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Abstract
Let S be a Riemann surface of typ@,n) with 3p — 3+n > 0. Let F
be a pseudo-Anosov map & defined by two filling simple closed geodesics on
S Letae$§ andS=5-{a}. For any mapf: S— S that is generated by
two simple closed geodesics and is isotopic Roon §, there corresponds to a

configurationt of invariant half planes in the universal covering spaceSofWe
give a necessary and sufficient condition (with respect ® ¢bnfiguration) for
those f to be pseudo-Anosov maps. As a consequence, we obtain ehfimitany
pseudo-Anosov map$ on S that are isotopic td= on S asa is filled in.

1. Statement of results

Let S be a Riemann surface of type,(n), where p is the genus ofS and n is
the number of punctures & Assume that B—3+n > 0. Letae S, andS=S—{a}.
Let F be a pseudo-Anosov map dhin the sense that there exists a paf, (F_) of
transverse measured foliations $fwith F(F.) = AF, and F(F_) = (1/1)F_ for some
A > 1. (See also FLP [7] and Penner [15].) In [10], Kra investgathe problem of
finding pseudo-Anosov mapé on S so that f is isotopic toF on S asa is filled in.
He showed that ifS is compact with genup > 2, then for some integek, there is
a pseudo-Anosov mag on S so that f is isotopic to F¥ on S. In this article, we
show that there always exist infinitely many pseudo-Anos@apsif on S so thatf is
isotopic to a pseudo-Anosov map on S that is obtained from Thurston’s construc-
tion [17].

To illustrate, letoi, &> C S be two filling simple closed geodesics, that is, each
component ofS — {&1, G»} is a disk or an once punctured disk. Lgt denote the
positive Dehn twist alongy;” It is well known [17] (see also [2, 12, 16] for some
variations) that a finite product

a1 !

N
1.1) t=]]th ot Nori,s ez’
i=1
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is isotopic to a pseudo-Anosov map on S. Throughout the article we denote by
Hi(-): $— S 0<t <1, the isotopy betweeg and F. Note thate3, &, can be
viewed as curves oi$ (call thema; and ay, respectively), and thus the mapsare
also defined orS. Clearly, if S is compact,S— {a1, @} consists of disks and only one
once punctured disk. Hencg intimately represents a pseudo-Anosov mapping class
on S that has the required property. However,Sifis non-compact and in particular, if
S—{ay, &2} only consists of once punctured disks, then one componeBt-ofas, oy}

is a twice punctured disk (enclosing the punctaje which means that the map (1.1)
on S does not represent a pseudo-Anosov mapping class.

A question arises as to whether or not we can take anotheregiad, on S as
a substitution ofw, so that{as, a5} fills S and o is still homotopic toa, on Sasa
is filled in. In [19], we constructed such a geodesicwith the required properties by
utilizing topological methods. As a consequence, we shothatl there exist infinitely
many distinct pseudo-Anosov maps Gnisotopic to onS.

Let F be the set of isotopy classes of mapsSothat are isotopic to the identity on
S. The main purpose of this article is to develop a tool to deitegeneral whether or
not a pair{ay, a5}, wherea;, = f(xp) for somef € F, fills S; we will give a necessary
and sufficient condition for the paifwy, o2} of geodesics orf to fill S. To do this,
we need to transform the view of Dehn twists 8rto the view of some special fiber-
preserving automorphisms on the Bers fiber spB¢8). (See Bers [4] and Kra [10]
for more details.)

Let H={ze C: Imz> 0} be a hyperbolic plane, and let H — S be a universal
covering with the covering groug. It is well known [4, 6] thatG is isomorphic
(via an isomorphismp*, see Bers [4]) taF. Further, ¢* naturally extends to an iso-
morphism (callp* also) of the group of fiber preserving automorphismsF¢f) onto
the group of mapping classes @&fixing the puncturea.

Let @i C H, i =1, 2, be geodesics such thefw;) = &;. Let {D;, Dj} = H — {&;}.
As we will explain in Section 3, the Dehn twis : S— S can be lifted to a quasi-
conformal mapr;: H — H with respect toD;. The mapr; determines a disjoint union
of invariant half planesD;(j) with the property that the restriction af to the com-
plement

(1.2) H =H - Di(j)
i

is the identity. Furthermore, the map induces a fiber-preserving automorphise] [
of F(S) such that, ifo; € {o~2(&)} (and henceD;) is chosen properlyp*([zi]) = t,,
(see Lemma 3.3). Our main result is the following:

