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Abstract
In his two pioneering articles [9, 10] Jerry Levine introduced and completely de-

termined the algebraic concordance groups of odd dimensional knots. He did so
by defining a host of invariants of algebraic concordance which he showed were a
complete set of invariants. While being very powerful, these invariants are in prac-
tice often hard to determine, especially for knots with Alexander polynomials of
high degree. We thus propose the study of a weaker set of invariants of algebraic
concordance—the rational Witt classes of knots. Though these are rather weaker in-
variants than those defined by Levine, they have the advantage of lending themselves
to quite manageable computability. We illustrate this point by computing the rational
Witt classes of all pretzel knots. We give many examples and provide applications
to obstructing sliceness for pretzel knots. Also, we obtainexplicit formulae for the
determinants and signatures of all pretzel knots.

This article is dedicated to Jerry Levine and his lasting mathematical legacy; on
the occasion of the conference “Fifty years since Milnor and Fox” held at Brandeis
University on June 2–5, 2008.

1. Introduction

1.1. Preliminaries. In his seminal papers [9, 10] Jerry Levine introduced and
determined the algebraic concordance groupsCn of concordance classes of embeddings
of Sn into SnC2. These groups had previously been found by Kervaire [6] to betrivial
for n even; forn odd, Levine proved that1

Cn � Z1 � Z12 � Z14 .

Levine achieved this remarkable result by considering a natural homomorphism'nW Cn!
I(Q) from the algebraic concordance groupCn into the concordance group of isometric
structuresI(Q) on finite dimensional vector spaces overQ (we describeI(Q) in detail
in Section 2.3 below). He constructed a complete set of invariants of concordance of
isometric structures and used these invariants to show thatI(Q) � Z1 � Z12 � Z14 .
Moreover, he showed that the map'n W Cn ! I(Q) is injective and that its image is large
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1For brevity, we denote the infinite direct sum
L1

iD1 Zp simply byZ1p hoping the reader will not
confuse the latter with the product of an infinite number of copies ofZp. Throughout the article,Zp

denotesZ=pZ.
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enough to itself contain a copy ofZ1�Z12 �Z14 , thereby establishing the isomorphism
Cn � Z1 � Z12 � Z14 . In this article we focus exclusively on the case ofn D 1.

To determine the values of Levine’s complete set of invariants for a given knot
K , one is required to find the irreducible symmetric factors ofthe Alexander poly-
nomial 1K (t) of K . As the question of whether or not a given polynomial is irredu-
cible is a difficult one in general, the task of determining all the irreducible factors of
a given symmetric polynomial can be quite intractable, moreso as the degree of the
polynomial grows. To circumnavigate this issue, we consider another homomorphism' W C1 ! W(Q) from the algebraic concordance groupC1 into the Witt ring over the
rationals (W(Q) is described in detail in Section 2.2, for a brief description see Sec-
tion 1.2 below). The isomorphism type ofW(Q) as an Abelian group is well under-
stood and is given byW(Q) � Z� Z12 � Z14 . The maps' and '1 fit into the com-
mutative diagram

C1
'1 K

' K
I(Q)

 K
W(Q).

From simply knowing the isomorphism types ofC1 and W(Q), it is clear that' W C1!
W(Q) cannot be injective and a loss of information must occurs inpassing fromK 2
C1 to '(K ) 2 W(Q). The payoff being that one is no longer required to factor poly-
nomials. Indeed, to determine'(K ) for a given knotK � S3 one only needs to use
the Gram–Schmidt orthogonalization process along with a simple “reduction” argument
(described in Section 4.1). The Gram–Schmidt process is completely algorithmic and
is readily available in many mathematics software packages.

To goal of this article then is to underscore the computability and usefulness of
the rational Witt classes'(K ). Their determination is almost entirely algorithmic and
often straightforward, if tedious, to calculate. We illustrate our point by focusing on
a concrete family of knots—the set of pretzel knots. This family is large enough to
reflect a number of varied properties of the invariant' and yet tractable enough so
that a complete determination of the rational Witt classes is possible. We proceed by
giving a few details about pretzel knots first and then state our main results.

1.2. Statement of results. Given a positive integern and integersp1, p2, : : : , pn,
let P(p1, p2, : : : , pn) denote then-stranded pretzel knot/link. It is obtained by taking
n pairs of parallel strands, introducingpi half-twists into thei -th strand and capping
the strands off byn pairs of bridges. The signs of thepi determine the handedness
of the corresponding half-twists. Our convention is thatpi > 0 corresponds to right-
handed half-twists, see Fig. 1 for an example. We limit our considerations to knots and
moreover require thatn � 3 and thatpi ¤ 0 (the purpose of these two limitations is
to exclude connected sums of torus knots/links). There are 3categories of choices of
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Fig. 1. The pretzel knotP(�1, 3,�5, 3, 4).

the parametersn, p1, : : : , pn which lead to knots, namely

(i) n is odd and all exept one of thepi are odd,

(ii) n is even and all exept one of thepi are odd,

(iii) n is odd and allpi are odd.

(1)

As we shall see, these categories exhibit slightly different behavior as far as the formats
of their rational Witt classes. Pretzel knots are invariantunder the action ofZn by
cyclic permutation, i.e.P(p1, p2, : : : , pn�1, pn) D P(pn, p1, p2, : : : , pn�1). We use this
symmetry to fix the convention that ifP(p1, : : : , pn) comes from either category (i) or
(ii) above, we letpn be the unique even integer amongp1, : : : , pn.

To state our results, we need to give a brief description of the rational Witt ring
W(Q), a more copious exposition is provided in Section 2.2. As a set, W(Q) consists
of equivalence classes of pairs (h � , � i, V) whereV is a finite dimensional vector space
overQ and h � , � i W V � V ! Q is a non-degenerate symmetric bilinear form. We say
that a pair (h � , � i, V) is metabolicor totally isotropic is there exits a half-dimensional
subspaceW � V such thath � , � ijW�W � 0. We will be adding pairs (h � , � i1, V1) and
(h�, �i2, V2) by direct summing them, thus

(h � , � i1, V1)� (h � , � i2, V2) D (h � , � i1� h � , � i2, V1� V2).

With this understood, the equivalence relation onW(Q) is the one by which (h�, �i1, V1)
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is equivalent to (h � , � i2, V2) if (h � , � i1, V1)� (�h � , � i2, V2) is metabolic. One proceeds
to check that addition is commutative and indeed well definedon W(Q), giving W(Q)
the structure of an Abelian group.

It is not hard to obtain an explicit presentation ofW(Q) (see Theorem 2.1 in Sec-
tion 2.2), for now however it will suffice to point out thatW(Q) is generated by the
set fhai 2 W(Q) j a 2 Q� f0gg. Here hai stands for (h � , � ia, Q) where h � , � ia is the
form onQ specified byh1, 1ia D a.

Given a knotK � S3, pick an oriented, genusg Seifert surface6 � S3 and con-
sider the linking pairinglk W H1(6I Z) � H1(6I Z)! Z given by

lk(�, �) D linking number between� and �C,

where�C is a small push-off of� in the preferred normal direction of6 determined
by its orientation. Extendinglk to H1(6IQ) linearly and lettingh � , � i W H1(6IQ) �
H1(6IQ) ! Q be h�, �i D lk(�, �) C lk(�, �), defines a non-degenerate symmetric
bilinear pairing on the rational vector spaceH1(6gIQ). We use this to define

'(K ) D (h � , � i, H1(6IQ)) 2 W(Q),

which we refer to as therational Witt class of K. According to [9], '(K ) is well
defined and only depends onK (as an oriented knot) but not on the particular choice of
Seifert surface6. In fact, '(K ) only depends on the algebraic concordance class ofK .

REMARK 1.1. The determinant detK of a knot K � S3 is defined as detK Djdet(V C V � )j where V is a matrix representative of the linking formlk W H1(6I Z) �
H1(6I Z)! Z. In order for the statements of Theorems 1.2–1.4 to appear more sym-
metric, we allow ourselves the freedom to use a signed version of the knot determinant.
Thus, the determinant for pretzel knotsK D P(p1, : : : , pn) as it appears in the said the-
orems and throughout the article, agrees up to sign with the usual definition of detK .
This signed version of the determinant may well change sign when passing from a knot
to its mirror.

With these descriptions and conventions out of the way, we are now ready to state
our main results.

Theorem 1.2. Consider category(i) from (1), i.e. let n� 3 be an odd integer, let
p1, : : : , pn�1 be odd integers and let pn ¤ 0 be an even integer. Then the rational Witt
class of the pretzel knot P(p1, : : : , pn) is given by

'(P(p1, : : : , pn)) D n�1M
iD1

(hsi � 1 � 2i � hsi � 2 � 3i � � � � � hsi � (jpi j � 1) � jpi j)i)
� h�(p1 � � � pn�1) � det P(p1, : : : , pn�1)i
� hdet P(p1, : : : , pn�1) � det P(p1, : : : , pn)i,
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where si D � Sign(pi ). The determinants of the pretzel knot P(p1, : : : , pn) and the
pretzel link P(p1, : : : , pn�1) appearing above, are computed as

det P(p1, : : : , pn) D nX
iD1

p1 � � � Opi � � � pn,

det P(p1, : : : , pn�1) D n�1X
iD1

p1 � � � Opi � � � pn�1.

As is customary in the literature, having a hat decorate a variable in a product
indicates that the factor should be left out. For examplep1 � Op2 � p3 stands forp1 � p3.

Theorem 1.3. Consider category(ii) from (1), that is, let n � 3 be an even in-
teger, let p1, : : : , pn�1 be odd integers and let pn ¤ 0 be an even integer. Then the
rational Witt class of the pretzel knot P(p1, : : : , pn) is

'(P(p1, : : : , pn)) D nM
iD1

(hsi � 1 � 2i � hsi � 2 � 3i � � � � � hsi � (jpi j � 1) � jpi j)i)
� h�(p1 � � � pn) � det P(p1, : : : , pn)i,

where si D � Sign(pi ) and the determinantdet P(p1, : : : , pn) can again be computed
by the formula

det P(p1, : : : , pn) D nX
iD1

p1 � � � Opi � � � pn.

To state the next theorem we introduce some auxiliary notation first: Let� j (t1,:::, tm)
denote the degreej (with 0� j � m) symmetric polynomial in the variablest1, : : : , tm.
For example,

�1(t1, : : : , tm) D t1C � � � C tm

while

�m(t1, : : : , tm) D t1 � � � tm.

We adopt the convention that�0(t1, : : : , tm) D 1. With this in mind, we have

Theorem 1.4. Consider category(iii) from (1). Thus, let n � 3 and p1, : : : , pn

be odd integers and let�i stand as an abbreviation for the integer�i (p1, : : : , piC1).
Then the rational Witt class of the pretzel knot P(p1, : : : , pn) is given by

'(P(p1, : : : , pn)) D h�0 � �1i � h�1 � �2i � � � � � h�n�2 � �n�1i.
Moreover, the determinant of P(p1, : : : , pn) equalsdet P(p1, : : : , pn) D �n�1.
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REMARK 1.5. To put the results of Theorems 1.2–1.4 into perspective, we would
like to point out that at the time of this writing, the algebraic concordance orders aren’t
known yet even for the 3-stranded pretzel knotsP(p1, p2, p3) from category (i) in (1).
The chief reason for this is that this family contains knots with Alexander polynomials
of arbitrarily high degree.

In contrast, the algebraic concordance orders ofP(p1, p2, p3) coming from cat-
egory (iii) in (1) are well understood and follow easily fromLevine’s article [10], see
Remark 1.13 below. All non-trivial knots in this family are of Seifert genus 1.

1.3. Applications and examples. While Theorems 1.2–1.4 give'(K ) in terms
of the generators ofW(Q), in concrete cases one can determine'(K ) as a specific
element inW(Q) � Z � Z12 � Z14 . We give a host of examples of this nature next.
Such computations rely on an understanding of the isomorphism betweenW(Q) andZ� Z12 � Z14 . This isomorphism is completely explicit and easily computed, we ex-
plain it in some detail in Section 2.2. For now we merely present the results of our
computations, the full details are deferred to Section 5.

After presenting a several concrete examples, we turn to general type corollaries of
Theorems 1.2–1.4. The ultimate goal of course is to have a setof numerical conditions
on n, p1, : : : , pn which would pinpoint the order of'(K ) in W(Q). The obstacle to
achieving this is number theoretic in nature and we have beenunable to overcome it in
its full generality. However, we are able to give such conditions for the case ofn D 3
and for some special cases whenn � 4.

As we shall see in Section 2.2, a necessary condition for'(K ) to be zero inW(Q)
is that � (K ) D 0 and jdetK j D m2 for some odd integerm. If only the first of these
conditions holds, then'(K ) is at least of order 2 inW(Q). With this in mind the next
examples testify that the rational Witt classes carry significantly more information than
merely the signature and determinant. We start with a usefuldefinition

DEFINITION 1.6. If p is an odd integer, we shall say that the knot

P(p1, : : : , pi�1, p, pi , : : : , p j�1, �p, p j , : : : , pn)

is gotten fromP(p1,:::, pn) by anupward stabilization(or conversely thatP(p1,:::, pn)
is obtained fromP(p1, : : : , pi�1, p, pi , : : : , p j�1, �p, p j , : : : , pn) by a downward sta-
bilization).

