplu(t)[|? < Co(e™[luolI® + 1),
[uoll=R
and
t+1
(2.11) sup |Au(D)||? dr < Cq,
[uo|=R Jt
for all t > 0.

Therefore the semigrou@(t) can be restricted to dissipativesemigroup on the
phase-spacéd,. In addition, we have
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Theorem 2.5. Let Bg, C H, be a bounded absorbing set for the dynamical sys-
tem (Hy, S(t)). Then there existsit=t1(Ry) > 1 and G = C31(Rp) > 0 such that

(2.12) lu®llv =Cy, V=t

Therefore (H,, S(t)) has a global attractor.4, bounded in Y. Moreover there holds

t+1
(2.13) / [VAu(r)||?dr < Cy,
t

for all t > t;.

Proof. Take—Au(t) as a test function in the weak formulation of (1.1). Thidgse

1d

Vu
——||Vul? VAuU|? = —u{ ——=—, VAuU).
3 gt IVUIE 4 19l = = -0 vau)

Therefore, we infer

d 2 2 2
(2.14) aHVUH + [[VAU|“ < c¢|Vul“.
Recalling (2.11), thanks to the uniform Gronwall lemma, welfi; = t;(Ry) andCy =
Co(Rp) such that (2.12) holds. Then we integrate (2.14) fiom t + 1 fort > t; and
we deduce (2.13). The existence of the global attractor isagghtforward consequence
of (2.12). O

It is also easy to prove the so-called smoothing propertg (3§

Theorem 2.6. For every W, vg € Bg,, there exists 4 = t2(Ry) > 1 and G =
C2(Rg) > 0 such that the following estimate holds

(2.15) | S(t)uo — S(t)vollv = Caflug — voll,

for any t> t,.

Proof. Take—Aw(t) as test function in (2.6). This yields

d
aIIVwII2 +IVAW|? = —u(F(u, v, w), VAw).

NI =

By the Young inequality and (2.8), we deduce

d
(2.16) anwn2 <cl|[Vwl?,
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for somec > 0 depending only o2 and . The assertion is then achieved by invoking
the uniform Gronwall lemma and (2.5). [l

In order to establish the existence of an exponential dtiraee also need to es-
tablish the Holder continuity oft(ug) — S(t)ug. This follows from (2.5) and

Lemma 2.7. Let By, C H, be a bounded absorbing set for the dynamical system
(Hg, S(t)). Then there exists €= C,(Ry) > 0 such that

(2.17) IS(t)uo — S(F)uo| = Cat — M4,
for all t, T € [ty, t; + 1], t; being given byTheorem 2.5,

Proof. Observe first that, on account of (2.11) and (2.13) haee

(2.18) | IR dr < CRy),
for all t > t;. Therefore, for allt, T € [ty, t; + 1] such thatf >t there holds
lu®) —u®)1® < Clu(®) — u®llv lu(t) — ut)llv-
= C(Ro) /ttllatu(f)llv* dr < C(Ro)[[f —t[I"'?,
whence the thesis. O

Collecting the above results, on account of [3], we deduce

Theorem 2.8. (H,, S(t)) possesses an exponential attraciyr bounded in V.
As a consequenced, has finite fractal dimension.

REMARK 2.9. Note that the eigenfunctions used in a Galerkin scheseel only
to belong toW (see (2.1)).

3. The dynamical system inH(f)

We recall that (see (2.12)—(2.13), cf. also [5, Corollar¢]y.

Theorem 3.1. Let uy € V,. Then for all R > 0 there exists positive constantg C
and k1, depending ornu, |2| and @ but independent of Rsuch that

sup [lu(®) = Cs(e™"[luoll§ + 1),

luollv=p
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and

t+1
sup [VAu(r)||?dr < Cs,

luollv=R Jt
for all t > 0.
On the other hand, we have
Theorem 3.2. For every w, vp € V there exists a positive constant Gepending

on  and u, such that denoting by uv the respective solutions t@l.1){1.3), the
following continuous dependence estimate holds

t
(3.1) Iu— V)OI + /O 1A = v)(@)]I5 dz < Ce“Tlluo — ol
forany te [0, T], T > 0.

Proof. Setw = u—v and take @ — Aw)(t) as test function in (2.6). We get

1d
(3.2) Ea[llwll2 + IVwl?] + |Aw]? + [VAw|? = w(F(U, v, w), Vw — VAw).

