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Abstract
Recently, Donaldson proved asymptotic stability for a polarized algebraic

manifold M with polarization class admitting a Kähler metric of constant scalar
curvature, essentially when the linear algebraic partH of Aut0(M) is semisimple.
The purpose of this paper is to give a generalization of Donaldson’s result to the
case where the polarization class admits an extremal Kählermetric, even whenH is
not semisimple.

0. Introduction

For a connected polarized algebraic manifold (M, L) with an extremal Kähler met-
ric in the polarization classc1(L)R, we consider the Kodaira embedding

8m = 8jL
mj : M ,! P�(Vm), m� 1,

whereP�(Vm) denotes the set of all hyperplanes inVm := H0(M, O(Lm)) through the
origin. For the identity component Aut0(M) of the group of holomorphic automorphisms
of M, let H denote its maximal connected linear algebraic subgroup. Replacing the
ample holomorphic line bundleL by some positive integral multiple ofL if necessary,
we may fix anH -linearization ofL, i.e., a lift to L of the H -action onM such thatH
acts onL as bundle isomorphisms covering theH -action onM, and may further assume
that the naturalH -equivariant maps

prm :
mO

V1 ! Vm, m = 1, 2,: : : ,
are surjective (cf. [18], Theorem 3). In this paper, applying a method in [15], we shall
generalize a result in Donaldson [3] about stability to extremal Kähler cases:
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Main Theorem. For a polarized algebraic manifold(M, L) as above with an ex-
tremal Kähler metric in the polarization class, there exists an algebraic torus T in H
such that the image8m(M) in P�(Vm) is stable relative to T(cf. Section 2and [14])
for m� 1.

In particular in [16], by an argument as in [3], an extremal Kähler metric in a
fixed integral Kähler class on a projective algebraic manifold M will be shown to be
unique1 up to the action of the groupH .

Fix once for all an extremal Kähler metric!0 in the polarization class in Main The-
orem. By a result of Calabi [1], the identity componentK of the group of isometries of
(M, !0) is a maximal compact connected subgroup ofH . For the identity component
Z of the center ofK , we consider the complexificationZC of Z in H . Then we shall
see that Main Theorem is true forT = ZC (cf. Section 1).

One may ask why relative stability in place of ordinary stability has to be consid-
ered in our study. The reason why we choose relative stability is because, in general,
the obstruction in [13] to asymptotic semistability does not vanish (cf. [17]). Thus, as
to the group action onVm related to stability, we must replace the full special linear
group SL(Vm) of Vm by its subgroupGm(T) (see (1.3)), where the algebraic torusT
in ZC is chosen in such a way that the obstruction vanishes when restricted to Gm(T),
i.e., G0

m(T) fixes M̂m (cf. Section 1). Note also thatGm(T) is a direct product of spe-
cial linear groups. To see why we choose such a groupGm(T) in place of SL(Vm),
we may compare our stability with that of holomorphic vectorbundles. Recall that
a holomorphic vector bundle splitting into a direct sum of stable vector bundles of-
ten appears in the boundary of a compactified moduli space of stable vector bundles.
Similarly for our stability of manifolds, a splitting phenomenon occurs forVm in (1.2).
Roughly speaking, we consider the moduli space of allM ’s with fixed decomposition
data (1.2), where same type of construction of moduli spacesoccurs typically for the
Hodge decomposition in the variation of Hodge structures.

We now explain the difficulty which we encounter in applying the method of [15].
Such a difficulty comes up when we use the estimate of Phong andSturm [21]. By
applying a stability criterion in [15] of Hilbert-Mumford’stype, we write the vector
spacepm as an orthogonal direct sum

pm = p0m � p00m (cf. Section 3),

and then check the stability of̂Mm along the orbits of the one-parameter subgroups in
Gm(T) generated by elements ofp00m. Thoughp and p00m are transversal by the equality
p0m = pm \ p, we further need the orthogonality ofp and p00m in order to apply directly
the estimate in [21]. Since such an orthogonality does not generally hold, we are in

1For uniqueness of extremal Kähler metrics, Chen and Tian recently obtain a more general result
without any projectivity condition.
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trouble, but still the situation is not so bad (see (3.17), (3.18)), and this overcomes the
difficulty.

1. Reduction of Main Theorem

In this section, by introducing necessary notation, we reduce the proof of Main The-
orem to showing Theorems A and B below. Throughout this paper, we fix once for all
a pair (M, L) of a connected projective algebraic manifoldM and an ample holomorphic
line bundleL over M as in the introduction. ForVm in the introduction, we putNm :=
dimC Vm� 1, where the positive integerm is such thatLm is very ample. Letn andd be
respectively the dimension ofM and the degree of the imageMm := 8m(M) in the pro-
jective spaceP�(Vm). Fixing anH -linearization ofL as in the introduction, we consider
the associated representation:H ! PGL(Vm). Pulling it back by the finite unramified
cover: SL(Vm) ! PGL(Vm), we obtain an isogeny

