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Abstract

Recently, Donaldson proved asymptotic stability for a pekd algebraic
manifold M with polarization class admitting a Kahler metric of comstacalar
curvature, essentially when the linear algebraic parof Aut’(M) is semisimple.
The purpose of this paper is to give a generalization of Daswal’s result to the
case where the polarization class admits an extremal Kamdgric, even wherH is
not semisimple.

0. Introduction

For a connected polarized algebraic manifdl, L) with an extremal Kahler met-
ric in the polarization classi(L)z, we consider the Kodaira embedding

b, = q)H_®m|: M — ]P)*(Vm), m> 1,

where P*(V,,) denotes the set of all hyperplanes\, := H°(M, O(L™)) through the
origin. For the identity component AYM) of the group of holomorphic automorphisms
of M, let H denote its maximal connected linear algebraic subgroupplaRing the
ample holomorphic line bundle by some positive integral multiple df if necessary,
we may fix anH-linearization ofL, i.e., a lift to L of the H-action onM such thatH
acts onL as bundle isomorphisms covering thieaction onM, and may further assume
that the naturaH-equivariant maps

m
P, ®V1—>Vm, m=1,2,. ..,

are surjective (cf. [18], Theorem 3). In this paper, apglyanmethod in [15], we shall
generalize a result in Donaldson [3] about stability to extal K&hler cases:
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Main Theorem. For a polarized algebraic manifolgM, L) as above with an ex-
tremal Kéhler metric in the polarization classhere exists an algebraic torus T in H
such that the imag@®,(M) in P*(Vy) is stable relative to T(cf. Section 2and [14])
for m> 1.

In particular in [16], by an argument as in [3], an extremalhk# metric in a
fixed integral Kahler class on a projective algebraic mddifisl will be shown to be
uniquét up to the action of the groupl.

Fix once for all an extremal K&hler metrig, in the polarization class in Main The-
orem. By a result of Calabi [1], the identity componéhtof the group of isometries of
(M, wp) is a maximal compact connected subgroupHaf For the identity component
Z of the center ofK, we consider the complexificatioB® of Z in H. Then we shall
see that Main Theorem is true far= Z€ (cf. Section 1).

One may ask why relative stability in place of ordinary diabhas to be consid-
ered in our study. The reason why we choose relative stalidlibecause, in general,
the obstruction in [13] to asymptotic semistability doeg wanish (cf. [L7]). Thus, as
to the group action onv, related to stability, we must replace the full special linea
group SL¥q) of Vi, by its subgroupGn(T) (see (1.3)), where the algebraic torlis
in Z€ is chosen in such a way that the obstruction vanishes whericted to G (T),
i.e., G,(T) fixes M (cf. Section 1). Note also tha®,(T) is a direct product of spe-
cial linear groups. To see why we choose such a gréyiT) in place of SL¥Vn),
we may compare our stability with that of holomorphic vectamdles. Recall that
a holomorphic vector bundle splitting into a direct sum ddbé¢ vector bundles of-
ten appears in the boundary of a compactified moduli spaceabfesvector bundles.
Similarly for our stability of manifolds, a splitting pheneenon occurs foWy, in (1.2).
Roughly speaking, we consider the moduli space ofM with fixed decomposition
data (1.2), where same type of construction of moduli spacesirs typically for the
Hodge decomposition in the variation of Hodge structures.

We now explain the difficulty which we encounter in applyirge tmethod of [15].
Such a difficulty comes up when we use the estimate of PhongSaman [21]. By
applying a stability criterion in [15] of Hilbert-Mumford’sype, we write the vector
spacep,, as an orthogonal direct sum

Pm = Pm @ P (cf. Section 3),

and then check the stability dfl,, along the orbits of the one-parameter subgroups in
Gm(T) generated by elements pf,. Thoughp andp;, are transversal by the equality
P, =pm N p, we further need the orthogonality fandp’, in order to apply directly
the estimate in [21]. Since such an orthogonality does noegaly hold, we are in

1For uniqueness of extremal Kahler metrics, Chen and Tiaentbcobtain a more general result
without any projectivity condition.
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trouble, but still the situation is not so bad (see (3.17)1&p, and this overcomes the
difficulty.

1. Reduction of Main Theorem

In this section, by introducing necessary notation, we cedbe proof of Main The-
orem to showing Theorems A and B below. Throughout this paperfix once for all
a pair (M, L) of a connected projective algebraic maniféfdand an ample holomorphic
line bundleL over M as in the introduction. Fo¥, in the introduction, we pulNy, :=
dim¢ Vi — 1, where the positive integen is such that.™ is very ample. Let andd be
respectively the dimension d&fl and the degree of the imadé,, := ®,(M) in the pro-
jective spacéP*(Vy). Fixing anH-linearization ofL as in the introduction, we consider
the associated representatiort — PGL(V;y). Pulling it back by the finite unramified
cover: SL¥ny) — PGL(Vy), we obtain an isogeny

(1.1) H—> H,

where H is an algebraic subgroup of S¥f). On the other hand, for an algebraic
torus T in H, the H-linearization ofL naturally induces a faithful representation

H — GL(Vm),

and this gives aT-action onVy for eachm. Then we have a finite subsét, =
{x1, X2, - - -, X} Of the free Abelian group Horii{, C*) of all characters oflf such
that the vector spac¥,, = H%(M, O(L™)) is uniquely written as a direct sum

(1.2) Vin = €D Vr (1),

k=1

where for eachy € Hom(T, C*), we setV1(x) i={se€ Vn; t-s=x(t)sforall t € T}.
Define an algebraic subgroupny, = Gm(T) of SL(Vyn) by

(1.3) G = [ | SLOVr (1)),
k=1

and the associated Lie subalgebra oVg) will be denoted byg,,. Here, G, and
¢m Possibly depend on the choice of the algebraic tofysand if necessary, we de-
note these byG,(T) and g, (T), respectively. TheT-action onVy, is, more precisely,
a right action, while theGp-action onV,, is a left action. SinceTl is Abelian, this
T-action onVy, can be regarded also as a left action. Note that the g@ypacts
diagonally onVy, in such a way that, for eack, the k-th factor SL¥V/t(xx)) of Gn,
acts just on thek-th factor V1 (xx) of V. We now put

