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Abstract
We study the ramifications in the extensions of number fields arising from an

isogeny of elliptic curves. In particular, we start with an elliptic curve with a ra-
tional torsion point, and show that the extension is unramified if and “only if ” the
point which generates the extension is reduced into a nonsingular point (we need
to assume certain conditions in order to prove the “only if ” part). We also study a
characterization of quadratic number fields with class numbers divisible by 5.

1. Introduction

The ideal class groups of number fields have been studied for along time. One
studies the ideal class groups by using certain Diophantineequations, especially the
arithmetic theory of elliptic curves. For example, T. Honda[2] (see also [3]) used el-
liptic curves to construct infinitely many (real and imaginary) quadratic number fields
with class numbers divisible by 3. He also studied a characterization of such number
fields (cf. [5]). In [10] and [11] (see also [12]), the author gave a geometric interpreta-
tion for Honda’s work, and introduced a way to construct, from an elliptic curve with
a rational torsion point of orderl 2 {3, 5, 7}, infinitely many quadratic number fields
with class numbers divisible byl .

Let k be a number field of finite degree, and letE be an elliptic curve defined
over k which has ak-rational pointT0 of prime orderl . Then there exist an elliptic
curve E� and an isogeny�W E! E�, which are defined overk, such that Ker�D hT0i.
Here hT0i denotes the subgroup ofE(k) generated byT0. Such a pair (E�,�) is unique
up to k-isomorphism, andE� is often denoted byE=hT0i. Taking certain equation for
E and using Vélu’s formulas, the author studied, in [10] and [11], the ramification in
the extensionk(��1(Q))=k(Q) for a point Q on E� with X(Q) 2 k, and obtained a suf-
ficient condition for the extension unramified at every finiteplace. Roughly speaking,
the extension is unramified ifQ is reduced into a nonsingular point (see Theorem 5.1).
In its proof, the following fact (see Theorem 2.1) plays an important role:

Let p be a prime ideal in k, and let QE (resp. QE�) be the curve, defined over the
residue fieldOk=p, which is obtained from the equation for E(resp. E�). Then, for
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a point Q on E� whose image onQE� is nonsingular, at least one point in��1(Q) is
reduced into a nonsingular point onQE.

In the present paper, we study the converse of the scheme described above. In Sec-
tions 2 through 4, we prove that the image ofQ on QE� is nonsingular if at least one
point in ��1(Q) is reduced into a nonsingular point onQE, assumingl ¤ 2 for simplic-
ity (Theorem 2.2). In Section 5, we apply it to show that the sufficient condition for
the extension unramified is also a necessary condition, under certain assumptions (The-
orem 5.2 and Corollary 5.3). Thus, roughly speaking, the extensionk(��1(Q))=k(Q) is
unramified if and “only if ” Q is reduced into a nonsingular point.

Now, taking k D Q and l 2 {3, 5, 7}, we can construct a lot of quadratic num-
ber fields with class numbers divisible byl (see Theorem 6.1 for the case ofl D 5).
In Section 6, we study a characterization of quadratic number fields with class num-
bers divisible by 5. The case wherel D 5 is particular, since the quintic polynomial
which appears in our theory is closely related to Brumer’s quintic polynomial, which
is a generic polynomial for the dihedral group of order 10.

2. Reduction of isogenies via Vélu’s formulas

In order to state the main result, we shall briefly repeat the settings in [11, Sec-
tion 4]. For details, see the original paper.

Let k be a perfect field with chark ¤ 2, and letv be a non-archimedean valuation
on k. We denote the valuation ring, the valuation ideal and the residue field byOv, pv
and by�v, respectively. Fora 2 Ov, we sometimes denote its image in�v by Qa.

Let E be an elliptic curve defined overk which has a k-rational point T0 of prime
order l ¤ 2. Then we can take a Weierstrass equation forE of the form

(2.1) y2C a1xyC a3y D x3C a2x2C a4x C a6

with

a1, a2, a3, a4, a6 2 Ov.
Moreover, we can take an equation so that the condition

x(T0), y(T0) 2 Ov
is also satisfied. We denote the discriminant of Equation (2.1) by 1. We fix such an
equation and consider the reduction ofE modulo pv. That is, let QE D E modpv be
the curve defined over�v which is given by

(2.2) y2C Qa1xyC Qa3y D x3C Qa2x2C Qa4x C Qa6,

and let

E(k) 3 P 7! QP D P modpv 2 QE(�v)
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be the reduction ofE modulo pv with respect toEquation (2.1). Using the reduction
map, we define two subsets ofE(k) as

E0(kI pv) D {P 2 E(k)I QP 2 QEns(�v)}, EC(kI pv) D {P 2 E(k)I QP D QO}.

