Sato, A.
Osaka J. Math.
48 (2011), 809-826

ON THE CLASS NUMBERS OF CERTAIN NUMBER FIELDS
OBTAINED FROM POINTS ON ELLIPTIC CURVES IlI

ATSUSHI SATO

(Received October 6, 2009, revised March 23, 2010)

Abstract
We study the ramifications in the extensions of number fieldsing from an
isogeny of elliptic curves. In particular, we start with altiptic curve with a ra-
tional torsion point, and show that the extension is unraaiff and “only if” the
point which generates the extension is reduced into a ngukin point (we need
to assume certain conditions in order to prove the “only ifiith We also study a
characterization of quadratic number fields with class remsldivisible by 5.

1. Introduction

The ideal class groups of number fields have been studied fongtime. One
studies the ideal class groups by using certain Diophardgipgations, especially the
arithmetic theory of elliptic curves. For example, T. Horl@ (see also [3]) used el-
liptic curves to construct infinitely many (real and imagyjaquadratic number fields
with class numbers divisible by 3. He also studied a charaet#don of such number
fields (cf. [5]). In [10] and [11] (see also [12]), the authcavg a geometric interpreta-
tion for Honda’s work, and introduced a way to constructpfran elliptic curve with
a rational torsion point of order € {3, 5, 7, infinitely many quadratic number fields
with class numbers divisible bl

Let k be a number field of finite degree, and [Etbe an elliptic curve defined
over k which has ak-rational pointTy of prime orderl. Then there exist an elliptic
curve E* and an isogeny.: E — E*, which are defined ovek, such that Kek = (Tp).
Here (Ty) denotes the subgroup & (k) generated byly. Such a pair E*,1) is unique
up to k-isomorphism, ance* is often denoted byE/(Ty). Taking certain equation for
E and using Vélu's formulas, the author studied, in [10] andl],[the ramification in
the extensiork(1~1(Q))/k(Q) for a point Q on E* with X(Q) € k, and obtained a suf-
ficient condition for the extension unramified at every firplace. Roughly speaking,
the extension is unramified i@ is reduced into a nonsingular point (see Theorem 5.1).
In its proof, the following fact (see Theorem 2.1) plays arpartant role:

Let p be a prime ideal in kand let E (resp.E*) be the curvedefined over the
residue fieldOy/p, which is obtained from the equation for Eesp. E). Then for
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a point Q on B whose image orE* is nonsingular at least one point i "1(Q) is
reduced into a nonsingular point ok.

In the present paper, we study the converse of the schemdldskabove. In Sec-
tions 2 through 4, we prove that the image @fon E* is nonsingular if at least one
point in A~1(Q) is reduced into a nonsingular point & assuming 2 for simplic-
ity (Theorem 2.2). In Section 5, we apply it to show that th&isent condition for
the extension unramified is also a necessary condition,rucetéain assumptions (The-
orem 5.2 and Corollary 5.3). Thus, roughly speaking, themsionk(A~1(Q))/k(Q) is
unramified if and “only if” Q is reduced into a nonsingular point.

Now, takingk = Q and!| € {3, 5, 7, we can construct a lot of quadratic num-
ber fields with class numbers divisible lby(see Theorem 6.1 for the case lof 5).
In Section 6, we study a characterization of quadratic nunfieéds with class num-
bers divisible by 5. The case whele= 5 is particular, since the quintic polynomial
which appears in our theory is closely related to Brumer'siig: polynomial, which
is a generic polynomial for the dihedral group of order 10.

2. Reduction of isogenies via Vélu's formulas

In order to state the main result, we shall briefly repeat #itirgs in [11, Sec-
tion 4]. For details, see the original paper.

Let k be a perfect field with chdr# 2, and letv be a non-archimedean valuation
on k. We denote the valuation ring, the valuation ideal and tlsdue field byO,, p,
and byk,, respectively. Foma € O,, we sometimes denote its image #p by a.