Wiy := {S¥ (Vi) } 2™,
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where $¥(V,,) denotes thed-th symmetric tensor product of,,. To the imageMp
of M, we can associate a nonzero eleméhy, in W such that the corresponding
element My] in P*(W,,) is the Chow point of the irreducible reduced algebraic eycl
Mm on P*(Vy). Note that theGp,-action onV,, naturally induces &n-action onW,
and also onW;,. As in [14], the subvarietyM, of P*(Vyy) is said to bestable relative
to T or semistable relative to ;Taccording as the orbiG, - Mp, is closed inWz or
the closure ofG, - My, in W does not contain the origin o\

Let A be the set of all algebraic subtdFi of Z€. Take a Hermitian metritiy for
L such thatc,(L; hg) is the extremal Kahler metriag in the Main Theorem. LeE
be the extremal K&hler vector field foM( wp), and lett be the Lie algebra oK. Let
KC be the complexification oK in H. For wy above, we further definé,, as the
set of all T € A for which the statement of Theorem B in [14] is valid. Then,tlas
procedure in Section 6 of [14] shows, there exists a uniquémal elemertt, denoted
by Tp, of Amin such that

Amin={T e A; To C T}.
For eachT € Amin, we putT :=:"}(T) and Z€ := =}(Z®), and letG,,(T) and Z/,(T)

be the identity components &m(T) N H and Gm(T) N Z€, respectively.

DEFINITION 1.4. For an algebraic toru$ in Anjn, we say thatT is irredun-
dant if for all sufficiently large positive integerm, dimec K€ =dimgz G/ (T) +dimc T
(or equivalently diny Z€ = dime¢ Z/(T) +dim¢ T).

For instance,Z/ (T) = {1} if T = Z€. In particular, Z€ is irredundant. We now define

subsetsAg and A1 of Anin by
Ag: the set of all irredundant elements in,

A1 = {T € Amin; GL(T)- M = My, for all m>> 1}.

DEFINITION 1.5. Let A_ denote the set of all algebraic subtdFi of Z€ for
which the statement of Main Theorem is valid.

Note that, if T” and T” are algebraic subtori oZ® with T Cc T” and T’ € A,
then the stability criterion of Hilbert-Mumford type (cf.4], Theorem 3.2) shows that

T” also belongs toA| . We now pose the following:

Theorem A. The algebraic torus £ belongs toA;.

2The algebraic toru%, is actually the closure i@ of the complex Lie subgroup generated by the vector
fields E, Fk, k =1,2,...which appear in the asymptotic approximation(&fl) below) of the weighted
analogues (cf. [14], 2.6) of balanced metrics.
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Theorem B. AL NAg=AgN A;.

Once these theorems are proved, then by Theorem A, weHawe AN A;. This
together with Theorem B implies th#@" € A, completing the proof of Main Theorem.

If the extremal Kahler metriewg above has a constant scalar curvature, and if the
obstruction as in [13] vanishes, then we have bath= A, and {1} € Ag. Hence in
this case, Theorem B shows thHdg € A . This then proves the main theorem in [15].

It is very likely that the setA| has a natural minimal element closely related to the
algebraic torusTy. To see this, let us consider the case whigrés an extremal Kahler
toric Fano surface polarized by = Khj,l. Then M is possibly a complex projective
plane blown up at points withr < 3. If r =0 or 3, thenM admits a Kahler-Einstein
metric, andA_ has the unique minimal elemefit} (= Tp). On the other hand, if =1,
then Ty coincides withZ€, and is the one-dimensional algebraic torus generated ey th
extremal Kahler vector field. Hence, in this cage, has the unique minimal element
To. Finally forr =2, the involutive holomorphic symmetry &l switching the blown-
up points allows us to regardly; as the one-dimensional algebraic torus generated by
the extremal Kahler vector field. It then follows th&$ again has to be a minimal
element ofA|.

2. Proof of Theorem A

In this section, we first prove Theorem A, and then make séwdstnitions with
a lemma added. PUt® =, 1(K©).

Proof of Theorem A. In this proof, leT = Z¢, and consider the associated set
T ={X1, X2---» Xu,,} Of characters fom > 1. SinceK® commutes withz®, we have

(2.1) K€ c SL(Vim) N[ ] GL(Vze (x))-
k=1

Recall that the extremal Kahler vector fielitlbelongs to the Lie algebra df. Hence,
a theorem of Calabi [1] shows th&/,(Z) c G/, (To) ¢ K. Hence,
(2.2) G/ (2% - Z° c KE.
To complete the proof of Theorem A, we compare two group$,[K €] and G/,(Z©).
By (2.1), we obviously haveK, K€ c G/,(Z€). On the other hand,

dimc[K €, K€ = dime K€ — dime Z2€ > dime G[,,(2°),

where the last inequality follows from (2.2) in view of thecfathat the intersection
of G/(Z%) and Z€ is a finite group. It now follows thatG/ (Z%) coincides with
[KC, K€]. HenceG[,(Z€) - My = M. Then by Ty € Z€, we now obtainZ® € A;,
as required. ]
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Let h be a Hermitian metric folL such thatw := c;(L; h) is a K-invariant Kahler
metric on M. Define a Hermitian metripy, on Vy, by

(2.3) on(s, §) = / (s, Sm ", s, € Vn,
M

where §, s')pm denotes the function oM obtained as the the pointwise inner product
of s, s by h™. Let S :={s, S1,--., SNn,} be an orthonormal basis fdf, satisfying

Pn(S, Sj) = §ij.