Here QEns(�v) denotes the set of nonsingular�v-rational points on QE. ThenE0(kI pv) is
a subgroup ofE(k), and

E0(kI pv) 3 P 7! QP 2 QEns(�v)
is a group homomorphism of kernelEC(kI pv). We call P 2 E(k) is good modulo pv
with respect to (2.1) if it belongs toE0(kI pv) (we often omit the phrase “modulopv
with respect to . . . ”). Similarly, we callP 2 E(k) is bad if it does not belong to
E0(kI pv).

Let 0 be the subgroup ofE(k) generated byT0, and let

(2.3) Y2C A1XYC A3Y D X3C A2X2C A4X C A6

be the equation for the elliptic curveE� D E=0 and�W E! E� the isogeny which are
given by Vélu’s formulas [13] (see also [11, Section 2] or [14, Section 12.3]). Then
we have

A1, A2, A3, A4, A6 2 Ov.
We denote the discriminant of Equation (2.3) by1�. Let QE� D E� modpv be the curve
defined over�v which is given by

(2.4) y2C QA1xyC QA3y D x3C QA2x2C QA4x C QA6,

and let

E�(k) 3 Q 7! QQ D Q modpv 2 QE�(�v)
be the reduction ofE� modulopv with respect to (2.3). We defineE �

0 (kIpv), E
�C(kIpv) �

E�(k) in the same manner as forE.
In [11], the author showed that the inverse image by� of every good point contains

a good point:

Theorem 2.1 ([11, Theorem 4.5]). If Q 2 E
�
0 (kI pv) satisfies��1(Q) � E(k), we

have��1(Q) \ E0(kI pv) ¤ ;.
The main result of the present paper is that the converse of the above theorem

holds. That is, we prove the following theorem:
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Theorem 2.2. If Q 2 E�(k) satisfies��1(Q) � E(k) and ��1(Q)\ E0(kI pv) ¤ ;,
we have Q2 E

�
0 (kI pv).

REMARK 2.3. We have either0 \ E0(kI pv) D {O} or 0 \ E0(kI pv) D 0. In the
former case, the set��1(Q)\E0(kIpv) consists of at most one point. In the latter case,��1(Q) \ E0(kI pv) coincides with��1(Q) or ;. We also have0 \ EC(kI pv) D {O} in
both cases.

REMARK 2.4. The assertion of Theorem 2.1 holds even if chark D 2 or if l D 2
(in [11, Section 4],k is arbitrary perfect field, andl is arbitrary prime number). We
can also show Theorem 2.2 in these cases. However, we shall assume chark ¤ 2 and
l ¤ 2, since the proof for these cases are complicated, and we will apply the theorem
only in the case where chark D 0 and l ¤ 2.

Before giving a proof of Theorem 2.2, we show the following (cf. [11, Remark 4.6]):

Corollary 2.5. The curve QE is nonsingular if and only if so is the curveQE�:

1 � 0 (mod pv) � 1� � 0 (mod pv).
Proof. As we will see in the beginning of Section 3.2, the condition 0\E0(kIpv)D

{O} implies that both of the curves are singular. Thus it sufficesto show the assertion
in the case where0 \ E0(kI pv) D 0. We may also replacek with its finite extension.

First, supposeQE is singular. Then we can take a pointP 2 E(k) � E0(kI pv) (for
sufficiently largek). Thus, puttingQ D �(P), we have��1(Q) \ E0(kI pv) D ; be-
cause of the assumption0 \ E0(kI pv) D 0 (see Remark 2.3). Therefore we obtain
Q � E

�
0 (kI pv) by Theorem 2.1, and henceQE� is also singular.

Conversely, supposeQE� is singular. Then we can take a pointQ 2 E�(k)�E
�
0 (kIpv)

such that��1(Q) � E(k) (for sufficiently largek). Therefore we obtain��1(Q) \
E0(kI pv) D ; by Theorem 2.2, and henceQE is also singular.