Theorem 1.1. Let &1, &> C S be arbitrary two simple closed geodesics so that
S — {@1, a2} only consists of once punctured diskiset «j, i = 1, 2, be two simple
closed geodesics on S homotopictoon S, and lett; be the corresponding lifts with
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¢*([7i]) =t . Then the map
N

(1.3 [Tthot.s, r.sez,
i=1

represents a pseudo-Anosov mapping class d@rf8l projects to; on §) if and only
if the intersection HIN Hy, where H are defined as ir(1.2), is empty

Given any pair{z, 7} of lifts of tz, andtz, with HiNH, # @, it is easy to replace
7, with a G-conjugationt; so thatH; N H; = @. Therefore, via the Bers isomorphism,
we are able to construct infinitely many paikg, o5} that fill S, wherea, = f () for
some f € F. There are several applications of Theorem 1.1.

We now assume tha is an F-minimal surface in the sense that. are defined
by a quadratic differentialp on S (see Bers [5] for the definitions and terminology).
If the genusp > 2, then by the Riemann-Roch theorem (see [9] for instanderet
exists a finite number of zeros ¢f on the compactification o6. Note that some zeros
could be punctures of.

If ¢ has non-puncture zerag, we may choos&, € H with ¢(Z) = zy, and thereby
a pair {11, T} of configurations of invariant half planes under the lifts tbe Dehn
twists such thatH; N H, # @ and Zp € Hy N H,. This implies that the map

N
(1.4) =[]0 rn.sez
i=1

fixes 2y € H. It is important to note that: H — H is a quasiconformal map compatible
with G. It naturally extends to a map @& onto itself, which is also denoted hy.

If ¢ has no non-puncture zeros, then some punctures Zgallso) must be zeros
of ¢. In this case, we can still choose a péit, o} of lifts of the Dehn twists such
that H N H, #@ and ¢ fixes Zg € R.

Under certain conditiong can be replaced with a pseudo-Anosov nfapso that
0oF =Fop, F(2) =2 and Flyy = ¢|;n. Lemma 5.4 of Marden-Strebel [13] then
asserts that does not fix any other fixed points & on R (except forz, in the second
case). Consider the mapg for h € G. Unfortunately, the existence of fixed points of
h¢ is not guaranteed, and a question arises as to whéihdixes some fixed points
of G on R. It is easy to show that for certain elemetitsof G, h¢ fix some points
on R that may not be fixed points d&. Our second result states:

Theorem 1.2. Let S be an F-minimal surface of genus>p2 and n> 0. Let
Zo be a zero of the corresponding quadratic differentfalwhich may or may not be
a puncture ofS. Then associated to eady € H with 0(Zp) = zy, there exists a pair
{r1, T2} Of lifts of the Dehn twists;t and &, with HiNH, # @, and hence a map such
that h,¢ does not fix any fixed points of G d for an infinite sequencéh,} C G.
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We call ¢; and ¢, with forms (1.4) are conjugate if there is an elembkrg G such
that ¢; = hzoh™1, which is equivalent to saying that*([z1]) and ¢*([¢2]) with forms
(1.3) are conjugate if there is a mdpe F so thatp*([¢1]) is isotopic to f o p*([¢2]) o
f~1. As a consequence of Theorem 1.1 and Theorem 1.2, we have:

Theorem 1.3. Let S be a Riemann surface of typp, n) with p> 2, and n> 0.
Let {&1, @} be a pair of filing simple closed geodesics &n Let ¢ be defined by
(1.4) via an F-minimal surface and a paifry, ro} with H; N Hy # @. Then there are
infinitely many mapping classes; on S with these properties
(1) all wj are pseudo-Anospv
(2) every wj fixes a and projects to the mapping class representeqltl) as a is
filled in,
(3) everywj is represented by two filling simple loops on S and is of f¢in3).
If in addition we assume thatyas a non-puncture zero ap so that Hzg) = z; and
the curve H(zp), 0 <t <1, is a trivial loop, then
(4) ¢*(¢) is pseudo-Anosov ifgzis a non-puncture zero ap,
(5) ¢*(¢) is not conjugate to anyj, and
(6) all o} lie in different conjugacy classes

This article is organized as follows. In Section 2, we esshbh correspondence
between the set of pseudo-Anosov mapsSafthat are isotopic ta on S) and the set
L of lifts of ¢ that fix no fixed points ofG. It follows from Lemma 5.4 of [13] (see
Lemma 2.2 for a different approach) that elementsCithat do not fix any parabolic
fixed points of G must be pseudo-Anosov mapping classesSnDetails appear in
Sections 3. Sections 4, 5, and 6 are devoted to the proofseofetbults.