EXAMPLE 1.7. Let K1, K2 and K3 be the knots

K1 D P(21, 13,�17,�15, 12), K2 D P(�3, �3, �7, 5, 2),

K3 D P(�3, �5, 7, 9, 6)

from category (i) and letK D K1 # K2 # K3. The � (K ) D 0 but '(K ) has order 4 in
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W(Q). Thus K has concordance order at least 4. The same holds ifK i is replaced by
a knot gotten fromK i by any finite number of upward stabilizations.

EXAMPLE 1.8. Let K1 and K2 be the knots

K1 D P(7, 3,�5, 2), K2 D P(�19,�15, 21, 10)

from category (ii) and letK D K1#K2. Then� (K )D 0 but '(K ) has order 4 inW(Q)
and therefore also in concordance group. The same is true ifK i is replaced by a knot
gotten fromK i by any finite number of upward stabilizations.

EXAMPLE 1.9. Let K be a knot obtained by a finite number of upward stabi-
lization from either

P(�3, 9, 15,�5� 5) or P(�3, �5, �11, 15, 15)

from category (iii). Then the signature ofK is zero, the determinant ofK is a square
but '(K ) ¤ 0 2 W(Q). Consequently, no suchK is slice.

EXAMPLE 1.10. Let K1, K2 and K3 be the knots

K1 D P(21, 13,�17,�15, 12), K2 D P(�19,�15, 21, 10),

K3 D P(�15,�7, �7, 13, 11)

from the categories (i), (ii) and (iii) and letK D K1 # K2 # K3. Then � (K ) D 0 but'(K ) is of order 4 in W(Q). The same holds under replacement ofK i by upward
stabilizations.

The details of the above computations can be found in Section5. We now turn to
more general corollaries of Theorems 1.2–1.4.

Theorem 1.11. Consider a3-stranded pretzel knot KD P(p, q, r ) with p, q, r
odd. Then the order of'(K ) in W(Q) is as follows:
• '(K ) is or order 1 in W(Q) if and only if detK D �m2 for some odd m2 Z.
• '(K ) is of order 2 in W(Q) if and only if detK < 0, � detK is not a square and
no prime} � 3 (mod 4)dividesdetK with an odd power.
• '(K ) is of order 4 in W(Q) if and only if detK < 0 and there exists a prime} � 3 (mod 4)dividing detK with an odd power.
• '(K ) is of infinite order W(Q) if and only if detK > 0.
Recall thatdetK D pqC pr C qr.
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Theorem 1.12. Consider again KD P(p, q, r ) but with p, q odd and with r¤ 0
even. Then'(K ) is of finite order in W(Q) if and only if

pC q D 0

or

pC q D �2 and detK > 0.

The order of'(K ) in W(Q) in these cases is as follows:
• If p C q D 0 then '(K ) has order1 in W(Q).
• If p C q D �2 and detK > 0 then,

– '(K ) is of order 1 in W(Q) if detK D m2 for some odd integer m.
– '(K ) is of order 2 in W(Q) if detK is not a square and no prime} � 3
(mod 4) dividesdetK with an odd power.
– '(K ) is of order 4 in W(Q) if there is a prime} � 3 (mod 4) that divides
detK with an odd power.

Here too, detK D pqC pr C qr.

A slightly more general version of this theorem is given in Theorem 6.2.

REMARK 1.13. As already mentioned in Remark 1.5, the algebraic concordance
orders of the knotsP(p, q, r ) with p, q, r odd are known by work of Levine [10]
and agree with the orders of'(P(p, q, r )) in W(Q). The analogues of the results of
Theorem 1.12 are not known for the algebraic concordance group. However, according
to Theorem 1.16 below, it is clear that whenr is even, the order of'(P(p, q, r )) in
W(Q) and the order ofP(p, q, r ) in C1 are different in general. We point the interested
reader towards [14] for a discussion of finite order elementsin C1.

REMARK 1.14. The condition on the congruency class mod 4, appearingin both
Theorems 1.11 and 1.12, is reminiscent of a similar condition appearing in a beautiful
(and much stronger) theorem by Livingston and Naik [13]: IfK is a knot with detK D} �� where} is a prime congruent to 3 mod 4 and gcd(}, �) D 1, thenK has infinite
order in the topological concordance group.

Theorem 1.15. Consider a pretzel knot KD P(p1, : : : , pn) from category(i) in
(1), i.e. assume that n, p1, : : : , pn�1 are odd, n � 3 and pn ¤ 0 is even. Additionally,
suppose that the p1, : : : , pn�1 are all mutually coprime. Then'(K )D 0 2W(Q) if and
only if � (K ) D 0 and detK D �m2 for some odd m2 Z.

Seeing as the torsion subgroups ofC1 and W(Q) are isomorphic, one can’t help
but speculate whether'jTor(C1) W Tor(C1)! W(Q) is injective. Unfortunately this is not
the case as the next theorem testifies.
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Theorem 1.16. Consider the knot KD P(5, �3, 8). All Tristram–Levine signa-
tures �!(K ) vanish but K is not trivial inC1. On the other hand, the rational Witt
class'(K ) is zero. Thus, K is a nontrivial element of Ker(') \ Tor(C1).

REMARK 1.17. We would like to point out that for knotsK with 10 or fewer
crossings,K is algebraically slice if and only if'(K ) is zero inW(Q). This follows by
inspection, using KnotInfo [2]2, and relying on the fact that if'(K )D 0 then� (K )D 0
and detK D �m2.

As a byproduct of our computations we obtain closed formulaefor the signature
and determinants of all pretzel knots. The formulae for the determinants have already
been stated in Theorems 1.2–1.4, the signature formulae arethe content of the next
theorem. While these are not directly relevant to our discussion, we list them here in
the hopes that they may be useful elsewhere.

Theorem 1.18. Let K D P(p1, : : : , pn) be a pretzel knot from either of the3 cat-
egories(i)–(iii) from (1). As usual, we assume that n� 3. Then the signature� (K ) of
K can be computed as follows:
1. If n, p1, : : : , pn�1 are odd and pn ¤ 0 is even, then

� (K ) D �
 

n�1X
iD1

Sign(pi ) � (jpi j � 1)

!
� Sign(p1 � � � pn�1 � det P(p1, : : : , pn�1))

C Sign(det P(p1, : : : , pn�1) � det P(p1, : : : , pn)).

The determinantsdetP(p1, : : : , pn) and detP(p1, : : : , pn�1) are computed as inThe-
orem 1.2.
2. If n, pn are even, p1, : : : , pn�1 are odd and pn ¤ 0, then

� (K ) D �
 

nX
iD1

Sign(pi ) � (jpi j � 1)

!
� Sign(p1 � � � pn � det P(p1, : : : , pn)),

wheredet P(p1, : : : , pn) is as computed inTheorem 1.3.
3. If n, p1, : : : , pn are all odd, then

� (K ) D n�1X
iD1

Sign(�i�1 � �i ),

where�i D �i (p1, : : : , piC1) as in Theorem 1.4.

2A web site created by Chuck Livingston and maintained by Chuck Livingston and Jae Choon Cha.
The site contains a wealth of information about knots with low crossing number. It can be found at
http://www.indiana.edu/~knotinfo.
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For example, ifK D P(p1, : : : , pn) with n, p1, : : : , pn odd andpi > 0 for all i ,
then �i > 0 for all i also and therefore� (K ) D n � 1. As another example consider
the case ofn, pn even andp1, : : : , pn�1 odd and againpi > 0 for all i . Then� (K ) D
n� 1� (p1C � � � C pn).

1.4. Organization. Section 2 provides background on the three flavors of alge-
braic concordance groupsC1, I(Q) and W(Q) encountered in the introduction. The re-
lationships between these groups are also made more transparent. In Section 3 the first
steps towards computing'(P(p1, : : : , pn)) are taken in that specific Seifert surfaces are
picked for the knots along with specific bases for their first homology. These choices
allow us to determined a linking matrix for the knots. Section 4 explains how one can
diagonalize the linking matrices found in Section 3, leading to proofs of Theorems 1.2,
1.3 and 1.4. More detailed versions of these theorems are provided in Theorems 4.8,
4.11 and 4.13 respectively. Section 5 is devoted to computations of examples and shows
how Theorems 1.2–1.4 imply the results from Examples 1.7–1.10 stated above. The
final section provides proofs for Theorems 1.11, 1.12, 1.15 and 1.16.

2. Algebraic concordance groups

In this section we describe the three algebraic concordancegroups mentioned in
the introduction, namely
C1 – The algebraic concordance group of classical knots inS3,
I(F) – The concordance group of isometric structures over the field F ,
W(F) – The Witt ring of non-degenerate, symmetric, bilinear forms overF .
We provide a generous amount of details of the constructionsof these groups but we
omit proofs. The interested reader may consult [1, 4, 7, 11, 19] for more details and
additional background.

2.1. The algebraic concordance groupC1. This section largely follows the ex-
position from [9] with a slight bias towards a coordinate free description.

Our explanation of the algebraic concordance groupC1 runs largely in parallel to
the description of the Witt ringW(Q) from the introduction. Thus, we shall consider
pairs (h � , � i, L) where L is a finitely generated free Abelian group of even rank andh � , � i W L � L ! Z is a bilinear pairing with the property thath � , � i � h � , � i� is
unimodular. Following Levine [10], we shall call such pairsadmissible pairs. Hereh � , � i� denotes the bilinear form

hx, yi� D hy, xi.
Note thath � , � i is not required to be symmetric nor non-degenerate. We will say that
(h � , � i, L) is metabolicor totally isotropic if there exists a splittingL � L1� L2 with
rk L D 2(rk L1) and h � , � ijL1�L1 � 0. We shall add pairs (h � , � i1, L1) and (h � , � i2, L2)
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by direct summing them, i.e.

(h � , � i1, L1)� (h � , � i2, L2) D (h � , � i1� h � , � i2, L1� L2).

With these definitions understood, we define thealgebraic concordance groupC1 to be
the set of pairs (h � , � i, L) as above, up to the equivalence relation� by which

(h � , � i1, L1) � (h � , � i2, L2)

if and only if

(h � , � i1, L1)� (�h � , � i2, L2) is metabolic.

We shall refer to this equivalence relation as that ofalgebraic concordance. Under the
operation of direct summing,C1 becomes an Abelian group. An easy check reveals that
the inverse of (h � , � i, L) is (�h � , � i, L). The groupC1 was introduced by Jerry Levine
in [9] and its isomorphism type was completely determined byhim in [10].

The relation ofC1 to knot theory is as follows: LetK be a knot inS3 and let6 � S3 be an oriented genusg Seifert surface forK . We shall view the orientation
on 6 as being given by an normal nowhere vanishing vector fieldEn on 6. Recall from
the introduction that the linking pairinglk W H1(6I Z) � H1(6I Z)! Z is defined by

lk(x, y) D linking number ofx and yC,

where, by a customary blurring of viewpoints, we interpretx and y as simple closed
curves on6. With this in mind, yC is a small push-off ofy in the normal direction of6 determined byEn. It is well known (see e.g. [17]) that (lk, H1(6IZ)) is an admissible
pair and therefore the assignment (K , 6) 7! (lk, H1(6I Z)) 2 C1 is well defined. As
Levine shows in [9], the algebraic concordance class of (lk, H1(6IZ)) is independent of6 and by abuse of notation, we shall denote it simply byK , hoping that no confusion
will arise. Levine also shows that ifK1 and K2 are (geometrically) concordant as knots
then their linking forms are algebraically concordant. This statement applies to both
smooth and topological (geometric) concordance.

2.2. The Witt ring over the field F . For an excellent introduction to Witt rings
we advise the reader to consult [8], but see also [5] and [18].The first half of this sec-
tion is a re-iteration of the description for the Witt ringW(Q) over the rational num-
bers extended to arbitrary fields.

Let F be a field and consider pairs (h � , � i, V) where V is a finite dimensionalF-vector space andh � , � iW V �V ! F is a symmetric, non-degenerate bilinear pairing.
By “non-degenerate” we mean that the mapv 7! h � , vi provides an isomorphism from
V to V�. We call a pair (h � , � i, V) metabolicor totally isotropic if there exists a
subspaceW � V with dimF V D 2 dimF W and such thath � , � ijW�W � 0. As in the
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case ofF D Q, we define addition of (h � , � i1, V1) and (h � , � i2, V2) by direct sum

(h � , � i1, V1)� (h � , � i2, V2) D (h � , � i1� h � , � i2, V1� V2),

and we proceed to define the equivalence relation (h � , � i1, V1) � (h � , � i2, V2) to mean
that (h � , � i1, V1)� (�h � , � i2, V2) is metabolic. The set of equivalence classes of pairs
(h � , � i, V) is denoted byW(F) and called theWitt ring of F . It becomes an Abelian
group under the direct sum operation and a commutative ring with the operation of
multiplication given by tensor products

(h � , � i1, V1)
 (h � , � i2, V2) D (h � , � i1 � h � , � i2, V1
F V2).

