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Abstract

Motivated by the study of ribbon knots we explore symmetricons, a beautiful
construction introduced by Kinoshita and Terasaka in 1¥%#. symmetric diagrams
D we develop a two-variable refinemeWp (s, t) of the Jones polynomial that is
invariant under symmetric Reidemeister moves. Here the var@abless andt are
associated to the two types of crossings, respectively onoffinthe symmetry axis.
From sample calculations we deduce that a ribbon knot cae assentially distinct
symmetric union presentations even if the partial knotstheesame.

If D is a symmetric union diagram representing a ribbon Kdothen the poly-
nomial Wp (s, t) nicely reflects the geometric properties I6f In particular it eluci-
dates the connection between the Jones polynomiaks afnd its partial knotK..:
we obtainWp (t, t) = Vi (t) and Wp(—1,t) = Vi _(t)- Vk, (t), which has the form of
a symmetric productf (t) - f(t~1) reminiscent of the Alexander polynomial of rib-
bon knots.

1. Introduction and outline of results

A knot diagramD is said to be asymmetric unionf it is obtained from a con-
nected sum of a knoK, and its mirror imageK_ by inserting an arbitrary number
of crossings on the symmetry axis. Fig. 1 displays two examplith K. = 5,. (We
shall give detailed definitions in 82.) Reversing this camgion, the knotsK. can be
recovered by cutting along the axis; they are calledgh#ial knotsof D.

The two outer diagrams of Fig. 1 both represent the knef Which means that
they are equivalent via the usual Reidemeister moves, sef€ig28]. Are they equiva-
lent through symmetric diagrams? In the sequel we cons&rueto-variable refinement
Wp (s, t) of the Jones polynomial, tailor-made for symmetric unidgagdamsD and in-
variant under symmetric Reidemeister moves. This allowsoushow that there cannot
exist any symmetric transformation between the above diagy in other words, every
transformation must break the symmetry in some intermeditdges.

1.1. Motivation and background. Symmetric unions were introduced by
Kinoshita and Terasaka [8] in 1957. Apart from their strikinesthetic appeal, they
appear naturally in the study of ribbon knots, initiated tz¢ same time by Fox and
Milnor [4, 3, 5]. While ribbon and slice knots have received aimwattention over the

2000 Mathematics Subject Classification. 57M25, 57M27.



334 M. BSERMANN AND C. LAMM

- [

Fig. 1. Two symmetric union presentations of the ribbon knot
9,7 (left and right) obtained from the connected sum of the par-
tial knots K1 = 5, (middle) by inserting crossings on the sym-

metry axis.

KRN
=

last 50 years [12], the literature on symmetric unions resiacarce. We believe,
however, that the subject is worthwhile in its own right, aaldo leads to produc-
tive questions about ribbon knots.

It is an old wisdom thatalgebraically, a ribbon knotK resembles a connected
sum K g K_ of some knotK . with its mirror imageK_. This is geometricallymod-
elled by symmetric unions: it is easy to see that every symaeenion represents a
ribbon knot (82.2). The converse question is still open; s@ffirmative partial answers
are known [2]. For example, all ribbon knots up to 10 crossiagd all two-bridge rib-
bon knots can be represented as symmetric unions.

Besides the problem ofxistenceit is natural to consider the question ohique-
nessof symmetric union representations. Motivated by the tastabi@ilating symmetric
union diagrams for ribbon knots, we were led to ask when twadhaliagrams should
be regarded as equivalent. A suitable notion of symmetricldteeister moves has
been developed in [2, 82]. Empirical evidence suggestet ribbon knots can have
essentially distinct symmetric union representationgnel the partial knotsK_. are
the same. With the tools developed in the present article ave solve this problem
in the affirmative for the knot § as in Fig. 1, and indeed for an infinite family of
two-bridge ribbon knots (86.4).

1.2. A refined Kauffman bracket. As our main tool we develop a two-variable
refinement of the Jones polynomial that nicely reflects thmvgaric properties of sym-
metric unions. Since skein relations are local and do nqie&sglobal symmetry con-
ditions, we are led to consider arbitrary diagrams for thiéofang construction.

DEFINITION 1.1 (refined bracket polynomial). Consider the pl&fewith verti-
cal axis{0} xR and letZ be the set of planar link diagrams that are transverse to the
axis. The Kauffman bracket [7] can be refined to a two-vadabVariant? — Z(A, B),
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D — (D), according to the following skein relations:
e For every crossing off the axis we have the usual skein cglati

) (X) = AT+ A ()

e For every crossing on the axis we have an independent skkitiore

(X) =B (X)+ 87D,
(X) =B+ BH().

e If Cis a collection ofn circles (i.e., a diagram without any crossings) havimg 2
intersections with the axis, then we have the following leirevaluation formula:

(B)

B2+ B2\™*
AZ + A—Z)
— (_AZ _ A72)n7m(_ BZ _ sz)mfl.

C) = (A2 — A1
o (€)= (-A A)(

REMARK 1.2. While the skein relations (A) and (B) are a natural angie cir-
cle evaluation formula (C) could seem somewhat arbitrarg dNould thus point out
that, if we want to achieve invariance, then (A) and (B) im@y) up to a constant
factor. We choose our normalization such that the unkpotwheren = m = 1) is
mapped to(®) = 1.

There is a natural family of Reidemeister moves respectiegaixis, as recalled in
82.3. The crucial observation is that the refined brackehdeed invariant:

Lemma 1.3 (regular invariance). The two-variable bracke{D) € Z(A, B) is in-
variant under regular Reidemeister moves respecting ths. aRl-moves off the axis
contribute a factor—A*3, whereas $-moves on the axis contribute a facteB*3.

REMARK 1.4. Of course, in every construction of link invariants aen artifi-
cially introduce new variables. Usually the invariance emé&eidemeister moves en-
forces certain relations and eliminates superfluous vi@sabt is thus quite remarkable
that the variablesA and B remain free, and moreover, carry geometric information as
we shall see.

1.3. A refined Jones polynomial. In order to obtain full invariance we normal-
ize the two-variable bracket polynomiéD) with respect to the writhe. To this end we
consider the se% of oriented diagrams and define tihewrithe «(D) and theB-writhe
B(D) to be the sum of crossing signs off and on the axis, respgygtivihis ensures
full invariance:
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Theorem 1.5 (refined Jones polynomial).The map W Z — Z(A, B) defined by
W(D) := (D) - (-A7)®) - (-B=3)"®)
is invariant under all Reidemeister moves respecting this @isplayed in§2.3)

NOTATION. We shall adopt the common notatiok’ = t~%2 and B? = s /2,
Instead ofW(D) we also writeWp or Wp(s, t) if we wish to emphasize or specialize
the variables.

The following properties generalize those of the Jones rwtyial:

Proposition 1.6. The invariant W & — Z(sY2, t¥?) enjoys the following
properties
(1) Wp is insensitive to reversing the orientation of all compaseof D.
(2) Wp is invariant under mutationflypes and rotation about the axis.
(3) If D gD’ is a connected sum along the gxiken Wh.p = Wp - Wp.
(4) If D* is the mirror image of Dthen Wh:(s, t) = Wp(s™?, t71).
(5) If D is a symmetric diagramthen Ws(s, t) is symmetric in te t=21.
(6) If D is a symmetric union link diagrapmthen W, is insensitive to reversing the
orientation of any of the components of D.

1.4. Symmetric unions. In the special case of symmetric union diagrams, the
practical calculation ofW-polynomials is most easily carried out via the following
algorithm:

Proposition 1.7 (recursive calculation via skein relations)Consider a symmetric
union diagram D with n components. If D has no crossings onattie then

Sl/z_l_s—l/z n-1
1) Wo(s, t) = (m) VL(),

where V(1) is the Jones-polynomial of the link L represented by D.
If D has crossings on the axithen we can apply the following recursion formulae

) W(X) = =s"2W(K) —sHW () (),
(3) W(X) = =s2 W) = s W)

These rules allow for a recursive calculation \Wi{D) for every symmetric union
D. Notice thatW(D) is independent of orientations according to Propositic (8).

We emphasize thatV(D) of an arbitrary diagranD will in generalnot be a poly-
nomial: by constructionV(D) e Z(s¥?, t¥/?) is usually a fraction and cannot be ex-
pected to lie in the subring[s*/2,t*%/2]. This miracle happens, however, for symmetric
union diagrams:
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Proposition 1.8 (integrality). If D is a symmetric union knot diagranthen W5
is a Laurent polynomial in s and t. More generaliiy D is a symmetric union diagram
with n componentsthen W, € Z[s*?, t*1] - (s¥/? + s7/2)n 1,

REMARK 1.9. The integrality ofWp is a truly remarkable property of symmetric
unions. The fact that the denominator disappears for synunehions was rather un-
expected, and sparked off an independent investigationsa/hesults are presented in
[1]. The integrality of Wp(s, t) now follows from a more general integrality theorem
[1, Theorem 1], which is interesting in its own right: for eyen-component ribbon
link the Jones polynomiaV (L) is divisible by the Jones polynomial (O") of the
trivial link.