2. Notation and background

To establish notation and terminology, we begin with an wesv of relevant Te-
ichmdller theory. For more information, we refer to [4, 10].

Let S be a Riemann surface with the same tyge ). A marking of , is a
homeomorphismfy : S— §. By (f1: S él) we denote a marked Riemann surface.
The Teichmiiller spac@ (9) is defined as a set of marked Riemann surfades § —

S)) quotient by an equivalent relation=, where (f1: S— §)) ~ (f,: $— &) if and
only if there is a conformal map: S, — S such thath o f; is isotopic to f,.

We denote by f;: S— §/] the equivalence class of the marked surfate & —
S)). Every marked surfacef(: S — S|) defines a new conformal structuge on S
via pullbacks. Two conformal structures, and u, are called equivalent if and only
if (f.: S— &)~ (f2: $— $). Let [u] denote the equivalence class of a confor-
mal structurex on S. By Ahlfors-Bers [1], every conformal structune on S deter-
mines a quasiconformal mapping* of C that fixes 0, 1 and is conformal oH* =
{ze C:Imz < 0}. The regionw*(H) is a Jordan domain that only depends @ij.[
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The Bers fiber spac€(9) is defined as a collectiof([x], 2); [u] € T(S) zZe w“(H)}

of pairs endowed with a product structure. The natural ptia 7: F(S) — T(S) de-
fined by sending each pointy(], z) to [u] is holomorphic. From Theorem 9 of Bers
[4], There is an isomorphism: F(S) — T(S) such that

(2.1) T =109,

where:: T(S) — T(9) is the natural forgetful map.

The group of isotopy classes of self-mapsof S is the mapping class group
Modg, which naturally acts off (5) as holomorphic automorphisms. Let m&denote
the full group of fiber preserving holomorphic automorphisof F(S) that projects to
Mods. Elements of modS are of forms [f], where f: H — H is a lift of a self-
map f of S. [f] only depends on the boundary valués;. The Bers isomorphism
¢: F(§ — T(9 induces an isomorphism* of mod S onto a group Mo@ of map-
ping classes ofS fixing the puncturea.

An elementy € Mod? is called a reducible mapping class if there is a curve system
C={c,...,Cs}, s> 1, of independent and disjoint simple closed geodesics avith
f({ci,...,cs}) ={cy, ..., Cs} for certain representativd of 6. There is a smallest
positive integerk such that fX maps each loop i to itself and the restriction of
fX to each component o8 — {cy, ..., G} is either the identity or a pseudo-Anosov
map. 6 is called pure ifK = 1.

We now assume thdt is reducible and projects to a pseudo-Anosov mapping class
6 on S that is induced by a maf. By Lemma 5.1 and 5.2 of [18], the curve sys-
tem C consists of only one curve; that bounds a twice punctured disk enclosig
and another puncture 8, which is equivalent to that, is peripheral onS. If we
write ¢*~1(0) = [f], then f: H — H fixes a parabolic fixed point o&. Conversely,
each element f]] fixing the fixed point of a parabolic element & corresponds to a
reducible mapping class in M@dwhich is reduced by a single simple closed geodesic
that is trivial onS. For hyperbolic fixed points, we have

Lemma 2.1 (Marden-Strebel [13]). Assume thatS is F-minimal Let z be a
zero of ¢, and let2, € H be such thato(2) = zo. Suppose thatf : H — H fixes .
Then f does not fix any hyperbolic fixed point of G

To proof our theorems, we need a slightly general versiomeflémma that states:

Lemma 2.2. Let f: H— H be any lift of a pseudo-Anosov map §— S. Then
f does not fix any hyperbolic fixed point of G

REMARK 2.1. If Sis F-minimal, the lemma is covered by the argument of Lem-
ma 5.4 of [13]. Our approach however does not assume ShatF-minimal.



788 C. ZHANG

Proof of Lemma 2.1. Suppose théfx) = x for a fixed point of a primitive hyper-
bolic elementg of G. Leto: S— Sbe a map that induces the mapping clas{ ).
There are three cases to consider.

Casel. g e G is simple hyperbolic (the axis af projects to a simple closed ge-
odesic onS). We claim thato is reduced by a paife, 8} of geodesics which bounds a
punctured cylinder enclosing (throughoute and g are called parallel geodesics). Note
thatg = fgf 1 is also an element o& that fixesx. g’ cannot be parabolic. For other-
wise, g andg would share the same fixed poixf it would follow that (g, g') C G is
not discrete. We see thgt is also hyperbolic. Ifg andg’ share only one fixed poirn,
by Theorem 4.3.5 of Beardon [3], the commutatgrd'] is parabolic whose fixed point
is Xx. From Theorem 5.1.2 of [3](g, [9, 9']) C G is not discrete. This is a contradiction.
We conclude thaty andg’ share both fixed points. It follows that = g€, wherek = +1
sinceg = fgf 1 andg is primitive in G.

