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Abstract

A moment-angle complexx is a compact topological space associated with a
finite simplicial complexK. It is realized as a subspace of a polydi§k]™, where
m is the number of vertices i and D? is the unit disk of the complex numbe@s
and the natural action of a toruS{{™ on (D?)™ leavesZx invariant. The Buchstaber
invariants(K) of K is the largest integer for which there is a subtorus of rgfk)
acting onz freely.

The story above goes over the real numiRrs place ofC and a real analogue
of the Buchstaber invariant, denotgg( K), can be defined foK ands(K) = sg(K).
In this paper we will make some computationssp{K) when K is a skeleton of a
simplex. We take two approaches to figg K) and the latter one turns out to be a
problem of integer linear programming and of independeterést.

1. Introduction

Davis and Januszkiewicz ([5]) initiated the study of togit@l analogue of toric
geometry and introduced a compact topological spdgeassociated with a finite sim-
plicial complex K. Then Buchstaber and Panov ([3]) intensively studied thmltogy
of Zx by realizing it in a polydisk DP?)™, wherem is the number of vertices ifK
and D? is the unit disk of the complex numbe€, and noted thatZx is a deforma-
tion retract of the complement of the union of coordinatespalces inC™ associated
with K. They namedZx a moment-angle compleassociated withK. Although the
construction ofZ¢ is simple, the topology ofZk is complicated in general and the
spaceZy is getting more attention of topologists, see [9].

The coordinatewise multiplication of a toruS'J™ on C™, whereSt is the unit cir-
cle of C, leavesZ invariant. The action of $)™ on Zx is not free but its restriction
to a certain subtorus ofS)™ can be free. The largest integsfK) for which there
is a subtorus of dimensiog(K) acting freely onZy is a combinatorial invariant and
called theBuchstaber invarianbf K. When K is of dimensionn — 1, s(K) =m—n
and Buchstaber ([2], [3]) asked

ProOBLEM. Find a combinatorial description &(K).
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If P is a simple convex polytope of dimension then its dualP* is a simpli-
cial polytope and the boundaBfP* of P* is a simplicial complex of dimension— 1.
The Buchstaber invariars( P) of P is then defined to be(d P*). We note thass(P) =
m — n, wherem is the number of vertices oP*, if and only if there is a quasitoric
manifold over P. We refer the reader to [1] and [6] for some properties and-com
putations ons(P) and s(K). The reader can also find some results on them in [2,
Theorem 6.6].

The story mentioned above goes over the real numBeims place of C. In this
case, the moment-angle compl€x is replaced by aeal moment-angle complékZx
and the torus $)™ is replaced by a 2-torusS{)™ where S° = {4+1}. Then a real ana-
logue of the Buchstaber invariant can be defined Kgrwhich we denote bysg(K).
Namely sz (K) is the largest integer for which there is a 2-subtorus ok rsy(K) act-
ing freely onRZ.

We make two remarks ogg(K). One is that the solution of the toral rank con-
jecture forRZg ([4], [10]) says that

(1.1) > dimH (R Zk: Q) z 22K,
i=0

The other is that
s(K) = s(K)

which follows from the fact that the complex conjugation @ninduces an involution
on Zx with RZ as the fixed point set.

In this paper we make some computationsspfK) when K is a skeleton of a
simplex. LetAM™1 be ther-skeleton of the i — 1)-simplex. Then it follows from the
definition of RZx (see [3, p.98]) that

1.2) RZyms = @Y™ P x ()P c (DH)"

where D! is the interval |1, 1] in R so thatS° is the boundary oD?! and the union
is taken over allm — p products of D! in (DY)™. It is not difficult to compute the
cohomology ofRZAij. More precisely the homotopy type m‘ZAij forp=1is
known to be a wedge of spheres as follows:

(1.3) RZp: ~\/ 3 (r]n) ( rL - t) Sm-p,

j=m—-p+1

see [7], [8].
We denote the invariarﬁR(Am:;l) simply by sg(m, p). The moment-angle com-
plex RZAE:}H is sitting in the complementgr(m, p) of the union of all coordinate
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subspaces of dimensiop— 1 in R™ and sg(m, p) may be thought of as the largest
integer for which there is a 2-subtorus of ragk(m, p) acting freely onUg(m, p).

We easily seesg(m, 0) = 0 and assumep = 1. We take two approaches to find
sg(M, p) and here is a summary of the results obtained from the firptoggh de-
veloped in Section 2.

Theorem. Letl=p=m.
(1) 1=s(m, p) = p and g(m, p) = p if and only if p=1, m—1, m.
(2) sx(m, p) increases as p increases but decreases as m increases.
3) If m— p is eventhen (M, p) = sg(M+ 1, p).
(4) se(mM+1,Mm—2) =sg(m, m—2) =[m—log,(m+ 1)] for m = 3, where|[r] for a
real number r denotes the greatest integer less than or etpual

REMARK. (1) It is easy to prove (1) and (2) above. After we finishedtingi
the first version of this paper, we learned from N. Erokhoveé&t (4) was also obtained
by A. Aizenberg [1], see also [6].

(2) 1t follows from (1.3) and (1) in the theorem above that

Y dmHRZupms ;Q) =1+ (T)(r:]:t)
i=0

j=m—p+1

m-1\ <~ m(p-1
-+(57) 2 760)

P=4 e I\
> 14 (ML) opt > ommm),
= b1 =

This confirms (1.1) fork = AR~ 5.

It seems difficult to find a computable description gf{m, p) in terms ofm and
p in general. From Section 3 we take another approach to diifoh, p), that is, we
investigate values of and p for which sg(m, p) is a given positive integek. It turns
out thatsg(m, p) = 1 if and only if m = 3p — 2 (Theorem 3.1) and that there is a
non-negative integemy(b) associated to integets= 2 andb = 0 such that

sg(m, p) = k if and only if m=m(p—1),

in other words, sinceg(m, p) decreases as increases,

sg(m, p) =k if and only if m(p—1) <m=m(p—1).

Therefore, findingsg(m, p) is equivalent to findingnk(p — 1) for all k. In fact, my(b)
is the largest integer which the linear function, . .y o @ takes on lattice points
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(a,) in R?-1 satisfying these (2— 1) inequalities

Z a, =b for each ue (z/2)<\ {0}
(U,0)=0

and a, = 0 for everyv, whereZ/2 = {0, 1} and ( , ) denotes the standard scalar
product on Z/2)¢. Finding mc(b) is a problem of integer linear programming and of
independent interest. Here is one of the main resultsngf).

Theorem (Theorem 7.6). Let b = (2¢-! — 1)Q + R with non-negative integers
Q,R with0 = R= 212 We may assume that~1—2k-1-1 < R < 2k-1_ k=1-(1+1)
for some0 =1 =k —2. Then

2 -1Q+ R+ 2T -2 =my(b) = (2 -1)Q + 2R,

and the lower bound is attained if and only if-R@21 — 2=y <k —| — 2 and the
upper bound is attained if and only if R 2<-1 — 211,

More explicit values ofmy(b) can be found in Sections 5 and 6. In particular,
m(b) is completely determined fdk = 2, 3, 4, see Example 6.6, so that one can find
for which values ofm and p we havesg(m, p) = k for k = 2, 3, 4. The equivalent
results are obtained in [6] fdk = 2, 3.

All of our computations support a conjecture that

m((2* = 1)Q + R) = (2~ 1)Q + mk(R)

would hold for anyQ and R. This is equivalent tany(b + 2K — 1) = my(b) + 2 — 1
for any b and we prove in Section 9 that the latter identity holds whbeis large.