Let E be an elliptic curve defined ovér which has a k-rational point gTof prime
order | # 2. Then we can take a Weierstrass equationEoof the form

(2.1) y? + agxy + agy = x° 4 aX® + auX + a
with
ay, a, ag, &, a € O,.
Moreover, we can take an equation so that the condition
X(To), ¥(To) € O,

is also satisfied. We denote the discriminant of Equatioh)(By A. We fix such an
equation and consider the reduction Bfmodulo p,. That is, letE = E modyp, be
the curve defined over, which is given by

(2.2) Y2+ &xy + dgy = X3 + &X? + &X + &,

and let
E(k) > P— P =P modyp, € E(x,)
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be the reduction o modulo p, with respect toEquation (2.1). Using the reduction
map, we define two subsets &fik) as

ok p,) = {P € E(K); P € Endlicw)},  &4(kip,) = (P € E(k); P = O}.

Here Ens(k,) denotes the set of nonsingulay-rational points onE. Then &y(k; p,) is
a subgroup ofg(k), and

&o(k:p,) 3 P> P e Epgy)

is a group homomorphism of kernél, (k; p,). We call P € E(k) is good modulo p,
with respect to (2.1) if it belongs téy(k; p,) (we often omit the phrase “modulp,
with respect to ...”). Similarly, we calP € E(k) is bad if it does not belong to

go(kv pv)
Let I' be the subgroup oE(k) generated byTy, and let

(2.3) Y2 4+ ALXY + AgY = X34+ AX? 4+ AgX + Ag

be the equation for the elliptic curndé* = E/T" and1: E — E* the isogeny which are
given by Vélu's formulas [13] (see also [11, Section 2] or,[Bection 12.3]). Then
we have

A1, Az, Az, Ay, As € O,.

We denote the discriminant of Equation (2.3) y. Let E* = E* modp, be the curve
defined overx, which is given by

(2.4) y2 + Agxy + Agy = X3 + Apx® + AgX + A,
and let
E*(K) > Q— Q = Q modp, € E*(k,)

be the reduction oE* moduloy, with respect to (2.3). We defing(k:p,), & (k:p,) S
E*(k) in the same manner as f@.

In [11], the author showed that the inverse imagellyf every good point contains
a good point:

Theorem 2.1 ([11, Theorem 4.5)). If Q € & (k; p,) satisfiesr™(Q) < E(k), we
have 1~(Q) N &(k; p,) # 9.

The main result of the present paper is that the converse eofabiove theorem
holds. That is, we prove the following theorem:
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Theorem 2.2. If Q € E*(k) satisfiesA=*(Q) € E(k) and A=%(Q) N &o(k; p,) # 9,
we have Qe &5(k: p,).

REMARK 2.3. We have eithef’ N &(k; p,) = {O} or T' N &(k;p,) =T. In the
former case, the set™1(Q) N &(k:p,) consists of at most one point. In the latter case,
A7Y(Q) N &y(k; p,) coincides withA~1(Q) or @. We also hava™ N &, (k: p,) = {O} in
both cases.

REMARK 2.4. The assertion of Theorem 2.1 holds even if ghar2 or if | =2
(in [11, Section 4],k is arbitrary perfect field, andl is arbitrary prime number). We
can also show Theorem 2.2 in these cases. However, we skalinaschak # 2 and
| # 2, since the proof for these cases are complicated, and Wweamply the theorem
only in the case where chiar= 0 andl # 2.

Before giving a proof of Theorem 2.2, we show the followin§ (&1, Remark 4.6]):
Corollary 2.5. The curveE is nonsingular if and only if so is the curve*:
A =0 (modp,) < A* =0 (modp,).

Proof. As we will see in the beginning of Section 3.2, the ¢ood I" N &y(K; p,) =
{O} implies that both of the curves are singular. Thus it suffiteshow the assertion
in the case wher& N &y(k; p,) = I'. We may also replack with its finite extension.

First, supposeE is singular. Then we can take a poiRte E(k) — &o(k; p,) (for
sufficiently largek). Thus, puttingQ = A(P), we haver=%(Q) N &y(k: p,) = @ be-
cause of the assumptioni N &(k; p,) = T’ (see Remark 2.3). Therefore we obtain
Q ¢ &5 (k: p,) by Theorem 2.1, and hende* is also singular.