3. Proof of Theorem 2.2 (Part I)

3.1. Relations amongX, Y and x, y. In what follows, for a function f and a
point P on E, we often denote the valuef (P) by fP. We also denoteF(Q) by FQ

for a function F and a pointQ on E�. Now we recall that the isogeny�W E! E� is
given by

(3.1) X D I (x)

J0(x)2
, Y D I0(x)C I1(x)y

J0(x)3
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with polynomials

I (x) D xl � 2

 X
T200

xT

!
xl�1C � � � , I0(x), I1(x)

and

J0(x) D Y
T200

(x � xT ) D x(l�1)=2 �
 X

T200

xT

!
x(l�3)=2C � � �

in x, where00 � 0 is a perfect representatives for (0�{O})=�1 (see [11, Section 3.2]).
We note that all the coefficients of these polynomials are inOv, and thatI (x) and J0(x)
do not have any common root. We definegx, gy 2 k(E) and GX, GY 2 k(E�) by

gx D 3x2C 2a2x C a4 � a1y, gy D �2y � a1x � a3

and by

GX D 3X2C 2A2X C A4 � A1Y, GY D �2Y � A1X � A3,

respectively. In the proof which we will describe, the formula

(3.2) XQ C X
T20�{O}

xT D X
P2��1(Q)

xP

(see [11, Remark 2.1]) and the formulas

(3.3) GX
Q D mPgx

P C nP(gy
P)2, GY

Q D mPgy
P

for P 2 ��1(Q) (see [11, Section 3.1]) play important roles. Here we definem, n 2
k(E) by

mD 1�X
T200

�
2gx

T � a1gy
T

(x � xT )2
C 2(gy

T )2

(x � xT )3

�
, n DX

T200

�
2gx

T � a1gy
T

(x � xT )3
C 3(gy

T )2

(x � xT )4

�
.

3.2. The case� \ E0(kI pv) D fOg. We first consider the case0 \ E0(kI pv) D
{O}, i.e., the case where everyT 2 0 � {O} is bad. In this case, we have

A1 D a1, A2 D a2, A3 D a3, A4 � a4 (mod pv), A6 � a6 (mod pv)
(see [11, Proof of Theorem 4.5]). Thus Equation (2.4) forQE� coincides with Equa-
tion (2.2) for QE. Consequently, we obtain

1 � 1� � 0 (mod pv).
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Since all T 2 0 � {O} are bad points, writing� the x-coordinate of the (unique)
singular point on QE, we have QxT D � for all T 2 0 � {O}. We recall that the set��1(Q) \ E0(kI pv) consists of at most one point, as mentioned in Remark 2.3.

Proposition 3.1. If Q 2 E�(k) satisfies��1(Q) � E(k) and ��1(Q)\ E0(kI pv) D
{P}, we have Q2 E

�
0 (kI pv).

Proof. AssumeQ ¤ O and ��1(Q) \ E0(kI pv) D {P} (the assertion is clear if
QD O). Then everyP0 2 ��1(Q)�{P} is bad, and hence satisfiesQxP0 D �. Therefore

XQ � xP D X
P02��1(Q)�{P}

xP0 � X
T20�{O}

xT

(see (3.2)) belongs topv. Consequently, ifxP 2 Ov, we haveXQ 2 Ov and xP � XQ

(mod pv), which imply Q 2 E
�
0 (kI pv)� E

�C(kI pv). If xP � Ov, we haveXQ � Ov, and
henceQ 2 E

�C(kI pv). In both cases, we concludeQ 2 E
�
0 (kI pv).

3.3. The case� \ E0(kI pv) D � . We next consider the case0 \ E0(kI pv) D0, i.e., the case where everyT 2 0 is good. In this case, the set��1(Q) \ E0(kI pv)
coincides with��1(Q) or ;, as mentioned in Remark 2.3.

Proposition 3.2. If Q 2 E�(k) satisfies��1(Q) � E(k) and ��1(Q)\ E0(kI pv) D��1(Q), we have Q2 E
�
0 (kI pv).

In order to prove the above proposition, we need the following lemma, which we
will show in the next section:

Lemma 3.3. Assume0 � E0(kI pv) and 1� � 0 (mod pv). If P 2 E0(kI pv) �
EC(kI pv) satisfies xP ¥ xT (mod pv) for all T 2 0� {O}, we have either mP 2 O�v or
nPgy

P 2 O�v .

REMARK 3.4. In the above lemma, it immediately follows from the assumptions that

xP, yP, gx
P, gy

P, mP, nP 2 Ov.
Hence we may write the assertion as “mP ¥ 0 (mod pv) or nPgy

P ¥ 0 (mod pv).”
Using Lemma 3.3, we can prove Proposition 3.2 as follows:

Proof of Proposition 3.2. Since the assertion is clear ifQ D O or if 1� ¥ 0
(mod pv), we assume0 � E0(kI pv), Q ¤ O and1� � 0 (mod pv).



CLASS NUMBERS OF CERTAIN NUMBER FIELDS 815

(i) Suppose QP D QT holds for someP 2 ��1(Q) and T 2 0. Then we haveBPC T 0 DBT C T 0 for eachT 0 2 0, and hence

{ QP I P 2 ��1(Q)} D { QT I T 2 0}.