The Witt ring W(F) was introduced by Witt in [20] and has found renewed promin-
ence in the theory of quadratic forms over fields through the work of Pfister (see for
example [15, 16]).

As is usual in the literature, we will denoteF�f0g by PF . Let us recall the notationhai already used in the introduction: Givena 2 PF we let hai denote the non-degenerate
symmetric bilinear form (h � , � ia, F) specified byh1, 1ia D a. Note that

(2) hai D ha � b2i 2 W(F), 8b 2 PF and hbi � h�bi D 0 2 W(F), 8b 2 PF .

The first of these follows from the fact thatf W (hai, F)! (ha �b2i, F) given by f (x) D
x � b is an isomorphism of forms. The second form is clearly metabolic and thus zero
in W(F). These “harmless” observations are incredibly useful in computations and we
will rely on them substantially in our sample calculations in Section 5. With this no-
tation in mind, the next theorem can be found in [8].

Theorem 2.1. Let h � , � i be a non-degenerate symmetric bilinear form on a finite
dimensionalF-vector space V of dimension n. Then there exist scalars d1, : : : , dn 2 PF
such that

h � , � i D hd1i � � � � � hdni 2 W(F).

Said differently, W(F) is generated by the setfhai j a 2 PFg. A presentation of W(F)
(as a commutative ring) is obtained from these generators along with the relators
(R1) 1� h�1i,
(R2) hai � hbi � h�a � bi, a, b 2 PF ,
(R3) haC bi � (1C ha � bi)� h�ai � h�bi, a, b 2 PF .
In other words, W(F) is isomorphic to quotient of the free commutative ring generated
by the setfhai j a 2 PFg moded out by the ideal generated by elements of the form as
in (R1)–(R3). In (R1), the symbol1 denotes the multiplicative unit of W(F).
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REMARK 2.2. We shall adopt the use of the symbol	 as the inverse operation
of addition� in W(F). For example, the relations (R1)–(R3) from the preceding the-
orem can be rewritten with the	 sign as
(R1) 1	 h1i,
(R2) hai � hbi 	 ha � bi, a, b 2 PF ,
(R3) haC bi � hab(aC b)i 	 hai 	 hbi, a, b 2 PF .

With this understood, we turn to studying some specific Witt rings. We will chiefly
be interested in the cases whereF is eitherQ or F} where the latter will be our no-
tation for the finite fieldZ=}Z of characteristic} � 2. The next result can again be
found in [8] and also in [5].

Theorem 2.3. Let } 2 Z be a prime. Then there are isomorphisms of Abelian
groups

W(F}) �
8<
:
Z2I } D 2,Z2� Z2I } � 1 (mod 4),Z4I } � 3 (mod 4).

The generators ofZ2 � W(F2) and of Z4 � W(F}) with } � 3 (mod 4) are given
by h1i while the two copies ofZ2 in W(F}) in the case when} � 1 (mod 4) are

generated byh1i and hai where a2 PF � PF2 is any non-square element.

The origins of the proof of the next theorem go back to Gauss’ work on quadratic
reciprocity, it was re-discovered by Milnor and Tate [5].

Theorem 2.4. There is an isomorphism of Abelian groups

� � � W W(Q)! Z�
0
BB� M

}2N}Dprime

W(F})

1
CCA,

where� W W(Q)! Z is the signature function while� W W(Q)!�}W(F}) is the dir-
ect sum of homomorphisms�} W W(Q)! W(F}) (with } ranging over all primes) de-
scribed on generators of W(F}) as follows: Given a rational number� ¤ 0, write it
as � D }l � � where l is an integer and� a rational number whose numerator and
denominator are relatively prime to}. Then

(3) �}(h}l � �i) D �0I l is even,h�iI l is odd.

Corollary 2.5. As an Abelian group, W(Q) is isomorphic toZ� Z12 � Z14 .
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2.3. The concordance group of isometric structures. For more details on this
section, see [10].

Let F be a field, then anisometric structure overF is a triple (h � , � i, T , V)
consisting of a non-degenerate symmetric bilinear form (h � , � i, V) and a linear operator
T W V ! V which is an isometry with respect toh � , � i, i.e. hTv, Twi D hv, wi for allv,w 2 V . A triple (h � , � i, T , V ) shall be calledmetabolicor totally isotropic if there is
a half-dimensioinalT-invariant subspaceW � V for which h � , � ijW�W � 0. Much as
in the case of the algebraic concordance groupC1 and the Witt ringW(F), isometric
structures too are added by direct sum�. We define two triples (h � , � i1, T1, V1) and
(h � , � i2, T2, V2) to be equivalent if

(h � , � i1, T1, V1)� (�h � , � i2, �T2, V2),

is metabolic. With these definitions understood, we define the concordance group of
isometric structuresI(F) as the set of equivalence classes of triples (h � , � i, T , V) as
above. Not surprisingly,I(F) becomes an Abelian group under the operation of direct
summing.

2.4. Maps between the algebraic concordance groups.Having definedC1,
W(F) and I(F), we turn to describing some natural maps between them in thecase
when F D Q. We start by a lemma proved by Levine in [10].

Lemma 2.6. Let (h � , � i, L) be an admissible pair(as in Section 2.1). Then there
exists an admissible pair(h � , � i0, L 0) algebraically concordant to(h � , � i, L) and such
that h � , � i0 W L 0 � L 0 ! Z is a non-degenerate bilinear form.

With this in mind, consider an admissible non-degenerate pair (h � , � i, L). Given
any basisB D f�1, : : : , �ng of L, let A be the matrix representingh � , � i, that is, set
ai , j D h�i , � j i and let AD [ai , j ]. We define the maps' W C1! W(Q), '1W C1! I(Q)
and W I(Q)! W(Q) as in [10]

'(h � , � i, L) D (h � , � i C h � , � i� , L 
Z Q),

'1(h � , � i, L) D (AC A� , �A�1A� , L 
Z Q),

 (h � , � i, T , V) D (h � , � i, V).

It is not hard to verify that the definition of'1 is independent of the choice of the
basisB of L. It is also easy to verify that, with respect toB, the matrix�A�1A�
defines an isometry onL 
ZQ. Is should be clear that' D  Æ '1, as already pointed
out in the introduction. We leave it as an (easy) exercise forthe reader to check that
these maps are well defined. This requires one to show that metabolic elements from
any one group map to metabolic elements in the other groups.



RATIONAL WITT CLASSES OFPRETZEL KNOTS 991

We conclude this section by reminding the reader of the isomorphism types ofC1,
W(Q) and I(Q) stated in the introduction:

C1 � Z1 � Z12 � Z14 '1 K
' K

I(Q) � Z1 � Z12 � Z14
 K

W(Q) � Z� Z12 � Z14 .

As already mentioned, Levine showed'1 to be injective. Clearly injectivity cannot hold
for '. However, given the above diagram, one cannot help but ask: “How much loss of
information is there if one restricts' to the torsion subgroup ofC1?” As Theorem 1.16
shows, the restriction of' to the torsion subgroup ofC1 is unfortunately not injective.
Nevertheless, Examples 1.7–1.10 show that'jTor(C1) contains significantly more infor-
mation than just the knot determinant.

3. The linking matrices

In this section we compute the linking matrix forK D P(p1, : : : , pn) associated to
a choice of oriented Seifert surface6 for K along with a concrete basis forH1(6I Z).
The details of these computations for the three cases (i)–(iii) from (1) proceed in slightly
different manners.

3.1. The case ofn, p1, : : : , pn�1 odd and pn even. For the remainder of this
subsection, we shall assume the conditions from its title with the additional constraints
that n � 3 and pn ¤ 0.

We start by recalling Fig. 1 in which we chose a particular projection for the pret-
zel knot P(p1, : : : , pn). We choose61 to be the Seifert surface forK obtained from
that projection via Seifert’s algorithm (see for example [17]). Specifically,61 consists
of n�1 disks D1, : : : , Dn�1 of which Di and DiC1 are connected withjpi j bands, each
carrying a single half-twist whose handedness is determined by the sign ofpi (in that
the band obtains a right-handed twist ifpi < 0 and a left-handed twist ifpi > 0). The
disks Dn�1 and D1 are similarly connected withjpn�1j bands. Finally, there is a band
with jpnj half-twists (right-handed ifpn > 0 and left-handed ifpn < 0) both of whose
ends are attached toD1. Note that the genus of61 is jp1jC jp2jC � � �C jpn�1jC3�n.
We label the bands connectingDi to DiC1 by Bi

1, : : : , Bijpi j and we label those con-

necting Dn�1 to D1 by Bn�1
1 , : : : , Bn�1jpn�1j. The unique band withjpnj twists is labeled

Bn. All of our conventions and labels are illustrated in Fig. 2.
With these preliminaries in place, we choose our basis

(4) B1 D f�1
1, : : : , �1jp1j�1, �2

1, : : : , �2jp2j�1, : : : , �n�1
1 , : : : , �n�1jpn�1j�1, 
 , Æg

for H1(61I Z) in the following way:
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1. We let�i
j to be the simple closed curve passing through the bandsBi

1 and Bi
jC1.

2. We pick
 to be the simple closed curve passing over the bandsB1
1, B2

1, : : : , Bn�1
1 .

3. The remaining curveÆ passes once through the bandBn.
These curves, along with our orientation conventions, are also depicted in Fig. 2. The
orientation of61 is determined by the normal vector field which points outwards from
the page (and towards the reader) on all disksD1, D3, D5, : : : and into the page (and
away from the reader) on the disksD2, D4, D6, : : : . These conventions are indicated
by the symbols� and	 respectively in Fig. 2.

With these definitions in place, we are ready to start computing entries in the link-
ing matrix L D [l i , j ] where l i , j D lk(xi , x j ). Here xi is the i -th element of the basis
B1 and lk(xi , x j ) is the linking number ofxi and xCj . The latter is a small push-off of
x j in the direction of the normal vector field on61 determined by its orientation, as
already previously indicated.

Seeing as the loops�i
k and � j

m are disjoint for any choice ofi ¤ j , we find that

lk(�i
k, � j

m) D lk(� j
m, �i

k) D 0 for any choices ofi , j , k, m with i ¤ j . For the same
reason, one also obtainslk(�i

k, Æ) D lk(Æ, �i
k) D 0 for any choices ofi , k.

The contribution of the subsetf�i
1, : : : , �ijpi j�1g of B1 to the linking formL, only

depends onpi . To see how, let us introduce then� n matricesXn and Yn D XnC X�
n

by the formulae

Xn D

2
666666664

1 0 0 � � � 0 0
1 1 0 � � � 0 0
1 1 1 � � � 0 0
...

...
...

. ..
...

...
1 1 1 � � � 1 0
1 1 1 � � � 1 1

3
777777775

and Yn D

2
666666664

2 1 1 � � � 1 1
1 2 1 � � � 1 1
1 1 2 � � � 1 1
...

...
...

. ..
...

...
1 1 1 � � � 2 1
1 1 1 � � � 1 2

3
777777775

.(5)

By consulting Fig. 2, one finds that

lk(�i
k, �i

m) D �0I k < m�1I k � m
if pi > 0 and i is even,

lk(�i
k, �i

m) D ��1I k � m
0 k > m

if pi < 0 and i is even,

lk(�i
k, �i

m) D ��1I k � m
0I k > m

if pi > 0 and i is odd,

lk(�i
k, �i

m) D �0I k < m�1I k � m
if pi < 0 and i is odd.

(6)
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Fig. 2. Our choice of Seifert surface61 for P(p1, : : : , pn) for the
case whenn, p1, : : : , pn�1 are odd andpn is even. This example
shows the knotP(�1, 3,�5, 3, 4). The choices of generators for
H1(61I Z) along with their orientations are indicated.
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Fig. 3. This figure computes the linkinglk(�i
1,�i

2) when i is even.

The two push-offs�i ,C
1 and �i ,C

2 of �i
1 and �i

2 respectively, are
shown in the bottom two pictures. The linking of the two is read-
ily computed from these.

