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Abstract
By definition, Kahler—Ricci solitons are defined on Fano rf@ds. In this note,
we shall generalize the notion of Kahler—Ricci solitons he tase of general po-
larized manifolds from the view point of K-energy, which atelled “generalized
Ké&hler—Ricci solitons”. Moreover, “generalized Kahler€#lisolitons” are also one
of generalizations of constant scalar curvature KéhleringetFurthermore, we shall
give a non-trivial example of a “generalized Kahler—Ricaliton”.

1. Introduction

The K-energy was originally introduced by Mabuchi for studyiEinstein—Kahler
metrics on Fano manifolds in [2] and [16] and its critical misi are Einstein—Kahler
metrics. The K-energy is easily generalized to the case abtamt scalar curvature
Kéhler metrics ([16]). Moreover, in [11], Guan generalizée tK-energy to the case
of extremal Kéhler metrics. In [21], Tian also generalizbé K-energy to the case of
Kéhler—Ricci solitons. In Section 3, we shall modify Tianlsfinition of the K-energy
associated to Kéhler—Ricci solitons for some reason (se&dBe3 for more details).

In the rest of this section, we shall introduce some notatind terminology. Let
(M, L) be ann-dimensionalpolarized manifold that is, M is a compact connecteat
dimensional complex manifold and an ample line bundle ove¥. If we can choose
the anti-canonical line bundl& ;! of M asL, we callM a Fano manifold For (M, L),
we put

_ @(M) U (L) (IM])
c(L)M(IM])

Since L is ample, we have a Kahler metrgc whose Kahler form

€ Q.

n
wg=+v-1)_ g7dZ AdzZ

ihj=1
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represents 2¢,(L) € H?(M;R), where ¢, Z,...,z") is a holomorphic local coordinate
system forM. Moreover, by

n
Ricg = Ric(wg) = V=1 ) Ry dZ A dZ/ := V=133 log detg,p),

ij=1

we denote theRicci form of g. By means of the harmonic integration theory, there
exists a real-value€* function fg € C>*(M)g on M such that

L 9%
— .— |
(11) Sg - nIBL - I:lg fg — Z g‘/ W'

ij=1

where g7‘)i,j:1,___,n is the inverse matrix ofgf;)ij=1...n and

S = S(wg) := Z g” Ry

ihj=1

the scalar curvatureof g. If sy is constant, thery is called aconstant scalar curvature
Kahler metrig in this casesy = np.. If there exists a constamte R such that Rig =
Cwg, We callg an Einstein—Kéahler metriclf ¢ = 0, theng is called aRicci-flat Kéhler
metric. If ¢ # 0, then Yc=1/8. € Z and L = K /°. WhenL = KX (ke Z\ {0}),
g is an Einstein—Ké&hler metric witlk = —1/k if and only if g is a constant scalar
curvature Kahler metric.

In general, for a complex-value@> function ¢ € C*(M)c on M, we define a
complex-valued vector field oM by

ad o 1 2”: 5 0p 0
9 dG‘p'_\/_—lij:lg 921 07

If grad, sy is a holomorphic vector field o, then we callg an extremal Kahler
metric which was introduced by Calabi in [4]. By definition, congtacalar curvature
Kéhler metrics are extremal Kahler metrics.

When M is a Fano manifold and. = K}, if there exists a holomorphic vector
field X € Xy := HO(M; O(T1°M)) such that

theng or the pair g, X) is called aK&hler—Ricci soliton whereXy, is the Lie algebra
of holomorphic vector fields oM and L xwg the Lie differentiation ofwy with respect
to X. If X =0, then a Kéhler—Ricci solitog is nothing but an Einstein—Kahler metric
with ¢ = 1.



K-ENERGIES AND CRITICAL KAHLER METRICS 499

2. Preliminaries: Bott—Chern forms and K-energy

In this section, we shall recall some basic notions and femtserning the K-energy
according to [16], [20] and [21].
For ann-dimensional polarized manifold\{, L), we put
M(M, L) := {w: Kahler form onM such thatw € 2wci(L)}.

We fix a Kahler formwg € M(M, L). Then for eachw € M(M, L), there existsp €
C>®(M)g such that

w = wo(@) := wo + V—100¢.