The following special values ih correspond to those of the Jones polynomial:

Proposition 1.10 (special values irt). If D is a symmetric union link diagram
with n componentsthen Wa(s, £) = (—s/2 — s~ Y/2)"1 for each& e {1, i, e*27/3},
and (0Wp/dt)(s, 1) = 0. In other words Wp — (—s¥/? — s7¥/2)"-1 is divisible by
(t — 12(t% + 1)t + t + 1).

The following special values is nicely reflect the symmetry:

Proposition 1.11 (special values irs). Suppose that a knot K can be represented
by a symmetric union diagram D with partial knots,.K Then the following proper-
ties hold
(1) Mapping st yields Wh(t, t) = Vi (t), the Jones polynomial of K.

(2) Mapping s— —1 yields a symmetric product y{—1, t) = Vi_(t) - Vi, (1).
In particular, both specialization together imply

Wo(~1, —1) = det(K) = det(K_) - det(.,).

REMARK 1.12. Finding a symmetric union representatibnfor a ribbon knot
K introduces precious extra structure that can be used toeréfie Jones polynomial
Vi (t) to a two-variable polynomialWWp(s,t). In this sense we can interpréip(s,t) as
a “lifting” of Vk(t) to this richer structure. The specializatisn— t forgets the extra
information and projects back to the initial Jones polyrami

The product formulaWp(—1,t) = Vk_(t) - Vk, (t) is particularly intriguing. Recall
that for every ribbon (or slice) knoK, the Alexander—Conway polynomial is a sym-
metric productAg (t) = f(t)- f(t™) for some polynomialf € Z[t*!]. The preced-
ing theorem says that such a symmetric product also appeathd Jones polynomial
Vk (1), albeit indirectly via the lifted two-variable polynonhi&Vp(s, t).
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REMARK 1.13. We use the letteWW as a typographical reminder of the sym-
metry that we wish to capturéd is the symmetric union of two letterg, just as the
W-polynomial is the combination of tw&-polynomials. (This analogy is even more
complete in French, wher¢ is pronounced “vé”, whiléVN is pronounced “double vé”)

1.5. Applications and examples. In [2] we motivated the question whether the
two symmetric unions of Fig. 1 could be symmetrically eqgléwd (In fact, 97 is
the first example in an infinite family of two-bridge ribbon dis, see 86.4.) Having
the W-polynomial at hand, we can now answer this question in throate:

ExAMPLE 1.14. The symmetric union diagranis (left) and D’ (right) of Fig. 1
both represent the knot® The partial knot isK. = 5, in both cases, so this is no ob-
struction to symmetric equivalence (see 8§2.5). Calcutatictheir W-polynomials yields:

Wp(s, t) =1+s-gu(t) — s?- f(t),
Wp(s,t)=1— qu(t)+s*-f(t),

with

) =t =3t 4613 —9t72 + 127 — 124+ 11t — 9t + 6t3 — 3t* 415,
f)=t*—2t 3+ 324t +4—4t +3t2—2t° + t%.

This proves thatD and D’ are not equivalent by symmetric Reidemeister moves.
As an illustration, for both diagrams the specializatiens —1 ands =t yield

WLt =t —t2+ 28 —t* 42—ttt =t 2+ 23—t 4 t75 —t79),
W(t, t) =t -3t 452 -7t 4+ 9 -8t + 7t2 —5t3 + 3t* — 5.

Notice thatW(s,t) captures the symmetry, which is lost when we pass to thesJone
polynomial V (t) = W(t, t). The latter does not seem to feature any special properties

REMARK 1.15. Symmetric Reidemeister moves do not change the rilguwn
face, see Remark 2.11 below. Possibly the more profoundrdiite between the two
symmetric union presentatiori3 and D’ of the knot 3 is that they define essentially
distinct ribbon surface$ and S bounding the same knot,® To study this problem
we would like to concoct an invariar®+— Ws(s, t) of (not necessarily symmetric) rib-
bon surfacesS ¢ R3. Ideally this would generalize ouw-polynomial Wp(s, t) and
likewise specialize to the Jones polynomMi (t). In any case Fig. 1 will provide a
good test case to illustrate the strength of this extendearient yet to be constructed.
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1.6. Open questions. Our construction works fine for symmetric unions, and
we are convinced that this case is sufficiently important teriminvestigation. Ulti-
mately, however, we are interested in ribbon knots. Two iptespaths are imaginable:

QUESTION 1.16. Can every ribbon knot be presented as a symmetric ®nion
Although this would be a very attractive presentation, #rae rather unlikely.
QUESTION 1.17. Isthere a natural extension of Wepolynomial to ribbon knots?

This seems more plausible, but again such a constructioarifdm obvious.
The right setting to formulate these questions is the fdhgwinstance of “knots
with extra structure”, where the vertical arrows are theiobs forgetful maps:

symmetri ribbon knots-+ slice knots+
unions specific ribbon specific slice

ribbon knots {ribbon knoty ——— {slice knots.

. | |
{symmetnza ? N

Some natural questions are then: Which ribbon knots are sgrimable? Which
ribbons can be presented as symmetric unions? Under whiutiitmms is such a pres-
entation unique? (The analogous questions for the passage dlice to ribbon have
already attracted much attention over the last 50 years.)

QUESTION 1.18. Can we construct an analogue of iWepolynomial for ribbon
knots with a specified ribbon? Does it extend thepolynomial of symmetric unions,
or do we have to pass to a suitable quotient?

QUESTION 1.19. Can one obtain in this way an obstruction for a knot taibe
bon? Or an obstruction to being a symmetric union? (AlthothghW-polynomial cap-
tures the symmetry condition, it does not yet seem to prosigtth an obstruction.)

QUESTION 1.20. Are there similarly refined versions of tHemflyptand Kauffman
polynomials? Do we obtain equally nice properties?

1.7. How this article is organized. The article follows the program laid out in
the introduction. Section 2 expounds the necessary facist aymmetric diagrams (82.1)
and in particular symmetric unions (82.2). We then recathsetric Reidemeister moves
(82.3) and sketch a symmetric Reidemeister theorem (8ZH3.is completed by a brief
discussion of partial knots (§82.5) and Reidemeister mogspeacting the axis (§2.6).
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Section 3 is devoted to the construction of the two-varidiviecket (83.1) and its
normalized version, th&/-polynomial (83.2). In Section 4 we establish some general
properties analogous to those of the Jones polynomial.id®ebtfocuses on properties
that are specific for symmetric union diagrams (85.2), intipalar integrality (85.1)
and special values ih ands (85.3—85.4).

Section 6 discusses examples and applications: we comfidiecd symmetric union
diagrams and theW-polynomials for all ribbon knots up to 10 crossings (§6.3) atudy
two infinite families of symmetric union diagrams of two-digie ribbon knots (86.4).

2. Symmetric diagrams and symmetric equivalence

In this section we discuss symmetric diagrams and symmRg&idemeister moves.
Since we will use them in the next section to define our twoatde refinement of the
Jones polynomial, we wish to prepare the stage in sufficietdild It will turn out that
our construction of theNV-polynomial applies not only to symmetric unions but more
generally to diagrams that are transverse to some fixed bxifct, the skein relations
that we employ will destroy the symmetry and thus make thisegaization necessary.

2.1. Symmetric diagrams. We consider the planR? with the reflectiono: R? —
R? defined by X, y) — (=X, y). The mapp reverses the orientation @2 and its fixed-
point set is the vertical axif0} x R.

DEFINITION 2.1. A link diagramD c R? is symmetricif it satisfies p(D) = D
except for crossings on the axis, which are necessarilyrsede By convention we con-
sider two diagram® and D’ as identical if they differ only by an orientation preserv-
ing diffeomorphismh: R2 = R? respecting the symmetry, in the sense thgd) = D’
with hop = poh.

REMARK 2.2. Each componer@ of a symmetric diagram is of one of three types:
(&) The reflectiono mapsC to itself reversing the orientation, as in Fig. 2 (a).
(b) The reflectiono mapsC to itself preserving the orientation, as in Fig. 2 (b).
(c) The reflectionp mapsC to another component(C) # C, as in Fig. 2 (c).

Each componen€C can traverse the axis in an arbitrary number of crossings. In
cases (a) and (b) these are pure crossings where the compgrensses itself, while
in case (c) they are mixed crossings between the compdertd its symmetric part-
ner p(C).

Moreover, the componer@ can traverse the axis without crossing any other strand,;
assuming smoothness this is necessarily a perpendicalaarsal. In case (a) there are
precisely two traversals of this kind, while in cases (b) &)dthere are none.

2.2. Symmetric unions. In view of the preceding discussion of symmetric dia-
grams, we single out the case of interest to us here:
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(a) The knot 6;. (b) The trefoil knot. (c) The Hopf link.

Fig. 2. Three types of symmetric diagrams.