The authors thank Suyoung Choi for his help to flnd m matrices which realize
sg(M, p) = k for small values ofm and p. They also thank Nickolai Erokhovets and
an anonymous referee for helpful comments to improve thempap

2. Some properties and computations obg(m, p)

In this section we translate our problem to a problem of linelgebra, deduce
some properties ofg (M, p) and make some computations gf(m, p).
The real moment-angle COmpIMAm:%Fl in (1.2) with p = 0 is the disk DH)™.

Since the action of $)™ on (D)™ has a fixed point, that is the origin, we have
(2.1) sg(m, 0) = 0.

Another extreme case is whgn= m. SinceRZAij in (1.2) with p=m is (9™,
we have

(2.2) sg(M, M) =m.
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In the following we assume = 1.

Lemma 2.1. Let A= (aj,..., an) be a kx m matrix with entries inzZ/2 and
let pa: (S)K — ()™ be a homomorphism defined by (g) = (9%, ..., g2"), where
=TT, 0% for g=(gu,...,g) € ()% and a column vectoa = (a%, ..., a")T in

(Z/2). Then the action ofS°)k on RZ,p2  in (1.2) through p is free if and only if
any p column vectors in A spai/2).

Proof. The action of )% on RZAE?H throughpa leaves each subspad@’)™ P x
()P in (1.2) invariant and the action (R'ZAQ:}H is free if and only if it is free on each
(DHYM™P x (S°)P. The latter is equivalent to the action being free on eghx (S°)P
and this is equivalent tp composed with the projection fron8{)™ onto (°)P being
injective. This is further equivalent to a matrix formedrfrany p column vectors inA
being of full rank (that i), which is equivalent to the last statement in the lemnial.

Since any rankk subgroup of )™ is obtained aspa((SY)¥) for some A in
Lemma 2.1, Lemma 2.1 implies

Corollary 2.2. The invariant g(m, p) is the largest integer k for which there
exists a kx m matrix A with entries inZ/2 such that any p column vectors in A
span(Z/2) .

Here are some properties gf(m, p).

Proposition 2.3. (1) 1=sx(m, p) = p for p= 1. In particular, sg(m, 1) = 1.
(2) (M, p) = s(m, p) if p = p'.
(3) se(m, p) =z se(M’, p) if m=m'.

Proof. The inequality (1) is obvious from Corollary 2.2 ate tinequality (2) fol-
lows from the fact that ifp’ = p, then RZAEH in (1.2) containsIRZAm:;_l as an
invariant subspace.

Let m = m and setk = sg(m’, p). Then there is & x m" matrix A" with entries
7,/2 such that anyp column vectors inA’ span £/2)¢. Let A be ak x m matrix
formed from arbitrarym column vectors inA’. Since anyp column vectors inA span
(Z/2), it follows from Corollary 2.2 thatsg(m, p) = k = sg(M', p). []

We denote by{ey, ..., &) the standard basis ofZ(2)~.

Theorem 2.4. sg(m,m—1)=m—1for mz= 2.



554 Y. FUKUKAWA AND M. MASUDA

Proof. We havesg(m, m—1) = m—1 by Proposition 2.3 (1). On the other hand,
any m—1 column vectors in annf— 1) x m matrix A = (el, ey et Zim:’lla) span
(Z/2)"1, sosg(m, m—1)=m—1 by Lemma 2.1. O

If Ais ak x m matrix with entries inZ/2 which realizessg(m, p) = k, then A
must be of full rank (that i); so we may assume that the filstcolumn vectors in
A are linearly independent if necessary by permuting coluamts moreover that they
areey, ..., & by multiplying A by an invertible matrix of siz& from the left.

Lemma 2.5. g(m, p)=p—1lwhen2=p=m-2

Proof. Sincesg(m, p) = p by Proposition 2.3 (1), it suffices to prove tiga{m, p) #
p when 2= p = m— 2. Supposer(m, p) = p and letA be ap x m matrix ey, .. ., €p,
ap+1, - - -, 8m) Which realizessg(m, p) = p. Then alla;’s for j = p+ 1,..., m must
be equal toZi”:l & because any — 1 vectors fromey, . . ., e, together with oney; span
(z/2)P. The number of;’s is more than one ap = m — 2, so p column vectors inA
containing more than ong, do not spanZ/2)P, which is a contradiction. ]

Theorem 2.6. If m— p is eventhen g(m, p) = sg(M+ 1, p).

Proof. The original proof of this theorem was rather longloBeis a much sim-
pler proof due to Nickolai Erokhovets. We thank him for shgrhis argument.

Since sg(m, 0) = 0 for any m by (2.1), we may assume = 1 so that we can
use Corollary 2.2. Suppose that— p is even and setg(m, p) = k. Sincesg(m, p)
decreases as increases by Proposition 2.3 (3), it suffices to show thatethe ak x
(m + 1) matrix in which anyp column vectors spanz{/2)~.

Let A= (a,...,an) be ak x m matrix which realizessg(m, p) = k. Setb =
>, & and consider & x (m+ 1) matrix B = (ay, . - ., an, b). We shall prove that
any p column vectors inB span £/2). If b is not a member of thep column vectors,
then all of them are inA so that they spanz(/2)< by the choice ofA. Therefore we
may assume that is a member of the column vectors. If thep — 1 column vectors
exceptb, saya,, ..., a,,, span Z/2)%, then we have nothing to do. Suppose that the
p — 1 column vectors do not spaiZ(2)<. Then they span a codimension 1 subspace,
sayV, of (Z/2)¢ becauses,, .. ., g, , are in A and anyp column vectors inA span
(Z/2) by the choice ofA. This shows that iff is a homomorphism fromZ/2)¢ to
Z/2 whose kernel isv, then f(g,) =0 for j =1,..., p—1 and f(a) = 1 for any
| different fromiy, ..., ip_1. It follows that

f(b) = f<za) =m-(p-1)=1€Z/2

i=1
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where we used the assumption bn— p being even at the last identity. Therefdoe
is not contained iV so that thep column vectorsa,, ..., &,,, b span g/2). This
completes the proof of the theorem. []

If we take p=m—2=2 in Lemma 2.5, we haveg(m, m—2) = m—3 for m = 4.
In fact, sg(m, m— 2) is given as follows.

Theorem 2.7. sg(m+ 1, m—2) = sg(m, m—2) = [m—log,(m + 1)] for m = 3.

Proof. The first identity follows from Theorem 2.6, so it scé$ to prove the sec-
ond identity.

Setsg(mM, m—2) =k and letA = (ey,..., &, &1, - - -, @m) be a matrix which
realizessg(m, m — 2) = k. Then anym — 2 column vectors inA span £/2)¢. This
means that for each=1,..., k the set

A(i) := {l | thei-th component ofg is 1} Cc {(k+1,..., m}

contains at least two elements. IndeedAfii) consists of at most one element, day
for somei, then them — 2 column vectors inA excepte and a will not generate
a vector with 1 at the-th component. Another constraint oi(i)’s is that they are
mutually distinct because iA(i) = A(j) for somei and j in {1,...,k}, thenm—2
column vectors inA excepte ande; will not generateg; ande;. Conversely, ifA(i)
contains at least two elements for eacland A(i)’'s are mutually distinct, then any
m — 2 column vectors inA span £/2).