By the Young inequality, we infer
1
w(FU, v, w), Vw — VAw) < u?|F(u, v, w)]? + |Vw]|® + §||VAw||2.

On the other hand (cf. (2.8)),

1+ 4|Vul* + 4|Vv|*
(33) ||f(u,v,w)||z§/ + AVUL” + 4Vy)

2 2
o @+ VupRa+ vopp ¥ vl de = clvly.

Therefore, from (3.2) and (3.3) we deduce
d 2 2~ 2
allwllv + [[Aw|y = cllw]y,
and the thesis follows from the standard Gronwall lemma. OJ

As a consequence, the semigro@t) restricted toV, is strongly continuous
and dissipative.
The existence of a (compact) absorbing set is given by
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Theorem 3.3. Let Bg, C V, be a bounded absorbing set f¢¥,, S(t)). Then
there existst= to(R;) > 1 and G, = C4(R;) > 0 such that

(3.4) lu®)llw = Ca.

Moreover there holds
t+1

(35) |18t <cs
t

for all t > t,.

Proof. Let us takeA?u(t) as a test function in (2.6). Thus, we get

Vu
JAul? + A% = _M<V' (—) A2u>.

1
3.6 =
(3.6) 2 1+ |Vul?

d
dt

Observe that

Vu B Au 2(HesgVu)-Vu
1+ |Vul2) 1+ |Vu]? 1+ |Vup? "’

where Hesg denotes the hessian matrix of Then, we have

Vu
V| ——— ,Azu
“< (1+ |Vu|2) >

M_Z/ |Aul? |Hess|? [Vul*
2 Jol@+vu@z " T @+ |Vup?

1
}dQ—k E||A2u||2

IA

p? 2 2 SO
o Iaul? + 2 Hess ? + 511 a%)2

since the functionx — (1+ x?)~2 andx — x*(1+ x?)~* are globally bounded. There-
fore, we infer from (3.6) that

d

aIIAUII2 + A%l = e(L+ [lullG)-
Recalling (2.10) and exploiting the uniform Gronwall lemmvee obtain (3.4). Bound
(3.5) can be easily deduced by integrating both members eofdiffierential inequality
above on {; t + 1), for t > t,, and using the uniform bound dfu|w. O

On account of the above results, we have

Corollary 3.4. The global attractorA4, of (H,, S(t)) is bounded in \)y and attracts
any bounded set inVin the V -metric.
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REMARK 3.5. For instance, if2 is a polygonal domain, thenl, is bounded in
H¥2(Q). Instead, ifdQ is of classCl?, then A, is bounded inH?(2). Note that,
thanks to Theorem 3.3, we can also construct an exponertialc@r &, which is
bounded inW,. Also, we can prove thaf, attracts any bounded set M, in the
V-metric and A, has finite fractal dimension in thé-metric. In [5] further regularity
results of invariant sets are proven under stronger assoinspbn 9.

4. Convergence to equilibrium

In this section we shall prove the convergence to equilibroof single trajectories.
Let us set

Z = {ue H¥Q): d,u =0 a.e. oNIL},
endowed with its (natural) norm
12 =1 1% + IVA -2

We also defineZz, = Z N H,. By using the techniques described above (see also [5])
it is not difficult to prove the following

Proposition 4.1. Let Q2 be of class €. For every y € H,, we have

Jistuol € Z,..

t>1

Consider now the sef, of all steady states of problem (1.1)—(1.3) with average
bounded byx, namely anyu,, € Z, such that

(4.1) (VAUy 4+ (1 + |VUs|?) VUy, V2) =0, VZeV,.

REMARK 4.2. To the best of our knowledge it is not clear whether thieof¢he
nonconstant stationary states is a continuum. Howevegstlteen proven that there are
(at least) infinitely many equilibria in the case of periobimundary conditions (see [12,
Section 4]).