Conversely, suppose* is singular. Then we can take a poidte E*(K)—&5 (K;p,)
such thata=1(Q) € E(k) (for sufficiently largek). Therefore we obtaim.=1(Q) N
&o(k; p,) = @ by Theorem 2.2, and hende is also singular. O

3. Proof of Theorem 2.2 (Part 1)

3.1. Relations amongX,Y and x,y. In what follows, for a functionf and a
point P on E, we often denote the valué(P) by fp. We also denotd=(Q) by Fqg
for a function F and a pointQ on E*. Now we recall that the isogeny: E — E* is
given by

100, _ 1o+ 110y

31) BT A ¥
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with polynomials
(x) = X' —2(2 xT)x'—1+---, lo(x), 11(x)
Tely

and

JO(X) = l_[ (X — XT) = X(l_l)/2 — (Z XT>X(I_3)/2 +

Telg Tely

in X, wherel'y C T is a perfect representatives fdar £ {O})/+1 (see [11, Section 3.2]).
We note that all the coefficients of these polynomials ar@jnand thatl (x) and Jo(x)
do not have any common root. We defig& g¥ € k(E) andG*, GY € k(E*) by

¢ =3x% 4+ 2apXx +ay — a1y, @' =—2y —aiX —ag

and by
GX =3X%2 4+ 2AX + As— AlY, GY = -2Y - A X — A,

respectively. In the proof which we will describe, the fotmu

(32) XQ+ Z Xt = Z Xp

Ter—{0} Per-1(Q)
(see [11, Remark 2.1]) and the formulas
(3.3) G5 =mpgs +np(gl)’, GG = mpgy

for P € A7(Q) (see [11, Section 3.1]) play important roles. Here we defie
k(E) by

20F —angy | 2(9)? _ 20F —a1gy | 3(9)?
=1 Z( (T— XT)ZT (x _I(T)B), n= Z( (XT— XT)3T - (x _I(T)A).

Telp Telp

3.2. The casel' N &u(ks p,) = {O}. We first consider the casg N &(k; p,) =
{O}, i.e., the case where eveflye I' — {O} is bad. In this case, we have

Al=a;, A=, Ag=a, Ar=a (modp,), As=as (modp,)

(see [11, Proof of Theorem 4.5]). Thus Equation (2.4) Er coincides with Equa-
tion (2.2) for E. Consequently, we obtain

A=A"=0 (modp,).
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Since allT € I' — {O} are bad points, writingx the x-coordinate of the (unique)
singular point onE, we haveXt = « for all T € I' — {O}. We recall that the set
1~H(Q) N &y(k; p,) consists of at most one point, as mentioned in Remark 2.3.

Proposition 3.1. If Q € E*(k) satisfiesr™(Q) < E(k) and 2~*(Q) N &o(k: p,) =
{P}, we have Qe & (K;p,).

Proof. AssumeQ # O and A~%(Q) N &p(k: p,) = {P} (the assertion is clear if
Q = 0). Then everyP’ € A7}(Q)—{P} is bad, and hence satisfi&s = «. Therefore

XQ—Xp: Z Xpr — Z XT

P’er1(Q)—{P} Ter—(o)

(see (3.2)) belongs tp,. Consequently, ikp € O,, we haveXq € O, andxp = Xg

(mod p,), which imply Q € &5 (k:p,) — & (ki p,). If Xp & O,, we haveXq ¢ O,, and

henceQ € &7 (k: p,). In both cases, we conclud® € &5 (k: p,). ]

3.3. The casel' N &y(k; p,) = . We next consider the cade N &(k; p,) =

T, i.e., the case where evefly € I' is good. In this case, the set(Q) N &y(k: p,)
coincides withA~%(Q) or @, as mentioned in Remark 2.3.

Proposition 3.2. If Q € E*(k) satisfiesr1(Q) € E(k) and A~1(Q) N &(k: p,) =
274Q), we have Qe &5 (k;p,).

In order to prove the above proposition, we need the follgalemma, which we
will show in the next section:

Lemma 3.3. Assumel’ C &y(k;p,) and A* = 0 (mod p,). If P e &(Kk;p,) —
&y (k:p,) satisfies ¥ # xr (modyp,) for all T € I' —{O}, we have either me O} or
n y X
PgP € Ov'
REMARK 3.4. Inthe above lemma, itimmediately follows from the asptions that
Xp, Yp, G5, O, Mp, Np € O,
Hence we may write the assertion asp'# 0 (modp,) or npg,y; #£ 0 (modp,).”

Using Lemma 3.3, we can prove Proposition 3.2 as follows:

Proof of Proposition 3.2. Since the assertion is cleaQif= O or if A* £ 0
(mod p,), we assumd” < &(k; p,), Q # O and A* =0 (modp,).