We define a functionale : M(M, L) - R on M(M, L) by

! n
pntonte)) =~ [t [ atstooton) - npo)(“520)

27

where {¢t}o<t<1 iS @ path of real-value€*-functions onM from ¢o = 0 to 1 = ¢
with wo(¢r) € M(M, L) (0=t =1) and¢ := d¢;/0t. We call u_ the K-energy of
(M, L) (associated to constant scalar curvature Kéhler metries) v, the following
fact is well-known:

Fact 2.1 (Mabuchi [16, Theorems (2.4) and (3.2)]). (. is independent of the
choice of a path{¢:}o<t<1 and therefore well-defined
(2) An elementwg of M(M, L) is a critical point of i if and only if g is a constant
scalar curvature Kahler metric.

We assume that, for a complex Lie subgrd@pof the holomorphic automorphism
group AutM) of M, L is G-equivariant. Then for an elemeM of the Lie algebra
g := Lie(G) (C Xy = Lie(Aut(M))) of G, the following formula was also proved ([16,
Theorem (5.3)]):

% L (exptYawo) = 2 Re(vV—1F5(Y)),
t=0

where Yg := Y + Y and fe() is the real part of a complex number € C. Here
Fy: Xw — C is theBando—Calabi—Futaki charactesf (M, L), which was introduced as
an obstruction to the existence of constant scalar curwaté@hler metrics inM(M, L)
by Bando ([1]), Calabi ([5]) and Futaki ([6], [7]) and definbg

g

Fu(V) = %lfM(Vfg)(E)n, Ve Xy
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It is well-known thatFy; is independent of the choice af; € M(M, L).

Next, according to Tian ([20]), we shall give an interpritatof the K-energy in
terms of Bott—Chern forms. For an Hermitian methiof L, we denote the Hermitian
connection ofh by V" and its curvature by®(h), that is, ®(h) := 99 logh. For a
polynomial (or a power serieg) of one-variable and two Hermitian metribg and h;
of L, we put

1
BC(L: ho, hy) = /0 ¢/ (O(h)hh* dt

€ <@ Ak'k(M))/Im(a) + 1m(d),
k

where AP9(M) (0 = p, g = n) is the space of {§, q)-forms on M, {hi}o<t=1 a path
of Hermitian metrics ofL from hy to hy, b := ohy/0t and ¢’ the differentiation of
#. Then BC(L; ho, hy) is independent of the choice of a path}o<i<1, hence well-
defined and called 8ott—Chern formof (L; hg, h;) associated t@ (see [20] for more
details). Moreover we put

BC¢(L; ho, hl) = / BC¢(L, ho, h]_)
M

Now we assume that, for Hermitian metritg and h; of L, both v—1®(hg) and
+~/—=10(h;) are Kahler forms orM and we denote their associated Kahler metrics by
g(ho) and g(h;), respectively. Then we have

n
> -1y ( T )Bcc?“(ml ® L"2I; detg(ho) - hy~?, detg(hy) - hi ™)
j=0
—2'nl nBLBCY (L ho, hy)

\/ZjT_lLL(wo@P)),

= 2"(n + 1)!

whereh; = e ¢hy, wp = wyny = V=16 (o), detg(ho)-hj) 2 and deg(hy)-h] ? are
the induced Hermitian metrics df ;' ® L" 21 and c(T) = ((v/~1/27)T) .

In the rest of this section, we shall recall the equivariawttBChern forms ac-
cording to [21]. Let M, L) be ann-dimensional polarized manifold. In general, we
assume that is G-equivariant for a complex Lie subgroup of Aut(M). Then, for
each holomorphic vector field € g C Xy on M and p =0, 1,..., 2n, we can define
the holomorphic action(see [3])

AyP: AP(M: L) — AP(M: L),

of V on L, that is,A\",”’ satisfies the following properties:
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(i) AP is aC-linear map;
(i) For all v € AP(M) ands € A°%(M; L),

ASPWs) = (Lyy)s+ v AL,

where Ly is the Lie differentiation ofyy with respect toV;

(i) AyP commutes withd, that is,d 0 AyP = AP 03, for p=0,1,...,2n—1.
Here, forp =0, 1,..., 2n, we denote byAP(M) and AP(M; L) the space ofC*™
complex-valuedp-forms andL-valued p-forms on M, respectively. For an Hermitian
metric h of L, we put

LG =i - Ay% e C*(M)c.