The number of subsets ¢k + 1,..., m} which contain at least two elements is
given by

m—k m—k
Z( )=2mk—1—m+k.
n=2 n

Since the number of(i)’s is k, the argument above shows tHashould be the max-
imum integer which satisfies

k=2"K_1-m+k, ie, k=m—log,(m+ 1).
This proves the theorem. []

3. Another approach to computesg(m, p)

We knowsg(m, p) = p whenp =0, 1. So we will assume = 2 in the following.
It seems difficult to find a computable descriptions{m, p) in terms ofm and p in
general. Hereafter we take a different approach to find gabfesg (m, p) for p = 2,
i.e. we find values ofm and p for which szg(m, p) is a given positive integek. We
begin with
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Theorem 3.1. sg(m, p) =1 if and only if m= 3p—2, in other words sg(m, p) =
2 if and only if m= 3(p — 1).

Proof. Sincesg(m, p) decreases as increases by Proposition 2.3 (3), it suffices
to show
(1) sx(B(p—1). p) =2, and
(2) =(Bp—2,p) =1.
Proof of (1). LetA be a 2<3(p—1) matrix formed fromp—1 copies of ¢, e, e; +
&). Then anyp column vectors inA span £/2)?, which meanssg(3(p — 1), p) = 2.
Proof of (2). Suppose thag(3p— 2, p) = 2. Then there is a  (3p — 2) matrix
A such that anyp column vectors inA span £/2)°. We may assume that there is no
zero column vector inA. Let g (resp.e; + ) appeara; (resp.ai») times in A. Then

(3.1) atat+ap,=3p—2
and inequalities

a=p-—-1 for i=1,2 and ag,=p-1
must be satisfied for anyp column vectors inA to span Z/2)°. These inequalities
imply that a; 4+ a; + a;2 < 3p — 3 which contradicts (3.1). O

The above argument can be developed for general valuds with sg(m, p) =
k. Let (, ) be the standard bilinear form o 2)%. Since it is non-degenerate,
the correspondence

(z/2)¢ — Hom((z/2)*, Z/2) given by u— (u, )

is an isomorphism, where Hon#(2)¥, Z/2) denotes the group of homomorphisms from
(Z/2) to Z)2.

Lemma 3.2. Suppose k= 2. Then g(m, p) = k if and only if there is a set of
non-negative integerga, | v € (Z/2)¢\ {0}} with 3"a, = m, which satisfy the following
(2¢ — 1) inequalities

> a,=p-1 foreach ue(z/2)\{0}.

(u,v)=0

Proof. Any codimension 1 subspace @& /@)« is the kernel of a homomorphism
(u, ): (zZ/2)¢ — Z/2 for some non-zera € (Z/2)X. Consider & x m matrix A which
hasa, column vectorsv for eachv € (Z/2)¢ \ {0}. Thensg(m, p) = k if and only if
for any codimension 1 subspagé there is at mostp — 1 column vectors ofA in V.
Now, if V is the kernel of §, ) then the number of column vectors & in V is
> (=0 & This proves the lemma. O
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The lemma above shows that our problem is a problermtgger linear program-
ming. If we consider the problem over real numbers, then éasy to find the solution
of the problem as shown by the following lemma.

Lemma 3.3. Suppose that k& 2 and let b be a real number. If we allow,’a to
be real numbers and,% satisfy the following2* — 1) inequalities

(3.2) > a,=b for each ue (z/2)\ (0},
(u,v)=0

then the linear function_ a, on R?-! takes the maximal value

(2“—1)b
211

at a unique point x= (a,) € R?~! with a, = b/(2<"1 — 1) for everyv.

Proof. Eacha, appears in exactly (21 —1) times in the inequalities (3.2) because
there are exactly (21 —1) numbers ofu € (Z/2)\ {0} such that ¢, v) = 0. Therefore,
taking sum of the (2— 1) inequalities (3.2) oveu € (Z/2)¢ \ {0}, we obtain

@T-1) a =(@2-1b

and the equality is attained at the poinin the lemma; so the maximal value ®f a,
satisfying (3.2) is (2— 1)b/(2- —1).

We shall observe that the maximal valug 21)b/(21 — 1) is attained only at
the pointx. Suppose tha}_ a, takes the maximal value oa,’s satisfying (3.2). Then
the argument above shows that all the inequalities in (3.@3trbe equalities, i.e.

(3.3) > a,=b foreach ue (z/2)\{0}.
(u,v)=0

We choose one arbitrarily and take sum of (3.3) over all non-zars with (u,v) = 0.
The number of suchu is 21 — 1, soa, appears 2 — 1 times in the sum. Bu&,
with v’ # v appears '22 — 1 times in the sum because the number of non-zewith
(u, v) = (u, v') = 0 is X2 —1. Therefore we obtain

(3.4) @ -1a, +@?-1)> a, = (2" -1pb.
v/ #v
Here
2<—1)b
(3.5) Ya=270

v'#v
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since)", a, is assumed to take the maximal valué {21)b/(2*1 —1). Plugging (3.5)
in (3.4), we obtain

(2“—1)b

2k—2au 2k—2 -1
L@ G

=(2“t—1)b

and a simple computation shows = b/(2<* — 1). L]

Lemma 3.3 tells us that the point is a unique vertex of the polyhedroR(b)
defined by the inequalities (3.2), and*(2 1) hyperplanesy_, ,_oa = b in R2-1
(u € (z/2)<\ {0}) are in general position. Motivated by Lemma 3.2 we make the
following definition.

DEFINITION. For a positive integek = 2 and a non-negative integbr we define
my(b) to be the largest integer which the linear functidna, takes on lattice points
satisfying (3.2) anda, = 0 for everyw.

One easily sees that,(0) = 0 andmy(b) = b for any b. The importance of finding
values ofmg(b) lies in the following lemma.

Lemma 3.4. sg(m, p) =k for k= 2 if and only if m1(p—1) <m=mg(p—1).

Proof. Sincesg(m, p) decreases a% increases by Proposition 2.3 (3), the lemma
follows from Lemma 3.2. O

REMARK. Sincesg(m, p) = p by Proposition 2.3 (1), the equalitsg(m, p) = k
makes sense only whelka = p. In other words,mg(b) has the matrix interpretation
discussed forsg(m, p) in Section 2 only wherk = b + 1.

The following is essentially a restatement of Theorem 2.6.
Theorem 3.5. mg(b) = b (mod 2)

Proof. It is not difficult to see thatg(b) = b whenb = k—2 (see Theorem 5.1),
so the theorem holds in this case. Suppb&k—1 and seb = p—1. Thensg(my(p—
1), p) =k by Lemma 3.4. Ifm(p—1)— p is even, thersg(mx(p— 1)+ 1, p) = k by
Theorem 2.6. But this contradicts the maximalityrof(p—1). Thereforemy(p—1)—p
is odd, i.e.,my(b) — b is even. ]

The following corollary follows from Lemma 3.3 and the lagatement in the
corollary also follows from Theorem 3.1.
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Corollary 3.6. For any non-negative integer b we have

(3.6) mi(b) = [(szkl_—_l)f] =2+ [ZHL_J

and the equality is attained when b is divisible By — 1, i.e.
(3.7) m((2-1)Q) = (2~ 1)Q
for any non-negative integer Q. In particular
(3.8) my(b) = 3b for any h
One can find some values sg(m, p) using (3.7).

EXAMPLE 3.7. Takep = (2! — 1)(Z — 1)g + 1 whereq is any positive
integer. Then

m(p—1) = (2k _ 1)2q, Ma(p— 1) = (2k+1 N 1)(2|(_1 _1)q

by (3.7). Therefore it follows from Lemma 3.4 thak(m, p) = k for m with
@M -1t -1)g <m=(2-1Yq.

4. Some more properties ofmg(b)

In this section, we study some more propertiesfb).