/ e
N\ <

(a) Local model of a ribbon singularity. (b) The knot 8,9 bounding a disk with
two ribbon singularities (dotted lines).

Fig. 3. An immersed disk with ribbon singularities.

DEFINITION 2.3. We say that a link diagrand is a symmetric unionif it is
symmetric,p(D) = D, and each component is of type (a). This means that each com-
ponent perpendicularly traverses the axis in exactly twimtpathat are not crossings,
and upon reflection it is mapped to itself reversing the daton.

While symmetric diagrams in general are already intergstsymmetric unions
feature even more remarkable properties. Most notably theyibabon links:

DEFINITION 2.4. LetXZ be a compact surface, not necessarily connected nor ori-
entable. Aribbon surfaceis a smooth immersiorf : © 9> R® whose only singularities
are ribbon singularities according to the local model shawifrig. 3 (a): the surface
intersects itself in an intervah, whose preimagef ~*(A) consists of one interval in
the interior of ¥ and a second, properly embedded interval, running from deyn
to boundary.

DEFINITION 2.5. A link L ¢ R3 is said to be aibbon link if it bounds a ribbon
surface consisting of disks. (Fig. 3 (b) shows an example.)

Proposition 2.6. Every symmetric union diagram D represents a ribbon link.
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Proof. The essential idea can be seen in Fig. 3 (b); the fallpvproof simply
formalizes this construction. We equip the diBK = {z € R? | |z < 1} with the
induced action of the reflectiop: (X, y) — (=X, y), and extend this action t& =
{1,...,n} xD2. The symmetric diagran® can be parametrized by an equivariant plane
curveg: 3¥ — R?, satisfyinggop = pog. We realize the associated link by a suitable
lifting §: 9% — RS that projects tag = pog via p: R® — R?, (X,y,2) — (X,y). We de-
note by 5: R® — RS2 the reflectiong: (X, Y, 2) — (=X, Y,z). We can achievgjop = 5o
except in an arbitrarily small neighbourhood of the refactplane{0} x R? to allow
for twists. The mapj can be extended to a majp = — R by connecting symmetric
points by a straight line:

fF(A-1)-s+t-p(s) = (1-1)-9(s) +t-G(o(s))

for eachs € 9% andt € [0, 1]. If we choose the liftingd of g generically, thenf will
be the desired ribbon immersion. O

An analogous construction can be carried out for an arlgitssmmetric diagram:

Proposition 2.7. Every symmetric diagram D represents a link L together with
a ribbon surface f © 9> R3 of the following type
(@) Each component of typ@) bounds an immersed disk.
(b) Each component of typg) bounds an immersed Mobius band.
(c) Each pair of components of tyge) bounds an immersed annulus.

Let us add a remark that will be useful in 85.1. Each disk dbuates an Euler
characteristic 1 whereas annuli and Mébius bands contribut&Ve conclude that
bounds a ribbon surface of Euler characterigti&) = n, wheren is the number of
components of type (a). Moreover, sinEeis symmetric, it perpendicularly traverses
the axis precisely 2 times, twice for each component of type (a).

2.3. Symmetric Reidemeister moves. Symmetric diagrams naturally lead to the
following notion of symmetric Reidemeister moves:

DEFINITION 2.8. We consider a knot or link diagram that is symmetric with
spect to the reflectiop along the axis{0} x R.

A symmetric Reidemeister move off the agisn ordinary Reidemeister move as
depicted in Fig. 4 carried out simultaneously with its mirsgmmetric counterpart.

A symmetric Reidemeister move on the asiseither an ordinary Reidemeister
move (S1-S3) or a generalized Reidemeister move:(82 S4) as depicted in Fig. 5.

Subsuming both cases,sgmmetric Reidemeister moigone of the previous two
types, either on or off the axis.
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Qi T (R

Fig. 4. The classical Reidemeister moves (off the axis).

Fig. 5. Symmetric Reidemeister moves on the axis.

REMARK 2.9. We usually try to take advantage of symmetries in ordeetluce
the number of local moves. By convention the axis is not eeéeénwhich means that
we can turn all local pictures in Fig. 5 upside-down. This saddhe variant for each
S1-, S2-, and S4-move shown here; the four S3-moves are esahant under this
rotation. We can also reflect each local picture along the,awhich exchanges the
pairs Sk, S2+, S3at, S3ut. Finally, we can rotate about the axis, which exchanges
S30 and S3u. The S4-move, finally, comes in four variantsaioetl by changing the
over- and under-crossings on the axis.

REMARK 2.10. The S1 and S2v moves are special cases of a flype movg alon
the axis, as depicted in Fig. 6. The introduction of such #ypeovides a strict gener-
alization, because complex flypes along the axis can in génet be generated by the
above Reidemeister moves, as observed in Remark 2.16 bkligvarticular, a half-turn
of the entire diagram around the axis can be realized by flyjpetsnot by symmetric
Reidemeister moves.

REMARK 2.11. Symmetric Reidemeister moves as well as flypes preskevrib-
bon surface constructed in Proposition 2.7: every such neaxtends to an isotopy of
the surface, perhaps creating or deleting redundant rilsbayularities.
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M M LXK
R |~ A R |~ Q4
Y ! O 1
Y || Y ||

Fig. 6. A vertical flype along the axis.

2.4. A symmetric Reidemeister theorem. In this article we shall consider the
symmetric moves above akefiningsymmetric equivalence. Two natural questions are
in order. On the one hand one might wonder whether our listdcba shortened. This
is not the case, in particular the somewhat unexpected mgg2eésand S4 are neces-
sary in the sense that they cannot be generated by the othersni®, Theorem 2.3].

On the other hand one may ask whether our list is complete.rderato make
sense of this question and to derive a symmetric Reideméfsterem, we wish to set
up a correspondence between symmetric Reidemeister mdvegnonetric diagrams
and symmetric isotopy of symmetric links RS,

The naive formulation, however, will not work because drggs on the axis in-
hibit strict symmetry: links realizing symmetric union drams are mirror-symmetric
off the axis but rotationally symmetric close to the axis.

One way to circumvent this difficulty is to represent eachssiog on the axis by

a singularity ( together with a sign that specifies its resolutiok: N X resp. X
K. This reformulation ensures that the (singular) link isc#y mirror-symmetric. The
signs can be chosen arbitrarily and encode the symmetrctdafieer resolution.

More formally, a singular link is an immersiofi: {1,..., n} x S — R3 whose
only multiple points are non-degenerate double points. W&l ot distinguish be-
tween different parametrizations and thus identify the arsion f and its imageL.
We can then consider singular links c R? satisfying the following conditions:
Transversality L is transverse tE = {0} x R?, and each double point lies da.
Symmetry L is symmetric with respect to reflection alorigy
For such links we have the obvious notion of isotopy, thadismooth family Lt)ie[o0,1
such that each.; satisfies the above transversality and symmetry requiresnéhthe
singularities are equipped with signs, then these signsamged along the isotopy in
the obvious way.

Theorem 2.12. Consider two symmetric diagramso@nd D; and the associated
symmetrig(singular) links Lo and L;. If the links Ly and Ly are symmetrically isotopic
then the diagrams pand D, are symmetrically equivalent.

Sketch of proof. We can put the isotoplficpo,1) into generic position such that
for all but a finite number of parameters<Ot; < --- < tx < 1 the link L projects to
a symmetric diagram. In particular, the diagrams between duccessive parameteys
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andtj,, differ only by an isotopy of the plane and are essentially same. Moreover
we can arrange that at each exceptional parantetbe modification is of the simplest
possible type:
Events off the axis:
e The projection of a tangent line degenerates to a point: Riemo
e Two tangent lines coincide in projection: R2 move.
The projection produces a triple point: R3 move.
Events on the axis:
Two tangent lines coincide in projection: S2h move.
The tangent lines of a singular point become collinear ingution: S2= move.
A strand crosses a singular point: S3 move.
Two singular points cross: S4 move.
The details of this case distinction shall be omitted. O

REMARK 2.13. We emphasize that, in the above setting of symmetatojy,
moves of type S1 and S2v cannot occur. Such isotopies canaliegect only by tem-
porarily breaking the symmetry. Instead of further enlaggthe notion of isotopy in
order to allow for the creation and deletion of singulasti@ve simply introduce S1
and S2v as additional moves. We usually even allow the morergé flype moves
depicted in Fig. 6.

2.5. Partial knots. We are particularly interested isymmetric union knot dia-
grams where we require the symmetric union diagram to represdmioa K, that is, a
one-component link. As mentioned in the introduction, a syatric union diagram of
K looks like the connected sumd g K_ of a knotK . and its mirror imageK_, with
additional crossings inserted on the symmetry axis. Thieviahg construction makes
this observation precise:

DEFINITION 2.14. For every symmetric union knot diagrabh we can define
partial diagramsD_ and D, as follows: first, we resolve each crossing on the axis
by cutting it open according t¢< — > or >X — )i(. The result is a connected sum,
which can then be split by a final cOt/ — )(. We thus obtain two disjoint diagrams:
D_ in the halfspaceH_ = {(x, y) | X < 0}, and D, in the halfspaceH, = {(X, y) |
x > 0}. The knotsK_ and K, represented byp_ and D, respectively, are called the
partial knotsof D.