Let h*: S— S denote a map that induces the mapping claigh) for an element
h € G. From Theorem 2 of [10] or Theorem 2 of [14], we can wigte= tﬂ’lota, where
o, B are parallel geodesics. Hengé = gk* = t;* o tX. Recall thatg’ = fgf~?, we thus
obtain

tf;k o t: =ogo (t';l oty)o ot= t;(%;) 0 ty(w)-

This means that ({«, 8}) = {«, 8}, which says that is reduced b){~a, Bl
Observe~that botly and 8 project to a~n0n-trivial geodesig 6n S asa is filled in.
0 projects tod that is reduced bw."Henced is reducible, contradicting the hypothesis.

REMARK 2.2. Conversely, itr is reduced by a paifa, g} of parallel geodesics,
then we claim thatf fixes a hyperbolic fixed point 06. In fact, o commutes with
tﬁ‘1 ot,. From Theorem 2 of [10] or Theorem 2 of [14], there is a simpypdrbolic

elementg € G so thatg* = tﬁ‘1 ot,. We see thatf commutes withg. That is,
(2.2) g=fgf=

Denote{x, y} the attracting and repelling fixed points gf It follows from (2.2) that
f({x, y}) = {x, y}. If f(x) =Yy, then by (2.2) again, for any integkr

(2.3) d“(f@) = f(d“@)

for az e H. As k — +o0o, g*(f(2)) — x andg*(z) — x. It follows that f(g*(2)) — .
This contradicts to (2.3).

CAse 2. g is essential hyperbolic (the axis gf projects to a filling geodesic on
S). Then by Theorem 2 of [10]g* is pseudo-Anosov. Using the same argument as in
Case 1, we havd gf 1 =g* for k = +1.
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If k=1, thenf commutes withg. Sos commutes withg*. Suppose that is
pseudo -Anosov. Sincg* is pseudo-Anosov, by Theorem 7.5.A of [8], there are mtsger
, J such thats' = g*/. This implies thats' projects to the trivial mapping class &
But o' projects to the pseudo-Anosov mapping class representéaebyap (1.1). This
is impossible. Suppose that is reduced by a simple loop on S which is peripheral
on 8. Recall thatf = gfg~!. We obtaino = g* o o o g*~. This implies thais is also
reduced by a unique loog*(c). It follows that g*(c) = ¢, which saysg* is reducible.
This is also a contradiction.

If k= —1, then we havey = f2gf~2 instead of (2.2). That isf2 commutes with
g. The similar argument as above can be applied in this case.

Case 3. ge Gis anon-simple and non-essential hyperbolic element. Byofdm
2 of [10], g* is a pure mapping class with a single componerin whichg* is pseudo-
Anosov. Writeg* = fg. If g= fgf~', then fr =0 o froo™ = f,(r. We conclude
thato keepsR invariant. Sinces is reduced by only one loop which bounds a twice
punctured diskA, c is the only boundary oR. That is, R=S— A. Both fr ando
restrict to commuting mapping classes Bn By Theorem 7.5.A of [8] again, there are
integersi, j such thatf' =ol. Thatis, o/ projects to the trivial mapping class &
But o projects to the pseudo-Anosov mapping class representdd.by This is also
impossible. The case thgt! = fgf ! can be handled in the same way. O

3. Special cases

In this section, we consider those elements in nSoithat come from some special
mapping classes oB. We assume tha$ contains some punctures.

Fori =1, 2, letaj C H be a geodesic with(&;) = &, wherec; are filling sim-
ple closed geodesics o8 as introduced in Section 1. L, D; be the components
of H — ;. The Dehn twistt;, can be lifted to a quasiconformal mapping of H
with respect toD;. The construction is as follows. L& € G be the primitive simple
hyperbolic element keeping both; and D invariant. Throughout we assume thgt
is oriented as shown in Fig. 1.

In the figure, the arrow om; “indicates the orientation ofj that points from the
repelling fixed point to the attracting fixed point gf. We take an earthquakg-shift
on D; and leaveD; fixed. Then we defing;: H — H via G-invariance, which gives
rise to a collectiors; of layered half planes ifHl in a partial order. In Fig. 1, the
arrow underneathy; “points to the direction of the motion af on D;.

