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Abstract
In this paper we present sufficient conditions and necessanditions for a
single element to form g@-basis of a ring of constants of a derivation. We consider
some special cases, when these conditions are equivaledtwa analyze some
counter-examples, when the equivalence does not hold.

Introduction

If A is a commutative ring with unity, then we denote By the subset of all
invertible elements ofA. Two elementsa, b € A are called associated & = bc for
somec € A*, and we denote it by ~ b.

Let K be a commutative ring with unity and lek be a K-algebra. AK-linear
map d: A — A such thatd(fg) = d(f)g + f d(g) for every f,g € A, is called

a K-derivation of A. If A= K][xXg,...,X,] is a polynomial K-algebra andd is a
K-derivation of A, then for everyf € K[xy, ..., X,] we have
of af
d(f)= — .d +...+—.d .
(f)= 5 - d0a) 4o+ - - dOx)

If d is a K-derivation of aK-algebraA, then its kernel
AY={f e A:d(f)=0)

is a K-subalgebra ofA, called the ring of constants af. If A is a K-domain of
characteristicp > 0, then a ring of constants of K-derivation is always a[AP]-
algebra, whereAP = {aP, a € A}.

Throughout this papeA and B will be domains of characteristip > 0, such that

APCcBcCcA and Byn A=B.

As the main example we will consider a polynomial algebra K[Xy,..., X,] and its
subalgebraB = K[xlp, ..., X8], whereK is a unique factorization domain of character-
istic p > 0.
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If Ris a domain, therRy denotes the field of fractions d®. For arbitrary f € A
we consider the subring

C(f)=Bo(f)N A,

where By(f) is the subfield ofA; generated oveBy by f. It is easy to see that for
eachf € A the ring R = C(f) satisfies the conditions

BCR and RyNA=R.

Note that if a subringR of A satisfies these conditions and the field exten®grc Ry
is of degreep, thenR=C(f) for every f € R\ B. Moreover, if A is finitely generated
over B, then subrings ofA satisfying these conditions are exactly the rings of corista
of B-derivations ofA ([7], Theorem 2.5; [5], Theorem 1.1; see [11], Theorem 5.4 or
[10], Theorem 4.1.4 for original arguments in charact&rigero).

Nowicki in [9] proved that ifk is a field of characteristic 0, then the ring of con-
stants of every nonzerk-derivation of the polynomial algebrigx, y] is of the form
K[ f] for some polynomialf € k[x, y]. The properties of such generators in the case of
characteristic 0 were investigated by Nowicki and Nagat§lR] and by Ayad in [1].
The authors of [12] showed also that in the case of charatite@ rings of constants
of nonzerok-derivations ofk[x, y] are of the formk[x?, y?, f] for suitable f.

For example, ifk is a field of characteristic 2 andl = xy € K[x, y], then

C(f) =kIx? y? xy] = B[ f],

where B = k[x?, y?]. On the other side ([12], Example 4.3), kfis a field of charac-
teristic 3 andf = x?y € K[x, y], then

C(f) =kIx%, y°, X2y, xy’] #k[X®, y°, x?y] = B[ f],

where B = k[x3, y3].

If a subring R of A is generated oveB by a single elemenf ¢ B, that is, R=
B[f], then R is a free B-module with a basis 1f,..., P! (Lemma 1.1). In this
situation we callf a one-elemenp-basis of R over B (Definition 1.2). Note that the
existence of one-elememt-basis of a ring with respect to localizations and the module
of derivations was investigated by Ono in [13].

Our main question is, wheri is a one-elemenp-basis of C(f). The answers,
under additional assumptions about some kind of homoggneitre obtained by the
author in [5] and [6], and generalized for eigenvectors ofeaivétion in [7]. In this
paper we study one-elememktbases consisted of an arbitrary element without addi-
tional assumptions.