The case ofpi > 0 and i even is singled out in Fig. 3. From this we find thatLi , the
restriction of the linking formL to the Span(�i

1, : : : , �ijpi j�1), with respect to the basisf�i
1, : : : , �ijpi j�1g takes on one of 4 possible forms:

Li D

8���������<
���������:

�Xjpi j�1I if pi > 0 and i is even,

X�jpi j�1I if pi < 0 and i is even,

�X�jpi j�1I if pi > 0 and i is odd,

Xjpi j�1I if pi < 0 and i is odd.
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Even so, the matrix representingLi CL�i in each of the four cases above, can then
be expressed with a single relation as

Li C L�i D � Sign(pi )Yjpi j�1.(7)

Having worked out all of the linking numberslk(�i
k,� j

m), we now turn to exploring
how 
 andÆ contribute toL. Their linking numbers with the various other curves from
the basisB1 are easily read off from Fig. 2:

lk(
 , 
 ) D �1

2
(Sign(p1)C Sign(p2)C � � � C Sign(pn�1)),

lk(
 , Æ) D 0,

lk(Æ, 
 ) D 1,

lk(Æ, Æ) D pn

2
,(8)

while the linking numbers of
 with the various�i
k are

lk(
 , �i
k) D

8��<
��:
�1I if pi > 0 and i is even,
0I if pi < 0 and i is even,
0I if pi > 0 and i is odd,
1I if pi < 0 and i is odd,

lk(�i
k, 
 ) D

8��<
��:

0I if pi > 0 and i is even,
1I if pi < 0 and i is even,�1I if pi > 0 and i is odd,
0I if pi < 0 and i is odd.

(9)

As earlier, we see that whilelk(�i
k, 
 ) and lk(
 , �i

k) depend on a number of cases, the
quantity lk(
 , �i

k) C lk(�i
k, 
 ) always equals� Sign(pi ). We are thus in a position to

assemble all the pieces.

Theorem 3.1. Let n, p1, : : : , pn�1 be odd integers with n� 3 and let pn ¤ 0 be
an even integer. To keep notation below at bay, let us also introduce the abbreviations

si D � Sign(pi ), sD s1C � � � C sn�1, �i D jpi j � 1.

Then the symmetrized linking formLCL� of the pretzel knot P(p1, : : : , pn) associated
to the oriented Seifert surface61 and the basis

B1 D f�1
1, : : : , �1jp1j�1, �2

1, : : : , �2jp2j�1, : : : , �n�1
1 , : : : , �n�1jpn�1j�1, 
 , Æg
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of H1(61I Z) as chosen above(see specificallyFig. 2), has the form

LC L� D

2
6666666666666666666666664

� � � s1 0

s1Y�1 0 � � � 0
...

...� � � s1 0� � � s2 0

0 s2Y�2 � � � 0
...

...� � � s2 0
...

...
...

...
...

...
. ..

...
...

sn�1 0

0 0 sn�1Y�n�1

...
...

sn�1 0
s1 � � � s1 s2 � � � s2 � � � sn�1 � � � sn�1 s 1
0 � � � 0 0 � � � 0 � � � 0 � � � 0 1 pn

3
7777777777777777777777775

.

The matrices Y� are as introduced in(5).

3.2. The case ofn even, p1, : : : , pn�1 odd and pn even. We turn to the next
case of choice of parities ofn, p1,: : : , pn and pick it for the remainder of this section to
be as listed in the title. We also keep our additional assumptions of n � 3 and pn ¤ 0.

The Seifert surface62 that we choose forP(p1, : : : , pn) and the preferred basisB2

for H1(62I Z) are very much like in the case considered in Section 3.1. Specifically,
we let 62 be obtained from61 (61 is the Seifert surface from Section 3.1) by sim-
ply deleting its unique bandBn with and even number of half-twists and allowing the
number of bands which connect the disksDn and D1 to be an even number, namleyjpnj. We then arrive at a surface62 as in Fig. 4. The same figure also indicates our
choice of basis

B2 D f�1
1, : : : , �1jp1j�1, �2

1, : : : , �2jp2j�1, : : : , �n
1, : : : , �njpnj�1, 
 g

for H1(62I Z) which is identical toB1 from (4) safe that we are presently no longer
requiring the generatorÆ. The orientation convention is as in the previous section and
is again indicated by a� and	 in Fig. 4.

The linking numbers between the various�i
k and � j

m and indeed between the�i
k

and 
 are identical to those found in Section 3.1. We thus immediately arrive at the
analogue of Theorem 3.1:

Theorem 3.2. Let n� 3 be an even integer and let p1, : : : , pn�1 be odd integers
and pn ¤ 0 an even integer. Let us re-introduce the abbreviations

si D � Sign(pi ), sD s1C � � � C sn�1, �i D jpi j � 1.
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Fig. 4. Our choice of Seifert surface62 for P(p1, : : : , pn) for the
case whenn is even, p1, : : : , pn�1 are odd andpn is even. Our
example shows the knotP(3,�5, 3, 2). The choices of generators
for H1(62I Z) with their orientations are indicated.
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Then the symmetrized linking formLCL� of the pretzel knot P(p1, : : : , pn) associated
to the oriented Seifert surface62 and the basis

B2 D f�1
1, : : : , �1jp1j�1, �2

1, : : : , �2jp2j�1, : : : , �n
1, : : : , �njpnj�1, 
 g

of H1(62I Z) as chosen above(see specificallyFig. 4), takes the form

LC L� D

2
66666666666666666666664

� � � s1

s1Y�1 0 � � � 0
...� � � s1� � � s2

0 s2Y�2 � � � 0
...� � � s2

...
...

...
...

...
...

.. .
...

sn

0 0 snY�n

...
sn

s1 � � � s1 s2 � � � s2 � � � sn � � � sn s

3
77777777777777777777775

.

The matrices Y� are again as defined in(5).

3.3. The case ofn and p1, : : : , pn odd. In this section we consider the remain-
ing case where all ofn, p1, : : : , pn are odd withn � 3. We start by picking a Seifert
surface63 for P(p1, : : : , pn) which is this time obtained by taking two disks and con-
necting them byn bandsB1, : : : , Bn, each withjpi j half twists (right-handed twists if
pi > 0 and left-handed twists ifpi < 0). The thus obtained surface looks as in Fig. 5.
We next choose a basis

B3 D f�1, : : : , �n�1g
of H1(63I Z) by letting �i be the curve on63 which runs through the bandsBi and
BiC1. The orientation conventions for the�i and indeed the orientation for62 itself
(indicated again by a� and a	) are depicted in Fig. 5.

The linking form in this basis is rather easy to determine. Note first thatlk(�i ,� j )D 0
wheneverji � j j � 2. On the other hand, by inspection from Fig. 5, it follows that

lk(�i , �i ) D pi C piC1

2
, lk(�i , �iC1) D � piC1C 1

2
, lk(�iC1, �i ) D � piC1 � 1

2
.

With this in place, here is the analogue of Theorems 3.1 and 3.2 for the present case.

Theorem 3.3. Let n� 3 be an odd integer and let p1, : : : , pn be any odd integers.
Then the symmetrized linking formLCL� of the pretzel knot P(p1, : : : , pn) associated



RATIONAL WITT CLASSES OFPRETZEL KNOTS 999

Fig. 5. Our choice of Seifert surface63 for P(p1, : : : , pn) for the
case whenn and p1,:::, pn are odd. This example shows the knot
P(5,�3, 3,�3,�1). The choices of generators forH1(63IZ) with
their orientations are indicated.

to the oriented Seifert surface63 and the basisB3 D f�1, : : : , �n�1g of H1(63I Z) as
chosen above(seeFig. 5) takes the form

LC L�

D

2
666666664

p1C p2 �p2 0 0 � � � 0 0 0�p2 p2C p3 �p3 0 � � � 0 0 0
0 �p3 p3C p4 �p4 � � � 0 0 0
...

...
...

...
.. .

...
...

...
0 0 0 0 � � � �pn�2 pn�2C pn�1 �pn�1

0 0 0 0 � � � 0 �pn�1 pn�1C pn

3
777777775

.

4. Diagonalizing the linking matrices

In this section we show how one can diagonalize the matricesL C L� obtained
in Theorems 3.1, 3.2 and 3.3. We do this essentially using theGram–Schmidt process
on (h � , � i, H1(6IQ)) with hx, yi D lk(x, y)C lk(y, x). We need to exercise a bit of
care since, whileh � , � i is non-degenerate, it is by no means definite and square zero
vectors do exist.
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OnceL C L� has been diagonalized, it is an easy matter to read off the rational
Witt class ofLC L� in terms of the generators ofW(Q).

4.1. The Gram–Schmidt procedure and reduction. We start by reminding the
reader of the Gram–Schmidt process on an arbitrary finite dimensional inner product
space (h � , � i, V ). By convention, such an inner producth � , � i is assumed to be positive
definite. We then address the issue of square zero vectors in (h � , � i, H1(6IQ)).

Theorem 4.1 (Gram–Schmidt). Let f f1, : : : , fng be a basis for the inner product
space(h � , � i, V) and let fe1, : : : , eng be the set of vectors obtained as

e1 D f1,

e2 D f2 � h f2, e1ihe1, e1ie1,

e3 D f3 � h f3, e2ihe2, e2ie2 � h f3, e1ihe1, e1ie1,

� � �
en D fn � h fn, en�1ihen�1, en�1ien�1 � � � � � h fn, e1ihe1, e1i e1.

Thenfe1, : : : , eng is an orthogonal basis for V and Spanfe1, : : : , ei gD Spanf f1, : : : , fi g
for each i� n.

REMARK 4.2. In order to keep the scalars in our computations integral (rather
than rational and non-integral), we will often use the slightly modified Gram–Schmidt
process by which we set

ei D di �
�

fi � h fi , ei�1ihei�1, ei�1iei�1 � � � � � h fi , e1ihe1, e1ie1

�
,

wheredi is some common multiple ofhe1, e1i, : : : , hei�1, ei�1i. Clearly the conclusions
of Theorem 4.1 remain valid for the setfe1, : : : , eng for any choice ofdi ¤ 0.

The next theorem addresses the failure of the Gram–Schmidt procedure in the pres-
ence of square zero vectors (on non-definite inner product spaces). The result should be
viewed as an iterative prescription to be applied as many times in the Gram–Schmidt
process as is the number of square zero vectorsei encountered.

Theorem 4.3. Let (h � , � i, V) be a pair consisting of a finite dimensionalF-vector
space V and a non-degenerate bilinear symmetric formh � , � i. Let f f1, : : : , fng be a
basis for V and let, for some m< n, fe1, : : : , emg be obtained fromf f1, : : : , fng as
in Theorem 4.1 (or alternatively as inRemark 4.2). Assume thathei , ei i ¤ 0 for all
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i < m but that hem, emi D 0. Additionally, suppose also thathem, fmC1i ¤ 0 (which
can always be achieved by a simple reordering, if necessary, of fmC1, : : : , fn).

Then (h � , � i, V) is equal to(h � , � i0, V 0) in the Witt ring W(F) where

V 0 D Span(e1, : : : , em�1, f 0mC2, : : : , f 0n) and h � , � i0 D h � , � ijV 0�V 0 ,
with

f 0mC1 D fmC1 � m�1X
jD1

h fmC1, ej ihej , ej i ej ,

f 00mCk D fmCk � m�1X
jD1

h fmCk, ej ihej , ej i ej ,

f 0mCk D f 00mCk � h f 00mCk, emih f 0mC1, emi f 0mC1

� h f 00mCk, f 0mC1i � h f 0mC1, emi � h f 00mCk, emi � h f 0mC1, f 0mC1ih f 0mC1, emi � h f 0mC1, emi em,

where the last two equations are valid for k� 2.

Proof. Let A be the symmetric non-degeneraten � n matrix representingh � , � i
with respect to the basisfe1, : : : , em�1g [ fem, fmC1, : : : , fng. Then A is of the form

AD

2
666666666664

he1, e1i � � � 0 0 he1, fmC1i � � � he1, fni
...

...
...

...
...

...
...

0 � � � hem�1, em�1i 0 hem�1, fmC1i � � � hem�1, fni
0 � � � 0 0 hem, fmC1i � � � hem, fnih fmC1, e1i � � � h fmC1, em�1i h fmC1, emi h fmC1, fmC1i � � � h fmC1, fni
...

...
...

...
...

...
...h fn, e1i � � � h fn, em�1i h fn, emi h fn, fmC1i � � � h fn, fni

3
777777777775

.

For k � 1, let f 00mCk be given by

f 00mCk D fmCk � m�1X
jD1

h fmCk, ej ihej , ej i ej ,

so thath f 00mCk, ei i D 0 for all k � 1 and all i � m�1. Thus the matrixA00 representing
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LC L� with respect to the basisfe1, : : : , em�1g [ fem, f 00mC1, : : : , f 00n g looks like

A00 D
2
64
he1, e1i � � � 0

...
...

...
0 � � � hem�1, em�1i

3
75

�
2
6664

0 hem, fmC1i � � � hem, fnih fmC1, emi h f 00mC1, f 00mC1i � � � h f 00mC1, f 00n i
...

...
.. .

...h fn, emi h f 00n , f 00mC1i � � � h f 00n , f 00n i

3
7775.

Note thathem, f 00mCki D hem, fmCki for all k � 1. To simplify the second summand, we
introduce a further change of basis by setting

f 0mCk D f 00mCk � h f 00mCk, emih f 00mC1, emi f 00mC1

� h f 00mCk, f 00mC1i � h f 00mC1, emi � h f 00mCk, emi � h f 00mC1, f 00mC1ih f 00mC1, emi � h f 00mC1, emi em

for all k � 2 and for convenience, setf 0mC1 D f 00mC1. A quick check reveals that now

h f 0mCk, emi D 0 and h f 0mCk, f 0mC1i D 0, 8k � 2.