(1.1) � : H̃ ! H ,

where H̃ is an algebraic subgroup of SL(Vm). On the other hand, for an algebraic
torus T in H , the H -linearization ofL naturally induces a faithful representation

H ! GL(Vm),

and this gives aT-action on Vm for each m. Then we have a finite subset0m =f�1, �2, : : : , ��mg of the free Abelian group Hom(T , C�) of all characters ofT such
that the vector spaceVm = H0(M, O(Lm)) is uniquely written as a direct sum

(1.2) Vm =
�mM
k=1

VT (�k),

where for each� 2 Hom(T , C�), we setVT (�) := fs 2 Vm; t � s = �(t)s for all t 2 Tg.
Define an algebraic subgroupGm = Gm(T) of SL(Vm) by

(1.3) Gm :=
�mY
k=1

SL(VT (�k)),

and the associated Lie subalgebra of sl(Vm) will be denoted bygm. Here, Gm and
gm possibly depend on the choice of the algebraic torusT , and if necessary, we de-
note these byGm(T) and gm(T), respectively. TheT-action onVm is, more precisely,
a right action, while theGm-action on Vm is a left action. SinceT is Abelian, this
T-action on Vm can be regarded also as a left action. Note that the groupGm acts
diagonally onVm in such a way that, for eachk, the k-th factor SL(VT (�k)) of Gm

acts just on thek-th factor VT (�k) of Vm. We now put

Wm := fSd(Vm)g
n+1,
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where Sd(Vm) denotes thed-th symmetric tensor product ofVm. To the imageMm

of M, we can associate a nonzero elementM̂m in W�
m such that the corresponding

element [M̂m] in P�(Wm) is the Chow point of the irreducible reduced algebraic cycle
Mm on P�(Vm). Note that theGm-action onVm naturally induces aGm-action onWm

and also onW�
m. As in [14], the subvarietyMm of P�(Vm) is said to bestable relative

to T or semistable relative to T, according as the orbitGm � M̂m is closed inW�
m or

the closure ofGm � M̂m in W�
m does not contain the origin ofW�

m.
Let 1 be the set of all algebraic subtoriT of ZC. Take a Hermitian metrich0 for

L such thatc1(L; h0) is the extremal Kähler metric!0 in the Main Theorem. LetE
be the extremal Kähler vector field for (M,!0), and letk be the Lie algebra ofK . Let
K C be the complexification ofK in H . For !0 above, we further define1min as the
set of all T 2 1 for which the statement of Theorem B in [14] is valid. Then, asthe
procedure in Section 6 of [14] shows, there exists a unique minimal element2, denoted
by T0, of 1min such that

1min = fT 2 1; T0 � Tg.
For eachT 2 1min, we put T̃ := ��1(T) and Z̃C := ��1(ZC), and letG0

m(T) and Z0
m(T)

be the identity components ofGm(T) \ H̃ and Gm(T) \ Z̃C, respectively.

DEFINITION 1.4. For an algebraic torusT in 1min, we say thatT is irredun-
dant, if for all sufficiently large positive integersm, dimC K C = dimC G0

m(T) + dimC T
(or equivalently dimC ZC = dimC Z0

m(T) + dimC T).

For instance,Z0
m(T) = f1g if T = ZC. In particular, ZC is irredundant. We now define

subsets10 and11 of 1min by

10 : the set of all irredundant elements in1min,

11 := fT 2 1min; G0
m(T) � M̂m = M̂m for all m� 1g.

DEFINITION 1.5. Let 1L denote the set of all algebraic subtoriT of ZC for
which the statement of Main Theorem is valid.

Note that, if T 0 and T 00 are algebraic subtori ofZC with T 0 � T 00 and T 0 2 1L ,
then the stability criterion of Hilbert-Mumford type (cf. [14], Theorem 3.2) shows that
T 00 also belongs to1L . We now pose the following:

Theorem A. The algebraic torus ZC belongs to11.

2The algebraic torusT0 is actually the closure inZC of the complex Lie subgroup generated by the vector
fields E, Fk, k =1,2,. . . which appear in the asymptotic approximation (cf.(3.1) below) of the weighted
analogues (cf. [14], 2.6) of balanced metrics.
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Theorem B. 1L \10 = 10 \11.

Once these theorems are proved, then by Theorem A, we haveZC 2 10 \11. This
together with Theorem B implies thatZC 2 1L , completing the proof of Main Theorem.

If the extremal Kähler metric!0 above has a constant scalar curvature, and if the
obstruction as in [13] vanishes, then we have both11 = 1min and f1g 2 10. Hence in
this case, Theorem B shows thatf1g 2 1L . This then proves the main theorem in [15].

It is very likely that the set1L has a natural minimal element closely related to the
algebraic torusT0. To see this, let us consider the case whereM is an extremal Kähler
toric Fano surface polarized byL = K�1

M . Then M is possibly a complex projective
plane blown up atr points with r � 3. If r = 0 or 3, thenM admits a Kähler-Einstein
metric, and1L has the unique minimal elementf1g (= T0). On the other hand, ifr = 1,
then T0 coincides withZC, and is the one-dimensional algebraic torus generated by the
extremal Kähler vector field. Hence, in this case,1L has the unique minimal element
T0. Finally for r = 2, the involutive holomorphic symmetry ofM switching the blown-
up points allows us to regardT0 as the one-dimensional algebraic torus generated by
the extremal Kähler vector field. It then follows thatT0 again has to be a minimal
element of1L .