Then Li,L'h) satisfiesﬁﬁi}’h) = —i(V)®(h), wherei(V) is the interior product with re-
spect toV. ForV € g C Xy and a polynomial (or a power serieg)of one-variable,
we put

o) = / pO(h) + £EM).
M

Then C‘,f’(V) is independent of the choice of an Hermitian metnicof L and hence

well-defined. By¢®(L) € Héde‘”(M), we denote th&s-equivariant characteristic class
of L associated t@. Then we have

clV) = @SE@CL)V), Ve,

wherew Z: HE(M) — Hc’j‘Z”({*}) is the G-equivariant Gysin map induced by the triv-
ial G-equivariant mapo of M to a single point{x}. Here we identifyHék({*}) with

I K(G), which is the space of holomorphiG-invariant polynomial of degre& on g
fork=0,1, 2, .. (see, e.g., [8] for more details). The following is well-kmo ([19,
Lemma 6.1], see also [17] and [18]):

27T n n o+l Znnlgl_ o+l
L _ E : 1 1
Fu(V) = 2(n+ 1) o ( j )CKM1®L“" W+ O

=2n (wf (—cf(K,\‘,'l)ch(L)” + nniL1Cf(L)““))(V),

for V € g. Hence ifM is a Fano manifold and. = K,,!, then we have
KL 2 _
Fu' (V) = === @2 (Ky)™ (V).

for V € Xn.



502 Y. NAKAGAWA

Now, we assume that a holomorphic vector fi¥ds X on M generates the holo-
morphic St-action onM. In this case, there exists a real Lie subgrdapof Aut(M)
such thatK is isomorphic toS' and its Lie algebra generated . Furthermore,
we assume that is K-equivariant. Then the real part at'" is constant, for a
K-invariant Hermitian metrich of L such thatwy = +v/—10(h) € M(M, L) (see, e.g.,
[13, Theorem 4.4 (p.94)]). For a polynomial (or a power s5ri of one-variable and
two K-invariant Hermitian metric$y and h; of L, we put

1
BCY (L: ho, hl):=/ ¢ (@(hy) + L M)Rh, t dt
0

€ (@ Afgk(M))/lm(aK) + Im(3k),

k

where {hi}o<t<1 iS a path ofK-invariant Hermitian metrics ot from hg to h; and
ARY(M) the space ofC™ K-equivariant p, g)-forms on M (see [21] for the defin-
itions of AR9(M), ax anddx). Then we can prove that EGL: ho, h;) is independent
of the choice of a patih}y<<;; hence B@(L; ho, h;) is well-defined and called a
K-equivariant Bott—Chern fornof (L; hg, h;) associated tap (see [21] for more de-
tails). Moreover we put

BCY (L: ho, hy) := / BC% (L: ho, hy).
M

For a complex Lie subgrou@ (D K) of Aut(M), if L is G-equivariant andK com-
mutes with exgYg (t € R) for Y € g C Xy, then we have

BCY (L; ho, exptYgho)
t=0

dt
= / 2%e(C")g (O (ho) + L ™).
M
Moreover, we also have
@2) etz = [ L0 em + L4,

for Y, Z € g and a polynomial (or a power serieg)of one-variable. Here, for a func-
tion @ on a vector spac&, we put

O(ST):= % O(S+1tT), S Tew,

t=0

that is, @(S; -) € U* is the differentiation of® at S e U.
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3. Generalized Kahler-Ricci solitons

In this section, first of all, we shall explain the K-energysasated to Kéhler—
Ricci solitons according to Tian ([21]). Next, we shall giseme modified version of it.

Let (M, L) be ann-dimensional polarized manifold. We assume that a holofhiorp
vector field X € Xy on M generates the holomorph&t-action K (= S') c Aut(M))
on M. Furthermore, we assume thitis K-equivariant and put

MM, L)X :={w e M(M, L): w is K-invariant.

By the equation

ook
(3.1) K—y—npL+n+1e =) pnix+my¥,
k=0 m=0
we can determine constangp,xk € R (m=0,1,...,k; k=0, 1,...). For examples,

Poo=nN+1-nB, Por1=nBL+1-—n, p1=n-—npL.