In particular, we haveQP D QO for some P 2 ��1(Q), and such a pointP is uniquely
determined. Therefore

XQ � xP D X
P02��1(Q)�{P}

xP0 � X
T20�{O}

xT

(see (3.2)) belongs topv, and we obtainXQ � Ov, for xP � Ov. Thus we conclude
Q 2 E

�C(kI pv).
(ii) Suppose QP D QT does not hold for anyP 2 ��1(Q) and T 2 0. Let P be a point
in ��1(Q). Then clearlyP 2 E0(kIpv)�EC(kIpv), and it is easy to verify thatxP ¥ xT

(mod pv) hold for all T 2 0�{O}. Hence we haveXQ,YQ 2Ov by (3.1). Now suppose
Q � E

�
0 (kI pv), which meansGX

Q � GY
Q � 0 (mod pv). Then it follows from (3.3) that

mPgx
P C nP(gy

P)2 � mPgy
P � 0 (mod pv).

However, by Lemma 3.3, we also have eithermP 2 O�v or nPgy
P 2 O�v . Therefore we

must have (mP 2 O�v and) gx
P � gy

P � 0 (mod pv), which contradictsP 2 E0(kI pv).
Thus we concludeQ 2 E

�
0 (kI pv) � E

�C(kI pv).
4. Proof of Theorem 2.2 (Part II)

In order to complete the proof of Theorem 2.2, we have to show Lemma 3.3. In
the present section, we assume0 � E0(kI pv) and1� � 0 (mod pv), fix a point P 2
E0(kI pv)� EC(kI pv) which satisfiesxP ¥ xT (mod pv) for all T 2 0 � {O}, and show
that eithermP ¥ 0 (mod pv) or nPgy

P ¥ 0 (mod pv) holds (xP, yP, gx
P, gy

P, mP, nP 2
Ov are immediate, as mentioned in Remark 3.4). Since we may replace k with its
finite extension without loss of generality, we assumeE[2] � E(k). The groupE[2]
consists of 4 points, and hence the order of its subgroup, such as E[2] \ E0(kI pv) and
E[2] \ EC(kI pv), is 1, 2 or 4.

4.1. Relations amongm, n and x. Putting

M(x) D I 0(x)J0(x) � 2I (x)J 00(x) D x(3l�3)=2 � 3

 X
T200

xT

!
x(3l�5)=2C � � � ,

N(x) D M 0(x)J0(x) � 3M(x)J 00(x),

we can rewritem, n as

mD M(x)

J0(x)3
, n D N(x)

2J0(x)4
.
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We note that all the coefficients ofM(x) and N(x) are inOv, and thatM(x) and J0(x)
do not have any common root. In the proof of Lemma 3.3 which we will describe, we
shall compare the reduction ofM(x) and J0(x). We denote by QM(x) and QJ0(x) their
reductions modulopv.

Now we recall that the points of order 2 onE and E� are the zeros ofgy and
GY, respectively:

E[2] � {O} D {T 2 E(k) � {O} I gy
T D 0},

E�[2] � {O} D {U 2 E�(k) � {O} I GY
U D 0}.

Thus it follows from��1(E�[2]) D E[2] C 0 that eachT 2 (E[2] � {O})C (0 � {O})
satisfiesgy

T ¤ 0 andGY�(T) D 0. Since suchT also satisfiesJ0(xT ) ¤ 0, we have

0D GY�(T) D mT gy
T D M(xT )

J0(xT )3
gy

T

(see (3.3)), and henceM(xT ) D 0. Consequently we obtain

M(x) D Y
T2(E[2]�{O})C00

(x � xT ),

for the set (E[2] � {O})C 00 consists of (3l � 3)=2 points.

4.2. The case char�v ¤ 2. If the characteristic of�v is not 2, one easily verifies
E[2] \ EC(kI pv) D {O}. Thus we consider according to the order ofE[2] \ E0(kI pv),
and obtain:

Lemma 4.1. Let the notation and the assumptions be the same as inLemma 3.3.
We also assume E[2] � E(k) and char�v ¤ 2. Then:
(i) If E [2] \ E0(kI pv) D {O}, we have mP ¥ 0 (mod pv).
(ii) If E [2] \ E0(kI pv) ¤ {O} and if mP � 0 (mod pv), we have nPgy

P ¥ 0 (mod pv).
Proof. We first claim that the assumptions imply (E[2] C 0) \ EC(kI pv) D {O}.