2. Proof of Theorem A

In this section, we first prove Theorem A, and then make several definitions with
a lemma added. Put̃K C := ��1(K C).

Proof of Theorem A. In this proof, letT = ZC, and consider the associated set0m = f�1,�2, : : : ,��mg of characters form� 1. SinceK C commutes withZC, we have

(2.1) K̃ C � SL(Vm) \ �mY
k=1

GL(VZC (�k)).

Recall that the extremal Kähler vector fieldE belongs to the Lie algebra ofT0. Hence,
a theorem of Calabi [1] shows thatG0

m(ZC) � G0
m(T0) � K̃ C. Hence,

(2.2) G0
m(ZC) � Z̃C � K̃ C.

To complete the proof of Theorem A, we compare two groups [K̃ C, K̃ C] and G0
m(ZC).

By (2.1), we obviously have [̃K C, K̃ C] � G0
m(ZC). On the other hand,

dimC[ K̃ C, K̃ C] = dimC K̃ C � dimC Z̃C � dimC G0
m(ZC),

where the last inequality follows from (2.2) in view of the fact that the intersection
of G0

m(ZC) and Z̃C is a finite group. It now follows thatG0
m(ZC) coincides with

[ K̃ C, K̃ C]. HenceG0
m(ZC) � M̂m = M̂m. Then byT0 � ZC, we now obtainZC 2 11,

as required.
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Let h be a Hermitian metric forL such that! := c1(L; h) is a K -invariant Kähler
metric on M. Define a Hermitian metric�h on Vm by

(2.3) �h(s, s0) :=
Z

M
(s, s0)hm !n, s, s0 2 Vm,

where (s, s0)hm denotes the function onM obtained as the the pointwise inner product
of s, s0 by hm. Let S := fs0, s1, : : : , sNmg be an orthonormal basis forVm satisfying

�h(si , sj ) = Æi j .

Let T 2 10 \11. Then we say thatS is T-admissible, if each VT (�k), k = 1, 2,: : : ,
admits a basisfsk,i ; i = 1, 2,: : : , nkg such that

(2.4) sl (k,i ) = sk,i , i = 1, 2,: : : , nk; k = 1, 2,: : : , �m,

wherenk := dimC VT (�k), and l (k, i ) := (i �1) +
Pk�1

k0=1 nk0 for all k and i (cf. [14]). Let
tc := Lie(Tc) denote the Lie algebra of the maximal compact subgroupTc of T . Put
q := 1=m and tR :=

p�1tc. For eachF 2 tR, we define

(2.5) Bq(!, F) :=
n!

mn

�mX
k=1

nkX
i =1

e�d�k(F)jsk,i j2hm,

where jsj2hm := (s, s)hm for all s 2 Vm, and d�k : tR ! R denotes the restriction totR
of the differential att = 1 for the character�k 2 Hom(T , C�).

As a final remark in this section, we give an upper bound for degrees of the char-
acters in0m. Let T be an algebraic torus sitting inZC. By settingr := dimC T , we
identify T with the multiplicative group (C�)r := ft = (t1, t2, : : : , tr ); t j 2 C� for all j g.
Since each�k in (1.2) may depend onm, the character�k will be rewritten as�m;k

until the end of this section. Then for eachk 2 f1, 2,: : : , �mg,
�m;k(t) =

rY
i =1

t�(m,k,i )
i , t = (t1, t2, : : : , tr ) 2 T ,

for some integers�(m, k, i ) independent of the choice oft . Define a nonnegative in-
teger�m by �m := sup�m

k=1

Pr
i =1 j�(m, k, i )j. Then we have the following upper bound

for �m:

Lemma 2.6. For all positive integers m, the inequality�m � m�1 holds.

Proof. Put S := Ker prm. Since the subspaceS of
NmV1 is preserved by the

T-action, we have aT-invariant subspace, denoted byS?, of
NmV1 such that the
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vector space
NmV1 is written as a direct sum

mO
V1 = S� S?.

Then the restriction of prm to S? defines aT-equivariant isomorphismS? �= Vm. On
the other hand, the characters ofT appearing in theT-action on

NmV1 are

�~k(t) := t
Pm

j =1 �(1,k j ,1)
1 t

Pm
j =1 �(1,k j ,2)

2 � � � tPm
j =1 �(1,k j ,r )

r , ~k = (k1, k2, : : : , km) 2 I m,

where I m is the Cartesian product ofm-pieces ofI := f1, 2,: : : , �mg. SinceS? (�= Vm)
is a subspace of

NmV1, we now obtain

�m � max
~k2I m

rX
i =1

�����
mX
j =1

�(1, k j , i )

����� � max
~k2I m

mX
j =1

rX
i =1

j�(1, k j , i )j � m�1,

as required.