CLASS NUMBERS OF CERTAIN NUMBER FIELDS 815

() SupposeP = T holds for someP € A~1(Q) and T € . Then we haveP + T/ =
T + T’ for eachT’ € I', and hence

(P;Perx Q) ={T: Ter}.

In particular, we have® = O for some P € A71(Q), and such a poinP is uniquely
determined. Therefore

XQ — Xp = Z Xpr — Z X1

P'er 1(Q)—{P} Tel'—{O}

(see (3.2)) belongs tp,, and we obtainXq ¢ O,, for xp ¢ O,. Thus we conclude
Qe &ilkip,)-

(i) SupposeP = T does not hold for anyP € A~1(Q) and T € T'. Let P be a point
in 271(Q). Then clearlyP € &(k:p,) — &, (k:p,), and it is easy to verify thatp # Xt
(modyp,) hold for all T € '—{O}. Hence we haveXq,Yq € O, by (3.1). Now suppose
Q ¢ & (ki p,), which meansG§ = G§, =0 (modp,). Then it follows from (3.3) that

mpgp + nP(g)Fl’)z =mpgp =0 (modp,).

However, by Lemma 3.3, we also have eitmeg € O or npg,y, € Oy. Therefore we
must have ifip € O and) g5 = g5 = 0 (mod p,), which contradictsP € &(K; p,).
Thus we conclude € &5 (k: p,) — &5 (K; p,). L]

4. Proof of Theorem 2.2 (Part Il)

In order to complete the proof of Theorem 2.2, we have to shemrma 3.3. In
the present section, we assumieC &y(k; p,) and A* = 0 (mod p,), fix a point P
éok; p,) — &4 (k; p,) which satisfiesxp # xt (mod p,) for all T € I' — {O}, and show
that eithermp % 0 (mod p,) or npg} # 0 (mod p,) holds &p, yp, g5, b, Mp, Np €
0, are immediate, as mentioned in Remark 3.4). Since we maywaepl with its
finite extension without loss of generality, we assuBR] € E(k). The groupE[2]
consists of 4 points, and hence the order of its subgrough as&[2] N &(k; p,) and
E[2] N & (kip,), is 1,2 or 4.

4.1. Relations amongm, n and x. Putting

M(x) = 1'()30(0) — 21 () Jg(x) = x@ /2 - 3(2 xT)x<3'5>/2 oo,

Tely

N(x) = M’(x)Jo(x) — 3M(x) Jo(X),

we can rewritem, n as
_ME N
T 2007 T 23007
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We note that all the coefficients &fl(x) and N(x) are inO,, and thatM(x) and Jo(X)
do not have any common root. In the proof of Lemma 3.3 which \iledescribe, we
shall compare the reduction dfl(x) and Jo(x). We denote byM(x) and Jo(x) their
reductions modul,.

Now we recall that the points of order 2 d& and E* are the zeros of)Y and
GY, respectively:

E[2] —{O} = {T € E(k) — {O}; ¢} =0},
E*[2] - {0} = {U € E*() - {O}: G} = O}.

Thus it follows fromA~Y(E*[2]) = E[2] + T that eachT € (E[2] — {O}) + (I' — {O})
satisfiesgy # 0 and GI(T) = 0. Since suchl also satisfieslp(xt) # 0, we have

M (XT) y
Jo(x7)3 o

0= GI(T) =mrgy =

(see (3.3)), and henckl(xr) = 0. Consequently we obtain

M= J[  x—x0),

Te(E[2]-{O0})+To
for the set E[2] — {O}) + I'p consists of (B— 3)/2 points.

4.2. The case chat, # 2. If the characteristic ok, is not 2, one easily verifies
E[2] N &y (k; p,) = {O}. Thus we consider according to the orderEf2] N &y(K; p,),
and obtain:

Lemma 4.1. Let the notation and the assumptions be the same agimnma 3.3
We also assume [B] € E(k) and charx, # 2. Then
(i) If E[2] N &o(k; p,) = {O}, we have m £ 0 (modp,).
(i) If E[2] N &(k; p,) # {O} and if mp = 0 (modp,), we have g} # 0 (modp,).