Therefore the second summand ofA00 above, when expressed with respect to the basisfem, f 0mC1g [ f f 0mC2, : : : , f 0ng, takes the form

�
0 hem, fmC1ih fmC1, emi h f 0mC1, f 0mC1i

��
2
64
h f 0mC2, f 0mC2i � � � h f 0mC2, f 0ni

...
...h f 0n, f 0mC2i � � � h f 0n, f 0ni

3
75.

Since the first summand is metabolic and therefore equals zero in W(F), the claim of
the theorem follows.

We shall refer to the passage from (h � , � i, V) to (h � , � i0, V 0), as described in The-
orem 4.3, asreduction, seeing as the dimension ofV gets reduced by 2 in the process.

4.2. The case ofn, p1, : : : , pn�1 odd and pn even, revisited. The goal of this
subsection is to diagonlize the symmetrized linking matrixL C L� obtained in The-
orem 3.1. Specifically, we want to find a regular matrixP of the same dimension as
LC L� such thatP� (LC L� )P is a diagonal matrix. By way of shortcut of notation,
we will write hx, yi to denotelk(x, y)C lk(y, x).
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As the matrixL C L� from Theorem 3.1 consists of a number of matrix blocks
of the form �Ym (see (5) for the definition ofYm), we first take the time to apply
the Gram–Schmidt process to the latter. We letPm denote the upper triangularm�m
matrix given by

Pm D

2
666666664

1 �1 �1 �1 � � � �1 �1
0 2 �1 �1 � � � �1 �1
0 0 3 �1 � � � �1 �1
...

...
...

...
...

...
...

0 0 0 � � � m� 1 �1
0 0 0 � � � 0 m

3
777777775

.(10)

Lemma 4.4. Consider the inner product space(h � , � i,Zm) where the inner prod-
uct h � , � i with respect to the standard basisf�1, : : : , �mg of Zm is given by

h�i , � j i D (i , j )-th entry of the matrix Ym from (5).

Then defining a1 D �1 and ai D i�i � �i�1 � �i�2 � � � � � �1 for 2 � i � m, yields an
orthogonal basis for(h � , � i, Zm) with hai , ai i D i (i C 1). Said differently,3

P�
mYmPm D Diag(1� 2, 2 � 3, 3 � 4, : : : , m � (mC 1)).

Proof. This is a straightforward application of the Gram–Schmidt process. Letai

be as stated in the lemma and assume thatfa1, : : : , ai g is an orthogonal set for all
i < k � m with the stated squareshai , ai i D i (i C 1) (the case ofi D 1 being clearly
true). We prove that the statement remains true ifi is chosen to bek. Note that

h�k, ai i D h�k, i�i � �i�1 � � � � � �1i D i � 1� 1� � � � � 1D 1,

for any choice ofi < k. Using the Gram–Schmidt process gives

ak D �k � h�k, ak�1ihak�1, ak�1iak�1 � � � � � h�k, a1iha1, a1ia1

D �k � 1

(k � 1)k
((k � 1)�k�1 � �k�2 � � � � � �1) � � � � � �1

D 1

k
(k�k � �k�1 � �k�2 � � � � � �1).

Proceeding as in Remark 4.2, we letak be equal to

ak D k�k � �k�1 � �k�2 � � � � � �1

3Here and in the remainder of the article, we let Diag(x1, x2, : : : , xm) denote them � m square
matrix whose off-diagonal entries are zero and whose diagonal entries are given byx1, : : : , xm.
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which already showes thatfa1, : : : , akg is orthogonal. To complete the proof of the
lemma, we need to computehak, aki:

hak, aki D hk�k � �k�1 � � � � � �1, k�k � �k�1 � � � � � �1i
D k2h�k, �ki � 2kh�k, �k�1C � � � C �1i C k�1X

iD1

h�i , �i i C k�1X
i , jD1
i¤ j

h�i , � j i
D 2k2 � 2k(k � 1)C 2(k � 1)C ((k � 1)2 � (k � 1))

D k(kC 1),

which is as claimed.

We proceed by defining vectorsai
k as

ai
k D k�i

k � �i
k�1 � � � � � �i

1,

for eachi D 1, : : : , n � 1, and where the various�i
k are the elements of the basisB1

defined in (4) from Subsection 3.1. Lemma 4.4 then shows that for each such index
i , the setfai

1, : : : , aijpi j�1g is an orthogonal set with respect toh � , � i D L C L� and

hai
k, ai

ki D � Sign(pi )k(k C 1). Moreover, sinceh�i
k, � j

mi D 0 wheneveri ¤ j , we see
that in fact the set

B?
1,prelimD fa1

1, : : : , a1jp1j�1, a2
1, : : : , a2jp2j�1, : : : , an�1

1 , : : : , an�1jpn�1j�1g(11)

is also an orthogonal set.
We then turn to finding two additional vectors (related to
 and Æ), which we

shall label X and Y, needed to completeB?
1,prelim to an orthogonal basis forB?

1 for
H1(61IQ). We find X using again the Gram–Schmidt process.

Lemma 4.5. Setting X equal to

X D jp1 � � � pn�1j
 � n�1X
iD1

  
n�1Y

kD1, k¤i

jpkj
! jpi j�1X

kD1

�i
k

!
,

makes the setB?
1,prelim[ fXg an orthogonal set. Additionally, the square of X is

hX, Xi D �(p1 � � � pn�1) �
 

n�1X
iD1

p1 � � � Opi � � � pn�1

!
.
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Proof. An easy induction argument onjpi j shows that

jpi j�1X
kD1

h
 , ai
kihai

k, ai
kiai

k D 1jpi j (�i
1C �i

2C � � � C �ijpi j�1).

Letting X be given by the Gram–Schmidt formula applied to the linearlyindependent
setB?

1,prelim[ f
 g, i.e.

X D 
 � n�1X
iD1

jpi j�1X
kD1

h
 , ai
kihai

k, ai
kiai

k,

leads, in conjunction with the preceding formula, to

X D 
 � n�1X
iD1

1jpi j
jpi j�1X
kD1

�i
k.

To keep coefficients integral (see Remark 4.2) we multiply the right-hand side of the
above byjp1 � � � pn�1j and setX instead equal to

X D jp1 � � � pn�1j
 � n�1X
iD1

  
n�1Y

kD1, k¤i

jpkj
! jpi j�1X

kD1

�i
k

!
,

as in the statement of the lemma. Thus,B?
1,prelim[ fXg is indeed an orthogonal set.

We next computehX, Xi:
hX, Xi D (p1 � � � pn�1)2h
 , 
 i C n�1X

iD1

" Y
k¤i

jpkj
!2* jpi j�1X

kD1

�i
k,

jpi j�1X
kD1

�i
k

+#

� 2
n�1X
iD1

(p1 � � � pn�1)2

jpi j
*

 ,

jpi j�1X
kD1

�i
k

+
.

In the second term of the right-hand side, we relied on the fact that h�i
k,� j

l i D 0 when-
ever i ¤ j . Using the linking formL from Theorem 3.1, it is easy to see that (for
example by induction onjpi j)* jpi j�1X

kD1

�i
k,

jpi j�1X
kD1

�i
k

+
D � Sign(pi )jpi j(jpi j � 1),

*

 ,

jpi j�1X
kD1

�i
k

+
D � Sign(pi )(jpi j � 1),
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which in turn shows that

n�1X
iD1

" Y
k¤i

jpkj
!2* jpi j�1X

kD1

�i
k,

jpi j�1X
kD1

�i
k

+#
� 2

n�1X
iD1

(p1 � � � pn�1)2

jpi j
*

 ,

jpi j�1X
kD1

�i
k

+

D � n�1X
iD1

Sign(pi )
(p1 � � � pn�1)2

jpi j (jpi j � 1)C 2
n�1X
iD1

Sign(pi )
(p1 � � � pn�1)2

jpi j (jpi j � 1)

D n�1X
iD1

Sign(pi )
(p1 � � � pn�1)2

jpi j (jpi j � 1)

D jp1 � � � pn�1j n�1X
iD1

Sign(pi )

 Y
k¤i

jpkj
!

(jpi j � 1).

Finally, recalling (see Theorem 3.1) thath
 , 
 i D �(Sign(p1)C � � � C Sign(pn�1)), we
are able to assemble all the pieces to computehX, Xi:

1jp1 � � � pn�1j hX, Xi D �jp1 � � � pn�1j(Sign(p1)C � � � C Sign(pn�1))

C n�1X
iD1

Sign(pi )

 Y
k¤i

jpkj
!

(jpi j � 1)

D � n�1X
iD1

Sign(pi )
Y
k¤i

jpkj,
and so

hX, Xi D �(p1 � � � pn�1)2 � � 1

p1
C � � � C 1

pn�1

�
,

as claimed in the statement of the lemma.

In the final step, we would like to find a vectorY 2 H1(61IQ) such thatB?
1,prelim[fX, Yg is an orthogonal basis. Whilehai

k, ai
ki ¤ 0 for any choice ofi , k, and thus the

Gram–Schmidt process worked well for findingX, it is possible, and it does happen,
that hX, Xi D 0. This of course obstructs us from findingY by means of the Gram–
Schmidt process, calling instead for an application of Theorem 4.3. We proceed by
treating the two caseshX, Xi ¤ 0 and hX, Xi D 0 separately.

Lemma 4.6. Let X 2 H1(61IQ) be as defined inLemma 4.5and assume thathX, Xi ¤ 0. Define Y2 H1(61IQ) as

Y D jp1 � � � pn�1j
�

1

p1
C � � � C 1

pn�1

�Æ C X.
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ThenB?
1 D B?

1,prelim[ fX, Yg is an orthogonal basis and

hY, Yi D
 

n�1X
iD1

p1 � � � Opi � � � pn�1

!
�
 

nX
iD1

p1 � � � Opi � � � pn

!
.

Proof. Our assumptionhX, Xi ¤ 0 allows us to use the Gram–Schmidt process
to find Y as

Y D Æ � hÆ, XihX, XiX �
n�1X
iD1

jpi j�1X
kD1

hÆ, ai
kihai

k, ai
kiai

k.

Since hÆ, �i
ki D 0 for all i , k it follows that hÆ, ai

ki D 0 also, reducing the above for-
mula to

Y D Æ � hÆ, XihX, XiX.

With hX, Xi already computed in Lemma 4.5, the same lemma (using also theresult
of Theorem 3.1) implies that

hÆ, Xi D jp1 � � � pn�1j,
showing that

Y D Æ C 1jp1 � � � pn�1j(1=p1C � � � C 1=pn�1)
X.

To keep our coefficients integral (see Remark 4.2) we insteadset

Y D jp1 � � � pn�1j
�

1

p1
C � � � C 1

pn�1

�Æ C X,

showing thatB?
1 D B?

1,prelim[ fX, Yg is an orthogonal basis for (h � , � i, H1(61IQ)). It
remains to calculatehY, Yi:
hY, Yi D (p1 � � � pn�1)2

�
1

p1
C � � �C 1

pn�1

�2hÆ, Æi
C2jp1 � � � pn�1j

�
1

p1
C � � �C 1

pn�1

�hÆ, XiC hX, Xi
D (p1 � � � pn�1)2

�
1

p1
C � � �C 1

pn�1

�2

pn

C2(p1 � � � pn�1)2

�
1

p1
C � � �C 1

pn�1

�� (p1 � � � pn�1)2

�
1

p1
C � � �C 1

pn�1

�

D (p1 � � � pn�1)2

�
1

p1
C � � �C 1

pn�1

���
1

p1
C � � �C 1

pn�1

�
pnC1

�
.
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Lemma 4.7. Let X 2 H1(61IQ) be as defined inLemma 4.5and assume thathX, Xi D 0. Then, in the Witt ring W(Q), the equality

(h � , � i, H1(61IQ)) D (h � , � ijV�V , V)

holds where VD SpanB?
1,prelim (where the latter is as defined in(11)).

Proof. This is a direct consequence of Theorem 4.3 and can also be verified directly.
Namely, observe that the format ofLC L� as calculated in Theorem 3.1 shows that

(h � , � i, H1(61IQ)) D (h � , � ijV�V , V)� (h � , � ijW�W, W),

where W D SpanfX, Æg. But sinceh � , � ijW�W is represented by the matrix

h � , � ijW�W D
�

0 jp1 � � � pn�1jjp1 � � � pn�1j pn

�

with respect to the basisfX, Æg, we see thath � , � ijW�W is metabolic and thus equivalent
to zero in W(Q).

We summarize our findings in the next theorem:

Theorem 4.8. Let P be the upper triangular matrix

P D

2
66666666666666666666666666664

� � � Op1 p2 � � � pn�1 Op1 p2 � � � pn�1

Pjp1j�1 � � � ...
...