We present necessary conditions and sufficient conditionar elementf to be a
one-elementp-basis of a ring of constants of a derivation in the case oftigeschar-
acteristic. We consider various levels of generality. Iredtem 1.4 we deal with an
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arbitrary domain, in Theorem 1.5 with a UFD, and in Theore® \&ith a polynomial
algebra over a UFD. We prove that in the latter case the dondit

of of
gedl —,...,— | ~1
0X1 0X%n

is sufficient and the condition

of of

gcd(f +h, —, ..., —
0X1 0Xn

>~1 for every he K[x},..., xP]

is necessary.

In the case of characteristic 2 we prove that these conditame equivalent. We
conclude it from the characteristic 2 version of the follogiFreudenburg’s lemma,
presented (for two variables ové) in [4] and generalized in [3].

Lemma ([4], Lemma; [3], Proposition 2.1).Given a polynomial fe K[xy,..., Xn],
where k is an algebraically closed field of characteristicozesuppose @ K[X, ..., Xn]
is an irreducible non-constant divisor &ff /ox; fori =1,...,n. Then there exists € k
such that g divides fc.

Actually, the thesis of the above lemma can be strengtheneld thatg? divides
f +c¢ ([3]). We can observe a similar fact in positive charactarjssee Lemma 2.1.

In the last section we discuss some counter-examples to siomeof this lemma
in the case ofp > 2.

1. The case of an arbitrary domain

In this sectionA is a domain of characteristip > 0 andB is a subring containing
AP, such thatBy N A = B.
We start from some basic observations.

Lemma 1.1. For an arbitrary element fe A\ B the following holds
a) Bo(f)=Bo[f],
b) the elementd, f,..., fP~! are linearly independent overoB
c) the ring B f] is a free B-module with a basis, f,..., fP~L

Proof. a) One can easily show this directly, but this alstofed from the alge-
braic dependence of over By ([14], Theorem 2, p.56).

b) The field Bo(f) is a purely inseparable extension Bf and, by a), the ele-
ments 1,f,..., fP~1 spanBy(f) over By. Thus [Bo(f) : Bg] = p® for somee ([14],
Corollary 3, p.68) and Xk [Bo(f): Bg] < p, so [Bo(f): Bg] = p.

c) This follows from b), becauséP € B. ]
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The definition of ap-basis of a ring extension can be found in [8], p.269. We
are interested in rings with one-elemepitbases, that is, rings of the form presented
in ¢) in the previous lemma.

DerINITION 1.2. If a subringR of A is a free B-module with a basis 1f,...,
fP-1 for some f € A, then f is called a one-elemerp-basis of R over B.

The next lemma will be useful in the rest of this section. Hetteat A, B are
domains of characteristip > 0, such thatAP C B c A and BpnN A= B.

Lemma 1.3. For an arbitrary element fe A\ B the following conditions are
equivalent
(i) f is a one-element p-basis of(€),
(i) C(f)=B[f],
(iii) for everywo, wa, ..., wp_1 € By, if

wo+wy f +~-~+U)p,1fp71€ A,
then wo, wy, ..., wp_1 € B.

Proof. The equivalence (i (ii) follows from Lemma 1.1 c).

(i) = (iii) Assume thatC(f) = B[f] and considemwg, wy, ..., wp_1 € Bg such
thatg = wo + w1 f +---+w, 1 fP1 e A Theng e Bo[f] N A so, by the assump-
tion, g € B[f], that is, g=wvo+ vy f +---+vp_1 fPL for somewg, vy, ..., vp_1 € B.
Hencew; = v; for eachi, because 1f,..., P~ are linearly independent oveéd, by
Lemma 1.1 b).

(iii) = (i) Assume that (iii) holds. ObvioushB[f] < By(f) N A=C(f). Now,
take an arbitrary elemerg € C(f). By Lemma 1.1 a)C(f) = Bg[f]N A, sog =
wotwy f+-- -+wp_1f P-1 for somewog, wy, ..., Wp-1 € Bo. Thenwg, wy,..., Wp-1 € B
by (iii), and g € B[ f]. O

Note that the assumptioBy; N A = B in the above lemma is important. Without
this condition Lemma 1.3, in general, is not true, as showrthgyfollowing example.
(The author thanks the referee for this example.)