3. Proof of Theorem B

Fix an arbitrary elementT of 10 \ 11. Let m � 1. Then by [14], Theorem B,
there existFk 2 tR, real numbers�k 2 R, and smooth real-valuedK -invariant functions'k, k = 1, 2,: : : , on M such that, for each̀ 2 Z�0, we have

(3.1) Bq(!(`), F(`)) = Cq,` + 0(q`+2), m� 1,

where F(`) := (
p�1E=2)q2 +

P
j̀ =1 q j +2F j , h(`) := h0 exp

��Pk̀=1 q j' j
�
, Cq,` := 1 +P

j̀ =0� j q j +1, and!(`) := c1(L;h(`)). Let us now fix an arbitrary positive integer`. To
eachT-admissible orthonormal basisS := fs0, s1, : : : , sNmg for (Vm; �h(`)), we associate
a basisS̃ := fs̃0, s̃1, : : : , s̃Nmg for Vm by

(3.2) s̃k,i = e�d�k(F(`))=2sk,i , i = 1, 2,: : : , nk; k = 1, 2,: : : , �m,

where we putsl (k,i ) = sk,i and s̃l (k,i ) = s̃k,i by using the notation in (2.4).

REMARK . Lemma 2.6 above implies thatjd�m;k(F(`))j � C�1q for some posi-
tive real constantC independent of the choice ofm and k, where�m;k is as in the
last section. Hence in (3.1) above, for each fixed nonnegative integer`, there exists a
positive constantC0 independent ofm and k such that

je�d�k(F(`)) � 1j � C0q, k = 1, 2,: : : , �m.

In particular, in (3.2) above, the integral
R

M ks̃k,i k2
hm!(`)n (= e�d�k(F(`))) converges to 1,

uniformly in k, as m!1.
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We now consider the Kodaira embedding8m : M ! P�(Vm) defined by

8m(x) := (s̃0(x) : s̃1(x) : � � � : s̃Nm(x)), x 2 M,

where P�(Vm) is identified with PNm(C) = f(z0 : z1 : � � � : zNm)g by the basisS̃. Put
Mm := 8m(M). Since1L \10 is a subset of11 \10 (cf. [13], Section 3), the proof
of Theorem B (and Main Theorem also) is reduced to showing the following assertion:

Assertion. The orbit Gm(T) � M̂m is closed in W�m.

In the Hermitian vector space (Vm; �h(`)), the subspacesVT (�k), k = 1, 2,: : : , �m,
are mutually orthogonal. Put

Km :=
�mY
k=1

SU(VT (�k); �h(`)), km :=
�mM
k=1

su(VT (�k); �h(`)).
Since T belongs to11, the groupG0

m = G0
m(T) coincides with the isotropy subgroup

of Gm at M̂m 2 W�
m. Consider the Lie algebrag0m := Lie(G0

m) of G0
m. Puth := Lie(H ) =

Lie(H̃ ). Then byG0
m � H̃ � SL(Vm), we have the inclusions

g0m ,! h ,! sl(Vm).

Put k0m := Lie(K 0
m), where K 0

m is the isotropy subgroup ofKm at the pointM̂m 2 W�
m.

Then gm and g0m are the complexifications ofkm and k0m, respectively (cf. [1]). Put
pm :=

p�1km and p0m :=
p�1k0m. We further define

Km :=

( �mM
k=1

u(VT (�k); �h(`))
)
\ su(Vm; �h(`)), Pm :=

p�1Km.

By the above inclusions of Lie algebras (see also (2.1)), we can regardp :=
p�1k as

a Lie subalgebra ofPm. Let !FS be the Fubini-Study metric onP�(Vm) defined by

!FS :=

p�1

2� ��̄ log

 
NmX
�=0

jz�j2
!

.

For eachQ 2 Pm, let Q be the associated holomorphic vector field onP�(Vm). By
the notation fort = 0 in Step 1 later in the proof of Assertion, we obtain a vector
field QT Mm on Mm via the orthogonal projection ofQ along Mm to tangential di-
rections. Then we have a unique real-valued function'Q on P�(Vm) satisfying bothR

P�(Vm) 'Q !Nm
FS = 0 and

iQ

�!FS

m

�
=

p�1

2� �̄'Q.
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Let�M,FS:=��̄��̄ denote the Laplacian on functions on the Kähler manifold (M,8�
m!FS).