� � � Op1 p2 � � � pn�1 Op1 p2 � � � pn�1

...
...

...
.. .

...
...

p1 p2 � � � Opn�1 p1 p2 � � � Opn�1

Pjpn�1j�1
...

...

p1 p2 � � � Opn�1 p1 p2 � � � Opn�1

0 � � � 0 � � � 0 � � � 0 jp1 � � � pn�1j jp1 � � � pn�1j
0 � � � 0 � � � 0 � � � 0 0 jp1 � � � pn�1j �

 
n�1X
iD1

1

pi

!

3
77777777777777777777777777775

,
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where Pm is as defined in(10) and let L be as computed inTheorem 3.1. Then, ifhX, Xi ¤ 0, one gets

P� (LC L� )P

D
 

n�1M
iD1

Diag(� Sign(pi ) � 1 � 2, � Sign(pi ) � 2 � 3, : : : , � Sign(pi ) � (jpi j � 1) � jpi j)
!

� Diag(hX, Xi, hY, Yi).
If hX, Xi D 0, let Q be the matrix obtained from P by setting its last column and row
equal to zero, safe the diagonal entry which should be set equal to1. Then

Q� (LC L� )Q
D
 

n�1M
iD1

Diag(� Sign(pi ) � 1 � 2, � Sign(pi ) � 2 � 3, : : : , � Sign(pi ) � (jpi j � 1) � jpi j)
!

� � 0 jp1 � � � pn�1jjp1 � � � pn�1j pn

�
.

Recall thathX, Xi and hY, Yi have been computed inLemmas 4.5and 4.6.

Before continuing on, we take a moment to express the quantities hX, Xi andhY, Yi in more familiar terms involving determinants of knots/links.

Lemma 4.9. Assume that n, p1, : : : , pn�1 are odd integers with n� 3 and that pn ¤
0 is an even integer. Consider the pretzel knot P(p1, : : : , pn) and the pretzel link(of 2
components) P(p1, : : : , pn�1) and recall our sign conventions fromRemark 1.1.Then

det P(p1, : : : , pn) D nX
iD1

p1 � � � Opi � � � pn,

det P(p1, : : : , pn�1) D n�1X
iD1

p1 � � � Opi � � � pn�1.

In particular, we can re-writehX, Xi and hY, Yi as

hX, Xi D �(p1 � � � pn�1) � det P(p1, : : : , pn�1),

hY, Yi D det P(p1, : : : , pn) � det P(p1, : : : , pn�1).
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Proof. We shall calculate detP(p1, : : : , pn) by relying on the formula

det P(p1, : : : , pn) D jdet(LC L� )j
with LCL� as in Theorem 3.1. Because of our sign convention from Remark1.1, we
shall ignore the absolute value sign in this relation.

If hX, Xi ¤ 0, we simply apply the determinant to the relationAD P� (LCL� )P
from Theorem 4.8 (where we letA denote the first diagonal matrix from that theorem):

det(LCL� )
D detA

(detP)2

D�
�Qn�1

iD1(jpi j!)2=jpi j�(p1 � � � pn�1)4(1=p1C���C1=pn�1)2 � [(1=p1C���C1=pn�1)pnC1]�Qn�1
iD1jpi j!=jpi j�2 � (p1 � � � pn�1)4 � (1=p1C���C1=pn�1)2

D�jp1 � � � pn�1j �
��

1

p1
C���C 1

pn�1

�
pnC1

�

D�Sign(p1 � � � pn�1) �
 

nX
iD1

p1 � � � Opi � � � pn

!
.

If hX, Xi D 0 a similar argument applies. Namely, applying the determinant to the
equationQ� (LCL� )Q from Theorem 4.8, yields the desired result, the details areleft
as an easy exercise.

The computation of detP(p1, : : : , pn�1) follows along the same lines with only
minor modification. We focus on these differences rather than repeating the entire cal-
culation.

The reader should first note that the Seifert surface61 for P(p1, : : : , pn) displayed
in Fig. 2, becomes a Seifert surface forP(p1, : : : , pn�1) after removing the unique band
with pn half twists. We shall call the resulting surface60

1. Its linking form L0 differs
from L only in the last row and column (which are removed fromL to obtainL0). In
particular, the computation of det(L0CL0� ) is identical to that of det(LCL� ) safe the
contribution ofY to the latter. Thus,

det(L0CL0� )
D det(LCL� ) (coefficient ofÆ in Y)2

hY, Yi
D �Sign(p1 � � � pn�1)

 
nX

iD1

p1 � � � Opi � � � pn

! �Pn�1
iD1 p1 � � � Opi � � � pn�1

�2�Pn�1
iD1 p1 � � � Opi � � � pn�1

� ��Pn
iD1 p1 � � � Opi � � � pn

�
D �Sign(p1 � � � pn�1)

 
n�1X
iD1

p1 � � � Opi � � � pn�1

!
.
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This formula applies in both the cases whenhX, Xi D 0 and hX, Xi ¤ 0. With this
observation, the proof of the lemma is complete.

4.3. The case ofn, pn even and p1, : : : , pn�1 odd, revisited. In this section
we turn to diagonalizing the symmetrized linking formLCL� with L this time being
as computed in Theorem 3.2. The work has largely been done in the previous section
and we focus our attention only on the minor differences.

Lemma 4.10. Let n and pn be even integers with n� 3 and pn ¤ 0 and let
p1, : : : , pn�1 be odd integers. LetL be the linking matrix associated to the Seifert
surface63 of P(p1, : : : , pn) and the basisB3 of H1(63IQ) as defined inFig. 4. Then
the determinant of P(p1, : : : , pn) is

det P(p1, : : : , pn) D nX
iD1

p1 � � � Opi � � � pn.

Proof. Recall that detP(p1, : : : , pn) D det(L C L� ) but that we allow ourselves
the freedom of choosing the sign of the determinant, see Remark 1.1.

The determinant ofL C L� is computed in analogy to the computation from
Lemma 4.9. Specifically, letP0 be the matrix obtained from the matrixP from The-
orem 4.8 by deleting its last row and column, and letA0 be the diagonal matrix
P� (L C L� )P from Theorem 3.1, again with its last row and column deleted.Then
(P0)� (LC L� )P0 D A0 so that

det(LC L� )
D det A0

(det P0)2

D Sign(pn)

�Qn
iD1(jpi j!)2=jpi j�(p1 � � � pn)2(1=p1C � � � C 1=pn)�Qn

iD1jpi j!=jpi j�2 � (p1 � � � pn)2

D Sign(pn)jp1 � � � pnj �
�

1

p1
C � � � C 1

pn

�

D Sign(p1 � � � pn�1) �
 

nX
iD1

p1 � � � Opi � � � pn

!
,

as needed, up to sign.

We have thus proved the following theorem:
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Theorem 4.11. Let n and pn be even integers with n� 3 and pn ¤ 0 and let
p1, : : : , pn�1 be odd integers. Let P be the matrix

P D

2
666666666666664

� � � Op1 p2 � � � pn

Pjp1j�1 � � � ...� � � Op1 p2 � � � pn

...
...

...
.. .

...
p1 p2 � � � Opn

Pjpnj�1
...

p1 p2 � � � Opn

0 � � � 0 � � � 0 � � � 0 jp1 � � � pnj

3
777777777777775

and letL be as computed inTheorem 3.2.Then

P� (LC L� )P D
 

nM
iD1

Diag(� Sign(pi ) � 1 � 2, : : : , � Sign(pi ) � (jpi j � 1) � jpi j)
!

� Diag(�(p1 � � � pn) � det P(p1, : : : , pn)).

The determinantdet P(p1, : : : , pn) has been computed inLemma 4.10.

4.4. The case ofn, p1, : : : , pn all odd, revisited. The goal of this section is to
diagonalize the symmetrized linking matrixL C L� from Theorem 3.3. Here too we
would like to utilize the Gram–Schmidt process inasmuch as possible. Recall that the
basisB3 for H1(63IQ) is B3 D f�1, : : : , �n�1g with �i as in Fig. 5. We wish to create
an orthogonal basisB?

3 D fa1, : : : , an�1g by means of the formalism from Theorem 4.1
(see also Remark 4.2). Towards that goal, we prove a simple lemma after reminding
the reader of some notation which was already mentioned in the introduction.

For an integeri � 1, let �i (t1, : : : , tm) be the i -th symmetric polynomial in the
variablest1, : : : , tm. For example,�1(t1, : : : , tm) D t1C � � � C tm and �2(t1, : : : , tm) D
t1t2 C t1t3 C � � � C tm�1tm and so on. By convention, we define the 0-th symmetric
polynomial to be�0(t1, : : : , tm) D 1. We shall write�i for �i (p1, : : : , piC1).

Lemma 4.12. Set a1 D �1 and aiC1 D �i�iC1C piC1ai 2 H1(63IQ) and letB?
3 Dfa1, : : : , an�1g. ThenB?

3 is an orthogonal set and

hai , ai i D �i�1 � �i .

Before proving this statement, we would like to point out that Lemma 4.12 does
not claim, indeed this would be false in certain cases, thatB?

3 is a basis forH1(63IQ).
Some elements ofB?

3 may be zero.
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Proof. We proof this lemma by induction oni , the cases ofi D 1, 2 are easily
seen to hold. Proceeding to the step of the induction, we consider the vectoraiC1. Pick
first an index j with j < i , then we get

haiC1, a j i D h�i�iC1, a j i C hpiC1ai , a j i D 0,

since in this caseh�iC1, a j i D 0 (as follows by inspection of the linking matrixL from
Theorem 3.3). On the other hand,

haiC1, ai i D h�i�iC1, ai i C hpiC1ai , ai i
D ��i � �i�1 � piC1C piC1 � �i�1 � �i

D 0.

To finish the induction argument, we next determinehaiC1, aiC1i:
haiC1, aiC1i D h�i�iC1C piC1ai , �i�iC1C piC1ai i

D (�i )
2(piC1C piC2)C p2

iC1�i�1�i � 2p2
iC1�i�i�1

D �i [�i (piC1C piC2) � p2
iC1�i�1]

D �i�iC1.

In the second to last line, we relied on the easy to verify identities

� j D p jC1� j�1C � j (p1, : : : , p j ),

� jC1 D p jC1 p jC2� j�1C (p jC1C p jC2)� j (p1, : : : , p j ).

As the proof of Lemma 4.12 shows, the Gram–Schmidt algorithmbreaks down
whenever�i vanishes for somei � 1.

Theorem 4.13. Let n, p1, : : : , pn be odd integers with n� 3. Let L be the linking
matrix for the pretzel knot P(p1, : : : , pn) as described inTheorem 3.3.Let P be the
upper triangular matrix

P D

2
6666664

�0 b1,2 b1,3 � � � b1,n�1

0 �1 b2,3 � � � b2,n�1

0 0 �2 � � � b3,n�1
...

...
... � � � ...

0 0 0 � � � �n�1

3
7777775

with bk,i D �k�1 � iY
jDkC1

p j .
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Then

P� (LC L� )P D Diag(�0 � �1, �1 � �2, : : : , �n�2 � �n�1).

The rational Witt class ofLC L� is given by

'(P(p1, : : : , pn)) D n�1M
iD1

h�i�1 � �i i.
Proof. The claim about the form ofP� (LCL� )P follows directly from Lemma 4.12.

The fact that the integersbk,i take the form described, can be proved by induction oni
by using the formulae (the first two lines being the definitions of b�,� as change of basis
parameters, the third line being from Lemma 4.12)

aiC1 D �i�iC1C bi ,iC1�i C bi�1,iC1�i�1C � � � b1,iC1�1,

ai D �i�1�i C bi�1,i�i�1C bi�2,i�i�2C � � � b1,i�1,

aiC1 D �i�iC1C piC1ai .

The claim of the theorem about Witt classes follows immediately from Lemma 4.12
in the case when none of the numbers�i vanish since in that case the setB?

3 from the
said lemma is actually a basis forH1(63IQ). We thus need to address the case when
some of the�i equal zero. We shall prove the theorem by induction onn.

When n D 3 the symmetrized linking matrixLC L� looks like

LC L� D � p1C p2 �p2�p2 p2C p3

�
.

If �1 D p1C p2 vanishes thenLC L� is metabolic and thus zero inW(Q). Con-
versely, if p1 C p2 D 0 then h�0�1i � h�1�2i D 0 2 W(Q). If on the other hand�2 D p1 p2C p1 p3C p2 p3 vanishes (butp1C p2 does not), then the matrix representingh � , � i with respect to the basisfa1, a2g is�

p1C p2 0
0 0

� D Diag(p1C p2, 0),

so that in this caseLC L� equalshp1C p2i in W(Q). But, with the same vanishing
assumption, we also geth�0�1i � h�1�2i D h�0�1i � h0i D hp1 C p2i 2 W(Q). This
proves the theorem for the case ofn D 3.