Lemma 4.1. For any non-negative integers, b’ we have
(4.1) mk(b) + mi(b’) = my(b + b').

In particular,
(1) my(b) + b’ = my(b + b’),
(2) mg(b) + (2*—1)Q = my(b + (2“1 — 1)Q) for any non-negative integer Q.

Proof. Let{a,} (resp.{a]}) be a set of non-negative integers which satisfy (3.2)
and ) a, = mg(b) (resp. (3.2) withb replaced byb’ and " a = my(b’)). Then{a, +
a/} is a set of non-negative integers which satisfy (3.2) viitreplaced byb + b’ and
> (& + @) = mg(b) + mg(b'). Therefore (4.1) follows.

The inequality (1) follows from (4.1) and the fact thai(b’) = b/’. The inequality
(2) follows by takingb’ = (2" — 1)Q in (4.1) and using (3.7). []

We will see in later sections that the equality in Lemma 4.1 Kalds for special
values ofb andb’ but does not hold in general. However, (3.7) and resultsimddain
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later sections imply that the equality in Lemma 4.1 (2) wohtdd for arbitrary values
of b and Q. We shall formulate it as the following conjecture.

Conjecture. m((2* — 1)Q + R) = (2 — 1)Q + m(R) for any non-negative
integers Q and Rwhere we may assunte= R =< 2k-1 — 2 without loss of generality.

The following lemma enables us to find an upper boundnfiggh) by induction on
k and we will see that the former inequality in (4.2) is not afa/idut often an equality.

Lemma 4.2. If b is not divisible by2<~1 — 1 and Q= [b/(2k~1 — 1)], then
mg(b) = m-a(b—gq—-1)+q+1

for any integer0 = q = Q and m_i1(b—qg—1)+ g+ 1 increases as q decreaseso
in particular

4.2) mg(b) =m_1b—Q—-1)+ Q+1=m_1(b—1)+ 1.

Proof. Let{a,} be a set of non-negative integers which satisfy (3.2) and, =
mg(b). Then

(4.3) > a,=b for some u e (Z/2)\ {0}
(u,v)=0

because otherwise we can add 1 to sapeso that the resulting set of non-negative
integers still satisfy (3.2) but their sum g (b) + 1, which contradicts the definition
of mg(b). Thereforea, = Q + 1 for somea, in (4.3) because ifh, = Q for any v,
then ", y—o@ = (21 —1)Q and (¥ ' —-1)Q is strictly smaller tharb sinceb is not
divisible by 21 —1 by assumption.

Through a linear transformation ofZ(2)¢, we may assume that the with a, =
Q+1ise=(0,...,0,1), so

(4.4) 2, = Q+1.

The kernelg- of the homomorphismeg, ): (Z/2)f — Z/2 can naturally be identified
with (Z/2)<t. Foru € g}, (3.2) reduces to

(4.5) a+ »,  a=h

(u,v)=0,v#e

Let 7: (Z/2)¢ — (Z/2)<* be the natural projection. Far € -, we have ¢, v) =0
if and only if ((u), 7(v)) = 0. Therefore (4.5) reduces to

Z a =b—ag

(7 (u),0)=0
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where v runs over all non-zero elements & 2)* anda; = > r()=p &- It follows
that >~ a; = m_1(b—a,) and hence

(4.6) m(b) = > a, =a + Y a = a + Me1(b—ag).
Hereq + mg_1(b—q) increases ag decreases because it follows from Lemma 4.1 that
q+meai(b—0g) =g—1+ mea(b—q+1).
Therefore, the inequalities in the lemma follow from (4.6)da(4.4). []
Corollary 4.3. mg(b) = mg_1(b) for any b and k= 3.

Proof. Sincemy ;(b—q—1)+qg+ 1= mg_1(b) by Lemma 4.1 (1), the corollary
follows from Lemma 4.2. O

We shall give another application of Lemma 4.2. Our conjecttated in this sec-
tion can be thought of as a periodicity ofi(b) for a fixed k. The following propos-
ition implies another periodicity ofg(b), wherek varies. It in particular says that
once we know values ofng(b) for all b, we can find values ofny, 1(b) for “half”
of all b.

Proposition 4.4. Suppose that
m((2* - 1)Q + R) = (2~ 1)Q + mk(R)
for some kR and any Q wher® < R=<2“1_—2 Then
4.7 Mr1((2 = 1)Q + 21 + R) = (2™ - 1)Q + 2* + mk(R),
more generally

Mt ((2k+|7l _ 1)Q + 2k+|71 _ 2kfl + R)

(4.8)
=2 - 1)Q + 2 — 2+ m(R)
for any non-negative integer I.

Proof. The latter identity (4.8) easily follows if we use tfegmer statement re-
peatedly, so we prove only (4.7). Whdd= 0, (4.7) follows from (3.7); so we may
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assumeR # 0. It follows from Lemma 4.2 and the assumption in the lemnst th

Mea(2 - 1DQ + 21 + R)

=m(*-1)Q+ 2+ R-Q-1)+Q+1
(4.9) =m(2*1-1)2Q+1)+R +Q+1

=2*-1)2Q+ 1)+ m(R) +Q+1

= (@ = 1)Q + 2+ m(R).

We shall prove the opposite inequality. LEt,} be a set of non-negative integers
which satisfy (3.2) withb replaced byR and

(4.10) > a, =m(R).

We regard Z/2)¢ as a subspace ofZ(2)*! in a natural way and defina, for v €
(Z/2)** by

. [Q+a, for ve(z/2)\{0},
(4.11) &= {Q +1 for v (22

We shall check that the sefa;} of non-negative integers satisfies (3.2) with
replaced by

(4.12) b :=@2*-1)Q+ 2T+ R

Letu e (Z/2)*1\{0} and denote by' the kernel of the homomorphisr,(): (Z/2)< —
7./2, which is a codimension 1 subspace B 2)<*1. We distinguish two cases.
CAse 1. The case where! = (Z/2). It follows from (4.10) and (4.11) that

Yo & =) (Q+a)

(u,v)=0

4.13) =@-1Q+) a

= (2*-1)Q + m(R).
Here my(R) =< 2R by (3.6) and sinceR < 21 — 2, we obtain
m(R) = 21+ R

This together with (4.12) and (4.13) shows tlﬁ(uyu)zoa; =b.

CASE 2. The case whera* # (Z/2)¢. Since bothut and @/2) are codimension
1 subspaces ofZ(/2)<*1 and they are different, the intersectior N (Z/2)< is a co-
dimension 1 subspace oZ(2)¢ and hence the number of elementsuh \ (Z/2)¢ is
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2¢=1 Therefore, it follows from (4.11) and (4.12) that

Ya- ¥ 4+ ¥ o

(u,v)=0 veuln(z/2) veul\(z/2)K

Y Q+a)+ Y. (Q+1)

veultn(z/2) veut\(Z/2)k
@-1DQ+ Y a+2<!
veutn(z/2)

S@-1)Q+R+2t=1

where the inequality above follows from the fact that the {&f satisfies (3.2) with
b replaced byR.

The above two cases prove that the &&f} satisfies (3.2) withb replaced byb'.
Finally it follows from (4.10) and (4.11) that

Yooa= Y (Q+a)t Y (Q+1)

ve(Z/2)1\{0} ve(Z/2)\{0} vE(Z/2)

=@-1DQ+ > a+2
ve(Z/2)\{0}

= (2= 1)Q + m(R) + 2~.
This implies the following desired opposite inequality
Mii1((2 = 1)Q + 2 + R) = (21 - 1)Q + 2 + m(R)
and completes the proof of (4.7). []

5 mg() for b=k+1

In this section we will find the values afik(b) for b =< k + 1. We treat the case
whereb = k — 1 first.