Define a positive semidefiniteK 0
m-invariant inner product ( , ) onPm by setting

(Q1, Q2) :=
1

m2

Z
Mm

((Q1)T Mm, (Q2)T Mm)!FS !n
FS

=

p�1

2�
Z

Mm

�'Q2 ^ �̄'Q1 ^ n !n�1
FS =

Z
Mm

(�̄'Q1, �̄'Q2)!FS !n
FS

= � Z
M
'Q1(�M,FS'Q2)8�

m !n
FS 2 R

for all Q1, Q2 2 Pm. Restrict this inner product topm. Then the inner product ( , )
on pm is positive definite onp and hence onp0m. As vector spaces,Pm and pm are
written respectively as orthogonal direct sums

Pm = p� p?, pm = p0m � p00m,

wherep? is the orthogonal complement ofp in Pm, and moreoverp00m is the orthogonal
complements ofp0m in pm (cf. [15]). Hence ifQ 2 p?, then for any holomorphic vector
field W on Mm, we have

1

m2

Z
Mm

(QT Mm, WT Mm)!FS !n
FS

=
Z

Mm

(�̄'Q, �̄0 + �̄('W1 +
p�1'W2))!FS !n

FS

=

p�1

2�
Z

Mm

f�0 ^ �̄'Q + �('W1 �p�1'W2) ^ �̄'Qg ^ n !n�1
FS = 0,

where iW (!FS=m) on Mm is known to be expressible as̄�0 + �̄('W1 +
p�1'W2) for

some holomorphic 1-form�0 on Mm and elementsW1, W2 in p. We consider the
open neighbourhood (cf. [15])

Um := fX 2 p00m; � (adX)p0m \ p00m = f0gg
of the origin in p00m, where � : R ! R is a real analytic function defined by� (x) :=
x(ex + e�x)=(ex � e�x), x 6= 0, and� (0) = 0. By operating (

p�1=2�) ��̄ log on both
sides of (3.1), we obtain

(3.3) 8�
m !FS� m!(`), modq`+2.

For an elementX of Pm (later we further assumeX 2 p00m), there exists aT-admissible
orthonormal basisT := f�0, �1, : : : , �Nmg for (Vm, �h(`)) such that the infinitesimal action
of X on Vm can be diagonalized in the form

X � �� = 
�(X)��
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for some real constants
� = 
�(X), � = 0, 1,: : : , Nm, satisfying
PNm�=0 
�(X) = 0. As

in (3.2), we consider the associated basisT̃ = f�̃0, �̃1, : : : , �̃Nmg for Vm, where ˜�k,i :=
e�d�k(F(`))=2�k,i . By setting

�X(et ) := exp(t X), t 2 R,

we consider the one-parameter group�X: R+ ! �Q�m
k=1GL(VT (�k))

	\SL(Vm) associated
to X. Then�X(et ) � �� = et
��� for all � and all t 2 R. Moreover,

(3.4) 8�
m'X =

PNm�=0 
�(X)j�̃�j2
m
PNm�=0 j�̃�j2 , X 2 Pm.

Let �m be the Kähler form onM defined by�m := (1=m)8�
m !FS. To eachX 2 Pm,

we can associate a real constantcX such that�X := cX +8�
m'X on M satisfies

Z
M
�X �n

m = 0.

Proof of Assertion. Fix an arbitrary element 06= X of p00m, and define a real-valued
function fX,m(t) on R by

fX,m(t) := logk�X(et ) � M̂mkCH(�h(`)).
For this X, we consider the associated
�(X), � = 0, 1,: : : , Nm, defined in the above.
From now on, X regarded as a holomorphic vector field onP�(Vm) will be denoted
by X . By [26] (see also [14], 4.5), we havëf X,m(t) � 0 for all t . Then by [15],

Lemma 3.4, it suffices to show the existence of a real numbert (m)
X such that

(3.5) ḟ X,m(t (m)
X ) = 0< f̈ X,m(t (m)

X ) and t (m)
X � X 2 Um.

In the below, real numbersCi , i = 1, 2,: : : , always mean positive real constants in-
dependent of the choice ofm and X. Moreover by abuse of terminology, we write
m� 1, if m satisfiesm� m0 for a sufficiently largem0 independent of the choice of
X. Then the proof of Assertion will be divided into the following eight steps:

STEP 1. Put�t := �X(et ) and Mm,t := �t (Mm) for eacht 2 R. Metrically, we iden-
tify the normal bundle ofMm,t in P�(Vm) with the subbundleT M?

m,t of TP�(Vm)jMm,t

obtained as the orthogonal complement ofT Mm,t in TP�(Vm)jMm,t . Hence,TP�(Vm)jMm,t

is differentiably written as the direct sumT Mm,t � T M?
m,t . Associated to this, the re-

strictionXjMm,t of X to Mm,t is written as

XjMm,t = XT Mm,t � XT M?
m,t
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for some smooth sectionsXT Mm,t andXT M?
m,t

of T Mm,t and T M?
m,t , respectively. Then

the second derivativëf X,m(t) is (see for instance [14], [21]) given by

(3.6) f̈ X,m(t) =
Z

Mm,t

jXT M?
m,t
j2!FS

!n
FS� 0.