Let T € AgN A;1. Then we say thafS is T-admissible if eachVr(xx), k=1, 2,...,
admits a basigs;; i =1, 2,..., ng} such that

(2.4) Ski) =i, 1=1,2,...,n k=1,2,...,vm,

whereny = dime Vr (xk), andl(k,i) = (@i — 1)+Z',§,j ne for all k andi (cf.[14]). Let
tc := Lie(T.) denote the Lie algebra of the maximal compact subgroymf T. Put
g:=1/m andtgr ;= /—1t.. For eachF € tg, we define

vm Nk

n!
(2.5) By(w, F) := p— Z Z e InPg 12,

k=1 i=1

where |s|ﬁm = (s, s)pm for all s € Vi, anddyk: tg — R denotes the restriction te
of the differential att = 1 for the charactey € Hom(T, C*).

As a final remark in this section, we give an upper bound forekeg of the char-
acters inT,,. Let T be an algebraic torus sitting id©. By settingr := dim¢ T, we
identify T with the multiplicative group €*)" = {t = (t1, to, ..., t); t; € C* for all j}.
Since eachyk in (1.2) may depend om, the charactery, will be rewritten asymx
until the end of this section. Then for eakhe {1, 2,. .., vm},

r
xk® = [ ™Y, t= e t)eT,
i=1

for some integersx(m, k, i) independent of the choice ¢f Define a nonnegative in-
tegerom by am := sug?, > le(m, k, i)]. Then we have the following upper bound
for am:

Lemma 2.6. For all positive integers mthe inequalityay, < ma; holds

Proof. PutS := Kerpr,. Since the subspac8 of ®™V; is preserved by the
T-action, we have dr-invariant subspace, denoted I8/, of ®™V; such that the
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vector spaceX™V; is written as a direct sum

m
®v1: So S*.

Then the restriction of pyto S* defines aT-equivariant isomorphisng: = V,,. On
the other hand, the characters bfappearing in theT -action on®™V; are

m 1k, 1 m 1ki,2 m 1.k, -
Kty = o e D e iad e @D R g e k) € 1M

where | ™ is the Cartesian product ah-pieces ofl := {1, 2,..., vy}. SinceS* (= V)
is a subspace o)™V;, we now obtain

r
am < maxZ

kelm i=1

m

> a1, ki, i)

j=1

m r
< max a(l, ki, )] < maq,
_RelmZZM i i)l 1

j=1 i=1

as required. O

3. Proof of Theorem B

Fix an arbitrary elemenT of Ap N A;. Let m > 1. Then by [14], Theorem B,
there existF, € tg, real numbersy, € R, and smooth real-valueH -invariant functions
o, k=1,2,..., on M such that, for eacli € Z-,, we have

3.1) Bq((£), F()) = Cqr +0@™%), m>1,

where F(¢) := (V=1E/2)g? + Y{-, 9/*2Fj, h(€) == ho exp(— Yoy alg;), Cqr =1+
Zfzoa,—q“l, andw(£) :=cy(L;h(¢£)). Let us now fix an arbitrary positive integér To
eachT-admissible orthonormal basi$ := {sy, 1, ..., Sn,} for (Vim; pne)), we associate
a basisS := {3, &, ..., 3n,) for Vi, by

(3.2) §i=e FO2g =12 .. n;k=1,2,..,vn,
where we puts,iy = S.i and§ i) = S« by using the notation in (2.4).

REMARK. Lemma 2.6 above implies thad xmk(F(€))| < Cai1q for some posi-
tive real constanC independent of the choice ah and k, where ym« is as in the
last section. Hence in (3.1) above, for each fixed nonnegatitegere, there exists a
positive constanC’ independent oim and k such that

|e—ka(F(5)) -1 <Clq, k=1,2,...,vm.

In particular, in (3.2) above, the integrd, 15, lI2nw(&)" (= e 9x(F)) converges to 1,
uniformly in k, asm — oo.
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We now consider the Kodaira embeddidg,: M — P*(V;,) defined by
Dm(x) == Go(X) 1 &(X) 1 -+ - 18N, (X)), X e M,

where P*(Vy) is identified withPN"(C) = {(zo: z1 : - - - : zy,)} by the basisS. Put
Mm = ®(M). Since A N Ag is a subset ofA; N Ag (cf. [13], Section 3), the proof
of Theorem B (and Main Theorem also) is reduced to showing @alevwiing assertion:

Assertion. The orbit G,(T) - l\7|m is closed in V.

In the Hermitian vector spacev; pn)), the subspace¥t(xk), k=1, 2,..., vm,
are mutually orthogonal. Put

K = [TSUMVr ()i n). = €D su(Vr (x0: pno)-
k=1 k=1

Since T belongs toA, the groupGy, = G,,(T) coincides with the isotropy subgroup

of Gy at M, € W;:. Consider the Lie algebrg, := Lie(G;,) of G;,. Puth:=Lie(H)=
Lie(H). Then byG;, C H c SL(Vim), we have the inclusions

Om <> b = sl(Vim).

Put ¢, := Lie(K},), whereK/, is the isotropy subgroup ok, at the pointM, € W,
Then g, and g, are the complexifications ofy, and ¢, respectively (cf. [1]). Put
pm = +/—1tm andp, = /-1 . We further define

Am = {Gma u(Vr (xw); Ph(@))} N su(Vin; o), B = vV—18m.

k=1

By the above inclusions of Lie algebras (see also (2.1)), are regardp := +/—1¢ as
a Lie subalgebra of,,. Let wgs be the Fubini-Study metric of#*(Vy,) defined by

/—1 — Nin
= -—=3dlo 2).
WS = g aZ:o |Ze |
For eachQ € ,,, let Q be the associated holomorphic vector field BH(Vy,). By
the notation fort = 0 in Step 1 later in the proof of Assertion, we obtain a vector
field Qtm, on My via the orthogonal projection of along My, to tangential di-
rections. Then we have a unique real-valued functienon P*(Vy,) satisfying both

Nm —
fIF’*(Vm) 9q weg =0 and
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LetOwm rs:= —3*3 denote the Laplacian on functions on the Kéhler maniféid €}, wes).
Define a positive semidefinité, -invariant inner product ( , ) of3,, by setting