Tian defined a functionat* on M(M, L)¥ by

ook
K
X (wo(p)) ==Y D PnkBCY(Ky' ® L™ detg(ho) - hf, detg(hy) - h")
k=0 m=0
1 V=1 eV=l2mei™
e[
0 M 27 n!
V-1 V-1
x {S(wo(wt)) —npL — ?ﬁgl('hl) 25— g s

- (a(gﬁ&“h‘)), a( e ))g} (%)

where {¢t}o<t<1 iS a path ofK-invariant real-valuedC*°-functions onM from ¢o = 0

to g1 = ¢, wo = vV—160(ho) and hy = e hy with wg = vV-10(h) € M(M, L)X
(0=t =1). Here by (, +)g, we denote the Hermitian metric of the holomorphic
vector bundleT1°M* of cotangent vectors of type (1, 0) dfl induced byg;, that is,
for wg € M(M, L) and g1, g2 € C*(M)c,

n

(01, 092)g = Z g

ij=1

7i 091 992
97 9z’
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The Euler-Lagrange equation fef* is

V=1 unm ,v-1 L.h
R — L‘x"—z—zn Og £

wherewy = +v—160(h) andh is K-invariant. If X = 0, thenE(XL'h) = 0 and hence a solu-
tion g for the Euler—Lagrange equation (3.2) is a constant scalaature Kéhler metric.
If M is a Fano manifold and. = K}, then we havefc . =1 and

e R NE=
ML X O £ <a fg, a( S )) =o.
9

(3.2)

T

Hence, by (1.1), the Euler—Lagrange equation (3.2) becomes

V=Lt
Dg(fg o X )
(3.3) _—
V=1 (kith V=1 gkh
+<8(fg—2—£X ),8 7,6)( =0,
g

TT

wherewy = +/—=1©@(h) and h is K-invariant. Therefore, by the maximum principle, a
solution for the equation (3.3) satisfies

V-1

-1
> £(XKM " = constant,
JT

fg—
wherewy = ~/—=1@(h). In this case, we have

' V=103 15K 1«
Ricy —wg = V=100 fg = — ga Ll _ L 5 £
T

V=1 V=1
= —7 dI(X)a)g = —7'.)(609 = LX/a)g,
where X' := —(+/—=1/27)X. Hence, ¢, X) is a Kahler—Ricci soliton and we can re-

gard r?,l as the K-energy ofNI; X') associated to Kahler—Ricci solitons. Therefore a
M

solution for the equation (3.2) could be regarded as a gkratian of a Kahler—Ricci
soliton to the case where the polarizatibnis general.
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For a complex Lie subgrou® (O K) of Aut(M), if L is G-equivariant andK
commutes with expYg (t € R) for Y € g C Xy, then we have

8| emriian

dtlt=0
/_ - (L.ho)
/ L gregegy iy &5
n!
«/_1 /_1
XS0 =npL = S~ 2 O £

V=1 owno V=1 (L) wo \"
_<3( 2r £x ),8 21 Ex (E) ’
Jo

for Y € g C Xu. Hence,

rLn

/ A= (Lh)eb L

T ) = _

V-1 V-1
x A8y —npL - L~ 25— 0g £

_ (a»(Eﬁ(L,h)) 3<£1£<L,h>)) (ﬂ)
27 X ) 2r X . 27 )’
(Y € g C Xu) is an obstruction to the existence of solutions for the &qoa(3.2),
wherewg = V—=16(h), X € g and we do not have to assume thétgenerates a holo-
morphic St-action onM. If M is a Fano manifold, therK,,! is Aut(M)-equivariant
and Tlfh,dl can be defined oXy. Moreover, we have

(Kt

1y e(V=1/2m)Ly

/ \/_E(K

n!

v =1 -
X Dg ( fg - ?E(XKMI‘h))

= = "
+ {0 fg— Sk ), o Lok 2
9 2g X 2r X 2r
9
(Kyit.ho)

_/ vl VL (th) elvV=1/2m)Ly wg\"
T Iu 2n S 27 n! 2 )’



506 Y. NAKAGAWA

for Y € Xw, wherewy = v=160(h). ThereforeTX L coincides with the obstruction to
the existence of Kahler—Ricci solitons mtroduced by Tiad Zhu ([22], [23] and [24]).