Theorem 5.1. For any k= 2, we have

b if bsk-2
mk(b)_{b+2 if b=k-—1.

Proof. (1) The case where = k — 2. Let a,’s be non-negative integers which
satisfy (3.2). Suppose that there are more thaositive integers,’s and choosé+ 1
out of them. Sinceb + 1 = k—1, v's for the choserb + 1 positivea,’s are contained
in some codimension 1 subspace @/2); so the sum of thosé + 1 positive a,’s
must be less than or equal bbby (3.2), which is a contradiction. Therefore there are
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at mostb positivea,’s. Sinceb = k—2, v's for the positivea,’s are contained in some
codimension 1 subspace dZ/2); so > a, = b by (3.2) and this provesy(b) < b.
On the other hand, it is clear that(b) = b, so mg(b) = b whenb = k — 2.

(2) The case wherd = k — 1. The following argument is essentially same as
Lemma 2.5. LetA be ak x m matrix where anyk column vectors spanz({/2)<. We
may assume that the firkt column vectors are the standard basis.Ase (e, .. ., &,
&1, - - -, @m). Since anyk — 1 vectors fromey, . . ., g together witha; span £/2)%,
a; must bezik=1 6. Thereforem must be less than or equal ko+ 1 and this shows
mg(k —1) =k + 1 by Lemma 3.4. On the other hand, since &golumn vectors in
(eL,....&. Y. &) span £/2)¢, my(k—1) = k+1 by Lemma 3.4. This provasy(k—1) =
k+ 1. O

Theorem 5.2. If b =k, then

me(b) = b+4 if k=23, 4,
YT b+2 if k=5
Proof. Sincem,(2) = 6 by (3.8) andmz(3) = 7 by (3.7), the theorem is proven
whenk = 2, 3. One can easily check that any 5 columns in this matrix

100 0 0 11072
01 001011
00101101
00011110

span £/2)* somy(4) = 8. On the other hand, using Lemma 4.2, we obtain

Thus my(4) = 8 and the theorem is proven whé&n= 4.
Sincemg(k — 1) = k + 1 by Theorem 5.1, it follows from Lemma 4.1 (1) that

me(K) = mek — 1)+ 1=k + 2.

In the sequel it suffices to prove thatrifc(k) = k + 3, thenk = 4.

Supposem(k) = k + 3. Then there is & x (k + 3) matrix A with entries in
Z/2 such that anjk + 1 column vectors inA span £/2)<. We may assume thah =
(1, ..., 6, a, ay, as) as before. Denote bg the i-th row vector in the submatrix
(a1, @, ag). Since anyk + 1 column vectors inA span £/2), we see that

G)-Gid)Gi) (i)
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up to permutations of column vectors at the right hand sidds Tust occur for any
1=i < j =k but one can easily see that this is impossible wkenb5. [

Theorem 5.3. If b =k + 1, then
b+6 if k=2,
mg(b) =<b+4 if 3=k=11,
b+2 if k=12,

Proof. Sincem,(3) = 9 by (3.8), the theorem is proven whén= 2.
Using Lemma 4.2 repeatedly, we have

(6.1) mu(12) = mp(1)+ 1= my(10)+ 2 = --- = mg(4) + 8 = mx(2) + 10 =16

where we used (3.8) at the last identity. On the other handpllibws from The-
orem 2.7 that

Sr(16, 13)= sz(15, 13)= [15—log,(15+ 1)] = 11
and hencem;;(12) = 16 by Lemma 3.4. Therefomna;,(12) = 16 and all the inequalities
in (5.1) must be equalities, proving the second case in therém.
Similarly, it follows from Theorem 2.7 that

(16, 14)= [16 — l0g,(16 + 1)] = 11

and hencem;,(13) = 15 by Lemma 3.4. On the other hand, it follows from The-
orem 5.2 and Corollary 4.3 that

15 = my3(13) = my2(13).

Thereforem;,(13) = 15.
Supposek = 12. Then using Lemma 4.2 repeatedly, we have

Me(k+1) = mea(k) +1=--- =mp(13) + k—12=k +3

where we used the faeh;»(13) = 15 just shown above. On the other hand, it follows
from Lemma 4.1 (1) and Theorem 5.2 that

mg(k + 1) = mg(k) + 1 =k + 3.

Thereforemg(k + 1) = k + 3 whenk = 12, proving the last case in the theorem[]
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6. Further computations of my(b)

In this section we will make some more computationsmg{b) by combining the
results in the previous sections. All of the results provelgporting evidence to the
Conjecture stated in Section 4.

Proposition 6.1. If R = k—1, then
m((2 - 1)Q + R) = (2~ 1)Q + m(R)

where

R if

Mk(R) = {R+2 if

by Theorem 5.1.

Proof. WhenR = 0, the proposition follows from (3.7) sinaey(0) = 0. So we
may assume £ R = k—1. We prove the proposition by induction &n Sincem;(b) =
3b by (3.8), the proposition holds whda= 2. Suppose the proposition holds for=
| — 1. It follows from (3.7), Lemmas 4.1, 4.2 and the inductioswaaption that

@ -1DQ+m(R) =m (2 *-1)Q) + m(R)
=m(@7*-1)Q+R)
=m(@'-DQ+R-Q-1)+Q+1
=m_1(22-1)2Q+R-1)+Q+1
=21 -1)2Q+m 1 (R-1)+Q+1
=@ -1)Q+m_y(R-1)+1.

(6.1)

Here sinceR =1 — 1, we havem(R) = m_1(R— 1) + 1 by Theorem 5.1. Therefore
the first and last terms in (6.1) are same, so the first ingguadi (6.1) must be an
equality, which proves the proposition whé&n= 1, completing the induction step.[]

The following corollary follows from Proposition 6.1 by tiag k = 3.

Corollary 6.2.

7Q if R
m3(3Q—|—R):{7Q+1 if R
7Q+4 if R

0
11
2
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Combining Proposition 6.1 with Proposition 4.4, one canrionp Proposition 6.1
as follows.

Theorem 6.3. LetO=I=k—2. If0=r =k—1I1 -1, then
me((@t—1)Q + 21 — 2 1) = (2= 1)Q + 2 — 2! + mi(r)

where

M () = r if r=k-1-2,
T r 42 0f r=k—1-1.

by Theorem 5.1.
Proof. By Proposition 6.1, we have
(6.2) M1 =1)Q +r)=(2-1)Q +me(r) for 0=r =k-1.
Therefore, it follows from (4.8) in Proposition 4.4 that
(6.3) My (2t —1)Q 4+ 2H 1 21 Ly = 2 —1)Q + 2 — 2K+ my(r)

for any non-negative integdr Rewriting k + | ask, the identity (6.3) turns into the
identity in the theorem and the condition<r = k—1 in (6.2) turns into the condition
O0=r =k—I| -1 in the theorem. OJ

Proposition 6.4. If R=k+ 1 and4 = k = 11, then
m((2* - 1)Q + R) = (2~ 1)Q + mk(R)
where m(R) = R+ 4 by Theorem 5.3

Proof. First we prove the proposition whé&n= 4. In this caseR = 5. It follows
from Lemma 4.2 and Corollary 6.2 that

ma((22-1)Q+5) =ms(7Q+5-Q—-1)+ Q+1
=720+1)+1+Q+1=15Q+9

while it follows from (4.1), (3.7) and Theorem 5.3

my((2° — 1)Q + 5) = My((2° — 1)Q) + ma(5)
=(2'-1)Q+9=15Q+09.