The main result of this section is

Theorem 4.3. Let 9Q be of class €. For every @ € H, there exists u, € S,
such that

(4.2) u(t) = S(thug — Uy in H3(R),
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as t— oco. Moreovey there existsit> 0 and a positive constant such that
(4.3) lu(t) = Uscllw < S +1) /CE2D vt > ¢,

9 € (0, 1/2) being the same constant as in the tLojasiewicz—Simon iniggualee
Lemma 4.4)

The key tool to prove this result is to use a suitable LojagizwSimon inequality
(see, e.g., [8] and references therein). To state it, weidenshe functional

1
E(u) = Z||Auf? — ﬁ/ In(1 + [VuP?) de,
2 2 Ja
defined for allu € Z. Clearly E € C?(W), with

vu
E'(u) = AU Vil———): W —> W,
(W)= a%u+u (1+quF) -
and
(1 + |Vu])>Vv —2(Vu- Vv)Vu
1+ |Vul?

E”(u)v=A2v+uV-|: ], veW.

Here and below prime denotes the Fréchet derivative. Thaatien of E to Z satisfies
the following basic property

Lemma 4.4. The functional E Z — R is real analytic.
Then, the inequality we need reads

Lemma 4.5. Letuy, € Z, be a solution to the stationary equati¢h.1). Then there
existsh € (0, 1/2], C > 0 ando > 0 such thatfor all u € Z, satisfying|lu — Uy llz <o,

there holds
AZU + MV . (L)

(4.4) [E(U) — E(ua)™ < C‘ 11 [Vup?

Z5

Proofs of Lemmas 4.4 and 4.5 are given in Appendix. Let uslreteme basic
facts before proceeding to the proof of Theorem 4.3.
For all u € H,, we define thew-limit as

@(Ug) = {Ux € Zy: Aty — 00 asn — oo, S.t. S(th)Ug — Uy in WL

First notice that, by multiplying equation (1.1) u in H, we have

@5 B = vl



LONGTIME BEHAVIOR FOR EPITAXIAL GROWTH 997

Note that this can be done whe € W since equation (1.1) holds almost everywhere
(see Theorem 3.3). Therefore, we deduce the following

Proposition 4.6. The functional E is a Lyapunov functional fw, S(t)).

Consequently, standard results (cf. [1, Theorems 9.2.3%2d]) entail that

Lemma 4.7. For any w € H,, the setw(ug) is nonemptycompact invariant and
connected in W and the following inclusion hotdélg) C S,. Moreover E is constant
on w(Up).

Proof of Theorem 4.3. In the course of the proof, the follayviresult (see [4,
Lemma 7.1]) will play a fundamental role

Lemma 4.8. Let ® € L?(0,00), with | ®]lL20,00) < b, @and suppose that there exist
ae(l,2),c>0and an open seP C (0, co) such that

[ee] a
(/ ®?(1) dr) < cd?(t), for a.e.teP.
t
Then® € LY(P) and there exists a constant-€ C(a,b,c), independent of, such that
/ d(r)dr <C.
P

Integrating equation (4.5) ort,(c0), we deduce

[ﬂmwﬂwdn=awm—Ew@,

for someu,, € S,. Setting now
P ={te(0,00): Jult) —Uxllv < w},
Lemma 4.4 yields

1/(1-9)

1+ |Vul?

1+ |Vul?

|EWU»—EWmNEC‘

v
A2+ V- (—“)

Z3

(4.6) )

<c

Therefore, thanks to equation (1.1), we have

o0
/ l8.u(z)]|2 dr < c|dpul|¥@ 2.
t
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Since 2— 2p € (1, 2), we can apply Lemma 4.8 to the functidr(t) = ||d;u(t)|, and
conclude that

/ I3u(t)] dt < oo.
P

Thus, for anyt, t; € P, with t; < t;, we have

t2
(4.7) Ju(tz) —ut)l < [ lu)] dt < rZ’

1

provided thatt; is large enough and the whole interval, ;) lies in P. Observing that
Us € Sy, and recalling Proposition 4.1, we can then chotse 0 such that

(4.8) Ju(to) ~ sl < 5
and, consequentlytd, oc) C P. Set now

To = inf{t > to: |u(t) — Uso| =1}:
clearly we haveTp > to. If we assume thaly < co, we also infer

[u(To) — Ueoll =
On the other hand, as a consequence of (4.7) and (4.8),
[u(t) = Use [l = flu(t) — uto) | + [lu(to) — Us |l < %
for all t € [tg, To), which, by contradiction, implie§y = oo and, therefore,
ut) - U Iin H,

ast — oo. The thesis then follows by Proposition 4.1.
It remains to prove inequality (4.3). Let us establish fitgt tnequality inH. Set

O(t) = E(u(t)) — E(us), Vt € (0, o0).