Since the Kodaira embedding8T̃ : M ! PNm(C) defined by

8T̃ (p) := (�̃0(p) : �̃1(p) : � � � : �̃Nm(p))

coincides with8m above up to an isometry of (Vm,�h(`)), we may assume without loss

of generality that8T̃ is chosen as8m.
STEP 2. In view of the orthogonal decompositionPm = p? � p, we can express

X as an othogonal sum

X = X0 + X00
for some X0 2 p and X00 2 p?. Since!(`) is K -invariant (cf. [14]), the groupK acts
isometrically on (Vm, �h(`)). Now, there exists aT-admissible orthonormal basisB :=f�0, �1, : : : , �Nmg for Vm such that the infinitesimal action ofX00 on Vm is written as

X00 � �� = 
�(X00)��, � = 0, 1,: : : , Nm,

for some real constants
�(X00), � = 0, 1,: : : , Nm, satisfying
PNm�=0 
�(X00) = 0. By

the notation as in (3.2), we consider the associated basisB̃ := f�̃0, �̃1, : : : , �̃Nmg for
Vm. Then

(3.7) �X00 =

PNm�=0 
̂�(X00)j�̃�j2
m
PNm�=0 j�̃�j2 ,

where ˆ
�(X00) := 
�(X00)+mcX00 . Now, X0 and X00 regarded as holomorphic vector fields
on P�(Vm) will be denoted byX 0 and X 00, respectively. Associated to the expression
TP�(Vm)jMm,t = T Mm,t � T M?

m,t as differentiable vector bundles, the restrictionsX 0jMm,t
,

X 00jMm,t
of X 0 andX 00 to Mm,t are respectively written as

X 0jMm,t
= X 0

T Mm,t
� X 0

T M?
m,t

and

X 00jMm,t
= X 00

T Mm,t
� X 00

T M?
m,t

,

whereX 0
T Mm,t

, X 00
T Mm,t

are smooth sections ofT Mm,t , andX 0
T M?

m,t
, X 00

T M?
m,t

are smooth

sections ofT M?
m,t . Then by X0 2 p, we have

(3.8) X 0
T M?

m,t
= 0, i.e., XT M?

m,t
= X 00

T M?
m,t

.
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STEP 3. SinceT is irredundant, we haveg0m(T) + t = kC, i.e., p0m +
p�1tc = p,

where these are equalities as Lie subalgebras ofh. From now on until the end of this
step, as in the preceding steps, we regard bothp0m and kC as Lie subalgebras ofsl(Vm).
Hence, as Lie subalgebras ofsl(Vm), we have

p = p0m +
p�1 t̃c,

where we put̃tc := Lie(T̃c) for the maximal compact subgroup̃Tc of T̃ := ��1(T). Then
we can writeX0 2 p as a sum

X0 = Y + W

for someY 2 p0m and someW 2 p�1 t̃c. Note that the holomorphic vector fieldsY and
W on P�(Vm) induced byY and W, respectively, are tangent toM. By [Y, W] = 0,
there exists aT-admissible orthonormal basisf�0, �1, : : : , �Nmg for Vm such that

�
Y � �� = 
�(Y)��, � = 0, 1,: : : , Nm;
W � �k,i = bk�k,i , k = 1, 2,: : : , �m,

for some real constants
�(Y) andbk, where in the last equality, we put�k,i := �l (k,i ) by
using the same notationl (k, i ) as in (2.4). By setting ˜�k,i = e�d�k(F(`))=2�k,i , we later

consider the basisf�̃0, �̃1, : : : , �̃Nmg for Vm. Note that
PNm�=0 
�(Y) =

P�m
k=1 nkbk = 0.

Since bothX and Y belong topm, it follows from X = X0 + X00 = Y + W + X00 that

nkX
i =1


k,i (X) =
nkX
i =1


k,i (Y) = 0 and nkbk = � nkX
i =1


k,i (X
00) for all k,

where 
k,i := 
l (k,i ) with l (k, i ) as in (2.4). Note thatX 2 p00m and X00 2 p?, where
by p0m +

p�1t = p, the spacep? is perpendicular top0m. Then by Y 2 p0m and X =
Y + W + X00, we have

(Y, Y) + (Y, W) = (Y, X) = 0

in terms of the inner product ( , ) onPm. Hence (Y,Y) =�(Y, W) �p(Y, Y)(W, W).
It now follows that

(3.9)
Z

Mm

jYjMmj2!FS
!n

FS = m2(Y, Y) � m2(W, W) =
Z

Mm

jWjMmj2!FS
!n

FS.
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The integral on the right-hand side is, form� 1,

Z
M

�P�m
k=1

Pnk
i =1 j�̃k,i j2h(`)��P�m

k=1

Pnk
i =1 b2

kj�̃k,i j2h(`)�� �P�m
k=1

Pnk
i =1 bkj�̃k,i j2h(`)�2�P�m

k=1

Pnk
i =1 j�̃k,i j2h(`)�2 mn �n

m

� mn
Z

M

P�m
k=1

Pnk
i =1 b2

kj�̃k,i j2h(`)P�m
k=1

Pnk
i =1 j�̃k,i j2h(`) �n

m

� n!