Indeed, if T 2 E[2] and T 0 2 0 satisfy T C T 0 2 EC(kI pv), we have

T D [l ]T D [l ](T C T 0) 2 EC(kI pv),
and henceT D T 0 D O because ofE[2] \ EC(kI pv) D {O} and0 \ EC(kI pv) D {O}

(see Remark 2.3).
It follows from the claim that the reduction map

(E[2] C 0) \ E0(kI pv) 3 T 7! QT 2 QEns(�v)
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is an injective group homomorphism. Therefore, for good points T and T 0 in (E[2] C0) � {O}, we have

xT � xT 0 (mod pv) � T D �T 0.
In what follows, we denote by� the x-coordinate of the singular point onQE if 1 � 0
(mod pv). Then clearly QxP ¤ �.

(i) AssumeE[2]\E0(kIpv)D {O}. Then eachT 2 E[2]�{O} is bad, andTC0
consists only of bad points. Thus we have

QM(x) D (x � �)(3l�3)=2,

and hence

mP D M(xP)

J0(xP)3
¥ 0 (mod pv).

(ii) 0 AssumeE[2] \ E0(kI pv) D {O, T1} (T1 ¤ O) and mP � 0 (mod pv). Then
we can show

QM(x) D (x � �)l�1
Y

T2T1C00

(x � QxT ), QxT ¤ � for T 2 T1C 00

in the same manner as in (i). We also haveQxT ¤ QxT 0 for distinct pointsT and T 0 in
(T1 C 00) [ {T1}. SincemP � 0 (mod pv), there exists (unique)T 2 T1 C 00 which
satisfies QxP D QxT , and thenM 0(xP) ¥ 0 (mod pv). Thus we have

N(xP) D M 0(xP)J0(xP) � 3M(xP)J 00(xP) � M 0(xP)J0(xP) ¥ 0 (mod pv),
and hence

nP D N(xP)

2J0(xP)4
¥ 0 (mod pv).

Furthermore, it immediately follows fromQxT ¤ � and QxT ¤ QxT1 that gy
P ¥ 0 (mod pv).

(ii) 00 Assume E[2] \ E0(kI pv) D E[2] and mP � 0 (mod pv). Then we have
E[2] C 0 � E0(kI pv), and henceQxT ¤ QxT 0 for distinct pointsT and T 0 in (E[2] C00)[ (E[2] � {O}). Thus we can shownP ¥ 0 (mod pv) and gy

P ¥ 0 (mod pv) in the
same manner as in (ii)0.

4.3. The case char�v D 2. If the characteristic of�v is 2, it is not hard to verify

(4.1) (a2
1gx

T )2 � 1 (mod pv) for T 2 E[2] � EC(kI pv).
Indeed, sinceT 2 E[2] � EC(kI pv) satisfiesgy

T D 0, we have

a1xT � a3 (mod pv), a3
1 y2

T � a3
3 C a1a2a2

3 C a2
1a3a4C a3

1a6 (mod pv),
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and hence�
a2

1gx
T

�2 � a4
1(x4

T C a2
4 C a2

1 y2
T ) � a4

3 C a4
1a2

4 C a3
1(a3

3 C a1a2a2
3 C a2

1a3a4C a3
1a6)

� 1 (mod pv).
We also have

(4.2) (a2
1GX

U )2 � 1� (mod pv) for U 2 E�[2] � E
�C(kI pv),

for A1 D a1. We consider according asa1 belongs topv or not, and obtain:

Lemma 4.2. Let the notation and the assumptions be the same as inLemma 3.3.
We also assume E[2] � E(k) and char�v D 2. Then we have mP ¥ 0 (mod pv).

Proof. (i) Assumea1 � 0 (mod pv). Then it follows from char�v D 2 that

mP D 1�X
T200

�
2gx

T � a1gy
T

(xP � xT )2
C 2(gy

T )2

(xP � xT )3

� � 1 (mod pv).
(ii) Assume a1 ¥ 0 (mod pv) and1 � 0 (mod pv). Then, for eachT 2 E[2] �

EC(kI pv), we havegx
T � 0 (mod pv) by (4.1). Since suchT also satisfiesgy

T D 0, we
have T � E0(kI pv), and concludeE[2] \ E0(kI pv) D E[2] \ EC(kI pv). Hence, putting
eD #(E[2] \ EC(kI pv)), we obtain

QM(x) D QJ0(x)e�1(x � �)(4�e)(l�1)=2,
where � denotes thex-coordinate of the singular point onQE. Thus we can show
mP ¥ 0 (mod pv) in the same manner as in the proof of Lemma 4.1.