Proposition 2.15. For every union diagram D the partial knots_Kand K, are
invariant under symmetric Reidemeister moves.

Proof. This is easily seen by a straightforward case-bg-aasification. L]
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REMARK 2.16. Notice that the partial knots are in general not immtriunder
flypes along the axis, depicted in Fig. 6. Such moves can eh#rg partial knots from
KogL_andK, gLy toK_gL, andK, gL_.

REMARK 2.17. The above construction can be used to define the notigare
tial link for symmetric diagrams that have components of type (b) ahdafd at most
one component of type (a). If there are two or more componeitgpe (a), then there
does not seem to be a natural notion of partial knot or link p@&tial tangle can, how-
ever, be defined as above, up to a certain equivalence relatiuced by braiding the
ends; we will not make use of this generalization in the preseticle.)

2.6. Reidemeister moves respecting the axisAs an unintentional side-effect,
most of our arguments will work also faxsymmetricdiagrams. Our construction of
the bracket polynomial in 83 everquiresasymmetric diagrams in intermediate com-
putations, because the resolution of crossings breaksythenstry. Before stating the
construction and the invariance theorem for our brackeymmhial, we thus make the
underlying diagrams and their Reidemeister moves explicit

As before we equip the planR? with the axis{0} x R, but unlike the symmet-
ric case, the reflectiop will play no role here. We consider link diagrams that are
transverse to the axis, that is, wherever a strand intergket axis it does so transver-
sally. For such a diagram we can then distinguish crossamgthe axis and crossings
off the axis.

DEFINITION 2.18. We denote by the set of planar link diagrams that are trans-
verse to the axig0} xR, but not necessarily symmetric. We do not distinguish betwe
diagrams that differ by an orientation-preserving diffesphismh: R2 = R2 fixing the
axis setwise. AReidemeister move respecting the agis® move of the following type:

e A Reidemeister move (R1, R2, R3) off the axis as depicted q i
e A Reidemeister move (S1, S2, S3, S4) on the axis, as depint&dgi 5.

The advantage of this formulation is that it applies to adgiams, symmetric or
not. For symmetric diagrams, both notions of equivalendaaide:

Proposition 2.19. Two symmetric diagrams are equivalent under symmetric
Reidemeister moves if and only if they are equivalent undgdedreister moves re-
specting the axis.

Proof.
R-moves.
“«<" Suppose that we can transform a symmetric diagfaninto another sym-
metric diagramD’ by a sequence of R-moves and S-moves. Since R-moves may-be car

ried out asymmetrically, the symmetry of intermediate daags is lost. Nevertheless, the

=" Each symmetric R-move is the composition of two asymmetric
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isotopy types of the tangles left and right of the axis remmairtually mirror-symmetric,

since S-moves preserve this symmetry. We can thus forgegittem R-moves on the
left-hand side of the axis, say. Each time we carry out an Reran the right-hand

side, we simultaneously perform its mirror image on the-tefihd side. This defines a
symmetric equivalence frord to D'. O

REMARK 2.20. As before we can define the partial diagrabhs and D, of a
diagram D, provided thatD perpendicularly traverses the axis in either two points or
no points at all. The partial linkk _~ and L are invariant under Reidemeister moves
respecting the axis.

3. Constructing the two-variable W-polynomial

3.1. Constructing the two-variable bracket polynomial. We consider the set
2 of unoriented planar link diagrams that are transverse ¢oatkis {0} x R but not
necessarily symmetric. We can then define the bra¢két 2 — Z(A, B) as in Def-
inition 1.1.

Lemma 3.1. The polynomial(D) associated to a link diagram D is invariant
under R- and RB-moves off the axis as well a2-SS3-, and S-moves on the axis. It
is not invariant under B- nor Sl-moves but its behaviour is well-controlledwe have

o (Rl ) me (Q)=ead] )
o (R)-ee ) m (Q)-ce )

Proof. The proof consists of a case-by-case verificatiohefstated Reidemeister
moves. It parallels Kauffman’s proof for his bracket polymial, and is only somewhat
complicated here by a greater number of moves.

Let us begin by noting two consequences of the circle evalundormula (C):

e A circle off the axis contributes a factor-@? — A=2).
e A circle on the axis contributes a factor-B2 — B~2).
As a consequence, for Reidemeister moves of typeHRIe find

® (R)=H2) w9 = )

The two summands contribute a factd(—A? — A=2) + A1 = —A3, as claimed. The
same calculation works for R4, leading to a factor-A=3. For S1-moves the calcu-
lation applies verbatim, replacing by B:

@) (R)=8(2)+8 Y )=-8% )
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Invariance under R2-moves is proven as usual, via the sled@tion (A):
(D)= A720 ()47 X+ 0 (+ (X))

(=)

(8)

Here the first two summands cancel with the third, becausecte @ff the axis con-
tributes a factor £ A2 — A~2).
Analogously, invariance under S2v-moves is proven via #einsrelation (B):

o (g)-e ) tm)+{2)00-00)

Here the first two summands cancel with the third, becausecte @n the axis con-
tributes a factor £B? — B72).
Invariance under S2h-moves is proven as follows:

0 [30x)= A+ D) o)+ ()= (<)

Here the first two summands cancel with the third, thanks ¢ojtidicious coupling of
the variablesA and B, as formulated in the circle evaluation (C):

B2 + B2

(12) 0()=DX)=m2=b O

Invariance under the remaining moves will now be an easyeamrence. To begin
with, S2h-invariance implies invariance under the sligimiore complicated move 32

(00K} = Bex) + B0
=8(>C)+ (D C)=(>C)

Here the twoB-summands are equal using S2h-invariance. ForBh&summand we
carry out two opposite R1-moves, so the factorsAf) and A—3) cancel each other.
Invariance under R3-moves is proven as usual, via the sled@tion (A):

VN RAVAN R VIS
=) ) =)

Here the middle equality follows from R2-invariance, e$isfied above. Notice also
that this R3-move comes in another variant: if the middlessing is changed to its

(12)

(13)
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opposite, then the coefficientd and A—* are exchanged, and the desired equality is

again verified.
Analogously, invariance under S3-moves is proven via trenskelation (B):

VNV NEAVIY
o) o) =)

/N

(14)

Here the middle equality follows from S2h-invariance, bBshed above. This proves
invariance under any R2v-move in the variant-jo For the variant (&) the middle
crossing is changed to its opposite: in the preceding emudtie coefficientsB and
B! are exchanged, and the desired equality is still verified. tRe variants (4) and
(u=) the horizontal strand passes under the two other stramdsthe same argument
still holds.

Finally, invariance under S4-moves is again proven via #®nsrelation (B):

(323K) - =(3e3K)+ = {3EK)
_ B<W>+ B_l<b<—;:> _ <\d—::>

(15)

The middle equality follows from S3- and R2-invariance,abished above. There are

three more variants of S4-moves, obtained by changing ometbr of the middle cross-

ings to their opposite. In each case the desired equalitypearerified in the same way.
Ll

3.2. Normalizing with respect to the writhe. Given an oriented link diagram
D, we can associate a sign to each crossing, according to theemion > — +1

and > — —1. Let «(D) be the sum of crossing signs off the axis (call@enrithe),
and letg(D) be the sum of crossing signs on the axis (caliavrithe).

DEFINITION 3.2. We define the normalized polynomial: 2 — Z(A, B) to be
W(D) := (D) - (—A}) (). (-3 #(®),
This is called thew -polynomialof the diagramD with respect to the given axis.
Theorem 3.3. W(D) is invariant under Reidemeister moves respecting the axis.

Proof. The A-writhe (D) does not change under regular Reidemeister moves.
Since (D) is also invariant under such moves, soW§{D). An R1-move fromD = @
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U0

Fig. 7. A diagramD with «(D) = 4 and 8(D) = —1.

Fig. 8. A surfaceX with orientation-reversing involutiom. The
fixed axis is depicted as a dashed line.

to D’ = __ changes theA-writhe to «(D’) = «(D) — 1, so that the factors iW com-
pensate according to Lemma 3.1. The same argument holds lfato%es and the
B-writhe. O

REMARK 3.4. Consider a symmetric diagrabB. At first sight one would expect
a(D) = 0, so that no normalization has to be carried out for the bgi@. Indeed,
in almost all cases crossing signs cancel each other in symonpairs, but this fails
where components of type (a) cross components of type (b¥)oraccording to Re-
mark 2.2 the reflection reverses the orientation of the former, but preserves the or
entation of the latter. The signs in such a symmetric pair rossings are thus not
opposite but identical. The simplest example of this kindligplayed in Fig. 7, show-
ing in particular thate(D) can be non-zero.