1
(@) = s [ (@, @2rulrs s
= ﬁ

2_ a(sz A a_(le AN wggl = / (a_‘pQu a—(pQZ)(UFS wlgs
T Mm

m

== / 9Q, (0w FspQ,) P, @fs € R
M

for all Q1, Q2 € P,,- Restrict this inner product tp,,. Then the inner product ( , )
on p,, is positive definite orp and hence orp;,. As vector spacesy,, and p,, are
written respectively as orthogonal direct sums

B =p D", P =bpn D P,

wherep is the orthogonal complement pfin %3,,, and moreovep/, is the orthogonal
complements of/, in p, (cf. [15]). Hence ifQ € p*, then for any holomorphic vector
field W on M,,, we have

1

m2
m? Jum.,

= / (gfﬂQ: 9_0 + 5((»0W1 + v/ —1ow2))wrs WP
Mm

(97 Ms WMy ars @Fs

/—1 _ _
= ? /M {60 A a(pQ + a(gowl — W/ _1§0W2) A 8(pQ} AN a)Egl =0,

where iy (wrs/M) on My, is known to be expressible a& + d(pw: + +/—Lowz) for
some holomorphic 1-fornfy on My, and elementsV!, W? in p. We consider the
open neighbourhood (cf. [15])

Um = {X € pp; ¢ (@d X)pp, N pp, = (0}

of the origin inpy,, wheref: R — R is a real analytic function defined by(x) :=
x(e*+eX)/(e* —e ™), x #0, and¢(0) = 0. By operating /—1/2) 30 log on both
sides of (3.1), we obtain

(3.3) ®F wps= Mw(l), modq“*2

For an elemeniX of B, (later we further assum& € p;;), there exists & -admissible
orthonormal basig := {rg, 71,..., Tn,} fOr (Vm, pne)) such that the infinitesimal action
of X on V,, can be diagonalized in the form

X Ty = Yo (X) 1
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for some real constantg, = v,(X), « =0, 1,..., N, satisfyingz(’;';“O Y(X) =0. As
in (3.2), we consider the associated ba&is {7, 71, ..., In,} for Vm, wheret; =
e~ dx(FO)/2q . By setting

rx(e) =exptX), teR,

we consider the one-parameter group R, — { I‘iﬁlGL(VT(Xk))}ﬂSL(Vm) associated
to X. Thenix(e") -z, = &1, for all @ and allt € R. Moreover,

e Ya(X)

(34) qu(pX = OT“Z, X e %m.

m Za:o |Ta

Let nym be the Kéhler form orM defined bynm = (1/m)®};, wgs. To eachX € P,
we can associate a real constagtsuch thatpy := cx + ®j¢x on M satisfies

/ éx nm = 0.
M

Proof of Assertion. Fix an arbitrary elementZ0X of p, and define a real-valued
function fx m(t) on R by

fX,m(t) = IOQH)\X(et) . I\’)Im”CH(ph(g))'

For this X, we consider the associated(X), « =0, 1,..., Ny, defined in the above.
From now on, X regarded as a holomorphic_.vector field B1%(Vyn) will be denoted
by X. By [26] (see also [14], 4.5), we havéx m(t) > O for all t. Then by [15],

Lemma 3.4, it suffices to show the existence of a real num&ﬂ%rsuch that
(3.5) fxmtf™) =0< fxmt) and t{. X eUpy.

In the below, real number€;, i =1, 2,..., always mean positive real constants in-
dependent of the choice oh and X. Moreover by abuse of terminology, we write
m > 1, if m satisfiesm > mg for a sufficiently largemy independent of the choice of
X. Then the proof of Assertion will be divided into the follavg eight steps:

STEP 1. Put) :=Ax(€'") andMn¢ := A{(Mp) for eacht € R. Metrically, we iden-
tify the normal bundle ofVy,; in P*(Vi) with the subbundleT My, of TP*(Vin) i,
obtained as the orthogonal complementTd¥l, ¢ in TP*(Vin)m,,.. Hence, TP*(Vin) My,
is differentiably written as the direct sumMMm: @ T Mni“. Associated to this, the re-
striction Xjm,,, of X to M is written as

‘X]Mm,l =Xr M.t ® XT Mt
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for some smooth section&ry,, and Xy of T My and T My, respectively. Then

the second derivativef"x,m(t) is (see for instance [14], [21]) given by
(3.6) fn®= [ 1A, 2 obs 0.
M

Since the Kodaira embeddir@f: M — PNn(C) defined by

o7 (p) = (Fo(p) 1 () - - - 1 Fnn(P))

coincides with®,, above up to an isometry oM, pn), we may assume without loss

of generality thatd? is chosen asbp,.
STEP 2. In view of the orthogonal decompositid,, = p* @ p, we can express
X as an othogonal sum

X=X +X"

for some X’ € p and X" € p*. Sincew(f) is K-invariant (cf. [14]), the grougK acts
isometrically on ¥m, pne)). Now, there exists & -admissible orthonormal basis :=
{Bo, B1, - .., Bn,} for Viy such that the infinitesimal action of” on Vy, is written as

XN',Boz:Vot(X”),Bm azoi 11-~~| Nmy

for some real constantg,(X"), « =0, 1,..., Ny, satisfying Zyg‘o v«(X”) = 0. By
the notation as in (3.2), we consider the associated Hasis {fo, A1, ..., Bn,} for
Vm. Then

> oy P (X1 Bal?