EXAMPLE. Let A=K[x,Y,y?/x], B=K[x3, y3 y?/x], wherek is a field of char-
acteristic 3. Letf = xy. Then By(f) = By and By N A = K[x3, y°, y?/x, xy] = B[ f].
Meanwhile, x?/y, x/y?> ¢ B andx?/y — (x/y?) - xy=0¢€ A

The following theorem presents a sufficient condition andeaessary condition
for f to form a p-basis of C(f) over B. The proof of the implication ()= (ii) is
motivated by the proof of Lemma 2.6 in [2].
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Theorem 1.4. Let A be a domain of characteristic p 0 and B a subring of
A, containing A, such that BN A= B. Let f € A\ B. Consider the following
conditions
(i) d(f)=1for some B-derivation d of A
(i) C(f)=B[f],
(iii) for every he B the element #h is not divisible by a square of any element from
A\ A* nor by any element from BA*.

Then we have the following implicatians

(i) = (ii) = (iii).

Proof. (i) = (ii) Suppose that the condition (i) holds, bG{f) # B[ f]. Then,
by Lemma 1.3, there existo, wi,..., wp_1 € By such thatwo+wy f +- - -+wp 1 fP1e
A andw; ¢ B for somei. Letl be the least nonnegative integer such thagtt wq f +
...+ w f' € A for somewg, wy, ..., w € By, wherew; ¢ B for somei. Of course
0 < | < p. Moreover, w, ¢ B by the minimality ofl. Let d be aB-derivation of A
such thatd(f) = 1 and letdy be the extension ofl to a By-derivation of Ay, defined
by do(g/h) = (d(g)h — g d(h))/h?. Thendg(wo+wsf +---+w ') = (wi+2wpf +- .-+
lw f'-1)d(f), sows +2waf +---+lw f'"2 € A, and we have a contradiction with
the minimality ofl.

(i) = (iii) This is a special case of Proposition 3.3 a) in [7], justnember that
C(f)=C(f +h) andB[f]= B[f +h]. ]

If A is a unique factorization domain, then the condition (i) dfedrem 1.4 can
be replaced by a weaker one.

Theorem 1.5. Let A be a UFD of characteristic p- 0 and B a subring of A
containing A, such that BN A=B. Let f € A\ B. If all elements of the form
d(f), where d is a B-derivation of Ahave no common noninvertible divisprghen
C(f)=B[f].

Proof. Similarly like in the proof of Theorem 1.4, we obtaivat w1 +2w, f +- - -+
lw ') d(f) = do(wo + w1 f +---+w, f') € A for every B-derivationd. Since, by the
assumption, the elements of the fomiGf) have no common noninvertible divisors,
hencew; + 2w, f +.- - +lw f'"1 € A. O

The following example shows that i is not a UFD, then this weaker condition
may be not sufficient.

EXAMPLE. Let k be a field of characteristip > 0, let K = k[a, b]/(a® — b?),
A= K[x,y], B=K[xP,yP], and let f = bx + a®y. The elements f /dx = b and
af/dy = a®> have no common noninvertible divisors, so all the elemeitthe form
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d(f) have no common noninvertible divisors. On the other haagh)( f =ax+bye A
anda/b ¢ B, soC(f) # B[ f] by Lemma 1.3.

2. The case of a polynomial algebra

In this section we consider a polynomial algetka K[xy, ..., X,] over a unique
factorization domainK of characteristicp > 0, and a subalgebrB = K[xlp, oo XY

The following two lemmas are analogical to some well-knowot$ from charac-
teristic zero.

Lemma 2.1. Let f € K[Xy,...,Xy] and let g be a prime element of[k,..., Xn],
not belonging to Kx!,..., x5 If g| f and g|af/ax for every i then ¢ | f.

Proof. Let f =g'h, wherer > 1, h € K[xg,..., %], gth. Thenaf/ox =
g 1(r(dg/ax)h + gdh/ax;) for eachi. By the assumptiomg/dx; # 0 for somei, so
g19g/d%;, becausedg/dx; has lower degree with respect # than g. This implies
that, if pfr, theng{r(dg/dx)h, sog = | af/ax andg' {df/dx, hencer > 2.