(iii) Assume a1 ¥ 0 (mod pv) and1 ¥ 0 (mod pv). Then the reduction map

E[2] C 0 3 T 7! QT 2 QE(�v)
is a group homomorphism of kernelE[2]\EC(kIpv). Now we claimE[2] � EC(kIpv).
In fact, if this is not the case, taking a pointT1 2 E[2] � EC(kI pv), we can show

xT1 ¥ xT (mod pv) for T 2 0 � {O},

and hence�(T1) 2 E�[2] � E
�C(kI pv). Thus it follows from (3.3), (4.1), (4.2) and

gy
T1
D 0 that

1� � (a2
1GX�(T1))

2 � (a2
1mT1g

x
T1

)2 � m2
T1

(a2
1gx

T1
)2 � m2

T1
1 (mod pv).
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However, it is not hard to showmT1 D M(xT1)=J0(xT1)
3 ¥ 0 (mod pv). Therefore we

have1� ¥ 0 (mod pv), which contradicts the assumptions. Consequently we obtain
E[2] � EC(kI pv), which implies

QM(x) D QJ0(x)3.

Hence we concludemP ¥ 0 (mod pv).
5. Application to number theory

From now on,k denotes a number field of finite degree, and we denote its ring of
integers byOk.

Let E be an elliptic curve defined overk which has a k-rational point T0 of prime
order l ¤ 2. Then we can take a Weierstrass equation forE of the form

y2C a1xyC a3y D x3C a2x2C a4x C a6

with

a1, a2, a3, a4, a6, xT0, yT0 2 Ok.

Let

(5.1) Y2C A1XYC A3Y D X3C A2X2C A4X C A6

be the equation for the elliptic curveE� D E=hT0i and � W E ! E� the isogeny of
kernel hT0i which are given by Vélu’s formulas. Then we have

A1, A2, A3, A4, A6 2 Ok.

We also note that all the coefficients of the polynomialsI (x) and J0(x), defined in
Section 3.1, are inOk. We define a cubic polynomialF(X) and a polynomial3t (x)
of degreel (with a parametert) by

F(X) D 4X3C (A2
1C 4A2)X2C 2(A1A3C 2A4)X C A2

3C 4A6

and by

3t (x) D I (x) � t J0(x)2,

respectively.
Now we take� 2 k which satisfies the following two conditions:

(C0) F(� ) ¤ 0.
(C1) 3� (x) is irreducible overk.
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We also take a pointQ on E� with XQ D � , and put

K D k(Q) (D k(
p

F(� ))), L D k(��1(Q)) (D K (��1(Q))).

Then L=K is a cyclic extension of degreel , and L is the splitting field of3� (x) over
K (see [11, Lemma 5.5]). Moreover we have

(5.2) 3� (x) D Y
P2��1(Q)

(x � xP).

With the notation and the assumptions described above, the author showed in [11]
that the extensionL=K is unramified if the pointQ is good:

Theorem 5.1 (See [11, Theorem 5.1]).Suppose that the point Q is good mod-
ulo P with respect to(5.1) for a prime idealP in K . Then the extension L=K is
unramified atP.

Conversely, we can easily show the following theorem by using Theorem 2.2:

Theorem 5.2. Suppose that the point Q is bad moduloP with respect to(5.1) for
a prime idealP in K . Then all the coefficients of the polynomial3� (x) are p-integral,
and we have

3� (x) � (x � a)l (mod p)

for some a2 Ok. Here p denotes the prime ideal in k lying belowP.

Proof. Suppose thatQ is a bad point moduloP. Then � D XQ is a p-integer,
and it follows from Theorem 2.2 that all the points in��1(Q) are bad (modulo each
prime divisor ofP in L). Thus, writing � the x-coordinate of the (unique) singular
point on QE D E modp, we have QxP D � for all P 2 ��1(Q), which implies Q3� (x) D
(x � �)l (see (5.2)). Hence, takinga 2 Ok such thatQa D �, we have3� (x) � (x � a)l

(mod p).

Theorem 5.2 does not assert that the converse of Theorem 5.1 holds. In fact, the
converse does not necessarily hold (see Example 6.7). However, under certain assump-
tions, we can show the converse of Theorem 5.1:

Corollary 5.3. Let the notation and the assumptions be the same as inThe-
orem 5.2. We also assume� 2 Ok and [Ok(�) W Ok[� ]] ¥ 0 (mod p). Here � is a root
of 3� (x), and Ok(�) denotes the ring of integers of k(�). Then the extension L=K is
ramified atP.
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Proof. It follows from the assumptions and Theorem 5.2 thatp is decomposed
into the formpD (p,� �a)l in k(�) (see, e.g., [1, Proposition 2.3.9]). Hence we obtain
the assertion because of [L W K ] D l and [K W k] � 2.