There are infinitely many disjoint maximal elemerig(j) of ¢4 each of which
is invariant underr; (D; is just one of them). Recall that is defined as in (1.2).
From the definition, the restrictiom |y, = id. Sincer defined in this way is quasi-
conformal, it extends continuously to act & In particular, 7|z is quasisymmetric
if we normalize so that &" lies outside of all maximal elements &f;.
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Fig. 1.

Lemma 3.1. Let x € R be fixed by a parabolic element of. GThere are only
finitely many elements @f; that cover x

Proof. LetD;(0) be the maximal element @f; that coversx. Pick a pointz in
Hi, and draw a geodesic ray connectingz to x. I projects to a geodesic ral
connectingo(2) to the punctureb of § corresponding tox.

Let U be a punctured disk arourtl U is chosen so small that is disjoint from
& andU NT is a single ray. Observe thatN (S — U) has finite hyperbolic length.
It intersectse;” only finitely many times. Sd” intersectsa;” only finitely many times.
This implies that[* meets finite number of element; (0), ..., Di(m) of & and the
horodiskU at x that corresponds td is included in allD;(j). O

For each parabolic fixed poirt € R, by Lemma 3.1, letD;(0) D Di(1) D --- D
Di(m), Di(j) € Ui, coverz. Let gk, k=0,1,...,m, denote the primitive simple
hyperbolic elements of5 that keepD;(j) invariant and take the same orientation as
gio (here we refer to Fig. 1 foD; = D;(0) and g = gig). Thent;(2) is defined as

(3.1) 7i(2) = GioGi1 - - - Gim(2).

For eachz € R not covered by any element &f, 7i(z) =z Letx e R be arbitrary.
Since the set of parabolic fixed points Gfis dense orR, we choose a sequenge; }
of parabolic fixed points so that; — x. We see that

(3.2) n(x) = fim 7(x).

We summarize some additional propertieg;iofvhich are derived from the definition:
(1) If 5 is with respect toD;, thent’ = g™’y = rg~* is also a lift oft; and ¢/ is
with respect toD;.
(2) For any pointx covered by a maximal elememy; of ¢4, t™(x) and 7, "(x), m —
oo, tend to the attracting and repelling fixed point @f, respectively, and ifgio is
oriented as in Fig. 1, we have

t™(x) < g"(x), for m> 1.
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(3) For anyx,ye R, x < y implies 7;(X) < 7 (y), andz;(x) = x if and only if x does
not lie in the interior of any maximal element of.
(4) For each hyperbolic elemehte G and each maximal elemel; of 4, h(D;) €
U, if the repelling fixed point ofh does not lie inD;; and h(H — D;) € U if D;
covers the repelling but not the attracting fixed pointhofFurthermore,h(D;) is also
a maximal element off if D; does not contain any fixed points bf

We observe that the magp determines a fiber-preserving automorphism §f the
Bers fiber spacé (S). Let A c H denote a fundamental region 6f such thatA Ng; #
. Leta=p '(a)NA. Since a Bers isomorphisg: F(S) — T(5—(a}) is defined by
picking up any pointa € S, we may choose a point € S so thata € D;j. Under the
isomorphismg we then obtain a mapping clagg([zi]) € Modd.

Lemma 3.2. (1) ¢*([u]) is represented by the Dehn twigf,twhereq; is homo-
topic to@ on S as a is filled in
(2) For any simple closed geodesi¢ on S let @ C S be the geodesic homotopic to
a on S. Then a geodesi@; in {o~1(&@)}, and thus a component;f H—a; can be
selected so that the map with respect to P satisfies the condition thag*([z;]) = t,,.

Proof. For simplicity, we denote = 7; andg = g;. Since¢*([z]) is a mapping
class, we denote byf: S— S the map that represents®([t]). By construction, t
commutes withg. Thus ¢*([t]) commutes withg* = ¢*(g). By Theorem 2 of [10]
or Theorem 2 of [14],g* = ¢*(Q) is represented byﬁ‘l ot,, Where{wa, B} bounds a
punctured cylinderP containinga. we obtain

fo ('[57l oty)o fl= tﬁfl o ty.
That is,
3.3) tf(ﬂ)_lOtf(a) :tﬂ_lota.

From (3.3) we conclude that(P) = P, i.e., f keeps{w, 8} invariant.

Let f: S— & be the map isotopic tdf asa is filled in. SinceP is a cylinder
containinga, it projects to a simple geodesic. @ is the projection of the axis of.
It follows that f keepso”invariant. Thus it defines a mafy on S— {&}.