MYt 1Bal?
wherey, (X") := y,(X")+mcx.. Now, X" and X” regarded as holomorphic vector fields
on P*(Vy) will be denoted byx” and X7, respectively. Associated to the expression
TP*(Vi) My = TMme @ T Mrﬁ,t as differentiable vector bundles, the restrictio?q%mvt,
)q’,(,lm of X’ and X" to My, are respectively written as

(3.7) Pxr =

! p— / !
)(“Vlm,t =7 Mm,t ® XT M ¢

and
7 _ " 1"
AMne = XM ATy
/ " 1 / "
where Xy, ., X7y, are smooth sections of M, and A7 M X s, are smooth

sections ofT Mz,. Then by X’ € p, we have

(3.8) X

f— H —_ U
TM,#! - 0, |.e., XTMI‘#J - X

T My
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STEP 3. SinceT is irredundant, we have/ (T) +t =, ie., p/, + /=1t = p,
where these are equalities as Lie subalgebrals. dfrom now on until the end of this
step, as in the preceding steps, we regard pftland t© as Lie subalgebras af(Vy,).
Hence, as Lie subalgebras efVy), we have

p=pmt+ V-1,

where we puf := Lie(T) for the maximal compact subgrodip. of T :=.~1(T). Then
we can writeX’ € p as a sum

X' =Y+W

for someY e p;, and somew e V/—1%. Note that the holomorphic vector fields and
W on P*(Vy) induced byY and W, respectively, are tangent tdl. By [Y, W] =0,

there exists ar-admissible orthonormal basiso, o1, . . ., on,} for Vi, such that
Y 04 =Ve(Y)ou, @=0,1,..., Np;
W .oy =boki, k=1,2,...,vm,

for some real constantg,(Y) andby, where in the last equality, we puk; := o,i) by
using the same notatiok(k, i) as in (2.4). By settingr; = e 9(F)/25, ;. we later
consider the basi$éy, 61, . .., 6n,} for V. Note thatzglg‘o Ye(Y) = D2 nkby = 0.
Since bothX andY belong top,,, it follows from X = X"+ X" =Y + W + X” that

Nk Nk Nk
D (X)) =D mi(Y)=0 and ngb=—> ni(X") forall k,
i=1 i=1 i=1

where i = piy with I(k, i) as in (2.4). Note thaX € py, and X" € p*, where
by pl, + v/—1t = p, the spacep’ is perpendicular tg/,. Then byY € p/, and X =
Y +W + X", we have

(Y, Y) + (Y, W)= (Y, X)=0

in terms of the inner product ( , ) oi§,,. Hence ¥,Y) =—(Y, W) < /Y, Y)(W, W).
It now follows that

(39) / |y|Mm|iFS a)ES = mZ(Y’ Y) < mZ(W, W) = /M |W‘Mm|3)Fs a)ES.
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The integral on the right-hand side is, for> 1,
m |~ |2 m N W2z (2 m n ~ 2 \2
/ (thzl D i1 6k |h(£))( ko1 2ing BglGwi |h(£)) - (Zﬁzl >izq b6 |h(£)) g
M

m 3k (=2 )2 m
(ZE:l 2i1 16k |h(l))
2l Yt 1Gkilhy

=m" - .
B m 512 m
M Zﬁzl Zi:kl [Ok,i |h(g)
n! Um - T 5 2 Vm )
=7 /M D> bkIdkilie M < C1 Y by
k=1 i=1 =1

for someCy, where in the last two inequalities, we used the Remark rédtar (3.2).
Hence, by setting/,{Y) := yx(Y) + moy, we see from (3.9) that

(0 160 1) (0 7 (V)16 ) — (2N e (Y15 ) r

Nm |~ 2 2 m
(310) M . (Zazo |Ua |h(())
<q"Cy ) nibf.
k=1

Define real numberd; and f, by
Nim -1/ Np
f1:= /M <Z |&a|ﬁ(1)) <Z )’)a(Y)2|5a|ﬁ(@)> 7721,
a=0 a=0

N -1/ Np 2
fp = / {(Z |5a|ﬁ(g)> (Z ?a(Y)|5a|ﬁ(g)>] -
M a=0 a=0
If f; > 2f,, then by (3.10) and the Remark right after (3.2), we have
Nm Vm
D PP <Co Y mbE i m> 1,
a=0 k=1

for someC,. Next, assumef; < 2f,. Then for

Nim 1Ny
¢Y = (m Z |5’a|ﬁ([)> (Z ?a(Y)|&a|ﬁ(l))’
=0

a=0

the left-hand side of (3.10) divided by > 1 is written as

n
2 Wrs\ _ a2 2
/Mm |me|(wFS/m)<W> '/M'3¢Y'"m ngzcsfde nm,
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for someCs, because the Kéhler manifoldM( n,), m > 1, have bounded geometry
(see also the Remark right after (3.2)). Hence, fay< 2f, and (3.10), we see that,
for m> 1,

q"Cy Y mibE > m03/ ¢% 1 = Caqf
k=1 M

Caqf i
> T 2 Caq™ Y Pul(Y)
a=0

for someC,4, where in the last inequality, we used the Remark right afée2). By
S N va(Y) = 0, we here observe that\m 1, (Y)? < SN 5,(Y)2 Hence, whether
f1 > 2f, or not, there always existS8s such that, form > 1,

Nm Vm
(3.11) a4 vu(V)? <Cs ) nidi.
=0 k=1

STeEP 4. PutP =W+ X”. In view of [26], Theorem 1.6, a weighted version
of (3.4.2) in [26] is true (cf. [14], [19]). Hence by € A;, we obtain

Nm 2
=0 Va(P)llBam(Z) ®* on

=~ FS
Yo Balty

(3.12) fx.m(0) = fp.m(0) = (n+1) fM 2

where y i (P) == bk + w.i (X”) (= ni)(P)). LetCq,=1 +Zf:0 a;jq'*! be as in (3.1).
Then by (3.1) and (3.3), there exist a functiop, and a 2-formé,,, on M such that

N,
nl < -~ .
Bo(w(0), F(0)) = Y " 1Balde) = Cae + Umed™%
(313) a=0

1
m = EqD:(n wrs = w(f) + em,eq“z,

where we have the inequalitigiiy, ¢[com) < Ce and [|6m ¢llcom,wp) < C7 for someCg
and C; (cf. Remark 2.11; see also [25], [14]). Hence,nif> 1,

| f xm(O)]

(n+1)!