To address the step of the induction, leti be the smallest index for which�i van-
ishes and consider the basisfa1, a2, : : : , ai , �iC1, : : : , �n�1g. Note that thenhai , ai i D 0.
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With respect to this basis, the intersection formh � , � i is represented by the matrix

Diag(�0�1, �1�2, : : : , �i�2�i�1)

�

2
6666664

0 �piC1�i�1 0 0 � � ��piC1�i�1 piC1C piC2 �piC2 0 � � �
0 �piC2 piC2C piC3 �piC3 � � �
0 0 �piC3 piC3C piC4 � � �
...

...
...

...
.. .

3
7777775

.

Consider the second of these two matrix summands. Add the first row multiplied by�piC2=(piC1�i�1) to the third row and likewise add the first column multipliedby�piC2=(piC1�i�1) to the third column (this simply corresponds to another change of
basis). Thus we see thatLC L� is represented by the matrix

Diag(�0�1, �1�2, : : : , �i�2�i�1)

� � 0 �piC1�i�1�piC1�i�1 piC1C piC2

��
2
64

piC2C piC3 �piC3 � � ��piC3 piC3C piC4 � � �
...

...
.. .

3
75.

The second summand is metabolic and therefore zero inW(Q). On the third summand
however can apply the induction hypothesis and we conclude that

'(P(p1, : : : , pn)) D Diag(�0�1, �1�2, : : : , �i�2�i�1)

�
 

n�1M
jDiC2

h� j�i�2(piC2, : : : , p j )� j�i�1(piC2, : : : , p jC1)i
!

.

It remains to compare this to the result claimed by the theorem. For this purpose we
observe that fork � i , the equality

�k(p1, : : : , pkC1) D �i (p1, : : : , piC1)�k�i (piC2, : : : , pkC1)

C �iC1(p1, : : : , piC1)�k�i�1(piC2, : : : , pkC1)

holds. Thus in the event when�i D 0 we get that

�k(p1, : : : , pkC1) D �iC1(p1, : : : , piC1)�k�i�1(piC2, : : : , pkC1).

Therefore, fork � i C 2 we also get

h�k�1�ki D h(�iC1(p1, : : : , piC1))2�k�i�2(piC2, : : : , pk)�k�i�1(piC2, : : : , pkC1)i
D h�k�i�2(piC2, : : : , pkC1)�k�i�1(piC2, : : : , pkC1)i,

while of course forkD i , i C1 we geth�k�1�ki D 02W(Q). This completes the proof
of the induction step and thus of the theorem.
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Lemma 4.14. Assume that n, p1, : : : , pn are all odd with n� 3. Then the deter-
minant of P(p1, : : : , pn) is given by

det P(p1, : : : , pn) D nX
iD1

p1 � � � Opi � � � pn D �n�1.

Proof. LetL be the linking matrix (from Theorem 3.3) forP(p1, : : : , pn) asso-
ciated to the Seifert surface63 and the choice of basisB3 as in Fig. 5.

To compute det(LCL� ) we proceed by induction onn. When n D 3, the explicit
form of LC L� from Theorem 3.3 shows that det(LC L� ) D p1 p2C p1 p3C p2 p3 as
claimed by the lemma. Whenn > 3, let Yn D Yn(p1, : : : , pn) denote the matrixLCL�
from Theorem 3.3 but temporarily allowingn to also be even. A first row expansion
of detYn with a repeated use the induction argument yields:

detYn(p1, : : : , pn)

D (p1C p2) � detYn�1(p2, : : : , pn) � p2
2 � detYn�2(p3, : : : , pn)

D (p1C p2) � �n�2(p2, : : : , pn) � p2
2 � �n�3(p3, : : : ., pn)

D (p1C p2) � (p2 � �n�3(p3, : : : , pn)C p3 � � � pn) � p2
2 � �n�3(p3, : : : , pn)

D p1 � p2 � �n�3(p3, : : : , pn)C (p1C p2) � p3 � � � pnD �n�1(p1, : : : , pn),

completing the proof of the lemma.

5. Computations

In this section we use the results from Theorems 1.2, 1.3 and 1.4 to explicitly
evaluate the Witt classes of the knots from Examples 1.7–1.10. We start with an easy
observation.

Proposition 5.1. If K is a knot obtained from P(p1, : : : , pn) by a finite number
of upward stabilizations(seeDefinition 1.6), then

'(K ) D '(P(p1, : : : , pn)).

Moreover, the signatures of K and P(p1, : : : , pn) are the same and there exists an
integer m such thatdetK D m2 � det P(p1, : : : , pn).

This follows easily from Theorems 1.2, 1.3 and 1.4 by inspection. It follows even
quicker from observing that the knotsP(p, �p, p1, : : : , pn) and P(p1, : : : , pn) are
smoothly concordant (see for example [3]) and thus in particular also algebraically con-
cordant. This of course implies that their Witt classes are the same and in particular
that they have the same signature. Moreover, the determinantof a Witt class is well
defined up to multiplication by squares.
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We now turn to a more detailed analysis of the examples from Section 1.3. The
numerical data presented has already been somewhat simplified by relying on the two
relations (2) which we use freely and tacitly throughout.

EXAMPLE 1.7. Let K1, K2 and K3 be the knots

K1 D P(21, 13,�17,�15, 12), K2 D P(�3, �3, �7, 5, 2),

K3 D P(�3, �5, 7, 9, 6),

from category (i) in (1) and letK D K1 # K2 # K3. Then� (K ) D 0 but '(K ) has order
4 in W(Q). Thus K has topological and smooth concordance order at least 4.

The signatures ofK1, K2 and K3 can be computed by a use of Theorem 1.18 and
are � (K1) D �2, � (K2) D 8 and � (K3) D �6 showing that� (K ) D 0. The rational
Witt classes ofK1, K2 and K3 are

'(K1) D h�34i � h�38i � h�95i � h�105i � h182i � h210i � h510510i � h�56078i,
'(K2) D h2i � h6i � h2i � h6i � h30i � h42i � h105i � h23i,
'(K3) D h�30i � h�42i � h�3i � h�5i � h�30i � h�42i � h�14i � h�2i

� h770i � h4686i.
Thus, for example,�71(K ) D h�1i 2 W(F71) � Z4 showing thatK has order 4 in
W(Q). Similarly, �23(K ) D h1i 2W(F23) � Z4. As a curiosity we note that�2549(K ) Dh1i 2 W(F2549) � Z2� Z2.

EXAMPLE 1.8. Let K1 and K2 be the knots

K1 D P(7, 3,�5, 2), K2 D P(�19,�15, 21, 10),

from category (ii) in (1) and letK D K1 # K2 # K2 # K2. Then� (K ) D 0 but '(K ) has
order 4 inW(Q) and therefore also in the topological and smooth concordance group.

The signatures ofK1 and K2 are found from Theorem 1.18 as� (K1) D �6 and� (K2) D 2 and so� (K ) D 0. The rational Witt classes ofK1 and K2 are

'(K1) D h�30i � h�42i � h�2i � h�6i � h�2i � h�34230i,
'(K2) D h�95i � h�105i � h110i � h33i � h39i � h182i � h210i � h�450870i.

From this one then finds that, for example,�3(K ) D h1i 2 W(F3) � Z4 (as �3(K1) D 0
and �3(K2) D h�1i). Likewise, �163(K ) D h�1i 2 W(F163) � Z4 while �113(K ) D hai 2
W(F113) � Z2� Z2 wherea 2 PF113� PF2

113 is any element.
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EXAMPLE 1.9. Let K be a knot obtained by a finite number of upward stabiliza-
tion from either

K1 D P(�3, 9, 15,�5� 5) or K2 D P(�3, �5, �11, 15, 15),

from category (iii) in (1). Then the signature ofK is zero, the determinant ofK is a
square but'(K ) ¤ 0 2 W(Q). Consequently, no suchK is slice.

Note that according to Proposition 5.1, it suffices to prove the claims for the two
given pretzel knots. From Theorem 1.18 we find

� (K1) D 0, detK1 D 752 and � (K2) D 0, detK1 D 1352

and the rational Witt classes ofK1 and K2 are

'(K1) D h6i � h42i � h�35i � h�5i,
'(K2) D h�2i � h�206i � h35535i � h345i.

This shows that for eachi D 1, 2 one obtains�3(K i ) D h1i � h1i 2 W(F3) � Z4 and
similarly �5(K i )D h1i�h2i 2W(F5)� Z2�Z2 implying that both knots are non-slice.

EXAMPLE 1.10. Let K1, K2 and K3 be the knots

K1 D P(21, 13,�17,�15, 12), K2 D P(�19,�15, 21, 10),

K3 D P(�15,�7, �7, 13, 11)

from the categories (i), (ii) and (iii) from (1) and letK D K1#K2#K3. Then� (K )D 0
but '(K ) is of order 4 inW(Q).

The signature ofK is easily found from Theorem 1.18. The rational Witt classes
of K1 and K2 have already been computed in Examples 1.7 and 1.8 above while the
rational Witt class forK3 is

'(K3) D h�22i � h�5698i � h3478i � h260474i.
From these one arrives at�7(K ) D h�1i 2 W(F7) � Z4 and also�163(K ) D h1i 2
W(F163) � Z4. Both of these shows thatK has order 4 inW(Q).

6. Proofs of Theorems 1.11, 1.12, 1.15 and 1.16

This section is devoted to the proofs of theorems listed in the title. We start with
a useful lemma to be used in the subsequent arguments.

Lemma 6.1. Let } be a prime number and p> 0 an odd integer. Write pD}l � � with l � 0 and gcd(}, �) D 1. Then

�}(h1 � 2i � h2 � 3i � � � � � h(p� 1) � pi) D �0I if l is even,h��iI if l is odd,
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where�} W W(Q)! W(F}) is the homomorphism between Witt rings fromSection 2.2.

Proof. Assume for the moment that} � 3. If } divides some integerk with
2� k < p then, by writingk D }m � 
 with gcd(}, 
 ) D 1 andm� 1, we obtain (by
a use of (3) from Theorem 2.4)

�}(h(k � 1)ki � hk(kC 1)i) D �h�
 i � h
 iI if m is odd,
0I if m is even.

This line uses our assumption that} � 3 so that} does not divide either ofk�1. Of
course,h�
 i � h
 i also equals zero inW(Q). This shows that if} does not divide
p, then �}(h1 � 2i � � � � � h(p � 1)pi) D 0. On the other hand, if} divides p, say
p D }l � �, then} doesn’t dividep� 1 so that

�}(h1 � 2i � � � � � h(p� 1)pi) D �}(h(p� 1)pi) D �0I if l is even,h��iI if l is odd.

If } D 2 the result follows in the same manner by pairing uph1 � 2i � h2 � 3i,h3 � 4i � h4 � 5i etc., recognizing that�2(h(2k � 1)2ki � h2k(2k C 1)i) D 0 for every
integerk � 1, and using the fact thatp is odd.

Proof of Theorem 1.11. LetK D P(p, q, r ) be a 3-stranded pretzel knot with
p, q, r odd. Recall from Theorem 1.4 that the rational Witt class ofK is given by

'(K ) D hpC qi � h(pC q) detK i,
where detK D pqC pr C qr . Before proceeding, we first re-write this Witt class in a
more symmetric manner using the relations from Theorem 2.1.Thus

'(K ) D hpC qi � h(pC q)2r C pq(pC q)i
D hpC qi � h(pC q)2r i � hpq(pC q)i 	 h(pC q)4 pqr detK i
D hpi � hqi 	 hpq(pC q)i � hr i � hpq(pC q)i 	 hpqr detK i
D hpi � hqi � hr i 	 hpqr detK i.

We shall rely on both of these representations of'(K ).
• Using the first representation for'(K ) above, it is easy to see that the rational
Witt class of K is zero precisely when detK D �m2 for some odd integerm. Namely,'(K )D 0 implies that the signature ofK vanishes and� (K )D Sign(pCq)CSign((pC
q) detK ) showing that detK < 0. If det K ¤ �m2 for some odd integerm, then we
could find an odd prime} that divides detK with an odd power. But then�}('(K ))¤
0, a contradiction. Conversely, if detK D �m2 then

'(K ) D hpC qi � h�m2(pC q)i D hpC qi � h�(pC q)i D 0.
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• Assume now that detK < 0 and that there exists a prime} congruent to 3 (mod 4)
that divides detK with an odd power. Let us write detK D }2lC1� and similarly write
p D }l1�1, q D }l2�2 and r D }l3�3 with gcd(� j , }) D 1D gcd(�, }) and l , l j � 0.
According to the parities ofl j we have

(l1, l2, l3) D (odd, odd, odd)H) �ai ('(K )) D h�1i � h�2i � h�3i,
(l1, l2, l3) D (odd, odd, even)H) �ai ('(K )) D h�1i � h�2i 	 h�1�2�3�i,

(l1, l2, l3) D (odd, even, even)H) �ai ('(K )) D h�1i,
(l1, l2, l3) D (even, even, even)H) �ai ('(K )) D h�1�2�3�i.