On the other hand, by (2.1), we know thét projects to the Dehn twist along
&. So f =tz. That is, fo = id, which says thatf|s_p is isotopic to the identity. In
particular, this implies thaf («) =« and f(8) = 8. Hence, f can be written a$ﬂ‘k+1o
tX, where we may assume thiat> 1.

To show thatk = 1, we considerr’ = g~1z. By Property (1),7’ is with respect to
D’, and is also a lift oft;. By the same argument as abovg;([z']) is represented
by tf o t;™* for m > 1. Thus¢*([z'"Y]) is represented by;™ o t~t. Since v

coincides withg on oR, go*([r”lr]) is represented bj!ﬂ‘m‘k+1 o t™k=1 Once again,
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by Theorem 2 of [10] or Theorem 2 of [14}*(g) is represented bygl oty. We
see that

™ ot =t ot

It follows thatm+k —1 =1. Sincem > 1 andk > 1, we conclude tham =k = 1.
This proves (1).

From (1), we see that either*([t]) or ¢*([g~1r]) is represented by a Dehn twist
ty, along a simple closed geodesig on S for which there is an elemert € F such
that ¢(«1) = . Since ¢*(G) = F, there is an elemenh € G such thatp*(h) = ¢.
Now it is easy to see thdi(a@) C H is the desired geodesic, and thus eitheh— or
hgtrh=! is the desired lift oft;. This proves (2). O

Lemma 3.3. Lett; and r» be any lifts of §, and t, with Hi N H, =@. Then for
sufficiently large integers,rs, the maptjz;° does not fix any parabolic fixed points
of G.

Proof. Suppose that € 0H = Ris a parabolic fixed point that is fixed bz, >.
There is a parabolic elemeiit € G so thatT (x) = x.

Notice thatH; is closed. ThusH; N H; is also closed. Ifx lies outside of any
maximal elements of/; andif, (in the sense that does not belong to any closed half
plane inl{; andi4,), thenx lies in the closure i3 N Hy) NIR. There is a fundamental
region A C H that takesx as a cusp and has an overlap withNH,. This in particular
implies thatH; N H, is not empty. This is a contradiction.

Assume thatx € D, for a maximal elemenD, of U,. If x does not lie in any
maximal elements of/;, then t;5(x) = x. Thus 37 3(X) = 75(X) #Z X. If x € Dy for
a maximal elemenD; of U/, but not lie in any maximal elements df,, we use the
same argument to prove that} ¢;%) 1(x) # x.

For any half planeD in U/, or U, let 9D denote the boundary ob in H. Let
h € G be a simple hyperbolic element so thgtD) = D. If x is a vertex ofD, i.e.,

x € dD N H, then T and h would share a common fixed point, and this would
contradict to thatG is discrete.

By the above discussion, we are left with the possibilityt thee D, N D for a
maximal elementD; of ¢/, and a maximal elemenD, of U,. If 9D, intersectsoD;,
the intersection point is ifi. It follows that H; N H, # @, contradicting the hypothesis.

Now we assume thab, ¢ D;. Let gi € G be hyperbolic such thati(D;) = Dj,

i =1, 2. Sincex € Dy, from (3.2),

(3:4) 9;°(x) < 71 °(X).

From Property (4), we know tha; °(D.) € U is also maximal, and Property (2) says
that 7, keepsg; (D) invariant. Thustjg;°(x) € g;°(D,). Since 9D, projects to a
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simple closed geodesie,,” D, N g (D) = ¥. We assert that
(3.5) X < 7507, °(x).
By Property (3),z; is monotonic. It follows from (3.4) and (3.5) that
X < 750, °(X) < 1575 °(X).

In particular, 37, °(x) # X. If x € D1N D, and D; C D,, by using the same argument
above, we conclude that the inversg 1, °)! does not fix any parabolic fixed point
of G, which is equivalent to that)z;°(x) # x. Finally, we assume that € D; N D,
where dD; N dD, = @ and neitherD; ¢ D, nor D, C D;. In this case, we can use
Lemma 3.1 to prove that for large integarsand s, 5z, °(s) € D; N D, is covered
by more elements off; thanx is, from which we deriverjz;°(x) # x. Details are
omitted. See [20] for more information. The lemma is proved. O

4. Proof of Theorem 1.1

For the sufficient condition, suppose thdtNH, # #. Choose a poinz € H; N H,
and letz = o(2), wherep: H — S is the universal covering. Them belongs to a
component ofS — {&1, &@}. By hypothesis,S — {&1, &} consists of once punctured
disks {Q4, ..., Qk}.