By the way, whenM is a Fano manifold]. = K,\‘,|k (k=2,3,...) andg a solution
for the equation (3.2), however, unle¥s = 0, (1/k)g does not give a Kahler—Ricci
soliton in general. Because of this fact, we shall modiff a little. Instead of (3.1),
by the equation

ook
(3.4) X=BLy + B =D > dnk(X + myX
k=0 m=0
we define constantqu eR(m=0,1,...,k; k=0,1, 2,...). Moreover we define
a functionalzl on M(M, L)X by
ook .
~ C —
T (wo(@)) ==Y Y qmiBCR(Ky' ® L™ detg(ho) - h', detg(hy) - h]")
k=0 m=0
¢— eV=1/20L5™
dt
/(; M 27T n!

V=1 V=1
% {s(wo(wt)) —npL— L — ,c(L o) —2- =04 LM

(T o
Gt

where {¢;}o<t<1 IS @ path ofK-invariant real-valuedC*°-functions onM from ¢o = 0
10 g1 = ¢, wo = ~—1O(ho) andh, = e ¥y with wg = v—16(h;) € M(M, L)K (0=
t = 1). Note that ifM is a Fano manifold and. = K, then we haveifé,1 = rlf,l.
M M
The Euler-Lagrange equation féf is
V- ﬁ(L n_,v-1
271

Sy—nBL— AL — Og L5

(e (Fa) -o

wherewy = +/—10(h) andh is K-invariant. If X = 0, then a solutiorg for the Euler—
Lagrange equation (3.5) is also a constant scalar curvatahder metric.
If M is a Fano manifold anl = K, (k =1,2,...), then we havqemk =1/k and

1v-1 V=1 . V=1 «:
P g £ (a fo) a( ﬂ(XKMk,m)) = 0.
g

(3.5)

K 21 2w 2w
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Hence the Euler—Lagrange equation (3.5) also becomes thatieq (3.3) and
((1/k)g, X") is a Kahler—Ricci soliton, where&X” = —k(~/—1/27)X. Moreover, we
can prove thawg € M(M, L)X is a critical point ofz% if and only if wxg = kwyg €
MM, LKK is that of f(le/k)x for generalL. Therefore a solution for the equation
(3.5) could also be regarded as a generalization of a KaRlect soliton to the case
where the polarizatiorL is general.

For a complex Lie subgrou of Aut(M), if L is G-equivariant, then

THY) =

_1£(L h) eV L/2ns”
/M 27 Y n!

V=1 wn ,v-1 Lh
_ _ N _2¥ T (L,h)
X {Sg npL — AL o Ly o g £x

- (a(gc&*"), a( gc&*" ))g} (;”—;)

(Y € g C Xw) is an obstruction to the existence of solutions for the &qoa(3.5),
wherewg = +/=10(h), X € g and we do not have to assume théatgenerates a holo-
morphic St-action onM.

WhenL is G-equivariant for a complex Lie subgroup of Aut(M), we shall study
TX and T¥. In this case, by the identities (2.2), (3.1) and (3.4), weeha

ook
Kk
TI_X(Y) = Z Z pm,kc(}il’;‘l@,_m()(; Y)
k=0 m=0

ook

=3 Pri(@ e (Kt ® L™)(X: )

k=0 m=0
oo k
= (wf ( D3PS (Kl + mcf(L»k))(x; Y)
k=0 m=0
= (@C((C(Kyh) — c$(L) — nBL +n + 1)eTh))(X: Y)
= (@ (T (Kyh) — cf(L) — npL + n+ 1) el (L))(X: Y),

ook

~ k
TEY) = D2 ) ks X Y)

k=0 m=0
= (@ (e (Ky") — et (L) + Au) ehB(L)(X: ),
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for Y € g € Xy, where clf(L) is the G-equivariant Chern character far. Moreover,
if X =0, then we obtain

1
2n!

TX(Y)Ix=0 = TE(Y)Ixz0 = —5— F(Y),

for Y egC Xy.