< / (Z,';l:o Va(P)Lgot |%(@)) {l + Ziojl(_um,lqﬁz/cq,/i)i }{a)(ﬁ) + Gm,éq[+2}n
- M Cq,@ .

Here, {1+ 72 (—=Um,q“"?/Cq,0)' Hoo(€) + Om ("2} is written as (1 +wm,¢) w(£)" for
some functionwm,, on M such that the inequalitywm ¢llcoqmy < Cg holds for some
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Cs. Then by [, {Zy:o Va(P)|l§a|ﬁ(z)} o) = 3,0 (e FO) 32 (b + i (X)) =
we have
ZL\IEO Va(P)|l§a |ﬁ(@)

. A n
Cq,e |wm,el w(t)

| fxm() < (n+1)! q@+2/

M

Wm, ¢
n!

w(f)".

3 |12
- (n + 1)! ql+27n / <l + um(,fqg-'-2 Za =0 VG(P)LBa'h(() )
M q,¢

2
N 1BalZ

In view of (3.4), by settingd := (m YN 18, 12) 7 (2N . (P)IBal?), there existCo
and Cyg such that, form > 1,

(3.14) 1 xm(O) < a“ "ColldllLrm.we) < A "Croll BllLz(m wie))-

STEP 5. Note that 0< n2b2 = {3 mi(X")}? < ne 1%, i (X”)? holds for all
k by the Cauchy-Schwarz inequality. Hence

Vm Nm
(3.15) Db <) (XY
k=1 a=0

From ZO’:' b Ya(X") = 0 and ¥o(X") = yo(X") + mcx, it follows that Za o Ta(X")? =
(Nm + 1)(Mox)2 + N v (X”)2. In particular,

N N
(3.16) PO DI ACEHS
a=0 a=0
Since i (P) = b + »i (X”), (3.15) and (3.16) above imply that
Nm Vm Nm Nm
(3.17) D vaPP 22 Y b+ > (X <4 Pu(X)
=0 k=1 =0 a=0

By X =Y+P, we have} [ v, (X)? < 2{ 30 v (Y)2+ 0 v (P)?}, becauser (X) =
v«(Y) + ¥ (P). Hence, by (3.11), (3.15), (3.16) and (3.17), we obtain

Nm Nm Nm
9> %(X)?=29) 7Y’ +29 ) yu(P)
(318) a=0 a=0 a=0

VUm Nm Nm
<2Cs ) ndbE+ Y yu(P)Y’ < Cir ) Pu(X")?

k=1 a=0 a=0
for m> 1, where we puCi;:=4+2Cs. Fix a positive real numbef, independent of
the choice ofm and X. Put gy := ql/HO/ SN 7(X7)2. Then by (3.18), we have
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0 < 8 < +/Cu1/y, Wherey := maX{|y.(X)l; @ =0,1,..., Np}. In view of Step 1
of [15], Section 4, by assuminfi| < §y, we see that the family of K&hler manifolds
(M, g®;Af wes) have bounded geometry.

STEP 6. At the beginning of this step, we shall show the inequayl9) below
as an analogue of [21], (5.9), by proving that an argumenttafing and Sturm [21]
for dimH = 0 is valid also for dimH > 0. To see this, we consider the following
exact sequence of holomorphic vector bundles

0— TMni = TP* (V)M = TMp — O,

where T Mé,t is regarded as the normal bundle Mk, in P*(V). The pointwise es-
timate (cf. [21], (5.16)) of the second fundamental form this exact sequence has
nothing to do with dimH, and as in [21], (5.15), it gives the inequality

1" 2 n a v 2 n
/ 17 M, Jors @Fs = Ca2 / 107 s lors @Fs:
Mm,t ' Mm,t '

for someCy,. Let A%P(Ty), p =0, 1, denote the sheaf of germs of smooth {B,
forms on M with values in the holomorphic tangent bundieM of M, and endowM
with the Kahler metric (Im)®;,Af wrs. We then consider the operatbyy := —9%9
on A%%(Ty,), whered” : A%Y(Ty) — A%%(Ty) is the formal adjoint ofy: A%9(Ty) —
A%Y(Ty). Since by Step 1, the Kahler metrige} A wrs has bounded geometry, the
first positive eigenvalue of the operatetdry on A%%(Ty) is bounded from below by
Cis. Hence, byX” e pt,

n n
e 2 WFs 1" 2 WFs
fo Pren(E) = 0 [ ()

Since 32{4’% = =0Ty, ., it now follows that

'3 — " 2 n
f X,m(t) - /M t |XT Mt |w|=s Wrs
m,

(3.19)
> C12Ci3q 1XT M |3)FS wps
(Y
In view of the equality| X7y, 2.+ |X¥M¢[|ZFS = 1X\,., |5 Dy adding the integral

2
wF

C1,C130 met|X¥Mﬂ| . Wfs to both sides of (3.19) and by dividing the resulting
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inequality by (1 +C12C13q), we see that, for som€;, and Cys,
f“x,m(t):/M DAy (|7 e |wFS wfs)
(3.20) > Cu4q / DO (1, s 0FS)

Z ClSQ/ | X | wFs EgZClsq/M O}, wps,

where © := (Y0 1al?) " { (X 18al?) (X0 7 (XV21Bal?) — (amy 7u(X")IBal?)?)
is nonnegative everywhere dd. Then by (3.14) and (3.20),

f x.m(80) > fx,m(0)+C1550CI/ O, wis
M

> —q“"Coll Bl Lz(m w0y +C153OQ/ O, wis,
(3.21) M

fx.m(—=80) < fx.m(0) — Ci580q / O, wis
M

< g "Cioll Il L2M,w(ey) — C15800 / O, wis
M

By (3.20) and [15], Lemma 3.4, the proof of Main Theorem is eEtlito showing the
following three conditions for alm > 1:

) fxm@)>0> fxm(=8), i) f O wls> 0, i) t™. X e Upy.
M

Since iii) follows from Remark 3.31 below, we have only to y&a) and ii). Then by
(3.21), it suffices to show the following for ath > 1:

(3.22) C155OQ/ O}, @l — C100 ™ Il L2, wey > O
M

Let us define real numbeiy, &, e, e by setting
ax//Z"QZ ax// rx2

o Bal? ST
N oycy(P)zw2 i ( Mo om(P)WZ) i
€ = = Z , €= )",
/ Woge / A ) Y

By the Cauchy-Schwarz inequality, we always ha&e> & and e; > e,. Now, the
following cases are possible:

CASE 1: & > 26,.