We recall that the extensionK=k is trivial, i.e., K D k, or quadratic according asp
F(� ) 2 k holds or not. In the latter case, we have the following:

Proposition 5.4. Suppose that the extension K=k is quadratic. Then L=k is a
dihedral extension of degree2l , and L is the splitting field of3� (x) over k.

Proof. Let P be a point in��1(Q). Then we haveL D k(P), for hT0i � E(k).
Moreover, for any� 2 Gal(Nk=k), there exists (i� , j� ) 2 (Z=2Z) � (Z=lZ) such that

Q� D [(�1)i� ]Q, P� D [(�1)i� ] PC [ j� ]T0.

The pair (i� , j� ) is uniquely determined by� , and the map� 7! (i� , j� ) satisfies

i�� D i� C i � , j�� D j� C (�1)i� j� .
Thus we obtain the former assertion. The latter assertion immediately follows from the
former one.

It follows from the above proposition that the multiple [i ]Q, where i is an integer
not divisible by l , has the same properties asQ:

Corollary 5.5. Let the notation and the assumptions be the same as inPropos-
ition 5.4. We take an integer i not divisible by l, and put

Q0 D [i ]Q, � 0 D XQ0 .
Then we have� 0 2 k, k(Q0) D K and k(��1(Q0)) D L. Moreover, � 0 satisfies the two
conditions(C0) and (C1), replaced� with � 0.

Proof. The first assertion� 02k is obvious. We putK 0Dk(Q0) andL 0Dk(��1(Q0)).
Then we haveK 0 D k(

p
F(� 0))� K and L 0 � L. Now the extensionL 0=K 0 is trivial or

cyclic of degreel according asQ0 2�(E(K 0)) holds or not. However, taking the integers
j , j 0 such thati j C l j 0D1, we obtain

Q D [i j ]QC [l j 0]Q 2 [ j ]Q0 C �(E(K )),

since we have [l ]E�(K ) � �(E(K )). Thus, if L 0=K 0 is trivial, we obtain

Q 2 �(E(K 0))C �(E(K )) D �(E(K )),
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which contradicts [L W K ] D l . HenceL 0=K 0 is cyclic of degreel , which impliesK 0 D K
and L 0 D L, for L=K is dihedral of degree 2l . The rest of the assertions are immediate.

6. Quadratic number fields with class numbers divisible by 5

For nonzero integersa and b, the elliptic curveE defined by

y2C (aC b)xyC ab2y D x3C abx2

has a rational pointT0 D (0, 0) of order 5. Then� W E! E� D E=hT0i is given by

Y2C (aC b)XYC ab2Y D X3C abX2C 5ab(a2 � 2ab� b2)X

C ab(a4 � 10a3b� 5a2b2 � 15ab3 � b4),

which has1� D �ab(a2C 11ab� b2)5, with

I (x) D x5C2abx4�ab(a2�3ab�b2)x3C3a2b3(aCb)x2Ca3b4(aC3b)xCa4b6,

J0(x) D x2Cabx.

Consequently, putting

F(a, bI X) D 4X3C (a2C 6abC b2)X2C 2ab(10a2 � 19ab� 9b2)X

C ab(4a4 � 40a3b� 20a2b2 � 59ab3 � 4b4)

and

3(a, b, t I x)

D x5C 2abx4 � ab(a2 � 3ab� b2)x3C 3a2b3(aC b)x2C a3b4(aC 3b)x C a4b6

� t(x4C 2abx3C a2b2x2),

we have:

Theorem 6.1 (See [11, Theorem 5.1]).Let � be a rational number which satis-
fies the following two conditions:
(C1) 3(a, b, � I x) is irreducible overQ.
(C2) For any prime divisor p of ab(a2C 11ab� b2),

(6.1)

�
min{ordp F(a, bI � ), ordp F 0(a, bI � )} � 0 (if p ¤ 2),
ord2 � � 0 (if p D 2).

Then the fieldQ(
p

F(a, bI � )) is quadratic with class number divisible by5.
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REMARK 6.2. (i) The condition (C1) impliesab¤ 0 andF(a,bI� )¤ 0. Indeed,
we have3(a, b, � I x) D x4(x � � ) if abD 0, and the discriminant of3(a, b, � I x) is
equal toa14b14F(a, bI � )2.
(ii) The condition (6.1) means that the pointQ on E� with XQ D � is good modulop.

Using Theorem 6.1, we can easily construct a lot of quadraticnumber fields with
class numbers divisible by 5 (cf. [9]). We close the present paper with studying the
“converse” of the theorem:

QUESTION 6.3. For a quadratic number field with class number divisibleby 5,
can we express the field asQ(

p
F(a, bI � )) with some integersa, b and some rational

number� satisfying the conditions (C1) and (C2)?