REMARK 3.6. By a direct calculation without using the identitiesl{3and (3.4),
we can also show the formulae stated above:

TX(Y) = (@S (Kyh) — ¢ (L) — nBL + n+ 1) e (L))(X: Y),
TX(Y) = (@SS (Kyh) — BLeS (L) + B) che (L)X Y),
for Y e g C Xum.

In particular, if M is a Fano manifold, then we have the following:

Theorem 3.7. Let M be a Fano manifoldn this case K;! is Aut(M)-equivariant
in this case T}? , and 'f’K{l can be defined o&y. Then we have
M M

(Kt

-1 —1 am | EVTYROET T Mg \"
- [ {1y L) S o)

2 n! 21
= (@2 (ch®(KyM(X: Y),

for Y € Xu, wherewy = +/—10(h). Furthermore we also have
.
. J=1 V1 - (V=1/27)L%M n
TR () = / Ny fg o o) S (“e
Ku M 27 2n n! 2n
1 _
= (@GN V),

forY € Xy and k=1, 2,..., wherewy = ~—10(h).

For a generalG-equivariant polarizatiorl., where G is a complex Lie subgroup
of Aut(M), we define functions/. and 7. on g = Lie(G) C Xy by

T o= @ 2((cf(Ky') — cf (L) —npL + n + 1) ctf(L)),
Ti = @ 2((cP(Ky) — BLef (L) + Bu) ch®(L)).

Then T,_>< and Tf_‘ are the differentiations off and 7, at X € g, respectively. There-
fore we have the following:
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Theorem 3.8. If X € g is not a critical point of 7{ (resp.7.), then the equation
(3.2) (resp.(3.5)) does not admit any solutions. Heiey fixing the holomorphic vector
field X, we consider the equation®.2) and (3.5) as those for the Kéhler metric g.

REMARK 3.9. When M is a Fano manifold and. = Ky !, Tian and Zhu
proved that

7T(ﬁ1 = 7~—KM1 = wE(ChG(K&l))

is a proper convex function offle® and hence admits a unique critical point a¥g®
([24, Lemma 2.2]). Here the Chevalley decomposition allassto write the identity
component AU(M) of Aut(M) as a semidirect product

Aut(M) = H x Uy,

where Uy, is the unipotent radical of ABM) and H a reductive algebraic subgroup
of Aut°(M), and 3€r,\‘,|*d (C Xw) is the Lie algebra ofH (see for instance [9]).

Now, in view of the equation (3.5), we can introduce the notaf a generalized
Kéahler—Ricci soliton as follows:

DEFINITION 3.10. LetM be a compact connecteddimensional complex mani-
fold, which may not be projective. If a Kahler metrig on M and a holomorphic
vector field X € Xy on M satisfy the following equality:

VA, /T

S —NnB— ,3 9><— o Og 0

(5 -

for somefy € C®(M)c satisfying +/—136x = —i(X)wq, Where

_ 2n(e(M) U [wg]"M)([(M])
[wg]"([M])

€ R,

then we call §, X), or simply g, a generalized Kéahler—Ricci solitoon M.

4. An example

In this section, we shall give a non-trivial example of a gatieed Kéhler—Ricci
soliton, which is a generalization of an Einstein—Ké&hlertnoeconstructed by Koiso
and Sakane ([15]).
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ExamMPLE 4.1. Let p: E — N be a holomorphic line bundle over a compact
connected rf — 1)-dimensionalcomplex manifoldN, h an Hermitian metric ofE and
s: E® — (0, +00) the corresponding norm functions, whe® := E \ (0-section). We
assume the following:

() There exists a compactificatidé, such thaté\E is disjoint union of two complex
submanifolds ofE;

(i) s extends to a continuous functian E — [0, +00].

Let S be a vector field orE®, which generates the standag#-action onE°, and put
H := —JS where J is the standard complex structure &°. For a monotone in-
creasing diffeomorphisnt : (0, +00) — (0, R), we putt := t os: E — [0, R]. For a
one-parameter familyg}icg Of Riemannian metrics oN, we consider the following
Riemannian metric

(4.2) g:= p'g + dt? + (dto J)?

on E%. We putu(t) := /g(H, H) andb := (1/2) fOR u(x) dx, and define a function
U: [0, R] — [=h, b] by

U(w):=—-b+ /w u(x) dx.
0

Then, g is a Kahler metric orE® if and only if go is a K&hler metric onlN and g =
0o — U(t)B, whereB is a 2-tensor associated to the curvature formhofurthermore,
we assume the following:

(iii) The eigenvalues oB and Rig, with respect togp are constant.