CASE 2: & < 26,.
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In view of the identities in (3.13), we can write
Yoaro Pu(XV21Bal

M 1+ Y 0o oKL + U (L2
ZL\‘:O Va(P)2|/§a |ﬁ(@)

L
M1+ Za:o aqu+l + Um,zqe+2

/ QD! wpg=m" / Ofw(L) + Om q" 2",
M M

& =qg"n! ()",

e =q"n! w(l)",

and hence, given a positive real numbex @ <« 1, both& and [, O} vl above
are estimated, for alin > 1, by

Nm PN Nm
(323) (1 s)q“{z ﬁa(X“)Z} <2sq +e)q“=Z ﬁa(X”)Z},

a=0 a=0

Nm Nm
@24 (- e)q“{z ya(P)Z} <% (1+e)q“{2 ya(PY},

a=0 a=0

(3.25) L-8)g" | Ol < / OP; wis < (1+e)g™" | ©w(®)",
M M M
where we used the Remark right after (3.2). Moreover, we catews in the form

(3.26) G211 o000 = €2 < €1

SteP 7. We first consider Case 1. Then from (3.17), (3.23), (3.23)25),
(3.26), & < &;/2 and the definition oBy, it follows that

LH.S. of (3.22)
> (1 —£)Cy5609" " / © w(®)" — " "Cioll Bl Lz(m.w(e)
M

> (1— £)C15q*"60(&1 — &) — q“*"Cyov/E1

1/2

1— £)Cisdoq’ "8 <

> (1-¢) 125 st I @ +s)1/2C10q“2‘”/2{n! Z Va(P)Z}
a=0

1— £)2Cys80q | M 7 (X2 N Ve
> ( 8) 15 OQ{Za—Oy ( ) } _ 2(1 +8)1/2C10q[+2n/2{n! Z j}a(x//)Z}

2 a=0

N 1/2

m TZ AT Lo+3/2

- {n! Z %(X”)Z} {\/n.(l 8)2 Cisq _2a +8)1/2C10q€+2_n/2},
a=0

for m> 1. Now we see that, if > (n—1)/2+£, thenq‘*2~"/2/q%*3/2 converges to
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0 asm — oo. Thus, ifm> 1, then by choosind such that¢ > (n — 1)/2 + £y, we
now see from the computation above that L.H.S. of (3.22) isitpe, as required.

Step 8. Let us finally consider Case 2. For each fixgdthe Kéahler formnp,
converges tavy, asm — oc, in CJ(M)-norm for all positive integerg (cf. [25], [14];
see also the Remark right after (3.2)). Note tidte pt. In view of Sy & nm =0,
we see that

(3.27) px 120ty < C16l10Dx 1 2p.1y = Cr6ll P w1 20,

for someCye, where by abuse of terminology, the differentigl{*).: T My — TM is
denoted by®} . Moreover, by (3.19) applied to= 0, we obtain

/ 1= / 2
(3.28) 1P w12,y = (C12C13) A | AT s | Lot -

From now on until the end of this proof, we assume thmt> 1. By (3.27) together
with (3.28) and (3.7), there exi€l;7 and Cig such that

1P s L2 ) = C170Y 210 [l L2,

(3.29) U 4 /2
> C189Y2ldx Il L2(Mw(ey) = C189% Ve

intwi i 2 -
We now observe the pointwise estimaj& |/"q’,(,|m|wFS = |2’(|/,(,|m|,7m > | XY

Tmg b Hence
by (3.20) and (3.29), we obtain

frm(®) = Cus / (@212 Jo)? o
(3.30) M

> Cisq " || P}, M ||iz(,v|,,7m) > C190° "8,

for some Cy9. As in deducing (3.21) from (3.14) and (3.20), we obtain byl43
and (3.30) the inequalities

fxm() > R
and
fxm(—80) < —R,
where R := —q“""CyollllL2m.0(r)) + C19%00° "&. Hence, it suffices to show that

R > 0. In view of the definition of¢3 and e;, we see fromé; < 28, and (3.26) that

C10800°"&;

> _ Cloq6+2—n\/a‘

R = C19800°"& — C109""* " /& >
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Here by (3.23) and (3.24), we obtain

800 "&, = q¥/2Hot
q£+2 n\/_ el Za 07/ (X//)Z

Nm ~
> Czoq(3+”)/2+50*5 Z:“NL“(XN)Z > % (3+n)/2+Eo—t
Za:o er(P)z 2

for someC,p, where the last inequality follows from (3.17). Therefols;, choosing?
such that¢ > (3+n)/2 +£y, we now conclude thaR > 0 for m>> 1, as required. []

REMARK 3.31. In the above proof, it is easy to check the conditioniniiStep 6
as follows: In view of|t(m)| < 8o, it suffices to show that, im > 1, then

(3.32) t-XeUp, forall (t, X)eRxpy, with |t] <do.

For eachQ € p, let ug € C*(M)r denote the Hamiltonian function for the holo-
morphic vector fieldQ on the Kahler manifold M, wg) characterized by the equalities

. - - 8_
I wo —27_[ Uo
and
/ UQ a)g =0.
M
Define compact subsetB(pr,), X(p) of p by setting

{E(pfn) = 1{Q € piy 10UgllLzm ) = 1},
2(p) :={Q € p; [18uUgllL2(M,wp) = 1}

Choose an orthonormal bass := {s, s, ..., sSn,} for the Hermitian vector space
(Vim, pn(ey)- For the spacé{y, of all Hermitian matrices of ordeN,+1, define a norm

Hin — Ro0, A= (@) = [ Alm = VI AAA= D Jagsl?
o,fp

on Hm. Let m > 1. The infinitesimal action op,, on Vy, is given by

Nm
Q-55=) svup(Q. QEpm

a=0
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where yg = (y4p(Q)) € Hm denotes the representation matrix @fon Vy, with respect
to S. Let X € py,, and letsy be as in Step 5 above. Fore R with |t| < o, we put

X :=tX. In order to prove (3.32) above, it suffices to show

(3.33) c@dX)Q ¢ pr, forall Qe Z(p,).