2

Z
M

�mX
k=1

nkX
i =1

b2
kj�̃k,i j2h(`) �n

m � C1

�mX
k=1

nkb2
k

for someC1, where in the last two inequalities, we used the Remark rightafter (3.2).
Hence, by setting ˆ
�(Y) := 
�(Y) + mcY, we see from (3.9) that

(3.10)

Z
M

�PNm�=0 j�̃�j2h(`)��PNm�=0 
̂�(Y)2j�̃�j2h(`)�� �PNm�=0 
̂�(Y)j�̃�j2h(`)�2�PNm�=0 j�̃�j2h(`)�2 �n
m

� qnC1

�mX
k=1

nkb2
k.

Define real numbersf1 and f2 by

8>>>>>><
>>>>>>:

f1 :=
Z

M

 
NmX
�=0

j�̃�j2h(`)
!�1 NmX

�=0


̂�(Y)2j�̃�j2h(`)
!
�n

m,

f2 :=
Z

M

( 
NmX
�=0

j�̃�j2h(`)
!�1 NmX

�=0


̂�(Y)j�̃�j2h(`)
!)2

�n
m.

If f1 � 2 f2, then by (3.10) and the Remark right after (3.2), we have

NmX
�=0


̂�(Y)2 � C2

�mX
k=1

nkb2
k, if m� 1,

for someC2. Next, assumef1 < 2 f2. Then for

�Y :=

 
m

NmX
�=0

j�̃�j2h(`)
!�1 NmX

�=0


̂�(Y)j�̃�j2h(`)
!

,

the left-hand side of (3.10) divided bym� 1 is written as

Z
Mm

jYjMmj2(!FS=m)

�!FS

m

�n

=
Z

M
j�̄�Yj2�m

�n
m � C3

Z
M
�2

Y �n
m,
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for someC3, because the Kähler manifolds (M, �m), m� 1, have bounded geometry
(see also the Remark right after (3.2)). Hence, byf1 < 2 f2 and (3.10), we see that,
for m� 1,

qnC1

�mX
k=1

nkb2
k � mC3

Z
M
�2

Y �n
m = C3q f2

> C3q f1
2

� C4qn+1
NmX
�=0


̂�(Y)2

for someC4, where in the last inequality, we used the Remark right after(3.2). ByPNm�=0 
�(Y) = 0, we here observe that
PNm�=0 
�(Y)2 � PNm�=0 
̂�(Y)2. Hence, whether

f1 � 2 f2 or not, there always existsC5 such that, form� 1,

(3.11) q
NmX
�=0


�(Y)2 � C5

�mX
k=1

nkb2
k.

STEP 4. Put P := W + X00. In view of [26], Theorem 1.6, a weighted version
of (3.4.2) in [26] is true (cf. [14], [19]). Hence byT 2 11, we obtain

(3.12) ḟ X,m(0) = ḟ P,m(0) = (n + 1)
Z

M

PNm�=0 
�(P)j�̃�j2h(`)PNm�=0 j�̃�j2h(`) 8�
m !n

FS,

where
k,i (P) := bk + 
k,i (X00) (= 
l (k,i )(P)). Let Cq,` = 1 +
P

j̀ =0 � j q j +1 be as in (3.1).
Then by (3.1) and (3.3), there exist a functionum,` and a 2-form�m,` on M such that

(3.13)

8>>><
>>>:

Bq(!(`), F(`)) =
n!

mn

NmX
�=0

j�̃�j2h(`) = Cq,` + um,`q`+2;

�m =
1

m
8�

m !FS = !(`) + �m,`q`+2,

where we have the inequalitieskum,`kC0(M) � C6 and k�m,`kC0(M,!0) � C7 for someC6

and C7 (cf. Remark 2.11; see also [25], [14]). Hence, ifm� 1,

j ḟ X,m(0)j
(n + 1)!

� Z
M

�PNm�=0 
�(P)j�̃�j2h(`)��1 +
P1

i =1(�um,`q`+2=Cq,`)i
	f!(`) + �m,`q`+2gn

Cq,` .

Here,
�
1 +

P1
i =1(�um,`q`+2=Cq,`)i

	f!(`) + �m,`q`+2gn is written as (1 +wm,`) !(`)n for
some functionwm,` on M such that the inequalitykwm,`kC0(M) � C8 holds for some
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C8. Then by
R

M

�PNm�=0 
�(P)j�̃�j2h(`)	 !(`)n =
P�m

k=1

�
ed�k(F(`)) Pnk

i =1(bk + 
k,i (X00))	 = 0,
we have

j ḟ X,m(0)j � (n + 1)! q`+2
Z

M

�����
PNm�=0 
�(P)j�̃�j2h(`)

Cq,`
����� � jwm,`j !(`)n

= (n + 1)! q`+2�n
Z

M

�
1 +

um,`q`+2

Cq,`
������
PNm�=0 
�(P)j�̃�j2h(`)PNm�=0 j�̃�j2h(`)

����� �
����wm,`

n!

���� !(`)n.