Note also that, ifp | r, then obviouslyr > 2. ]
Lemma 2.2. Let fe K[xy,..., xn] \ K[xP, ..., x}]. Then
of of
gcd(f,—,...,—>~1
0X1 0Xn
if and only if f is not divisible by a square of any polynomigdnfi K[xy,..., X,] \ K*,
nor by any polynomial from K/, ..., x8]\ K*.
Proof. &) Itis easy to see that i§? | f for someg € K[xq, ..., X,] \ K* or
g| f for someg e K[x[,...,x}]\ K*, theng|af/ax for everyi.

(&) Assume that gcd{, 0 f /0xy,...,0f/0x,) ~ 1 and consider a prime element
g€ K[x,..., %] \K* such thatg | f andg | af/ax for everyi. If g ¢ K[x},...,x}],
theng? | f by the previous lemma. O

The following theorem presents a sufficient condition andeeessary condition for
a polynomial f to be a one-elemenp-basis ofC(f). The implication ()= (ii) is a
positive characteristic analog of Proposition 14 in [1].

Theorem 2.3. Let K be a UFD of characteristic p- 0, let f € K[xg,..., Xa] \
K[x}, ..., x}]. Consider the following conditions
() gcd@f/oxa, ..., df/dx) ~ 1,
(i) C(f)=K[xP,...,xP, fl,
(iii) ged(f +h, 3 /dxy, ..., df/dx,) ~ 1 for every he K[x{, ..., x}].
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Then we have the following implicatians
(i) = (i) = (iii).
Proof. (i) = (i) If gcd(df/dxy,...,df/dxy) ~ 1, then, obviously, all elements
of the formd(f), whered is a K-derivation of K[Xy, ..., X,], have no common non-

invertible divisors, saC(f)=K[x},...,x}, f] by Theorem 1.5.
(i) = (i) Assume thatC(f) = K[x},...,x}, f]. Then, by Theorem 1.4, for

every h € K[x[, ..., x{], the polynomial f + h is not divisible by a square of any
polynomial fromK|[xy,..., X,] \ K*, nor by any polynomial frorrK[xlp, o XBT\ K,
so ged(f +h, af/9xq,...,8f/9%,) ~1 by Lemma 2.2. ]

The rest of this paper is devoted to partial answers to tHevielg two questions.
Question I. When are the conditions (i) and (ii) of Theorer® @quivalent?

In Theorem 3.7 we will give an affirmative answer to the abowestgion in the
case of characteristi€ = 2. Moreover, it is easy to see that the equivalences{iXii)
holds in Theorem 2.3 for arbitrary characteristic in theeca$ one variable. Namely,
for f € K[x] the condition (i) means thaf = ax+b for somea € K*, b € K[xP].
And this is equivalent to (ii), becauge(f) = K[x].

Question Il. When are the conditions (i) and (iii) of Theor@3 equivalent?

The answer to this question is obviously affirmative if gct(dxy,...,df/oxp) | f+
h for someh € K[x!, ..., x}]. This is the case whed(f) = f for someK -derivation
d of K[Xy,...,Xy] (compare [7], Theorem 4.4 with a single eigenvector), intipalar,
if K is a field andf is homogeneous of a nonzero degree with respect to any weight
vector ([6], Proposition 2). Another situations when we éan affirmative answer to
Question Il will be presented in the next section.

3. Some special cases

In this section we observe the cases when the conditiongiifiand (iii) of Theo-
rem 2.3 are equivalent. More precisely, in Propositions 3.3, 3.5 and 3.6 we present
conditions, which are stronger than the negation of (i), aich imply the negation
of (iii). Such implications have the form of simpler versgowf the Freudenburg’s
lemma ([4], [3]) in positive characteristic. The first oneabtained when a prime fac-
tor has some special form.