Under these assumptions, we put

p(U(1) := u(t)> = g(H, H),

Q(U(t)) := det(@ 'ar) = det( —U(t)gy"B),
G(U(t)) := trg (Ricg,),

A(U) := QU)G(V).

Then, in view of [12, Lemma 3.1], the scalar curvaturegofs given by

_AV) L oy

Since—U is a Hamiltonian function of the holomorphic vector fieRH+ +—1H with
respect towg, i.e., —3U =i(S+ v—1H)wg, we putM := E and —(vV—=1/27)0x :=
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oaU + ap, wherea; and o, are real constants. Then we have

\/:1 _ o ’
Ton Og0x = E(Q@ ),

((Z0) o 50)) -
9

Hence, the equation (3.5) becomes the ordinary differeatjaation

AU) 1 , m
QU) ~ —2Q(U)(Q(p) U)-m+ F(OllU + a2)
LM Qe U) - EeU) =0

Qu) T 2P T

where we putm := ng. Therefore, we have

eptlU U nx B
pU) = Q(U){/_b ¥ (x)e (U — x) dx + CLU +cz},

whereC; and C, are constants and we put
2m
¥(U) :=24(U) —2mQU) + FQ(U)(OQU + ).

In view of [12, Theorem 5], this defines a Kahler metric bh= E if and only if the
following two conditions hold:

(@) ¢ >0 on (b, b), p(£b) = 0 andg extends smoothly ovetb;

(b) ¢'(=b) =2 and¢’(b) = —2.

The conditionsp(—b) = 0 and¢’(—b) = 2 imply C, = 0 andC; = 2e*** Q(—b). More-
over, by the conditionp(b) = 0, we have

oy — (/M08 — bmap + (m/mborscy — &1 + Mg — (M/Marsdl + 206 Qb))
01 — bgp ,

where, fori =0,1,j =0, 1, 2, we put

b b
Ji ::/ X' A(x)e™ > dx, q; ::/ x] Q(x)e™ X dx.
- —b

b

The positivity and extendability op can be proved similarly to the case of [12, Sec-
tion 6], since

d2
du?
= 2e~Y Q(U)(G(U) +

(QU)p(U)e™)

2 2
T}“lu 4 ez Zm).
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The condition¢’(b) = —2 becomes
m m o —ba
(4.3) 80— mMep + ey + 2o + e”1Q(—b) + e *21Q(b) = 0.

Finally, by this equation, we want to determine the constantHowever, in a general
situation, we have not been able to settle this problem yencHforth, we consider a
special setting, that is, we pi = PX(C), E = Op1cy(K), M = E = P(Op(c)(K) @
Opic)), wg = aw, v—160(h) = ke and Rig, = kw, wherek € Z, a is a positive
constant satisfying + kb > 0, h an Hermitian metric ofE and w the Fubini—Study
form on PY(C) such that §] = 27cy(Opycy(1)). In this case, each Kahler class dh
is represented by a Kahler form of a Kahler metric of the forsnira (4.2) (cf. [12,
Section 4]) and we have

K
a—kuU’

k
QU)=1-_U, GU)=
Then a simple calculation shows that

lim (the left hand side of (4.3% Foc.

o1—>+o00

Therefore, we can conclude that the equation (4.3) has di@oliHence, for an arbi-
trary Kahler class, we have a generalized Kahler—Riccit@olion M = E =
P(Op1cy(K) & Opy(c)).

REMARK 4.4. The Kahler metric of the type in Example 4.1 was oridinaked
by Koiso and Sakane in [15] to construct examples of non-tlgemeous Einstein—Kéahler
metrics. For Kahler—Ricci solitons, Koiso constructedrepées of this type in [14]. (In
[14], Koiso called Kéahler—Ricci solitons as quasi-Einstenetrics.) Moreover, Hwang
([12]) and Guan ([10]) constructed examples of this type datremal Kahler metrics
and generalized quasi-Einstein metrics (see [10] for tHimitien of a generalized quasi-
Einstein metric), respectively.
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