Proof. We first claim that the assumptions impE/[2] + I') N &.(k; p,) = {O}.
Indeed, ifT e E[2] and T’ e " satisfy T + T’ € &, (k; p,), we have

T=[T =0T +T)e&kp,),
and hencel = T’ = O because ofE[2] N &, (k; p,) = {O} and T N & (k; p,) = {O}
(see Remark 2.3).

It follows from the claim that the reduction map

(E[21+T) Néo(kip,) 3 T > T € Eng(ky)
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is an injective group homomorphism. Therefore, for goodhimol and T’ in (E[2] +
) — {0}, we have

X =xp (modp,) < T =4T".

In what follows, we denote by the x-coordinate of the singular point o if A =0
(mod p,). Then clearlyXp # «.

(i) AssumeE[2] N&y(k;p,) = {O}. Then eachl € E[2] —{O} is bad, andT +T"
consists only of bad points. Thus we have

M0 = (x =) 2,

and hence
\ = M(Xp)
Jo(xp)3

(i)Y AssumeE[2] N &(k; p,) = {0, T1} (T1 # O) andmp = 0 (mod p,). Then
we can show

#0 (modp,).

Mx)=(x—a) " J] x=%;), Xr#a for TeTi+T,
TeT1+Tg

in the same manner as in (i). We also hae# Xy for distinct pointsT and T’ in
(Ty + Ip) U {T1}. Sincemp = 0 (mod p,), there exists (uniqueY € T; + o which
satisfiesXp = X7, and thenM’(xp) # 0 (mod p,). Thus we have

N(xp) = M'(xp)Jo(xp) — 3M(xp) Jo(Xp) = M'(Xp)Jo(Xp) # 0 (modp,),

and hence
N(xp)

= 23000’} #0 (modp,).

Np

Furthermore, it immediately follows fromir # « and Xt # Xy, that gé £ 0 (modp,).
@i)”  Assume E[2] N &(k; p,) = E[2] and mp = 0 (mod p,). Then we have
E[2] + T <€ &(k;p,), and henceXr # Xy for distinct pointsT and T in (E[2] +
o) U(E[2] — {O}). Thus we can showmp # 0 (modp,) and g} # 0 (modyp,) in the
same manner as in (ii) O
4.3. The case chat, = 2. If the characteristic ok, is 2, it is not hard to verify
(4.1) @gX)?> = A (modp,) for T e E[2]—&,(K:p,).

Indeed, sinceT € E[2] — &, (k; p,) satisfiesg? = 0, we have

aixr = ag (mod p,), aSy? = ad + ayaa? + aZagay + aSas (Mod p,),
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and hence

(a2g7)” = af(x? + a2 + aly?) = af + afal + a(a} + ayapa? + alagay + alay)

=A (modp,).
We also have
(4.2) @GJ)? = A* (modp,) for U e E*[2] — &7 (k:p,),
for A; = a;. We consider according ag belongs top, or not, and obtain:

Lemma 4.2. Let the notation and the assumptions be the same a®imnma 3.3
We also assume [B] € E(k) and chark, = 2. Then we have g 0 (modp,).

Proof. (i) Assumea; =0 (modyp,). Then it follows from chak, = 2 that

291 —augr . 2(9r)* )
mp=1-— =1 (modp,).
: ; ( (Xp — x1)? (XP —x7)? ( pu)

(i) Assumea; # 0 (modp,) and A =0 (modyp,). Then, for eachT € E[2] —
&y (ki p,), we havegf =0 (modp,) by (4.1). Since suclT also satisfieg# =0, we
have T ¢ &y(k; p,), and concludeE[2] N & (K; p,) = E[2] N &, (k; p,). Hence, putting
e = #(E[2] N &, (k; p,)), we obtain
M(x) = Jo(x)®*(x — o) - =D/2,

where o denotes thex-coordinate of the singular point ok. Thus we can show
mp # 0 (mod p,) in the same manner as in the proof of Lemma 4.1.
(iii) Assumea; # 0 (modyp,) and A £ 0 (modyp,). Then the reduction map

E[2]+T>T T € E(k,)

is a group homomorphism of kern&8[2] N & (k;p,). Now we claimE[2] < &, (k;p,).
In fact, if this is not the case, taking a poit € E[2] — &, (k; p,), we can show

xt, #Xr (modp,) for T el —{O},

and hencer(T;) € E*[2] — & (k;p,). Thus it follows from (3.3), (4.1), (4.2) and
Y =0th
Oy, = at

= (aiGJ(r,)° = (aimm,07,)* = m, (afgy,)* = mi, A (mod p,).
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However, it is not hard to showny, = M(xt,)/Jo(X7,)® # O (mod p,). Therefore we
have A* £ 0 (mod p,), which contradicts the assumptions. Consequently weirobta
E[2] <€ &4 (k; p,), which implies

M(x) = Jo(x)3.
Hence we concludenp £ 0 (mod p,). O

5. Application to number theory

From now on,k denotes a number field of finite degree, and we denote its ffing o
integers byOk.