Proposition 3.1. Let K be a UFD of characteristic p- 0. Let f € K[xy,..., Xq]
and let ge K[xa,..., Xn] be a polynomial of the form g x; +r, where re K[x,...,
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Xj—1, Xj+1, ..., %n], fOr some j If g |9 f/9x fori=1,...,n, then ¢ | f +h for some
he K[xy, ..., x5

Proof. We may assume thgt= 1, that is,g = x; +r, wherer € K[x, ..., X].
By easy induction on the degree &fwith respect tox; we obtain thatf =ag+b for
somea € K[Xy,..., %], be K[Xz,...,Xn], sodf/dx; =(0a/dx;)g+a andd f /9% =

(0a/0x%)g + a(dg/09x;) + ab/ax; for i > 1. From these equalities we deduce that if
g|af/ox for eachi, theng|a andg | db/dx for i > 1. Sincedb/dx; is of degree

0 with respect tax;, hencedb/dx; =0 for eachi > 1, sob e K[x}, ..., xf]. Finally,
g?| f +h for h=—b. O

The other particular version is obtained when we considexctof (not necessarily
prime) from the subalgebra generated pyth powers of variables. We need the fol-
lowing obvious lemma.

Lemma 3.2. Let K be a domain of characteristic p 0 and let fe K[x], f =
a+ayX+---+ap_1xP1, where a e K[xP] fori =0,1,..., p—1. If b € K[xP] and
b| f, thenblg fori=0,1,..., p—1.

Proposition 3.3. Let K be a UFD of characteristic p- 0. Let f € K[Xg,...,Xn]
and ge K[x},...,x}]. If g|af/ax fori=1,...,n, then g| f +h for some he
KIxP, ..., xRl

Proof. Induction. Lem =1, f € K[x], f =ag+ayx+---+ap_1xP 1, whereg €
K[xP] fori =0,1,..., p—1. Consider an polynomial € K[xP] such thatg | 3 f /9x.
Sincedf/ax =a; + -+ + (p — L)ap_1xP~2, henceg | & fori =1,...,p—1, by
Lemma 3.2. Therg | f — a.

Now, letn > 1 and assume that the statement holdsrfor 1. Consider poly-
nomials f € K[xy,..., %] andg e K[x},...,x}] such thatg | 8 f /ax fori=1,...,n.
Put Kn = K[Xq, ..., Xn_1]. Sinceg|df/dx,, henceg| f —hg for somehg € K,[x}],
by the case ofi=1. Then obviouslyg | 8 f /dx; —dhg/0x; fori =1,...,n—1, because
ge K[x},...,xP], sog|dho/dx. PutK’ = K[x}]. By the induction assumption for
ho € K'[X4, ..., Xa—1] We obtain thatg | ho+h for someh € K'[x},...,x" ], so finally,
gl f+h O

The next proposition is especially useful in the case of atteristicK = 2. First,
note the following consequence of Lemma 1.2 in [7].

Lemma 3.4. Let K be a UFD of characteristic p- 0. Let g be a prime element
of K[x], g ¢ K[xP], g|a, where ac K[xP]. Then ¢ | a.
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Proposition 3.5. Let K be a UFD of characteristic p- 0. Let f € K[xy,..., Xn]

be a polynomial such thad?f/ax?=0fori =1,...,n, let g be a prime element of
K[X, ..., Xa], such thatdog/ox; #0fori=1,...,n. Ifg|af/ox fori=1,...,n,
then ¢ | f +h for some he K[x/, ..., x5].

Proof. PutKj = K[Xg,..., Xi_1, Xi+1,..., Xa] for i =1,..., n. The assumptions
imply that d f /ax € Ki[x] and g € Ki[x]\ Ki[x"] for eachi, so, ifg|df/dx, then
gP | af/dx by Lemma 3.4. SincgP € K[xlp, ..., X%], hence the statement follows
from Proposition 3.3. O

The characteristic 2 version of the Freudenburg’s lemméésfollowing.

Proposition 3.6. Let K be a UFD of characteristiQ. Let f € K[xy,..., Xq]
and let g be a prime element of[K, ..., X,], not belonging to KxZ,..., x3]. If
glaf/ax fori=1,...,n, then ¢| f +h for some he K[x2, ..., x2].