Let Q € X(p;,). For a suitable choice of a basfsas above, we may assume that the
representation matrixg of Q is a real diagonal matrix. Note also thatyts = 0. Let
®n: M — PNn(C) be the Kodaira embedding dfl defined by (cf. (3.2))

Pm(p) = (Bo(P) 1 52(P) : - - - 1 SNy (D))

In view of the definitionnm = ®} wes/m of 5y, the Hamiltonian functionpg on
(M, nm) associated to the holomorphic vector fielllis expressed in the form

> Pua Q)lSa*

N. =~
m Za;no |S(¥|2

$q =

We defineyg = (Pyp(Q)) € Hm by settingyas(Q) := {yua(Q)+mcg}d.s for Kronecker’s
deltad.s. As in deducing (3.16) from,(X") = y.(X") + mcxr, we easily see that

lyal?, < I70l13.

Recall thatn, is expressible agg + (vV—1/27)q aa_sm for some real-valued smooth
function &, on M such that

(3.34) lEmllcamy < Coau,

where allC;’s in this remark are positive constants independent of tiece ofm, X
and Q. We now observe that

(3.35) $q = Uq *+d(Qém).

Note thatQ € X(p;,) C =(p). Since Q sits in the compact seE(p), and sinceX(p)
is independent of the choice of, there existC,, and C,3 such that

0<C22§/ Uéa)g (:/ ¢(2?7721> < Cys.
M M

Note that bothn, and w(¢) converge towg asm — oo (see (3.3) and the statement
at the beginning of Step 8). Note also that, by the Remarkt idter (3.2), the func-
tion (n!/m") Zo':‘;“o |§a|ﬁ(5) on M converges uniformly to 1, am — co. Again by the
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Remark right after (3.2), it now follows from the Cauchy-8ehz inequality that, for
m>1,

Nm Nm 218 |12
= oo Sot
lyoll = vaa(Q)? = Coqm’ f Z“-O’Lm(?)z' = wior
(3.36) =0 Mo DT 15|

> Cpym™? / (P50q)° @(0)" = Cosm™?2 / ()’ iy
M M
for someCy4 and Cys, where @} ¢q is as in (3.4). Then fom > 1,

Cos = max Jza)”>/ 2a)”>C/ 2 pn
2 Jez(p)/M| 208> [ 1QE, 0 > Car [ 1QF,

Nm » 218 |2
:C27m/ {Za:o yota(Q) |5a|h(g)
M

Nm & (2
m? 32,5 18alhge

—d%}nﬂq

N
Cos L .
= mn+1 {/M Z Vaa(Q)2|5a|ﬁ(g) 7121} — Coom
a=0
Cao S 21z 2 n
mn+1 M Z Vaa(Q) |Sa|h(@) U)(K) — Cogm
a=0

5 12
. o WPallh

- mn+1

— Cogm,

for someCyg, Cy7, Cos, Cog, C3p and Cz;. Hence, ifm > 1, then
(3.37) IvQllam < I7Qliy < Cam™2.

for someggz. Now by ¢(0) = 1, we define a real analytic function= 7(x) on R
satisfyingz(0) = 0 by

£ =¢(x) - L.

For X € p;, above, by choosing an orthonormal basis fuk(one)) possibly distinct
from the original one, we may assume that the representatatnix yx of X is a real
diagonal matrix. Recall thaX =tX, where|t| < 8o := q¥?* /| Pxs|lm. Put X" :=tX".

Then by (3.18),
,/Cinyxnm < el = [t~ [ Im < G427,
11

i.e., lyglm < +/C11q%. Hence, ifm> 1,

(3.38) 1V @agyollm < Caaa®llyqllm,
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for someCz3. Now by the same argument as in (3.36), we see that, for Ospe

(3.39) 1V @asyollam = Cg4m”+2/M ‘13?}190?(&(1;()(3 Mme i m>1

Putay := \/fM 102 4500 e Then form > 1, by (3.37), (3.38) and (3.39),

(3.40) am < Cgsq"

for someCss. Consider the Laplaciansl,, and O,, on functions for the Kahler man-
ifolds (M, nm) and (M, wo), respectively. Note that(adX)Q = Q + £(ad X)Q. Then
for m > 1, by (3.35), we obtain

‘/M(DnmfﬁQ)%(ad)"()Q m

/M (O4,9Q)(#Q + Prezad%)Q) m

(3.41) _
= 119¢Ql L2,y —

/M (O (P92 @d$)0) m

> 19{uq +q(QémH 1 Z2qu. ) — @mll Ty (U + A(QEM)} IL2(M, 1)
> (1—€)Rn— (1 +€)amSn,

where we putRy = [[d{uq + Q(QEm)}IIEZ(M,wO) and Sy = [0uo{uq + a(Q&m)}HlL2(M,w0),
and e < 1 is a positive constant independent of the choicampfX and Q. Since
Q belongs to the compact séi(p), by (3.34) and the equalitydugll z(m,w) = 1, we
obtain constant€3g and Cz7 such that

(3.42) {Rm > 1 — 29)|19(Q&m)llLz(M.0) = 1 — CaeQ,

Sh = 10weUqllLz(m,wo) + All8w(Q&m)lILz(m,w) < Car-

Then form > 1, by (3.40), (3.41) and (3.42), we finally obtain

> (1— €)(1 — Cz6q) — (1 +€)CasCa7q™ > 0,

‘/M(DflmqbQ)‘b;(adf()Q m

which implies (3.33), as required.
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