Let E be an elliptic curve defined ovdr which has a k-rational point gTof prime
order | £ 2. Then we can take a Weierstrass equationHoof the form

y? + aixy + agy = x> + apx® + ayx + ag

with
al! a21 a31 a41 aGa XTO’ yTO € Ok
Let
(5.1) Y2 4 ALXY + AgY = X3 4+ AoX? + AuX + Ag

be the equation for the elliptic curve* = E/(To) and »: E — E* the isogeny of
kernel (To) which are given by Vélu’'s formulas. Then we have

A]_, AZ; A3| AA, A6 € Ok.

We also note that all the coefficients of the polynomi&(g) and Jy(x), defined in
Section 3.1, are i0x. We define a cubic polynomidkF(X) and a polynomialA¢(x)
of degreel (with a parametet) by

F(X) = 4X3 4 (A2 + 4A5)X? + 2(A1As 4 2A5) X + A2 + 4Aq

and by
At(x) = 1(x) = tJo(x)?,

respectively.
Now we takeé € k which satisfies the following two conditions:

(CO) F(§) # 0.
(C1) Ag(x) is irreducible overk.
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We also take a poin@Q on E* with Xg = &, and put

K =k(Q (=k(VFE)), L =kGr Q) (=KGHQ)).

ThenL/K is a cyclic extension of degrde and L is the splitting field ofAs(x) over
K (see [11, Lemma 5.5]). Moreover we have

(5.2) A= ] (x=xp).
Per 1(Q)

With the notation and the assumptions described above, utt®mashowed in [11]
that the extensio./K is unramified if the pointQ is good:

Theorem 5.1 (See [11, Theorem 5.1]).Suppose that the point Q is good mod-
ulo P with respect to(5.1) for a prime ideald in K. Then the extension /K is
unramified at3.

Conversely, we can easily show the following theorem by giSiheorem 2.2:

Theorem 5.2. Suppose that the point Q is bad modgtowith respect tq(5.1) for
a prime ideald in K. Then all the coefficients of the polynomial(x) are p-integral,
and we have

Ae(x) = (x—a)' (mod p)
for some ac Ok. Here p denotes the prime ideal in k lying beldy.

Proof. Suppose tha® is a bad point moduld3. Thené = Xq is a p-integer,
and it follows from Theorem 2.2 that all the points in'(Q) are bad (modulo each
prime divisor of B in L). Thus, writing« the x-coordinate of the (unique) singular
point on E = E modp, we haveXp = « for all P € 171(Q), which implies]\;(x) =
(x —a)' (see (5.2)). Hence, taking € Ok such thatd = o, we haveA:(x) = (x — a)
(mod p). ]

Theorem 5.2 does not assert that the converse of Theoremofl$. Hn fact, the
converse does not necessarily hold (see Example 6.7). Howender certain assump-
tions, we can show the converse of Theorem 5.1:

Corollary 5.3. Let the notation and the assumptions be the same a$hie+
orem 5.2 We also assumé € Ok and [Oyp) : Ok[0]] # 0 (mod p). Here ¢ is a root
of A¢(x), and Oy denotes the ring of integers oft). Then the extension /K is
ramified at‘p.
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Proof. It follows from the assumptions and Theorem 5.2 fhds decomposed
into the formp = (p,60 —a)' in k(0) (see, e.g., [1, Proposition 2.3.9]). Hence we obtain
the assertion because df [ K] =1 and K : k] < 2. []

We recall that the extensioK /k is trivial, i.e., K = Kk, or quadratic according as
JF(&€) € k holds or not. In the latter case, we have the following:

Proposition 5.4. Suppose that the extension/Kis quadratic. Then [k is a
dihedral extension of degre#, and L is the splitting field ofA¢(x) over k.