Since the map — E(u(t)) is monotone nonincreasing)(t) > 0 for all t € [0, c0).
Observe that, by means of the convergence result (4.2), ioamgb(4.5) with (4.6),
we get

d
0N oM’ <0, Vvt=t,
for somet; > 0, ¢ € (0, 1/2) being as in Theorem 4.4. This yields

(4.9) O(t) < c(1+ t)~YCA-22)) vt >,
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On the other hand, we observe that
[OM]*™” < clldu®)], vt =t

and

%[@(t)]ﬁ = ﬂ[@(t)]*”"%@(t) <0, Vt>ty.
Therefore, for anyt > t;, we get
] < —c O]’
dt
Thus, integrating the above inequality framo oo, we obtain

/ @2 de < dom)’, vt >,
t

and, on account of (4.9), we immediately infer
/ [du(z)]l dr < c(1 + t) /@2yt >,
t

Hence, the order estimate has been obtaine#l insing

u(t)—uoo=—ftoo8tu(r)dr in H.

In order to achieve the result M (without any loss in the decay rate), we come back
to inequality (2.14), having set

w(t) = u(t) — v(t) = S(t)uo — Use.

On account of (2.4), we have(t) € Vo for all t > 0. Thus, invoking the usual Poincaré
inequality, it is immediate to deduce

viwllfy < Awlf,
for some suitable constamt Therefore, by interpolation, it is easy to get
2 1 2 2
lwlly = wllwlw = lwidwll + lawl) = SlAwly +cjw]*,

so that (2.14) yields

d 2 VY 2 2
a”u_uoonv + §||u — Ul = CfJu — U
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Then, the Gronwall lemma yields (4.3) in thé-norm. The last step is obtained by
multiplying equation (1.1) byA2u(t). This gives, for some, ¢, > 0,

d
(4.10) T IAU? + cal| A%ull? < o Vul?,
and we conclude by the Gronwall lemma combined with the abthirate control in
V-norm. O
5. Appendix

Proof of Lemma 4.4. We recall that, X andY are Banach spaces, a functional
H: X — Y is analytic (see [16, Volume I, Definition 8.8]) if and only fbr each
Xo € X there exist a balB centered in 0 and a continuous mappifig B + {X} —
(X, Y), for n > 0, such that

x € B + {Xol, heB:>H(x+h)_H(X)=iw_

n=1

Here n(X, Y) = {T € £(X";Y): T is symmetric anch-linear.

Then, we divide the proof into several steps. First, notie it is enough to prove
the analyticity of E’ € C(Z; Z*). Thus, it suffices to prove the claim for the nonlinear
operatorF € C(Z; V*) defined by

Vu
Fu=V-{———|, Z.
=7 (rrv) v
Indeed, it is immediate to check th&t = F; 0 F, o F;, where
Fi1e £(Z;W?), Fy(u) = Vu,
\'
F, € C(W?% L®(R)?), Fo(v) = ———,
2 € C( (Q)), Fa(v) 17 V2
Fse L(L®(Q)% VY, Faw)=V-w.

Once again, as; and F3 are linear and bounded, we are left to prove the claim for
F, only. As F,(v) = f(v)v, it is enough to show the analyticity of the map

W25 v f(v) =1+ V)T eC).

To this purpose, consider the following statement, which suitable extension of [13,
Lemma 1]

Lemma 5.1. Let f: RN — R be an analytic function and K be a compact subset
of RN. Then the formal serie}_, (c,/a!)x* (herew is a multi-index of lengthe| = n),
with ¢, = max.k |0* f (x)|, has positive convergence radius.
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Proof. Let A be a complex neighborhood d®®N in which f can be extended
to a holomorphic functiong. ChooseR > 0 such thatd(K, CN \ A) > R. Define
L={ze A:d(z, K) < R}, and M = maxc||d(z)|. Then, by the Cauchy inequalities,
we deduce the bound, < n!M/R". This proves the claim. []

By means of the standard Sobolev inclusidh— L>(£2), we deduce that the set
K = v(Q) (here the over-line bar denotes the closuréRf) is compact. Therefore, if
we set