3.3. Generalization to arbitrary surfaces. Our invariance arguments are local
in nature, and thus immediately extend to any oriented atiedesurfacex equipped
with a reflection, that is, an orientation-reversing diffewrphismp: X — ¥ of order
2. Even though we do not have an immediate application fothis generalization
seems natural and interesting enough to warrant a brietlskéts before, we will call
p the reflection its fix-point set is a 1-dimensional submanifold which wik called
the axis
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ExampLE 3.5. Such an objectX, p) naturally arises for every complex mani-
fold ¥ of complex dimension 1 (and real dimension 2) equipped witlea structure,
that is, an antiholomorphic involutiop: ¥ — X. This includes the basic situation of
the complex planeC or the Riemann spher€P?, with p being complex conjugation.
More generally, one can consider the zero-Eet C? of a non-degenerate real poly-
nomial P € R[zy, 2], or the zero-sel. C CP? of a non-degenerate homogeneous poly-
nomial P € R[z, 23, z3], where the reflectiomp is again given by complex conjugation.

REMARK 3.6. As in 82.1, a link diagranD on the surfacex is symmetricif
p(D) = D except for crossings on the axis, which are necessarilyrsede For sym-
metric diagrams we can consider symmetric Reidemeisteremag in 82.3 and estab-
lish a symmetric Reidemeister theorem as in §2.4. Partialés can be constructed
as in 82.5 and are again invariant; this is essentially al lpgperty. In the absence of
a convex structure, however, we cannot construct ribbofases as in §2.2 by joining
opposite points. More generally, a surface boundingn ¥ x R exists if and only if
the obvious obstruction}] € Hi(X) vanishes.

REMARK 3.7. As before we can weaken the symmetry condition and densi
only transverse diagrams under Reidemeister moves réspdbe axis. Here we as-
sume a Morse functiom: ¥ — R for which 0 is a regular value, so that the axis
A = h~1(0) decompose& into two half-surfacesE_ = {x € © | h(x) < 0} and =, =
{x € T | h(x) > 0}.

We can then consider the set(X) of link diagrams onx that are transverse to the
axis. The skein relations (A) and (B) together with the @revaluation formula (C)
define an invarianZ(x) — Z(A, B) as before. This can be further refined in two ways.
Firstly, instead of one variabl® we can introduce separate variabBs, . . ., B, for
each connected component of the axis. Secondly, we canaggatircles on the sur-
face ¥ according to their isotopy type. The generalized constocessentially works
as before.

4. General properties of theW-polynomial

4.1. Symmetries, connected sums, and mutationsAs before, we adopt the
notation A2 = t~%2 and B2 = s%2, and instead ofN(D) we also writeWp(s, t).

Proposition 4.1. Wp is insensitive to reversing the orientation of all compadsen
of D.

Proof. The bracket polynomial is independent of orientatjoand the writhe does
not change either: crossing signs are invariant if we challgerientations. []



352 M. BSERMANN AND C. LAMM

M | e s
D ? Rl < |y
Y D’ — i :

ol s TR R
(a) Connected sum. (b) Mutation.

Fig. 9. Connected sum and mutation along the axis.

Proposition 4.2. The W-polynomial enjoys the following properties
(1) Wp is invariant under mutationflypes and rotation about the axis.
(2) If D gD’ is a connected sum along the gxieen Wh.p = Wp - Wp.
(3) If D* is the mirror image of Dthen Wh-(s, t) = Wp(s™%, t1).
(4) If D is symmetri¢c then W5(s, t) is symmetric in t t1,

Proof. In each case the proof is by induction on the numberre$sings ofD:

the assertion is clear wheld has no crossings and is propagated by the skein relations.

O]

Flypes and mutations along the axis are depicted in Figsd69afb). Such moves
leave theW-polynomial invariant but can change the partial knots, elgnfrom K_g L _

andK, gL, toK_gL, andK gL _. For a discussion of connected sums see [2]: there

are different ways of forming a connected sum, but they deta@ by mutations.

There are two variants of mutation (Fig. 9 (b)), namely liotataind flipping. (Their
composition yields a flip along a perpendicular axis and isdepicted here.) All vari-
ants are equivalent in the sense that we can deduce a flip fratatton and vice versa,
as indicated in Figs. 10 and 11. In our setting of diagramé wéspect to a fixed axis,
this equivalence also holds for mutations on the axis.

According to the preceding proposition, thg-polynomial is invariant under mu-
tations on and off the axis. Here is a famous example:

EXAMPLE 4.3. The Kinoshita—Terasaka knot can be presented as a gyimme
union (with trivial partial knots) as in Fig. 12 on the left.nQhe right you see a mu-
tation, the Conway knot, where the right half has been flipggoth knots thus share
the samew-polynomial.
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Fig. 11. Deducing a rotation from a flip.

r\@f\ hg\(\

% p&%

Fig. 12. The Kinoshita—Terasaka knot (left) and the Conwagtk
(right) are mutations of one another.

4.2. Oriented skein relations. The following observation can be useful to sim-
plify calculations, by relatingVp to the Jones polynomial in an important special case:

Proposition 4.4. Let D be a diagram representing a link L. If D has no cross-
ings on the axis and perpendicularly traverses the axinm points then

sl/2 4 g1/2\m-1
Wp(s, t) = (m) VL(t).

Proof. The claim follows by induction on the numberof crossings off the axis.
If ¢ =0 then we simply have the circle evaluation formula (C).cl& 1 then we
can resolve one crossing off the axis and apply the skeitioel#A) on both sides of
the equation. []
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REMARK 4.5. The invariantW: # — Z(sY/2, t/2) satisfies some familiar skein
relations:

(16) t*lw(x) _ tHW(X) _ (t1/2 1/2)W(/\<),
a7) S_lW(X) _ SHW(X) (sY2 - _1/2)W(><),

51/2 L2 |
(9 wo) -

We do not claim that these oriented skein relations sufficgetermine the majpV
uniquely; this is probably false, and further relations eeeessary to achieve unigqueness.
In particular the oriented skein relations do not lead tonap$e algorithm that calculates
W(D) for every diagramD. This is in contrast to the Jones polynomial, for which the
oriented skein relation is equivalent to the constructian Kauffman’s bracket.

These difficulties suggest that the bracket polynomial diriteon 1.1 and its defin-
ing skein relations (A), (B), and (C) are the more naturalstarction in our context. For
symmetric unions we describe a practical algorithm in Psdjmn 5.6 below.

5. The W-polynomial of symmetric unions

Having constructed the/-polynomial on arbitrary diagrams, we now return to sym-
metric diagrams, and in particular symmetric unions. It risthis setting that the
W-polynomial reveals its true beauty: integrality (85.1)mpgle recursion formulae
(85.2), and special values tnands (85.3—85.4). We continue to use the notatidh=
t~Y2 and B? = s%2,

5.1. Integrality. Our first goal is to control the denominator that appeargVvis
and then to show that this denominator disappeaf i a symmetric union.

ExamPLE 5.1. For the three symmetric diagrams of Fig. 2 we find

Wa(s, ) =1+s sttt 3t +t3-t%,
32 (tl/2 + t71/2)2

— 2 3_ 4

Wh(s, t) =s Y= s +s’—s,
(tl/2 + t71/2)2 52 32
WC(S,t)Z—m_S +S .

The symmetry ofD implies thatWp is symmetric int <> t~1. By specializings — t
we recover, of course, the Jones polynomials of the kapth& trefoil knot 3, and the
Hopf link L2al, respectively. Here we orient the Hopf link (c) such tha thflection
along the axis preserves orientations.
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We shall see that the symmetry &f also entails thaWp has no denominator,
apart froms'/?2 4+ s7%2, The difficulty in proving this integrality oM/ is to find a
suitable induction argument: resolving a symmetric diagia will lead to asymmetric
diagrams, and for asymmetric diagrams the desired iniggddes not hold in general.

The right setting seems to be the study of ribbon surfacesceSthis approach
introduces its own ideas and techniques we refer to thelaitlg, whose key result is
a surprising integrality property of the Jones polynomial:

Theorem 5.2 ([1]). If a link L ¢ R® bounds a ribbon surface of Euler character-
istic m> 0, then its Jones polynomial () is divisible by \O™) = (—t¥2—t=¥2)m-1,

This is precisely what we need to ensure the integrality\Gf:

Corollary 5.3 (integrality). Let D be a symmetric diagram that perpendicularly
traverses the axis i2m points. Then the bracket polynomial satisfies

(20) (D) € Z[A*Y, B*Y]. (B2 4+ B-))™1
and equivalently the W-polynomial satisfies
(21) Wp € Z[sY2, t+1/2] . (sY/2 4 s~Y/2ym-1

Proof. We first consider the case whddehas no crossings on the axis. By Prop-
osition 4.4 we then know that

§l2 | g2\ M1
Wp(s, t) = (m) ViL(t)

where V, € Z[t*Y?] is the Jones polynomial of the link represented byD. Using
the notation of 82.1, the diagram hasm components of type (a), no components of
type (b), and all components of type (c) come in pairs sepdrhy the axis. Accord-
ing to Proposition 2.7, the link. bounds a ribbon surface of Euler characteristic
Theorem 5.2 thus ensures thé(L) is divisible by ¢%/? 4+ t=%/?)™, so (21) holds.
Both assertions (20) and (21) are equivalent becdlyeand Wp differ only by
a writhe normalization of the forrWp = (D) - (—A=%)*(P) . (—=B=3)#(®), We can now
proceed by induction on the number of crossings on the axigyuskein relation (B):

(X) = BHX)+ B (X) = BHX)+ BH()

The right hand sides involve only symmetric diagrams, so am apply our induction
hypothesis (20). The skein relation thus expregdes as a linear combination of two
polynomials inZ[ A+, B*1]. (B2 + B?)™ !, so (20) holds. O
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Notice that form = O the denominatos/?+s~%2 is in general unavoidable, as il-
lustrated by Example 5.1. If the diagrab is symmetric and perpendicularly traverses
the axis at least oncen(> 1), thenWp always is an honest Laurent polynomialgH?
andt/?, that is, Wp € Z[s*%/?, t*1/2]. This integrality property will be re-proven and
strengthened for symmetric unions in Corollary 5.7 below.