This proves the proposition whdn= 4.
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Suppose that the proposition holds for 1 with 4 < k-1 = 10. Then it follows
from Lemma 4.2 and the induction assumption that

M@ —1DQ+R) =m (2" -1)Q+R-Q-1)+Q+1
=mec1(@¥?-1)20+R-1)+Q+1
=2*1-1)20+(R-1)+4+Q+1
=2*-1)Q+R+4

while it follows from (4.1), (3.7) and Theorem 5.3

m((2* = 1)Q + R) =Z m((2“ ' — 1)Q) + m(R)
= -1)Q+R+4

These show tham,((2"! — 1)Q + R) = (2 — 1)Q + R + 4, completing the induc-
tion step. ]

Similarly to Theorem 6.3, Proposition 6.4 can be improvedadlsws by combin-
ing it with Proposition 4.4. The proof is same as that of Tkeor6.3, so we omit it.

Theorem 6.5. Let0O=|1 =k-2. If4=k-I| =11, then
Mm@t -1)Q+ 2t -2 1 k-1 4+1)=2-1)Q+2— 2! + k-1 45.

EXAMPLE 6.6. Table 1 below is a table of values mf((2¢"*—1)Q+ R) for k =
2,3,4,5,6.

The values above fok = 2, 3, 4 can be obtained from Theorem 6.3 although they
are obtained from (3.8) whek = 2 and from Corollary 6.2) whek = 3. Similarly,
the values fork = 5 can be obtained from Theorem 6.3 except the three case® wher
R=05,6,7. The case wherR = 6 follows from Theorem 6.5 (or Proposition 6.4). As
for the case wherdR = 5, ms(15Q + 5) must lie in between 3 + 7 and 3 + 9
becausans(15Q +4) = 31Q + 6, ms(15Q + 6) = 31Q + 10 andmy(b + 1) = my(b) + 1
as in Corollary 4.1, and the value @1+ 8 would be excluded becausec(b) = b
(mod 2) by Theorem 3.5. As for the case whdRe= 7, the same argument shows
that mg(15Q + 7) = 31Q + 11, 13 or 15. But the value &1+ 15 would be excluded
by (3.6). A similar argument shows the values above wken6. In fact we also use
Proposition 8.1 proved later foR = 12, 13, 14 and 15.

Finally we note thaims(5) = 7 andmg(6) = 8 by Theorem 5.2 although we could
not determine the values ofis(15Q + 5) andmg(31Q + 6) for Q = 1 as shown above.
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Table 1. m((2*-1)Q + R) for k = 3, 4, 5, 6.

(Rkfl2] 38 | 4 | 5 | 6
0 3Q 7Q 15Q 31Q 63Q
1 7Q+1| 15Q+1 31Q+1 63Q +1
2 7Q+4 | 15Q +2 31Q+2 63Q + 2
3 15Q +5 31Q+3 63Q + 3
4 15Q + 8 31Q+6 63Q + 4
5 150 +9 31Q+7o0r9 63Q +7
6 15Q + 12 31Q+10 63Q + 8 or 10
7 31Q + 11 or 13 63Q + 11
8 31Q + 16 63Q + 12 or 14
9 31Q + 17 63Q + 13, 15 or 17
10 31Q + 18 63Q + 14, 16 or 18
11 310+ 21 63Q + 15, 17 or 19
12 31Q + 24 63Q + 20 or 22
13 31Q + 25 63Q + 21, 23 or 25
14 31Q + 28 63Q + 24 or 26
15 63Q + 27 or 29
16 63Q + 32
17 63Q + 33
18 63Q + 34
19 63Q + 35
20 63Q + 38
21 63Q + 39 or 41
22 63Q + 42
23 63Q + 43 or 45
24 63Q + 48
25 63Q + 49
26 63Q + 50
27 63Q + 53
28 63Q + 56
29 63Q + 57
30 63Q + 60

569
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7. Upper and lower bounds ofmg(b)

We continue to use the expression
b=@21-1)Q+R

where Q and R are non-negative integers andsOR =< 21 — 2. Here are naive upper
and lower bounds ofn(b).

Lemma 7.1. (2—=1)Q+ R = my(b) = (2= 1)Q + 2R, i.e. if we denote p(b) =
(2*—=1)Q + S, then R< S 2R.

Proof. We takea, = Q + R for onev anda, = Q for all otherv's. These sat-
isfy (3.2) and}_a, = (2—1)Q + R, proving the lower bound. The upper bound is a
restatement of the upper bound in (3.6). O

REMARK. It easily follows from Lemma 7.1 that lign, o, me(b)/b = (2=1)/ (21—
1), som(b) is approximately (2—1)b/(2"*—1) whenb is large.

The bounds in Lemma 7.1 are best possible in the sense that$et R and
S = 2R occur and it is easy to see whéh= R occurs. In this section we improve
the lower bound in Lemma 7.1 and see when the lower and upperdsoare attained.
The following answers the question of whé&x= R occurs.

Proposition 7.2. Let b= (21 -=1)Q + R and m(b) = (2 — 1)Q + S. Then
S=R if and only if RS k—2.

Proof. The “if part” follows from Theorem 6.1. Suppose = k — 1. Then it
follows from Lemma 4.1, (3.7) and Theorem 5.1 that

(- 1)Q + S=my(b) = (2" —1)Q + R)
> m(2< — Q) + me(k — 1) + m(R—k + 1)
>2*-1)Q+k+1)+(R-k+1)
=2-1)Q+R+2

and henceS = R + 2, proving the “only if” part. ]

We shall study whers = 2R occurs and improve the lower bound in Lemma 7.1
in the rest of this section. Remember that the polyhed?gb) defined by (2 —1) in-
equalities

Z a, =b for each ue (Z/2)<\ {0}
(u,v)=0
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has the pointx = (a,) with a, = b/(2<"! — 1) as the unique vertex and the
(2 — 1) hyperplanes

HY(b) = {(av) e RZ!

Y a = b} for u € (Z/2)¢\ {0}

(u,v)=0

are in general position. We set

aH(m) = [(av) e R¥1 ‘ > a = m}.

Lemma 3.3 tells us that the intersecti®{b) N H(m) is non-empty if and only ifm =
(2= 1)b/(2¢1 — 1), and that it is the one point if m= (2*—1)b/(2*—1) and a
simplex of dimension 2— 2 if m < (2¥ — 1)b/(2* - 1).

Lemma 7.3. Let ue (Z/2)<\ {0}. Then thev-th coordinate & of a vertex P =
H(m) N (Nyu HY) of P(b) N H(m) is given by

2

m-—b .
al = b-—m+—_— if (uv)#0,
m — 2b if (u,v)=0.

In other words if b = (2 —1)Q + R and m= (2 - 1)Q + S, then

ok—2

u_ Q+2R—S+ >R it (uv)#£0,
Q+S-2R if (u,v)=0.

Proof. Fixu e (Z/2)¢\ {0}. For eachu’ € (Z/2)<\ {0} we consider an equation

(7.1) > al=b

(u,v)=0

wherev’ runs over elements withu(, v') = 0 in the sum.