A numerical experiment with PARI/GP [7] shows:

EXAMPLE 6.4. There are 687 quadratic number fieldsK which satisfy jdK j �
10000 and 5j hK . HeredK andhK denote the discriminant and the class number ofK ,
respectively. We can express all of them witha,b and � satisfying the conditions (C1),
(C2) and

jaj � 100, jbj � 100, j(numerator of� ) � (denominator of� )j � 10000,

exceptK D Q(
p�2290). We can also expressQ(

p�2290) with much larger parame-
ters, which are obtained with the help of Professor Yuichi Rikuna [8].

If we ignore the condition (C2), it is not hard to obtain a positive answer:

Theorem 6.5. Let K be a quadratic number field with class number divisible
by 5. Then there exist nonzero integers a, b and a rational number� , satisfying the
condition (C1), such that KD Q(

p
F(a, bI � )).

In order to show the above theorem, we introduce Brumer’s quintic polynomial

B(s, uI z) D z5C (s� 3)z4C (u � sC 3)z3C (s2 � s� 2u � 1)z2C uzC s,

which has the following property:

Lemma 6.6 (See, e.g., [4, Theorem 2.3.5] or [6, Théorème 2.1]).Let k be an ar-
bitrary field, and let L=k be a dihedral extension of degree10. Then L is the splitting
field of B(s, uI z) over k for some s, u 2 k.
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With a similar calculation to the one in [6, Section 2], we canverify that B(s,uIz)
is connected with3(a, b, t I x) via the following formula:

B(s, uI z) D z5

s4
3��s, 1,�2s� uI s

z

�
.

Proof of Theorem 6.5. LetK be a quadratic number field with class number di-
visible by 5. Then it follows from the class field theory that there exists a unramified
cyclic extensionL=K of degree 5, and thatL=Q is a dihedral extension of degree 10
(see, e.g., [2, Lemma 3]). HenceL is the splitting field ofB(s, uI z) overQ for some
s,u 2Q. Then clearlys¤ 0. Thus, taking (nonzero) integersa,b and a rational number� with

�sD a

b
, �2s� u D �

b2
,

we have

B(s, uI z) D z5

a4b6
3�a, b, � I �ab

z

�
.

Consequently,L is also the splitting field of3(a,b,� Ix) overQ, and hence3(a,b,� Ix)
cannot be reducible overQ. Finally, we define elliptic curvesE, E� and an isogeny� W E ! E� in the same manner as in the beginning of the present section.We also
take a pointQ on E� with XQ D � . Then we haveL D Q(��1(Q)), and henceK DQ(Q) D Q(

p
F(a, bI � )).

In view of Theorem 5.2 and Corollary 5.3, one might expect that the integersa, b
and the rational number� in Theorem 6.5 also satisfy the condition (C2). The follow-
ing example shows that the expectation does not necessarilyhold, and that we still have
a possibility of obtaining a positive answer to Question 6.3.

EXAMPLE 6.7. Takinga D bD 1 and� D �106, we have1� D �115 and

F(1, 1I X) D 4X3C 8X2 � 36X � 119,

3(1, 1,�106I x) D x5C 108x4C 215x3C 112x2C 4x C 1.

It is not hard to verify that3(1, 1,�106I x) is irreducible overQ, and that the class
number ofQ(

p
F(1, 1I �106))D Q(

p�319) is equal to 10. On the other hand, these
a, b and � do not satisfy the condition (C2):

F(1, 1I �106)D �115 � 29, F 0(1, 1I �106)D 22 � 52 � 113.
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In other words, any pointQ on E� with XQ D �106 is bad modulo 11. Moreover,
we have

3(1, 1,�106I x) � (x � 7)5 (mod 11), [OQ(�) W Z[� ]] D 114,

where� is a root of3(1, 1,�106I x) andOQ(�) denotes the ring of integers ofQ(�).
Nevertheless, takingQ0 D [2]Q instead ofQ, we haveXQ0 D �785=29 and

F

�
1, 1I �785

29

� D �11 � 126892

293
, F 0�1, 1I �785

29

� D 23 � 719� 1217

292
.

HenceQ(
p�319) can be expressed witha D bD 1 and� 0 D �785=29, which satisfy

the conditions (C1) and (C2), replaced� with � 0 (cf. Corollary 5.5). ThusQ(��1(Q))DQ(��1(Q0)) is a cyclic extension ofQ(Q)DQ(Q0)DQ(
p�319) of degree 5, in which

every finite place is unramified.
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