Proof. LetP be a point inA~1(Q). Then we havelL = k(P), for (To) € E(K).
Moreover, for anyo € Gal(k/k), there existsi¢, j,) € (Z/2Z) x (Z/|Z) such that

Q" =[(-1°1Q, P’ =[(-1)"1P +[j,]To.
The pair (,, j,) is uniquely determined by, and the map> — (i,, j,) satisfies
igr =l +ig, jar = ja+(_l)i"jr-

Thus we obtain the former assertion. The latter assertionediately follows from the
former one. O

It follows from the above proposition that the multipld ©@, wherei is an integer
not divisible byl, has the same properties &s

Corollary 5.5. Let the notation and the assumptions be the same &rapos-
ition 5.4. We take an integer i not divisible by &nd put

Q' =I[1Q, & =Xq.

Then we have’ € k, k(Q') = K and KA1(Q’)) = L. Moreovey & satisfies the two
conditions(C0) and (C1), replaced& with &,

Proof. The first assertioff ek is obvious. We puK’=k(Q’) andL’ =k(r1(Q").
Then we haveK’ = k(/F(§')) CK andL’ C L. Now the extensiorL’/K’ is trivial or
cyclic of degred according afQ’ € A(E(K')) holds or not. However, taking the integers
j, j’ such thatij +1j"=1, we obtain

Q=[ij]1Q+1i'TQ € [j1Q + A(E(K)),
since we havel[E*(K) € A(E(K)). Thus, if L’/K’ is trivial, we obtain

Q € A(E(K") + A(E(K)) = A(E(K)),
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which contradicts [ : K] =1. HenceL’/K' is cyclic of degred, which impliesK’ = K
andL’ =L, for L/K is dihedral of degreel2 The rest of the assertions are immediate.
Ul

6. Quadratic number fields with class numbers divisible by 5

For nonzero integera and b, the elliptic curveE defined by
¥ + (@ + b)xy + ab’y = x° + abx?
has a rational poinTy = (0, 0) of order 5. Therk: E — E* = E/(Tp) is given by
Y2 4+ (@a+ b)XY +ab’Y = X3 4 abX? + 5ab(a® — 2ab— b?) X
+ ab(a* — 10a®b — 5ab? — 15ab’® — b%),
which hasA* = —ab(a? + 11ab — b?)°, with
| (x) = x° + 2abx* —ab(a®—3ab—b?)x® + 3a2b3(a + b)x? + ab*(a + 3b)x +a’b®,
Jo(x) = x? +abx.
Consequently, putting
F(a, b; X) = 4X3 + (@ + 6ab + b?)X? + 2ab(10a” — 19ab — 9b?) X
+ ab(4a* — 40a°b — 20a%b? — 5%ab® — 4b%)
and

A(a, b, t; x)
= x° + 2abx* — ab(a® — 3ab— b?)x® + 3a’b*(a + b)x? + a®b*(a + 3b)x + a*b®
—t(x* + 2abx® + a?b?x?),

we have:

Theorem 6.1 (See [11, Theorem 5.1]).Let & be a rational number which satis-
fies the following two conditions
(C1) A(a, b, &; x) is irreducible overQ.
(C2) For any prime divisor p of a@? + 11ab— b?),

min{ord, F(a, b; £), ord, F'(a, b; £)} <0 (if p # 2),

(6.1) {ordz%‘ <0 (if p=2).

Then the fieldQ(+/F(a, b; &)) is quadratic with class number divisible &y
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REMARK 6.2. (i) The condition (C1) implieab # 0 andF(a,b;&) # 0. Indeed,
we haveA(a, b, &; x) = x*(x — £) if ab =0, and the discriminant of(a, b, &; x) is
equal toa*bF(a, b; £)2.

(i) The condition (6.1) means that the poi@ on E* with Xq = £ is good modulop.

Using Theorem 6.1, we can easily construct a lot of quadratimber fields with

class numbers divisible by 5 (cf. [9]). We close the preseapiep with studying the
“converse” of the theorem:

QUESTION 6.3. For a quadratic number field with class number divisije5,
can we express the field &(./F(a, b; £)) with some integers, b and some rational
numberé¢ satisfying the conditions (C1) and (C2)?