5.2. Symmetric unions. We will now specialize to symmetric union diagrams,
that is, we assume that each component is of type (a) as egglan §82.2.

Proposition 5.4. Let D be a symmetric union link diagram with n components.
(1) Each crossing on the axis involves two strands of the same@oent.
For every orientation X is a positive crossing ang is a negative crossing.
(2) The resolution — )i( yields a symmetric union diagram with n components
while X +— > yields a symmetric union diagram with4a1 components.
(3) Each crossing off the axis and its mirror image involve theneacomponents.
Their signs are opposite so thaiD) = 0.

Proof. The assertions follow from our hypothesis that forymmetric union the
reflectionp maps each component to itself reversing the orientatioa §x2). In par-
ticular, each crossing on the axis involves two strands ef ¢ame component and
both strands point to the same halfspace. This means>thds necessarily a posi-
tive crossing ¥ or ), while >X is necessarily a negative crossing{(or 3X). The
rest is clear. O

In particular, the pairwise linking numbers of the compdsesf a symmetric union
D vanish. This also follows from the more geometric constancof ribbon surfaces in
Proposition 2.6. In general, even for symmetric diagrars,linking number need not
vanish (see Remark 3.4).

Corollary 5.5. For every symmetric union link diagram D the polynomial DYy
is invariant under orientation reversal of any of the comeots. In other wordsw(D)
is well-defined for unoriented symmetric union diagrams.

When working withunorientedsymmetric union diagrams, Proposition 5.4 allows
us to determine th&-writhe and thus to anticipate thB-normalization. This observa-
tion can be reformulated in the following normalized ske@tations, which allow for
a recursive calculation ofV(D) for every symmetric union diagrarD:

Proposition 5.6. Consider a symmetric union diagram D representing a link L
with n components. If D has no crossings on the axis then

sl/2 4 512 n-1
(22) Wp(s, t) = (m) VL(t),
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where \((t) is the Jones-polynomial of the link L.
If D has crossings on the axithen we can apply the following recursion formulae

(23) W(X) = —s"2w () = sTw(Hi(),
(24) W(K) = —s2W(X) - sW(HI().

Proof. Equation (22) follows from Proposition 4.4: sinbeis a symmetric union,
we know thatm = n. If D has crossings on the axis, then we apply the skein rela-
tion (B) suitably normalized according to Proposition 5Fhis proves Equations (23)
and (24). []

For symmetric unions we can strengthen Corollary 5.3 in tiilwing form:

Corollary 5.7 (strong integrality). If D is a symmetric union knot diagrgnthen
Wp is a Laurent polynomial in s and t. More generalij D is a symmetric union
diagram with n componentshen W € Z[s*!, t*1] . (s¥2 4 s71/2)n-1,

Proof. Every symmetric union diagram represents a ribbon link. If D has
no crossings on the axis, then the assertion follows fromakon (22) and the divis-
ibility is ensured by Theorem 5.2. We can then proceed by dtido on the number
of crossings on the axis, using Equations (23) and (24). ddathat X, >X, )i( have
the same number of components, whergdshas one more component. O

5.3. Special values int. A few evaluations of the Jones polynomial have been
identified with geometric data, and some of these can be eeed\for theW-polynomial:

Proposition 5.8. Let D by a symmetric union di_agram with n components. We
have Wy (s, &) = (—s/2—s~ Y21 for everyz e {1, +i, et?7/3} and (0Wp /dt)(s, 1)=0.

Proof. We proceed by induction on the number of crossingsherakis. IfD has
no crossings on the axis, then we can use Equation (22) acdlai@Wp(s, t) from
the Jones polynomiaV, (t). For the latter we know that

VL) = (=2,
VL(eiZirr/B) — 1’
V() = (V2P 27,
dv
d—tL(l) = 31k(D)(—2)" ..

(See [11] or [10, Table 16.3].) Here df( is the Arf invariant ofL, and Ik[D) is the
total linking number ofL, i.e., the sum2j<klk(Lj, L) of all pairwise linking numbers
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between the componentsy, ..., L, of L. Both arfL) and Ik(L) vanish becausé& is
a ribbon link. The above values o (&) thus show thatVp(s, &) = (—s¥? —s /21
and @Wp/at)(s, 1) =

If D has at least one crossing on the axis, then we can resolvedtdicg to the
skein relation (23) or (24). More explicitly, consider a fiv& crossing on the axis:

WX = =s"*W() =sW()()-

Notice that > and )/( are symmetric union diagrams with+ 1 andn components,
respectively. We can thus apply the induction hypothesis:t = & we find

W(X) — sY2(gl2 gl g gl2 g ln-l_ (g2 g l2n-l

Likewise,

0

SW(X) = s W(K) — s W0 ()

and fort = 1 all three derivatives vanish. Analogous arguments holénvve resolve
a negative crossing( instead of a positive crossing(. This concludes the induction.
0

5.4. Special values irs. The following specializations iz are noteworthy:

Proposition 5.9. For every diagram D the specialization+s t yields the Jones
polynomial of the link L represented by the diagram tBat is Wp(t, t) = V_(t).

Proof. Fors — t we no longer distinguish the crossings on the axis, and the
above skein relations become the well-known axioms for tweed polynomial, thus
Wh(t, t) = Vi (t).

Another way to see this is to start from our two-variable kedgqolynomial. For
B — A this becomes Kauffman’'s bracket polynomial in one variaBleSuitably nor-
malized and reparametrized with= A~* it yields the Jones polynomial, as desired.

O

Proposition 5.10. If D is the symmetric union knot diagram with partial knots
K_ and K, then the specialization s> —1 yields W5(—1,t) = Vk_(t) - Vk_ (t). If D
is a symmetric union link diagram with & 2 componentsthen W5(-—1,t) = 0.

Proof. The specializatios — —1 means thas*? + s71/2 = 0. We can now pro-
ceed by induction on the numberof crossings on the axis. f = 0 then the assertion
follows from Equation 22. Ifc > 1 then the skein relations 23 and 24, specialized at
s = —1, show thatW () = W(X) = W((). This operation reduces but preserves
the numbem of components. Fon = 1 it also preserves the partial knoks,. ]
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00800)  (ooRool

(a) 829 as symmetric union. (b) 85 as asymmetric union.
Fig. 13. Symmetric vs asymmetric union diagrams.

Corollary 5.11. Suppose that D is the symmetric union knot diagram of two
partial knots K and K,. For s =t = —1 we obtain W(-1, —1) = detK) =
det(K_) - det(K.).

Proof. The evaluations are subsumed in the following corativet diagram:

Wp(s, t) € Z[s*?, t+1] =25 Z[t+1] 5 Vi (t)

(25) sn—>1l ltwl
Vi (t) - Vk, (t) € Z[t*Y] — 5 Z > detK).

On the one hand, substituting fist=—1 and thernt = —1 yields detK_)-det(K..).
On the other hand, substituting first=t and thent = —1 yields detK). The equality
det(K) = det(K_) det(K,) now follows fromWp € Z[s*!, t*1], the integrality property
of Corollary 5.7, which ensures the commutativity of Diagré25). O

The product formula del{) = det(K_)-det(K..) was first proven by Kinoshita and
Terasaka [8] in the special case that they considered; thergecase has been estab-
lished by Lamm [9]. We derive it here as a consequence of thee rgeneral product
formula for the Jones polynomial established in Propasi&olO.

ExamMPLE 5.12. The symmetric union diagram of Fig. 13 (a) represdmsknot
8,0 with partial knots 3 and 3. Here we find
WS t) =1-s24+s 2t + 3 —tht 4173 —t7%),
W(t, 1) =V(8y) = t P+t -t 4242 -t +2—t,
W11 =V(@) - V@) =t + 23—ttt +t3—t.