Proof. Induction. Lein=1, let f € K[x], f =ax+b, wherea, b € K[x?]. Con-
sider a prime divisog of 3 f /dx = a such thatg ¢ K[x?]. Theng? | a by Lemma 3.4,
sog?| f —bh.

Now, let n > 1 and assume that the statement holdsrfer 1. Consider poly-
nomials f, g € K[Xx, ..., X,] such thatg is prime, g ¢ K[xf, ...,X?landg|df/ax
fori =1,...,n. From Proposition 3.5 we know that the statement is truggjfox; # 0
for everyi, becauseh?f/9x? = 0 in characteristic 2.

Now assume thatg/dxj = O for somej, for example,dg/dx, = 0. Theng €
Kn[x3], where Kn = K[Xy, ..., Xn—1]. Put fn = f —xq(d f/9x,), so alsof, € Kn[x2].
For eachi, sinceg | df/dx anddg/dx, =0, henceg | (3/0x%n)(d f/3%). Fori <n
we haved f,/0x =9 f/dx — Xn(82F /9% 9Xn), SOQ | 3 fn/0X;.

Put K’ = K[x2]. Observe thatf,, g € K'[Xq,..., Xn_1], g is prime inK'[xq, ...,
Xn-1], 9 ¢ K'[X2,...,x2_,]. By the induction assumption, sinag| d f,/dx; for every
i <n, henceg?| f,+h for someh € K'[x3,...,x2_], that is, h € K[XZ,...,x2]. Then
g| f+h, becauseg | 3 f/3x,, and finally, by Lemma 2.1, we obtain thed | f+h. [

Now we obtain, in the case of characteristic 2, the equiwaeof sufficient and
necessary conditions for a polynomiélto be a one-elemenp-basis of C(f).

Theorem 3.7. If K is a UFD of characteristic2 and f e K[xy,...,xa] \K[X2,...,
x2], then the following conditions are equivalent
(i) gcd@f/oxg,...,df /%) ~ 1,
(i) C(f)=KDA, ..., %2 f],
(iii) ged(f +h, 3 f/0xq, ..., df/dx,) ~ 1 for every he K[x?, ..., x],
(iv) for every he K[xZ,...,x2] the polynomial f+h is not divisible by any polynomial
from K[x2,..., x2]\ K*.
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Proof. The implications (i)= (ii) = (iii) were obtained in Theorem 2.3. The
implication (iii) = (i) follows from Propositions 3.3 and 3.6. And the equivaen
(iii) < (iv) follows from Lemma 2.2, because, in the case of charestie 2, a square
of a polynomial fromK[xy, ..., X,] \ K* belongs toK[xZ, ..., x2] \ K*. O

4. Some examples fop > 2

In this section we analyze some counter-examples to the 2” version of Propo-
sition 3.6.

Let K be a UFD of characteristip > 2. We are looking for pairs of polynomials
(f,g) such thatf,g e K[Xq,..., %] \K[X}, ..., x}], satisfying the following conditions:

g is a prime element of K[xy, ..., Xn],
af .
(%) g % for i=1,...,n,
gt f+h forevery heK[x/, ..., x5

Of course, every pair f(, g) satisfying ) is a counter-example to thep“> 2"
version of Proposition 3.6. On the other side, all countemeples satisfy«), because
for g ¢ K[x{,...,x8], if g]af/ax fori=1,...,nandg?{ f +h for everyh e
K[x, ..., xP], thengt f +h (Lemma 2.1).

We will consider a special case, whgn~ gcd@ f /9X3,...,d f/9X,). In this case
f is a counter-example to the implication (i) (i) in Theorem 2.3. The following
examples have been found using a computer.

ExAMPLE. Let K be a UFD of characteristic 3. The following pairs of poly-
nomials (f;, gj) satisfy the condition «):

fi =xP+x2+x, g1 =x4+x—1, f1, g1 € F3[x],

fo = x® +xy?, 02 = x* —y5, f2, g2 € K[X, y],
f3=x3y2+xty +x°+y* —xy3, gg=x*—x3y+y3 f3 03 € K[X, Y],
fa = X2y + x2y* + xy?, Os = x*+xy3 =yt fs4, 04 € F3X, y].