Assume thatz € Qq, say. Letxy be the puncture ofQ;. In Q;, we connectz
and the punctureg by an arcy that avoidsai and o,. Obviously, y can be lifted
to an arcy”C H connectingz and a parabolic cusRq. Sincey C Qi, ¥ C Hy N Hy.
But ¢|w,nH, = id. It follows that ¢|; = id. Since¢ has a continuous extension 10,
we see that (Xo) = Xo. Therefore, according to the discussion in SectionpQ[¢]) is
reducible by a single reduced loop @ithat is the boundary of a twice punctured disk
enclosinga.

For the necessary condition, we assume tHatN H, = ¢. By Lemma 3.2, the
mapping classp*([7i]) is induced by the Dehn twist,, wherew; is a geodesic orS
homotopic toe; on S. It follows that ¢*([¢]) € Modg is represented by (1.3).

From Lemma 3.3,757; ° does not fix any parabolic fixed point & for large r
ands, which says that ifp*([t;7; °]) is reducible, it must be reduced by a looghat
is also non-trivial onS. It follows that ¢*([<; 7; °]) projects to a reducible map, that
is reduced by€. But sincer is a lift of t;, Fo is isotopic totf, otgf. By hypothesis,
(@1, @) fills S. Thustg, otgzs is isotopic to a pseudo-Anosov map. It follows tHag
can not be reducible. This is a contradiction.

We conclude that*([t; 7, °]) is pseudo-Anosov. Hencgr, o} fills S. Now by
the Theorem of [17, 2, 12], for any integels, r;, 5 € Z*,

N

o=t ot

i=1
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is pseudo-Anosov. This completes the proof of Theorem 1.1. ]

5. Proof of Theorem 1.2

Let {r1, 72} be such thatH; N H, # @. Let D; € U be maximal half planes such
thatoD1NdD, #@. Let D; € U1 be another maximal element that is disjoint from both
D; and D,. From Lemma 5.3.8 of Beardon [3], we can choose a hyperbddicent
h € G whose repelling fixed point lies iilD, and whose attracting fixed point lies in
Dj. For j > 1, hi(D,) is a maximal half plane foh!z,h~) and the complement of
hi(D,) is contained inD;. Thus for largej > 1, all pairs ¢1, hit,h™)) satisfies the
condition of Theorem 1.1. From the theorem we conclude that

(5.1) w*([]_[ hir;ih—irls})

is a pseudo-Anosov mapping class projecting to the classesepted by;. This is
equivalent to that

N
(5.2) [] hizgh iz s

i=1
does not fix any parabolic fixed point & on R.

REMARK 5.1. To understand the mapping class (5.1) in topologicah teve no-
tice that the map that represents (5.1) is generated by tbegbmdesicsy; and f(ay)
where f € F is determined by an elemehtof G. To see how the curve; is altered
to f(ap), we refer to Theorem 2 of Kra [10]. For example, hfis a simple hyper-
bolic, then f = ¢*(h)! is a multiple of a spin map, written dg otc;j, where bothc
and ¢y are homotopic tcg, the projection of the axis ofi. if h is parabolic, thenf
is an ordinary power of the Dehn twist along the boundary ofvigé punctured disk
on S enclosinga.

Note thatz; determines an isomorphism : G — G that is defined by
(5.3) tih = xi(h)7i.

It follows from (5.3) that (5.2) can be written ag¢ for gj € G.
We claim that for sufficiently largg,

gj+1¢ # 9j¢.

Indeed, as discussed above, for laijgethe complement oDz = hi(D,) is contained
in Dj. This implies thatD3 O D;. Let D4 = h(D3). We haveD4, D D3z D D; and D4 is
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Fig. 2.

N
_ f_—s
wj = H (37 )
i=1

N
wjs =[] (57 9).
i=1

7, 205 (y) € (Ds — D3) N R.

On the other hand, (3.2) and (3.2) along with Property (2)dyie

X < 7 (y) < g (y).

Hence by Property (3) again, we obtain

X < 1 2THY) < 17 2gR(Y).