In particularW has no denominator and is thus an honest Laurent polynomglind
t. As it must be, fort = —1 the last two polynomials both evaluate \t¢(—1,—1) = 9.
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ExamMPLE 5.13. We should point out that the integrality Wip (s, t) is a crucial
ingredient: The asymmetric union depicted in Fig. 13 (b)respnts the knotsBwith
partial knots 3 and 3. The lack of symmetry is reflected by a non-trivial denonnat
in the W-polynomial:

0 —t8+t7 —tO 5+ 3 4 s2(=2t7 —t° + 2% + t2)

Wis. ) = t+1

From this we can recover the Jones polynomial
W(t,t) = V(8) = 1—t + 3t — 3t 4+ 3t* — 415 + 3t® — 27 + (8

and the determinant def{8= 21. If we first sets = —1, however, we find the product
W(—1,t) = V(31) - V(31), and fort = —1 this evaluates to det{B- det(3) = 9.

This example shows that the evaluationWw{—1, —1) is in general not independ-
ent of the order of specializations. In other words, Diagi@®) doesnot necessarily
commute when we consider rational fractiohg € Z(s, t). For every diagranD both
specializations\p(t, t) and Wp(—1,t) are Laurent polynomials iZ[t*!]. In (-1, -1)
the rational functionR? — R defined by §, t) — Wp(s, t) thus has limits

tinjl Wp(t, t) = det(K) and tﬂrpl Wp(—1,t) = det(K,) det(K_).

If Wp is continuous in €1, —1) then these two limits coincide; otherwise they
may differ, in which case dei() # det(K_) - det(K) as in the preceding example.

6. Examples and applications

In this final section we present the computation of sdmgolynomials. We begin
with preliminaries on alternating knots (86.1) and a corapiahal lemma (86.2). We
then calculate th&V-polynomials of symmetric union diagrams for all ribbon knaip
to 10 crossings (86.3) and analyze two infinite families afsyetric union diagrams
for two-bridge ribbon knots (§6.4).

NOTATION. Certain polynomials occur repeatedly in the following cceétions.
In order to save space we will use the abbreviatios —s'/?2 —s /2 and the auxiliary
polynomialse(t), f(t), ... defined in Table 2 on p.366.

6.1. Alternating knots. A non-trivial symmetric union knot diagram is never
alternating. To see this, start from a point where the knopgdicularly traverses the
axis and then travel symmetrically in both directions: thstfcrossing-pair is mirror-
symmetric and thus non-alternating.
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If a knot K admits a reduced alternating diagram wdthrossings themw is the min-
imal crossing number and every minimal diagram represer€irwith ¢ crossings is ne-
cessarily reduced and alternating [7, 13, 14, 15]. This ieespihe following observation:

Proposition 6.1. Let K be a prime alternating knot with ¢ crossings. If K can be
represented by a symmetric union diagtaiimen at least e+ 1 crossings are necessary.

This explains why in most of our examples the symmetric uniepresentations
require slightly more crossings then the (more familiarnimial crossing representa-
tions. This argument no longer holds for non-alternatingt&n the example 3 in
Fig. 3 shows that a symmetric union diagram can realize thenmail crossing number.

In the context of alternating diagrams, the span of the Jpogsomial turned out
to be a fundamental tool and has thus been intensively studie

Proposition 6.2. Let D be a symmetric union diagram with n components hav-
ing 2c crossings off the axis. Then the t-span of \g at most2c + 1 —n. It is
equal to2c if and only if n= 1 and the partial diagrams D are alternating so that
spanV(K.) = c.

Proof. The assertion follows from Proposition 5.6 and thevkm property of the
span of the Jones polynomial [7, 13, 14, 15]. []

Proposition 6.3. Suppose that D is a symmetric union diagram with n compo-
nents having ¢ positive crossings and_cnegative crossings on the axis. Then the
degree in s rangegat mos) from —(n — 1)/2 —c_ to (n—1)/2 + c..

Proof. If c, = c_ = 0 then the assertion follows from Equation (22). We con-
clude by induction using Equations (23) and (24). O

6.2. A computational lemma. As an auxiliary result, we study the effect on
W(D) of insertingk consecutive crossings amdnecklaces on the axis: the resulting
diagram Dy, is shown in Fig. 14. A positive twist numbde stands for crossings of
type X and a negativé for crossings of typex because both orientations either point
from left to right or both point from right to left.

We assume thaD = Dg o is a symmetric union diagram with components. By
Proposition 1.8 we can writs/(D) = u"%(1 + d(s, t)) for some polynomiald(s, t) €
Z[Sil, til]'

Lemma 6.4. If Dy is the trivial (n 4+ 1)-component link then

Wier (s, 1) = u™ 1 4+ (—s)¥ - (t — 14+ t7Y) - d(s, t)].
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D Dk,r Dy
Fig. 14. The insertion ok crossings and of necklaces.

Proof. Insertion of necklacesFor arbitrary link diagramsD = Dy, Do 1 and
D, related as in Fig. 14 by insertion of one necklace, Ykepolynomials satisfy the
relationship

Wo1=(—sY2—sV2) (t —1+t71) - Wp — (t —2+t71) . W,
If D is the trivial (0 + 1)-component link, then for = 1 we obtain
Woa(s, t) =u"-(t -1+t (1 +ds, 1) —(t -2+t -u"
=u™ 14+ -1+t d(s, 1))

The general case far necklaces follows by induction.

Insertion of crossingsWe first assume that > 0 and use induction. Fok = 0
the assertion is valid for al > 0 andn > 1. For the induction step we assume that
the assertion holds fdc—1 for allr > 0 andn > 1. Then, by Proposition 5.6 we have

Wi (s, t) = —s™2um™" — sWey (s, 1)
— _Sl/2un+r _ Sun+r—1(1 + (_S)kfl(t —14+ tfl)rd(sy t))
= u™" L 4+ (—9)K(t — 1+ t7H)d(s, )]

For k > 0 this completes the proof by induction. Hor< 0 the calculation is analogous.
O

As an illustration we calculate th&/-polynomials of two families of symmetric union
diagrams. They will also be used for the two-bridge knot exasin 86.4 below.

ExAMPLE 6.5. The diagram®, and D; depicted in Fig. 15 represent the sym-
metric unions 3337 and 4 14,, respectively, withr necklaces. Thei¥W-polynomials are:

Wp, (s, t) =u'[1—(t—1+t™) -et)],
Wp, (s, ) = u'[1+ (t -1+t - f(1)].

This follows from Lemma 6.4 andlVp,(s, t) = 1 —e(t) and Wp,(s, t) = 1 + f(t).
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AL @H

W m
aqD a0
(a) D, (b) D;

Fig. 15. Insertion of necklaces in diagrams of 837 and 4 14.

VRS

(a) The 6;-type family. (b) The Kinoshita-Terasaka family.
Fig. 16. Two families of symmetric union diagrams.

6.3. Ribbon knots with at most 10 crossings. We first study the gtype family
and the Kinoshita—Terasaka family of symmetric union knagthms, and then turn to
the remaining ribbon knots with at most 10 crossings.

EXAMPLE 6.6. The family of symmetric union diagrani¥ depicted in Fig. 16 (a)
represents the knots 837, 61, 820, 96, 1014, ... With partial knotsK ;. = 3; andK_ = 3;.
We haveW(s, t) = 1+ (Vk, (t)Vk_(t) — 1), and thus by Lemma 6.4 th&/-polynomial
of Dy is

(26) Wi(s, t) = 1+ (=)~ (Vk, (1) - Vi_(t) — 1)
where Vi, (t) =t +t=3 —t=% and Vi _(t) =t +t3 —t%

EXAMPLE 6.7. The family of symmetric union diagram®y depicted in
Fig. 16 (b) has trivial partial knotsDg represents the trivial knotD; represents
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(a) 89: an asymmetrically (b) 89: a symmetrically
amphichiral diagram. amphichiral diagram.

Fig. 17. Two symmetric union diagrams fos.8

10;53, and D, represents the Kinoshita—Terasaka knot. For this familydierams
Lemma 6.4 is not applicable becaufk, is non-trivial. A small calculation shows
that Wi(s, t) = 1+ ((—=s)k — 1)- f(t).

ExAMPLE 6.8. Fig. 17 displays two symmetric union diagrams for thabon
knot &. This knot is amphichiral, and so both diagrams are Reidstereequivalent to
their mirror images. But the first diagram (Fig. 17 (a)) canbe symmetrically amphi-
chiral because it8V/-polynomial is not symmetric irs:

Wi(s, t) = 1+ sg(t) — s? f (t).

For the second diagram (Fig. 17 (b)) we filld(s, t) = 1+ f(t), so that the previous
obstruction disappears. This diagram is indeed symméyriaanphichiral, as shown in
Fig. 18:

(1) We start out with a diagram isotopic to Fig. 17 (b),

(2) we slide the upper twist inside-out,

(3) we perform a half-turn of each of the partial knots alotgy\vertical axis,

(4) we slide the lower twist outside-in,

(5) we turn the entire diagram upside-down.