The following argument is similar to the latter half of theopf of Lemma 3.3.
For v with (u, v) # 0, we take sum of (7.1) over all non-zetd with (u’, v) = 0.
Then we obtain

(7.2) @t -1l +(27-1)) al =2 -1
v'#v

(Note thatay, with v’ # v appears in the equation (7.1) fof with (u’,v) = (U',v') =0,
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so it appears (22—1) times.) Sincea +)_,,, &) =m, we plug)_, ., a} = m—ay
in (7.2) to obtain

! = sy (7~ 1p— (27— 1ym)
(7.3)

For v with (u, v) = 0, we take sum of (7.1) over all non-zew with (U, v) =0
and U’ # u. Since the number of sudll is 21 — 2, we obtain

74 ET-2al+ @)Yy Al Y ay=@'-2n

v/ #v v'#v, (u,v)=0
Here
(7.5) doa=m-aj
v'#v

and

Y ai=m-ai- Y a

v'#v,(u,v')=0 (u,v")#0
1

(7.6) - m—a;‘—2k1(2b—m+ (m—b))

ok—2

=2t —1m— (2 —2b-a"

where we used (7.3) fov” at the second identity. Plugging (7.5) and (7.6) in (7.4),
we obtain

224 — 2 m (2 —2b = (21 -2)b
and henceay = m— 2b. O

Proposition 7.4. Let b= (2*"1—1)Q+ R and m(b) = (2—1)Q+S. If S=2R,
then R= 21 — 21~ for some0 <| <k —2.

Proof. Supposé& = 2R. Then it follows from Lemma 7.3 that theth coordinate
a' of the vertexP" of P(b) N H(mk(b)) is given by

R .
a}j:{Q"'ﬁ if (u,v)#0,
Q if (u,v)=0.
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Sincemy(b) = (2 — 1)Q + S and S = 2R by assumption, there is a lattice point on
the simplexP(b) N H(mk(b)). The simplex is the convex hull of the vertic€s', so
there exist non-negative real numbéys with > t, = 1 such that)_t,P" is a lattice
point, i.e.

dotal= ) tu(Q+2k—Ffz)+ > tuQ=Q+< > tu>2k—Ffz €Z

(u,v)#0 (u,v)=0 (u,v)#0
for any v. This means thaf)", .o tu) R/2>=0or 1, i.e.

2k72
(7.7) Z tu=0 or R for any wv
(uv)#0

because & R = 21 -2 and > w0 lu = 1. On the other hand,

(7.8) Yo =2

v (uw)#0

because eacty appears 2! times in the sum above ard t, = 1. It follows from (7.7)
and (7.8) that there are exacthR2numbers ofv’s such thatz(u’v);,éo ty # 0, in other
words, there are exactly*2- 1 — 2R numbers ofv's such that ", ,).otu = 0. The
identity Z(uvv#o ty = 0 implies thatt, = O for all u with (u, v) # 0 sincet, = 0. Based
on these observations, we introduce

U :=the linear span olJg := {u | t, # 0},

V := the linear span ol := {v | t, = 0 for Vu such that ¢, v) # 0}.
If v € Vg, then it follows from the definition olUg and Vg that @, v) = 0 for any
u € Ug and hencey, v) = 0 for anyu € U sinceU is the linear span ofJy. This

implies that ¢, v) =0 for anyu € U andv € V sinceV is the linear span o¥. It
follows that

(7.9) dimU < k—dimV.

We note thatV contains at least*2— 1 — 2R non-zero elements by the observation
made above.
Suppose that

(7.10) F1_ okl < R < 21 k104D for some 0= =<k -2.

(Note thatR lies in the inequality (7.10) for somlebecause & R < 21 —2)) Then,
since #'-1_1 < 2*—1—-2R and V contains at least2- 1— 2R non-zero elements,
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V contains at least¥2'~! non-zero elements and hence dire k —I. This together
with (7.9) shows

(7.11) dimu =1.

Since the bilinear form ( , ) is non-degenerate, there is @pateW of (Z/2)¢
such that dimV = dimU and the bilinear form ( , ) restricted td x W is still
non-degenerate. We take sum of (7.7) over all non-zeW. In this sum, eachy
for u e U \ {0} appears 2"V~ times. Since dinW = dimU and }" ., (g tu = 1,
we obtain

(2dim U _ 1)2k—2

2dim u-1 S
- R

and hence
(712) R é (2dimU _ 1)2k—dimU—l é 2k—l _ 2k—|—1

where we used (7.11) at the latter inequality. Then (7.1@ @hl12) show thaiR =
2k=1 _ 2k=1- " proving the proposition. O

It turns out that the converse of Proposition 7.4 holds,S.e- 2R can be attained
when R = 2k-1 — 2k=1-1_|n fact, we can prove the following.

Proposition 7.5. Let b= (2! — 1)Q + R and let2k-? — 2k-1- < R < 21 _
2k-1-0+1) for some0 = | = k—2. Then

me(b) = (2 —1)Q 4+ R4 21 — 231,
In particular, if R = 2k-1—2k-1 for some0 = | < k—2, then m(b) = (2*—1)Q +2R.
Proof. We take
m=(2-1)Q+ R+ 2t -2+
and find a lattice point in the simpleR(b) N H(m) with non-negative coordinates. Set
r=R— 24 2
The v-th coordinatea) of the vertexP" of P(b) N H(m) is given by

o [Q+r +2-2%"if (u,v)#0,
(7.13) ‘%‘{Q_r if (u,v)=0



BUCHSTABER INVARIANTS 575
by Lemma 7.3. Set
(7.14) L=2-2%"

Any point in P(b) N H(m) can be expressed ague(z/z)k\[o} t,PY with t, = 0 and
>ty =1, and we find from (7.13) that its-th coordinatea, is given by

av=< 3 tu)(Q+f+L)+< 3 m)(@—r)

(u,v)#0 (u,v)=0
(7.15) = (Z tu)Q + <1— > tu)(r +L)+ ( > tu)(—r)
(u,v)=0 (u,v)=0
=Q+r+L—< > tu>(2r—|—L).
(u,v)=0

We take a codimension 1 subspa¢eof (Z/2)¢ and anl-dimensional subspadéd
of V arbitrarily and define

x ! for u¢Vv
2r + L 2k-1 '
(7.16) b=y _Lt 1 for U\ (o
x+L2 -1 ueUA{0),
0 otherwise.

Thent, = 0 and)_t, = 1. We shall check thad, in (7.15) is a non-negative integer.
We denote by the codimension 1 subspace @/@)¢ consisting of elements such
that @, w) = 0 and distinguish three cases according to the position‘ofelative to
V andU.

CAsSE 1. The case where* = V. In this case,

L 1 L

ty=———— (2 -1)= ,
Z ! 2r+L2'—1( ) 2r +L
(u,v)=0

soa, = Q+r by (7.15).
CASE 2. The case where* # V and vt D U. In this casep’ NV is of di-
mensionk — 2 and

r 1 L 1
ty=-— k2 _~ 2 -1=
Z YT r L2k +2r+L2'—1( )

(u,v)=0

r+L
2r +L

soa, = Q by (7.15).
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CASE 3. The case wheret # V andv! 2 U. In this casep NV is of di-
mensionk — 2 andv* NU is of dimensionl — 1 and hence

x 1 L1
t, = —_zk—z - 2|—1_ 1
(u%:zo” rrLxi2 tTax Lz 1 )

r+L-1
2r +L

where we used (7.14) at the second identityase= Q + 1 by (7.15).
In any cases, is a non-negative integer, 90, ,c(z2y (o tuP* With t, in (7.16) is a
lattice point inP(b)N H(m) with non-negative coordinates. This proves the propmsiti
O

Now we are ready to prove the latter theorem in the Introducti

Theorem 7.6. Let b= (21 —1)Q 4 R. If 2k-1 _ 21+ < R < k=1 _ pk=1~(I+1)
for some0 =1 = k-2, then