The fact, that eacly; is prime, could be verified by hand, but the last condition of
(x) is obtained by the following lemma.

Lemma 4.1. Let fe K[x,...,x]\K[x},...,x}], where K is a UFD of char-
acteristic p> 0. Assume that g~ gcd@ f /90Xy, ..., df/9%,) is a prime element of
K[X1,...,Xn], not belonging to KxP,..., x¥]. Letdf/dx =uig, Ui € K[xq,..., %],
fori=1,...,n. If u; ¢ (g,dg/dx) for some j then gf f+h for every he K[x},...,x}].

Proof. Suppose thag | f +h for someh € K[x}, ..., xf]. Theng?| f +h by
Lemma 2.1, sof +h = g?s for somes € K[Xy,...,X,]. Henced f /dx; = 2g(dg/dx;)s+
g2(9s/9%;), sou; = 2s(dg/dx;) + (9s/9x;)g, that is, u; € (g, 99/9x;). O
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Actually, the examplesf; and f4 are not very valuable, they just show that in
general we needj to be irreducible over the algebraic closure Kf (when K is a
field), like in the characteristic zero case ([3], Remark24o it is remarkable that, as
we observed in Proposition 3.6, the Freudenburg’'s lemmaeéncase of characteristic
2 is valid over any UFD, we do not even ne&dto be a field!

One can see that our examples are not so arbitrary. Note lteapdlynomial f;
is of one variable, butf, in some sense is also of one variable, since it belongs to
K[x, y3] = K’[x], where K’ = K[y®]. And f3 is the same, becausk € K[z, t%] for a
linear change of coordinatez =x —y, t =x+y. This is the reason whyf;, f,, f3
are not counter-examples to the implication &) (i) in Theorem 2.3.

The common property off;, f,, f3 is thataf/ox | af/dy. We can generalize
these examples in the following way.

Proposition 4.2. Let K be a UFD of characteristic p- 2 and let fe K[xq,...,
Xn] be a polynomial with zero coefficients gf and )ﬁ for some §. Assume additional-
ly that a f /9x;, is a prime element of K, ..., X,], not belonging to I{xlp, X,
such thato f /0x;, | d f /9x; for every j Then the pair(f, g), where g=a f /dx;,, sat-
isfies (x).

Proof. By Lemma 4.1 it is enough to prove tha¥#l(g, dg/dxi,). Since f has
zero coefficients ofx,, and xizo, henceg and dg/dxi, have no constant terms, so

(9, 99/0%i,) € (X1, - - -, Xn)- |

The polynomial f4 from our examples does not fit in with the above proposition,
because it is homogeneous of degree 6 and the relation hetitgepartial derivatives
is of the formx(d f /9x) + y(d f /dy) = O (note thatf, is neither a counter-example to
the implication (ii)= (i) in Theorem 2.3, see [5], Proposition 4.4, whknis a field).
We can generalize this example in the following way.

Proposition 4.3. Let K be a UFD of characteristic p- 2. Let a b € K[xP, yP]
be polynomials without constant termsuch that g= axP~2+byP~2 is a prime element
of K[x, y]. Then for f =axP~ly —bxyP~1, the pair (f, g) satisfies(x).

Proof. We havea, b € (xP, yP), so @, 3g/9x) C (xP, yP). Butdf/ox = —yg and
—y ¢ (xP, yP), so the statement follows from Lemma 4.1. ]

Note that for p > 3 the condition thata and b have no constant terms may be
omitted in the above proposition.

Finally, let us emphasize that it is not clear whether thentemexamples dis-
cussed in this section are in some sense special and pghe 2” version of Propo-
sition 3.6, as well as the implication (iiz> (i) in Theorem 2.3, holds under some
natural additional assumption. Remark also that we do notvkany counter-example
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to the implication (ii)= (i) in Theorem 2.3. It seems to be possible that this impli-
cation holds.
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