Each of these steps is easily seen to be composed of symrRetidemeister moves;
the last step is realized by a half-turn around the horizomtis (realizable by sym-
metric Reidemeister moves) followed by a half-turn arounel Yertical axis (flype).

Table 1 completes our list of ribbon knots with at most 10 simgs. In order to
save space we have used the auxiliary polynomials listedabieT2, which appear re-
peatedly.

Diagrams for @, 8,0, %6, 10140 are discussed in Example 6.6 within the-tgpe
family, further diagrams are discussed fayr i Example 6.8, for 9; in Example 1.14,
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Fig. 18. Symmetric equivalence between mirror images.

Table 1. W-polynomials of ribbon knots with at most 10 crossings.

knot det partial knot

knot det partial knot

diagram W(s, 1 diagram W(s, 1)
N
@7@ 8 25 4 y 9% 49 5
RSSO R0 @) 1-s2-gi(t) +°- £()
N e
@ N
%? 10; 25 5 %? 10, 49 5
w 1—s-gs(t) é& 1-go(t)
— =
%\? 10, 49 5 Q/)@ 10, 8L 6
%8 1—s-0(t) %&8 1—st.gu(t) + ha(t) — s- gs(t)
0 2
R 1055 49 5 L 105 81 6
\> )( 1 —SS- g2(t) &/) 1 +58_2 - Qa(t) — s7 - ha(t) + gs(t)
&) 0%
TR
OV |108 25 4 ST | 10, 81 6
g{) 1+3;2'f(t) é)/g 1+791(t)—5-h1(t)+52-93(t)
</\/\> 1—s-f(t) @ 1-s7 () + ha(t) —s- (1)
(ol | 103 121 6
5 20X
@ 101522.1?3) " B8 1+22’1-g4(t)+h3(t)+3-94(t)
CO
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Table 2. Auxiliary polynomials used in the description of
W-polynomials.

et) =t3t%2+1) ¢t — 1>t +t+1)
ft) =t (t°+1) t —1P2t>+t+1) ¢>—t+1)
gu(t) =t 3(t%+1) t —21)%(t2+t+1) (% —t + 1)
Oo(t) = 5% + 12(t — 1)%(t° +t + 1) (> —t + 1)
gs(t) = t73(t% + 1)%(t — D*(t2 +t + 1)
ga(t) =t5(t%2+1) t -2+t +1) (> —t+1)
Os(t) = t2(t%2 + 1) (t — 1)%(t? + t + 12(t> —t + 1)
ha(t) =t 82+ 1) t — 12t +t +1) t>2—t + 1)°
ho(t) =t8(t2 4+ 1) (t — 1)*(t2 +t + 1) -t +3t2—t4+1)
ha(t) =t 8(t2 4+ 1) t — 1%t +t +1) t2—t+1) ¢*—3t3 +5t2 -3t + 1)

and for 1Qs3 in Example 6.7. We remark that th&-polynomial of 1Qyg is the same
as that of 8, and theW-polynomial of 1Qss is the same as that of 1§, in accordance
with results of Kanenobu [6] who studied an infinite familyntaining these knots.
Lemma 6.4 was used for the diagrams ef 89, 96, 10140 in Example 6.6 and again
for 8g, 103, 1055, 1035, 10437 in Table 1.

6.4. Two-bridge ribbon knots. In this final paragraph we establish symmetric
inequivalence in the family of two-bridge ribbon knots thet studied in [2]. We con-
sider the symmetric union diagrani, and D;, shown in Fig. 19. They are defined
for n > 2 and we writen = 2k + 1 in the odd case and = 2k in the even case.

REMARK 6.9. The symmetric union diagrani3, and D;, represent two-bridge
knots of the formK (a, b) = C(2a, 2, 2b, —2, —2a, 2b) with b = +1. These knots have
genus 3 and their crossing number ist+@. The first members can be identified as
follows: 8 = K(—1,—1) forn =2, %7 = K(-1,1) forn= 3, 10, = K(1, 1) forn =
4, 11896 = K(1,-1) for n =5, 12a715= K(-2,—1) for n = 6, 132836= K (-2, 1)
forn=7.

The diagramsD, and D} are the two mirror-symmetric diagrams of 8hown in
Fig. 17 (b). They have been shown to be symmetrically eqgemtain Fig. 18.

The diagramsD3 and Dj are the two symmetric union representations of @e-
picted in Fig. 1. They have already been proven to be distmd&xample 1.14.

We do not know if the diagram®, and D), representing 1§, are symmetri-
cally equivalent: theirW-polynomials coincide but no symmetric transformation has
yet been found.
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Xg \z\ /%/ £ ?\B, \;\ /;/ £

W v N\= \4& YN =
Doaa D, Deven Dy

Fig. 19. The family of knot diagramd, and D; of The-
orem 6.10.

We have proved in [2], Theorem 3.2, that for eacthe symmetric union diagrams
D, and D], are asymmetrically equivalent. One of the motivations fevedoping the
W-polynomial was to show thdd, and D;, are, in general, not symmetrically equivalent:

Theorem 6.10. The symmetric union diagrams,Dand D, depicted inFig. 19
are not symmetrically equivalent if & 3 or n > 5.

Proof. We show that th&/-polynomials of the two diagramB, and D;, are dif-
ferent forn = 3 andn > 5. By Proposition 6.3 the degree sof the W-polynomial
of D;, ranges at most from-1 to 1. It is enough to show that the maximal or min-
imal degree ins of the W-polynomial of D, is bigger than 1, or smaller thanl,
respectively. For brevity, we only analyze the maximal éegr

Odd case For n = 2k + 1 we claim that max degV(Dp) = k + 1.

The diagramD,, containsk negative anck+ 1 positive crossings on the axis, there-
fore the maximal degree is is less or equal tk + 1. We resolve allk negative
crossings X on the axis to>{. Only this resolution contributes by Proposition 5.6
to the maximal degres“t! and we obtain a factor of{s /?)X. The resulting dia-
gram is illustrated in Fig. 20 (a): it hals necklaces andk + 1 consecutive positive
crossings on the axis, for which the horizontal resolutismaitrivial link with k + 2
components. LetiX(ac(t) + 1) be theW-polynomial of the latter diagram without the
crossings on the axis, then by Lemma 6.4 Yepolynomial of the diagram witlk + 1
crossings is £sY2)kuk((—=s)<*tax(t) + 1), including the factor {s~2)k from the res-
olution step. By Example 6.5 we find thag(t) # O, proving that in the odd case the
maximal s-degree ofD,, is k + 1. Note that the maximas-degree of {s~¥?)kuk is
zero. For oddn > 3 the maximals-degree is therefore greater than 1.
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(a) Odd case. (b) Even case.

Fig. 20. Diagrams occurring in the proof of Theorem 6.10 (for
k=2).

Fig. 21. Two symmetric union diagrams sharing the same
W-polynomial.

Even caseFor n = 2k we claim that max degW(D,) = k — 1.

We observe that the diagram} obtained fromD, by deleting the first and the
last crossing on the axis has the sawepolynomial asD,. This requires a short cal-
culation using the fact that th&-resolutions for these crossings are diagrams of the
trivial link.

As an illustration, let us make the first three cases expliir n = 2 the diagram
D3 is 4, 44,. For n = 4 the diagramD} coincides withD}, showing thatD, and D,
cannot be distinguished by theiW-polynomials. Forn = 6 the two diagramdg and
D are illustrated in Fig. 21; they represent the knota7lts and 123, respectively.

By Proposition 6.3 the exponents afin W(D,) lie between—k and +k. In
the diagramD}, however, onlyk — 1 negative andk — 1 positive crossings on the
axis remain, so inW(Dy,) = W(D;) the bounds—k and +k are not attained, whence
max deg W(Dy) < k — 1.

We seize the occasion to correct an unfortunate misprin2]n the caption of Fig. 7 showing
a similar diagram states wrong partial knots. The partiadt&mof the shown diagrams of 42 are
C(3, 4) andC(2, 6).
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In D;; we resolve allk —1 negative crossingg( on the axis tox{. As in the pre-
vious case, only this resolution contributes to the maxidedrees~! and we obtain
a factor of (s~Y/2)*-1, The resulting diagram is illustrated in Fig. 20 (b): it Has 1
necklaces andk — 1 consecutive positive crossings on the axis, for which thezbn-
tal resolution is a trivial link withk + 1 components. The process of adding necklaces
and twists is the same as in the odd case: for\Wgolynomial of the diagram with
k— 1 crossings we have—6 Y/2)* 1uk-1((—s)*h(t) + 1) if the W-polynomial of the
respective diagram without the twists is-§%2)k-*uk=1(l(t) + 1), both already in-
cluding the factor £s~%2)k-1, Using again Example 6.5 we find thi(t) # 0. This
proves that in the even case the maxirsalegree ofW(D,) = W(D;) is k—1. Hence,
for evenn > 6 the maximals-degree is greater than 1, which proves the theorenh.
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