A numerical experiment with PARI/GP [7] shows:

EXAMPLE 6.4. There are 687 quadratic number fieldswhich satisfy |dx| <
10000 and 5 hg. Heredx andhy denote the discriminant and the class numbeKof
respectively. We can express all of them wétjb and ¢ satisfying the conditions (C1),
(C2) and

|a] <100, |b] <100, |(numerator of¢)-(denominator ofg)| < 10000,

exceptK = Q(~/—2290). We can also expre§®(+~/—2290) with much larger parame-
ters, which are obtained with the help of Professor Yuichiura [8].

If we ignore the condition (C2), it is not hard to obtain a piesi answer:

Theorem 6.5. Let K be a quadratic number field with class number divisible
by 5. Then there exist nonzero integersbaand a rational numbek, satisfying the
condition (C1), such that K= Q(/F(a, b; §)).

In order to show the above theorem, we introduce Brumer'sitgupolynomial
BsU2)=2+(-3)2"+U-s+3)Z2 +(s*—s—2u— 1)+ uz+s,
which has the following property:
Lemma 6.6 (See, e.g., [4, Theorem 2.3.5] or [6, Théoréme 2.1Jet k be an ar-

bitrary field, and let L/k be a dihedral extension of degré®. Then L is the splitting
field of B(s, u; z) over k for some ,au € k.
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With a similar calculation to the one in [6, Section 2], we cemmify that B(s, u; z)
is connected withA(a, b, t; x) via the following formula:

yad s
B(s,u;2) = - A{—-s,1,—2s—u; - |.
(s,u;2) i ( u z)

Proof of Theorem 6.5. LeK be a quadratic number field with class number di-
visible by 5. Then it follows from the class field theory thaete exists a unramified
cyclic extensionL /K of degree 5, and thdt/Q is a dihedral extension of degree 10
(see, e.g., [2, Lemma 3]). Hende is the splitting field ofB(s, u; z) over Q for some
S,u € Q. Then clearlys # 0. Thus, taking (nonzero) integeasb and a rational number
& with

a §
§=— _25—u= >
S b Ss—u 2
we have
2 ab
B(s,u; 2) = WA(a, b, &; —?).
ConsequentlyL is also the splitting field ofA(a,b,&;x) over Q, and henceA(a,b,&;x)
cannot be reducible ove®. Finally, we define elliptic curve€, E* and an isogeny

A: E — E* in the same manner as in the beginning of the present sediienalso
take a pointQ on E* with Xq = &. Then we havel = Q(A7%(Q)), and henceK =

Q(Q) = Q(VF(a, b: §)). O

In view of Theorem 5.2 and Corollary 5.3, one might expect tha integersa, b
and the rational numbey in Theorem 6.5 also satisfy the condition (C2). The follow-
ing example shows that the expectation does not necesbatdy and that we still have
a possibility of obtaining a positive answer to Question. 6.3

EXAMPLE 6.7. Takinga=b =1 andé = —106, we haveA* = —11° and
F(1, L X) = 4X3 + 8X? —36X — 119,
A1, 1,—-106 x) = x° 4+ 108&* + 215¢3 + 1122 + 4x + 1.

It is not hard to verify thatA(1, 1,—106 x) is irreducible overQ, and that the class

number ofQ(./F(1, I; —106)) = Q(+/—319) is equal to 10. On the other hand, these
a, b and ¢ do not satisfy the condition (C2):

F(1, 1, —-106)= —11°-29, F’'(1, 1 —106)=2?.5%.11%.
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In other words, any poinQ on E* with Xg = —106 is bad modulo 11. Moreover,
we have

A(1,1,-106 x) = (x — 7)° (mod 11), Dqe) : Z[0]] = 114,

where6 is a root of A(1, 1,—-106 x) and Ogq) denotes the ring of integers @(0).
Nevertheless, takin@®’ = [2]Q instead ofQ, we haveXqo = —785/29 and

785 11.1268% 785 22.719. 1217
F 11 T e = — ) F/ 1| T == .
( =% ) 2% ( =% ) 2%

HenceQ(+/—319) can be expressed with=b =1 and¢’ = —785/29, which satisfy
the conditions (C1) and (C2), replacédwith &’ (cf. Corollary 5.5). ThuQ(A%(Q)) =
Q(r~X(Q") is a cyclic extension 0f)(Q) = Q(Q) = Q(+~/—319) of degree 5, in which
every finite place is unramified.
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