795

a maximal element for the mapi*1r,h~1-1. For simplicity, we denoters = h,—rzhj*1
and T4 = hJ""lTZhj_}l' Let

Pick any pointx € D1 N R. Since D; is maximal forry, y=1,%(X) € D1 N R. Note
also thatD3 is maximal forts. Sincecos is simple, by Property (3)r3 is monotonic on
DsNR. By (3.2), we conclude that for all positive integets t3'(y) € (D3 — Dl)mﬁi.
By induction process, one can show thag(x) € (D3 — D3) NR.
On the other hand, sincB4 D Dz is a maximal element fot, and hence is in-
variant under the action af;. Denoted D4m]f£: {X,Y} as shown in Fig. 2. Letiy € G
be the element that keefd3, invariant and takes the same orientation as in Fig. 1.
Now y = 7; %(x) € D;NR c D3NR. Hence we get thag}!(y) € gj'(Ds). Observe
that g;*(D3) is disjoint from D3 (the shaded region in Fig. 2).
It is obvious thatg)!(D3) containsg,!(D1). By Property (4),g;*(D1) is a maximal
element oft/;, which means that; * keepsg)!(D;) invariant. It follows that



796 C. ZHANG

It follows from (5.4) thatt; %z} (y) € (Da — D3) "R and thatz;?z; 27} (y) € (D4 —
D3) NR. That is, 7j?t; 214 ;% (x) € (D4 — D3) N R.
By induction process, we can show that

(N ™) - - (2t 2) (T *)(X) € (Da — D3) NR.

That is, wj+1(X) € (Ds — D3) NR. In particular, we conclude thabjs1(x) # wj(X).
Similar argument yields thabj.«(x) 7 wj+(X) for k #1 andk, | > 0. This completes
the proof of Theorem 1.2. ]

6. Proof of Theorem 1.3

From Theorem 1.2, there are infinitely many elememise G so thatw; = h;¢
do not fix any fixed points ofs. Hence allafj‘ = ¢*([wj]) are pseudo-Anosov mapping
class of S projecting to (1.1). From the construction, eaeh is induced by a map
with from (1.3). By the argument of Theorem 1.2, there arenitédly many distinct
elements in the sequen¢e;}. This proves (1)—(3) of Theorem 1.3.

To prove (4)—(6) of Theorem 1.3, we choose a point in the TeitHer space
T(9 represented=-minimal surface denoted b$. Let G be the Fuchsian group so
that H/G = S. Let 7o be a zero ofp (¢ is defined by the pseudo-Anosov m&j), so
that F(zp) = zg and Hi(zp), 0 <t < 1, is trivial if zg is not a puncture. It may or may
not be a puncture of.

Associated to eachy € H with o(2) = 7o, there is a mag defined by (1.3). To
see thatp*([¢]) is pseudo-Anosov ifzy is a non-puncture zero, we refer to [18] and
outline the proof as follows. Lelt denote the (unique) Teichmuller geodesic'ﬁl(lé)
determined by defined as (1.1). Lek ¢ F(S) be a lift of | defined by

[=(([tu], w™* (@), t € (-1, 1)} C F(9).

Clearly, [ is a line in F(S) passing througt,. By [10], ¢(1) C T(S) is a Teichmidiller
geodesic inT(S). By the argument of Proposition 3 and Corollary 2 of [10]is in-
variant under a liftF of F with F(%) = 2. From the assumptiont;(z) is a trivial
loop. This implies that;|z = F|z. Therefore, ¢() is invariant under the action of
0*([¢])- So by Bers [5],¢*([¢]) is pseudo-Anosov.

We need to prove that adb’, for large j, are not conjugate te*([¢]).

Suppose that for somg > 1, there ishg € G such that

N
(6.1) [Tt zh™1)ie S =hothy™,

i=1

where¢ is defined in (1.4). Note thdfr;, T2} possesses the property thdt N H, # @.
If S—{a;, &} consists of once punctured disks onlyfixes a parabolic fixed point of
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G on R. However, ifS— {&1, @} contains some disk components, for someefined
as (1.4), the existence of fixed points pfthat are also fixed by elements & is not
clear. In this case, we use a different approach as follows.

Fori =1, 2, let Dj be maximal elements dff so thatoD; intersects withdD,.
Let @ =D;N Dy and A =QNR. See Fig. 3.

Now we consider the action of on A. The endpointY is moved to the right
while the pointZ is moved to the left. Since the action ofon A is continuous, there
is a pointV € A so that¢(V) =V (according to Lemma 2.2y is not a hyperbolic
fixed point of G, but it could be a parabolic fixed point @). Thus hoghgl fixes
ho(V) € R.

On the other hand{ry, hioh=1} has the property thatl; N H, = ¢. By the same
argument of Lemma 3.3,

N

[JhiehT)ie s

i=1
does not fix any point ofR. This contradicts to (6.1). The same methods can be used
to prove that allw] lie in different conjugacy classes. Details are omitted. ]
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