To(v) = f(v) and Ta(W)(hi, ..., hn) = D"FW)(h, ..., hy), n>1,

for all (hy, ..., hy) € (W?)" (here D" denotes the differential of of ordern), it fol-
lows that

ITaMl 2way:c@y) = Ces

beingc, as in Lemma 5.1 (in the cadd = 2), and

f(V+h)=iW,

n=0

provided that the series is convergent. This concludes theff Lemma 4.4. [

Proof of Lemma 4.5. Lemma 4.5 can be proven arguing as in [&i@e2]. For
the reader’'s convenience, we outline the argument themaviged. This approach ap-
plies when the underlying function set is a Hilbert spaceictviin our present case is
true only whena = 0. Nevertheless, a&(u) = E(Q), there is no loss of generality
supposing thati € Zo. We recall that in this case a Poincaré inequality holds, algm

crll - IG < IV-1I1% cell- I = lA-17 and co- 3 < [VA-?
cp being the Poincaré constant. Thus, we introduce the Hiltoigret
Zo— Vo= V] — Z§,
all the injections being compact, and the bilinear fofqy: Zg x Zg — R given by

(L+|Vu|)? Vu-Vu
51 Bu(v, w) = (VAv, VA — Vv —-2———Vu, VAw).
(5.1) u(v, w) = (VAv w) +M< 11 |Vul? v 1+ |Vuf? w

Note that(E"(u)v, w)y, = Bu(v, w).
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We have

Proposition 5.2. B, is symmetric continuous and(Zoy, Zj)-coercive. Thenfor
any ue Zo, E"(u) € L(Zo, Z§) is a Fredholm operator.

Proof. Symmetry is straightforward. Let us prove contipudind coercivity. In
the sequel, we shall use the boundedness (from above) olttatidn

X = [(1+ %)% + 231 + x3) %

Concerning the continuity, by means of the injectidn— V, it is easy to see that, for

any v, w € Zg, we get

(1+ |Vu])? + 2|Vul?
1+ |Vu|?

= [VAv[[VAw] +c[Vo[[[VAw] = [vlzwlz + cllvlvllwlz

Bu(v, w) = [VAv[[[VAw] + n

|Vu||[VAw| dQ

= cllizllwlz.
In order to prove coercivity, we recall the interpolatioredguality

1 1/2
llv < cloll¥? vy ve z,

for some positive constart Thus, for anyv € Zg, using also the Poincaré inequality,
we obtain

(1 +|Vu|)? Vu-Vu
Bu(v, v) = (VAv, VA —— Vv, VAv) - 2u{ —————=Vu, VA
u(v, v) = (VAv v)+u< 15 |vup v v n 15 vap v
(1 + |Vu])® + 2|Vul?
> |VAv|? - Vo||VAv| dQ
= | VA2 - Ea e AN

ch||v|%—c/|Vv||VAv|dsz > cplvlZ —clvllvilvliz
Q

3cp 2 2 3cp 2
> Tllvllz —clvlly = Tllvllz —clvlz- vz

Cp 2 2
—|v||5 = Allv]|5-,
= oll3 = vl

for some positiver. (]

Let now P: Vy — Vy be the orthogonal projection onto k&f{((u)). As L, is a
Fredholm operator, ke"(u)) is finite dimensional. Therefore, by symmetry, it can be
extended to a bounded projection #§. From now on, we shall supposg, € Z, to
be a solution to stationary equation (4.1) (i.E/{us) = 0).

The next statement subsumes [2, Lemmas 1 and 2] adapted prabent case.
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Lemma 5.3. The set
S={ueZy: (I —P)E'(u) =0}
is locally near u, an analytic manifold satisfying
dimS = dim ker(E” (Us)).

Lemma 5.4. Assume that the restriction of |k satisfies the Lojasiewicz—Simon
inequality near W, i.e., there exists a neighborhood U Zy of u,, and constant® €
(0, /2] and C=> 0 such that

|E(u) — E(us)|*™" < CIIE'(u)|

z;, YueUns.

Then E satisfies itself the tojasiewicz—Simon inequalitar ne, with the same
Lojasiewicz exponent.

As E is real analytic, its projection o is real analytic. Therefore, the thesis of
Lemma 4.5 is achieved, as a consequence of Lemmas 5.3 and 5.4. []
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