Since} � 3 (mod 4) we know thatW(F}) � Z4 and so the sum/difference of any 3
generators is again a generator. Thus, in all cases,�}('(K )) is a generator ofW(F})
and is therefore of order 4 (the fact that� (K ) D 0 follows from the assumption that
detK < 0).
• Consider the case of detK < 0 and suppose that every prime} congruent to 3 (mod 4)
divides detK in an even power. For a fixed such prime}, write again detK D }2l�,
p D }l1�1, q D }l2�2 andr D }l3�3 with gcd(� j , }) D 1D gcd(�, }). Then

(l1, l2, l3) D (odd, odd, odd)H) �}('(K )) D h�1i � h�2i � h�3i 	 h�1�2�3�i,
(l1, l2, l3) D (odd, odd, even)H) �}('(K )) D h�1i � h�2i,

(l1, l2, l3) D (odd, even, even)H) �}('(K )) D h�1i 	 h�1�2�3�i,
(l1, l2, l3) D (even, even, even)H) �}('(K )) D 0.

Thus �}('(K )) is of order 0 or 2 inW(F}).
• '(K ) is of infinite order inW(Q) if and only if � (K ) ¤ 0 which in turn occurs
if and only if detK > 0.

The following is a slightly more detailed version of Theorem1.12.

Theorem 6.2. Let K D P(p, q, r ) with p, q odd and with r¤ 0 even. Then'(K )
is of finite order in W(Q) if and only if

pC q D 0

or

pC q D �2 and detK > 0.

The order of'(K ) in W(Q) in these cases is as follows:
• If p C q D 0 then '(K ) has order1 in W(Q).
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• If p C q D �2 and detK > 0 then �2('(K )) D 0 and �}('(K )) D �}(h2 detK i)
for every odd prime}. Consequently

– '(K ) is of order 1 in W(Q) if detK D m2 for some odd integer m.
– '(K ) is of order 2 in W(Q) if and only if detK < 0, � detK is not a square
and no prime} � 3 (mod 4)dividesdetK with an odd power.
– '(K ) is of order 4 in W(Q) if and only if detK < 0 and there exists a prime} � 3 (mod 4)dividing detK with an odd power.

Recall thatdetK D pqC pr C qr.

Proof. From Theorem 1.2 we find that the rational Witt class'(K ) of K D P(p,q,r )
is given by

'(K ) D hsp � 1 � 2i � � � � � hsp � (jpj � 1) � jpji
� hsq � 1 � 2i � � � � � hsq � (jqj � 1) � jqji
� h�pq(pC q)i � h(pC q) detK i,

where sp D � Sign(p), sq D � Sign(q) and detK D pq C pr C qr . From this the
signature ofK is computed as

� (K ) D (jpj � 1)sp C (jqj � 1)sq C Sign(�pq(pC q))C Sign((pC q) detK ).

Thus, if jpC qj > 2 then� (K ) ¤ 0 so that'(K ) is of infinite order inW(Q). On the
other hand, ifjpC qj � 2, then the signature ofK is zero if and only if one of the
next two cases occurs:
• pC q D 0.
• pC q D �2 and detK > 0.
In all other cases'(K ) is of infinite order inW(Q). If pC q D 0 then Theorem 1.2
shows that'(K ) D 0 without any condition on detK .

Turning to the case ofpC q D �2 and detK > 0, we first assume, by passing to
the mirror image ofK if necessary, thatpC q D 2. By interchanging the roles ofp
and q if needed, we additionally assume thatp > 0. Note that these changes do not
affect the sign of detK . The conditionpC q D 2 implies thatp > 0 andq < 0 with
the exception ofp D 1D q. We single out this special case first. Theorem 1.2 shows
that the rational Witt class ofK in the case ofp D q D 1 is

'(P(1, 1, r )) D h�2i � h2 detK i.
Thus �2('(P(1, 1,r ))) D 0 and�}('(P(1, 1,r ))) D �}(h2 detK i) for any odd prime}.

We proceed by keeping our assumptionspC q D 2, p > 0 and consider the more
general case ofq < 0. Note that the rational Witt class ofK now takes the form

'(K ) D (h�1 � 2i � � � � � h�(p� 1) � pi)� (h1 � 2i � � � � � h(p� 3) � (p� 2)i)
� h2p(p� 2)i � h2 detK i

D h�(p� 2)(p� 1)i � h�(p� 1)pi � h2p(p� 2)i � h2 detK i.
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Let } be a prime number and consider the following cases.
1. If } > 2 and} j (p� 2), say p� 2D }l � � with gcd(}, �) D 1, then

�}('(K )) D ��}(h2 detK i) if l is even,h�(p� 1)�i � h2p�i � �}(h2 detK i) if l is odd.

But if p� 2� 0 (mod}) then p � 2 (mod}) and p� 1� 1 (mod}) so that

h�(p� 1)�i � h2p�i D h��i � h4�i D h��i � h�i D 0 2 W(F}).

Therefore�}('(K )) D �}(h2 detK i).
2. If } > 2 and} j (p� 1), say p� 1D }l � � with gcd(}, �) D 1, then

�}('(K )) D ��}(h2 detK i) if l is even,h�(p� 2)�i � h�p�i � �}(h2 detK i) if l is odd.

But p� 1� 0 (mod}) implies that p� 2� �1 (mod}) and p� 1 (mod}) so that

h�(p� 2)�i � h�p�i D h�i � h��i D 0 2 W(F}).

Thus we get again that�}('(K )) D �}(h2 detK i).
3. If } > 2 and} j p, say p D }l � � with gcd(}, �) D 1, then

�}('(K )) D ��}(h2 detK i) if l is even,h�(p� 1)�i � h2(p� 2)�i � �}(h2 detK i) if l is odd.

But p� 0 (mod}) implies that p�2� �2 (mod}) and p�1� �1 (mod}) so that

h�(p� 1)�i � h2(p� 2)�i D h�i � h�4�i D h�i � h��i D 0 2 W(F}).

Thus we obtain once more�}('(K )) D �}(h2 detK i).
4. If } > 2 and} doesn’t divide either ofp�2, p�1 or p then�}('(K )) is trivially
equal to�}(h2 detK i).
5. If } D 2, then sincep and p � 2 are odd, it is easy to see that the determinant
det'(K ) is of the form (2(p � 1))2 � � for some odd�. But then �2('(K )) D 0 by
definition.
The upshot of this discussion is that

�}('(K )) D �0I } D 2,�}(h2 detK i)I } � 3,

for all prime integers}. Given this, it is now an easy matter to verify the stated orders
of '(K ) in W(Q). For example, if detK D m2 then �}(h2 detK i) D 0 for all primes} and thus'(K ) D 0 2 W(Q). If there is a prime} � 3 (mod 4) that divides detK
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with an odd power, then�}(h2 detK i) yields a generator ofW(F}) � Z4 and hence'(K ) is of order 4 inW(Q). We leave the remaining case as an easy exercise for the
interested reader.

In preparation for the proof of Theorem 1.15, we state a couple of auxiliary lem-
mas first.

Lemma 6.3. Consider odd integers n, p1, : : : , pn�1 with n� 3 and let pn ¤ 0 be
an even integer. Let} be an odd prime which doesn’t divide any of p1,:::, pn�1 and as-
sume thatdetP(p1, : : : , pn)D�m2 for some integer m. Then�}('(P(p1, : : : , pn)))D 0.

Proof. There are two cases which we consider separately, namely the case when}
divides detP(p1, : : : , pn) and the case when it doesn’t. Let us write detP(p1, : : : , pn) D" �m2 for some choice of" 2 f�1g.

Assume firstly that} is a divisor of detP(p1, : : : , pn). By Lemma 6.1 and The-
orem 1.2 we find that

�}('(P(p1, : : : , pn))) D �}(h�(p1 � � � pn�1) � det P(p1, : : : , pn�1)i)
� �}(hdet P(p1, : : : , pn�1) � "i).

Since

(12) detP(p1, : : : , pn) D pn � det P(p1, : : : , pn�1)C p1 � � � pn�1,

and} divides detP(p1, : : : , pn) but does not dividep1 � � � pn�1, we see that} cannot
divide pn � det P(p1, : : : , pn�1). Thus �}('(P(p1, : : : , pn))) D 0.

Next, suppose that} does not divide detP(p1, : : : , pn). Write detP(p1, : : : , pn�1)D}l � � for some integerl � 0 and some� with gcd(}, �) D 1. If l is even then�}('(P(p1, : : : , pn))) vanishes trivially. Else, ifl is odd, and using (12) again, we
see that" � p1 � � � pn�1 is a square modulo}. Therefore,

�}('(P(p1, : : : , pn))) D h�(p1 � � � pn�1) � �i � h" � �i
D h�" � �i � h" � �i
D 0.

Lemma 6.4. Consider again odd integers n, p1, : : : , pn�1 with n � 3 and let
pn ¤ 0 be an even integer. Let} be an odd prime which divides exaclty one pi 2fp1, : : : , pn�1g. Assume again thatdetP(p1, : : : , pn) D �m2 for some integer m. Then�}('(P(p1, : : : , pn))) D 0.

Proof. For concreteness assume that} divides p1 and that therefore gcd(}, p j )D
1 for all j D 2, : : : , n� 1. Since the assumptions and the statement of the lemma are
not affected by replacingP(p1, : : : , pn) with its mirror image, we may assume, merely
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for convenience, thatp1 > 0. The hypothesis detP(p1, : : : , pn) D �m2 along with
Lemma 6.1 and Theorem 1.2, implies that

�}('(P(p1, : : : , pn)))

D �}(h�(p1 � 1) � p1i)� �}(h�(p1 � � � pn�1) � det P(p1, : : : , pn�1)i)
� �}(h� det P(p1, : : : , pn�1)i).

Since

det P(p1, : : : , pn�1) D p1 �
 

n�1X
iD2

p2 � � � Opi � � � pn�1

!
C p2 � � � pn�1,

we see that} cannot divide detP(p1, : : : , pn�1), in fact,

det P(p1, : : : , pn�1) � p2 � � � pn�1 (mod}).

Let us write p1 D }l � � for somel � 0 and with gcd(}, �) D 1. If l is odd, then

�}('(P(p1, : : : , pn))) D h�i � h�� � p2 � � � pn�1 � det P(p1, : : : , pn�1)i
D h�i � h�� � (p2 � � � pn�1)2i
D h�i � h��i
D 0.

On the other hand, ifl is even, then�}('(P(p1, : : : , pn))) D 0 on the nose.

The results from Lemmas 6.3 and 6.4 imply the statement of Theorem 1.15.

Proof of Theorem 1.16. We start by finding the linking matrixL of K D P(5,�3, 8)
as in Section 3.1. The formulae provided there easily imply that

L D

2
666666666664

�1 �1 �1 �1 0 0 �1 0
0 �1 �1 �1 0 0 �1 0
0 0 �1 �1 0 0 �1 0
0 0 0 �1 0 0 �1 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 4

3
777777777775

.

Pick ! D aC ib 2 S1 � C (so thata2Cb2 D 1) and form the matrixA! D (1�!)LC
(1 � N!)L� . By definition, the Tristram–Levine signature�!(K ) of K equals the sig-
nature of A!. It is well known that the signatures�!(K ) are constant away from the
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Fig. 6. The graph oft3 �1P(5,�3,8)(t).

unit roots of the symmetric Alexander polynomial1K (t). We thus turn to computing
the latter.

The Alexander polynomial1K (t) D det(t1=2L � t�1=2L� ) of K D P(5, �3, 8) is
given by1K (t) D t3 � 2t2 � t C 5� t�1 � 2t�2C t�3. Its graph is depicted in Fig. 6.
Clearly visible on the graph, the two real rootst1,2 of 1K (t) are not of unit norm. The
4 complex roots are approximately

t3,4D 0.528853� 0.269329i and t5,6D 1.50147� 0.764653i ,

showing that the approximate norms oft3,4 and t5,6 are

jt3,4j D 0.352223 and jt5,6j D 2.83911.

Thus1K (t) has no roots onS1 so that�!(K ) D � (K ) for all ! 2 S1. But � (K ) D 0
as is easily computed from Theorem 1.18. This implies thatK is of finite algebraic
concordance order, cf. [12].

On the other hand, ifK were algebraically slice, then we could factor1K (t) as
f (t) � f (t�1) for some f (t) 2 Z[t ]. This however is not the case. An easy way to see
this is to note that the mod 2 reduction of1K (t) looks like

1K (t) � t3C t C 1C t�1C t�3 (mod 2)

� (t C 1C t�1)(t2C t C 1C t�1C t�2) (mod 2).

Now, t C 1C t�1 is irreducible inZ2[t , t�1] but t2C t C 1C t�1C t�2 is not divisible
by t C 1C t�1. Thus1K (t) could not have factored asf (t) � f (t�1) and soK is not
algebraically slice. In fact, using MATHEMATICA one finds that1K (t) is irreducible
over Z[t , t�1].
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Finally, the fact that'(K )D 02W(Q) follows from Theorem 1.12 since detK D 1,
5C (�3)D 2 and, as already mentioned,� (K ) D 0.
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