(2-1)Q+ R+ 212" =my(b) = (2~ 1)Q + 2R

where the lower bound is attained if and only if-R2<* — 22y <k -1 -2 and
the upper bound is attained if and only if R2k1 — k-1,

Proof. The inequality and the statement on the upper boutow® from Prop-
ositions 7.4 and 7.5. Moreover, Theorem 6.3 shows that therld@und is attained if
R— (21— 2171y <k —1 — 2. SupposeR — (21 — 2k=17) >k —| — 1 and set

(7.17) D=R-—(2“1-2¢¥)_(k-1-1).
Then it follows from Lemma 4.1 and Theorem 6.3 that
me(b) = m (2 —1)Q + R)
=m (@ rT—1)Q+ 2t 2 L k—1 -1+ D)
>m((2t—1)Q + 2 -2 f k-1 —1) + m(D)
>(2-1)Q+ -2 +k—-14+14+D
— (2k _ 1)Q + R + 2k—1 _ 2k—|—l + 2

where we used (7.17) at the last identity. Therefore the idveaind is not attained if
R—(2¢t -2ty > k-1 -1, O
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8. A slight improvement of lower bounds

When R £ 22 — 1, the lower bound ofmg(b) in Theorem 7.6 is nothing but
(2 = 1)Q + R and this is an obvious lower bound. In this section we imprthe
lower bound when'92 —4 < R< 221,

Proposition 8.1. If k is odd then
(1) M2t -1)Q + 22 -1) =z (2*-1)Q + 2 -k,
2 m2t—1)Q+2¢2_2)= (- 1)Q+ 21—k -1
If k is even then
(1) M2t -1)Q + 2% - 1) = (- 1)Q + 2 —k + 1,
(2 m2t-1)Q+2?*-2)z (-1)Q+ 21—k -2,
B) M2t —1)Q +2¢2-3)=> (X -1)Q + 21 — 2k + 1,
(@) m2t—1)Q + 22— 4) = (k- 1)Q + 2k — 2k.

Proof. In any case it suffices to prove the inequality wii@r= 0 by Lemma 4.1
(2). We recall howm(2¢-?) = 2%~ is obtained. Choose any non-zero elemegte
(Zz/2)< and define

©.1) o {1 if  (Uo, v) # 0,

0 if (up, v)=0.
Then

2“2 if U # U,
Z a, = )

0 if u=ug
(u,v)=0

and ) a, = 271, This attainsmy(2%~2) = 2x-1,
We take

Upg = (1,..., ].)t
Then Qp, v) = 0 if and only if the number of 1 in the components wfs even. Let

Vii={e ..., a) C(Z/2)

Vo — V1 U {up} for k odd,
27 ViU {up—e, ug— &) for k even,

and define forg = 1, 2

a® = 1 if (u,v)#0 and v ¢V,
0 otherwise.
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(@ < ok—2 _ - Kk
One can check thaz(uyv)=0 a,’ =2 g for any non-zerau € (Z/2)¢. Clearly

21k when q =1,
> el = {Zk‘l—k—l when q=2 and k is odd,
21 _k—2 when gq=2 and k is even.
This together with the congrueneeg(b) = b (mod 2) in Theorem 3.5 (applied when
g = 1 andk is even) implies the inequalities (1) and (2) in the proposit
The proof of the inequality (4) is similar. Assunkeis even and let

Vs :=ViU{Up—ey...,Up— &}

and define

a® .= L if (Uo,v) #0 and v ¢ Ve,
0 otherwise.

One can check tha}", ,_oal¥ = 22 — 4 for any non-zerau € (Z/2)* (where we
use the assumption ok being even) and_ al¥ = 2«-1 — 2k, Therefore

m (22 — 4) = 21 — 2k

which implies the inequality (4) in the proposition. The guelity (3) follows from (4)
sincemg(b + 1) = my(b) + 1. O

9. Some observation on Conjecture
The conjecture in Section 4 says that
m((2 = 1)Q + R) = (2~ 1)Q + m(R)
and this is equivalent to saying
(9.1) me(b + 21— 1) = me(b) + 2¢ — 1.
In this section, we prove (9.1) whdris large, to be more precise, we prove the following.
Theorem 9.1. Let b= (21— 1)Q+ R. If

Q= R when 0 R 221,
= |R-2¢2 when 2¢2<Rz2¢1_2

(this is the case when b (21 — 1)(2~2 — 1)), then

me(b + 21 — 1) = m(b) + 2¢ — 1.
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Proof. By Lemma 4.1 (2), it suffices to prove
(9.2) mg(b + 21 — 1) < my(b) + 2% — 1.
Remember the polyhedroR(b) defined by (2 — 1) inequalities

(9.3) > a,=b foreach ue (z/2)\(0}.
(u,v)=0

We will find m such that the intersection d(b + 2~ — 1) with a half spaceH *(m)
in RZ-1 defined by

H*(m) = {Z a, = m]

has a lattice point with coordinates 1.
CAseE 1. The case where § R<2¢2_1. In this case we take

m=2-1)(Q+1)+ R
Since
b+21-1=02*1-1)(Q+1)+R,

the coordinates of a vertex (except the veriexf P(b + 2¢-1 — 1)) in P(b 4 2% —

1) N H*(m) are eitherQ + 1+ R or Q + 1 — R by Lemma 7.3, so those vertices
are lattice points and their coordinates are greater thamgoal to 1 sinceQ = R by
assumption. We know

mb+2tT—1)=(2*-1)Q+1)+R
by Lemma 7.1, so any lattice poing,) in (9.3) with b replaced byb + 2k~ — 1, at
which 3" a, attains the maximal valugy(b+ 21 —1), lies in P(b+ 21— 1)NnH*(m)

and hencea, = 1 for everyv. Since{a, — 1} is a set of non-negative integers which
satisfy (9.3) and

D a -1 =mb+ 2 —1)—(2-1),
it follows from the definition ofmg(b) that
me(b + 2 — 1) — (2 — 1) = my(b),

proving the desired inequality (9.2).
CASE 2. The case wherek2®2 < R < 2k-1 — 2. In this case we take

m=(2-1)(Q + 1)+ R+ 22
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Then the coordinates of a vertex (except the vexpin P(b+2<1—1)Nn H*(m) are
eitherQ+ 2+ R— 22 or Q + 1— R+ 22 by Lemma 7.3, so those vertices are
lattice points and their coordinates are greater than oalefgul sinceQ = R — 22

by assumption. We know

meb + 21 —1) = (X~ 1)(Q + 1) + R4 2¢2

by Proposition 7.5, so any lattice poird,§ in (9.3) with b replaced byb+ 241 —1, at
which 3" a, attains the maximal valugy(b+2<"1—1), lies in P(b+21—1)NnH*(m)
and hencea, = 1 for everyv. The remaining argument is same as in Case 1 abdve.

Appendix

Table 2 below is a table of values sf(m, p) for 2= p =18 and 2= m = 40.
Sincesg(m, 1) = 1, the case wher@ = 1 is omitted. Remember thak(m, p) =1
if and only if m = 3p — 2 by Theorem 3.1 and that the values ffm, p) for p =
m—1,m—2 andm—3 can be obtained from Theorems 2.4 and 2.7. The other values
can be obtained from Table 1 in Section 6 and the fact shéh, p) = k for k = 2 if
and only ifmg 1(p—1) < m=m(p—1) (Lemma 3.4). The asteriskin a box means
that the value is unknown. Finally we note tlsa{m, p) increases ap increases while
it decreases aB1 increases (Proposition 2.3).
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2=m = 40.

p =18,

110111_[121

Table 2.sg(m, p) for 2
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