In view of (3.4), by setting�̂ :=
�
m
PNm�=0 j�̃�j2��1�PNm�=0 
�(P)j�̃�j2�, there existC9

and C10 such that, form� 1,

(3.14) j ḟ X,m(0)j � q`+1�nC9k�̂kL1(M,!(`)) � q`+1�nC10k�̂kL2(M,!(`)).
STEP 5. Note that 0� n2

kb2
k =

�Pnk
i =1 
k,i (X00)	2 � nk

Pnk
i =1 
k,i (X00)2 holds for all

k by the Cauchy-Schwarz inequality. Hence

(3.15)
�mX
k=1

nkb2
k �

NmX
�=0


�(X00)2.

From
PNm�=0 
�(X00) = 0 and ˆ
�(X00) = 
�(X00) + mcX00 , it follows that

PNm�=0 
̂�(X00)2 =

(Nm + 1)(mcX00 )2 +
PNm�=0 
�(X00)2. In particular,

(3.16)
NmX
�=0


�(X00)2 � NmX
�=0


̂�(X00)2.

Since
k,i (P) = bk + 
k,i (X00), (3.15) and (3.16) above imply that

(3.17)
NmX
�=0


�(P)2 � 2

( �mX
k=1

nkb2
k +

NmX
�=0


�(X00)2

)
� 4

NmX
�=0


̂�(X00)2.

By X = Y+ P, we have
PNm�=0
�(X)2 � 2

�PNm�=0
�(Y)2+
PNm�=0
�(P)2

	
, because
�(X) =
�(Y) + 
�(P). Hence, by (3.11), (3.15), (3.16) and (3.17), we obtain

(3.18)

q
NmX
�=0


�(X)2 � 2q
NmX
�=0


�(Y)2 + 2q
NmX
�=0


�(P)2

� 2C5

�mX
k=1

nkb2
k +

NmX
�=0


�(P)2 � C11

NmX
�=0


̂�(X00)2

for m� 1, where we putC11 := 4 + 2C5. Fix a positive real number̀0 independent of

the choice ofm and X. Put Æ0 := q1=2+`0

.qPNm�=0 
̂�(X00)2. Then by (3.18), we have
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0 < Æ0 < p
C11=
̄ , where ¯
 := maxfj
�(X)j; � = 0, 1,: : : , Nmg. In view of Step 1

of [15], Section 4, by assumingjt j � Æ0, we see that the family of Kähler manifolds
(M, q8�

m��t !FS) have bounded geometry.
STEP 6. At the beginning of this step, we shall show the inequality(3.19) below

as an analogue of [21], (5.9), by proving that an argument of Phong and Sturm [21]
for dim H = 0 is valid also for dimH > 0. To see this, we consider the following
exact sequence of holomorphic vector bundles

0! T Mm,t ! TP�(Vm)jMm,t ! T M?
m,t ! 0,

where T M?
m,t is regarded as the normal bundle ofMm,t in P�(V). The pointwise es-

timate (cf. [21], (5.16)) of the second fundamental form forthis exact sequence has
nothing to do with dimH , and as in [21], (5.15), it gives the inequality

Z
Mm,t

jX 00
T M?

m,t
j2!FS

!n
FS� C12

Z
Mm,t

j�̄X 00
T M?

m,t
j2!FS

!n
FS,

for someC12. Let A0,p(TM ), p = 0, 1, denote the sheaf of germs of smooth (0,p)-
forms on M with values in the holomorphic tangent bundleT M of M, and endowM
with the Kähler metric (1=m)8�

m��t !FS. We then consider the operator�T M := ��̄#�̄
on A0,0(TM ), where�̄# : A0,1(TM ) ! A0,0(TM ) is the formal adjoint of�̄ : A0,0(TM ) !
A0,1(TM ). Since by Step 1, the Kähler metricsq8�

m��t !FS has bounded geometry, the
first positive eigenvalue of the operator��T M on A0,0(TM ) is bounded from below by
C13. Hence, byX00 2 p?,

Z
Mm,t

j�̄X 00
T Mm,t

j2(!FS=m)

�!FS

m

�n � C13

Z
Mm,t

jX 00
T Mm,t

j2(!FS=m)

�!FS

m

�n

.

Since �̄X 00
T M?

m,t
= ��̄X 00

T Mm,t
, it now follows that

(3.19)

f̈ X,m(t) =
Z

Mm,t

jX 00
T M?

m,t
j2!FS

!n
FS

� C12C13q
Z

Mm,t

jX 00
T Mm,t

j2!FS
!n

FS.

In view of the equalityjX 00
T Mm,t

j2!FS
+
��X 00

T M?
m,t

��2!FS
= jX 00jMm,t

j2!FS
, by adding the integral

C12C13q
R

Mm,t

��X 00
T M?

m,t

��2!FS
!n

FS to both sides of (3.19) and by dividing the resulting



HITCHIN-KOBAYASHI CORRESPONDENCE FORMANIFOLDS, II 131

inequality by (1 +C12C13q), we see that, for someC14 and C15,

(3.20)

f̈ X,m(t) =
Z

M
8�

m��t ���X 00
T M?

m,t

��2!FS
!n

FS

�
� C14q

Z
M
8�

m��t (jX 00jMm,t
j2!FS

!n
FS)

� C15q
Z

Mm

jX 00jMm
j2!FS

!n
FS� C15q

Z
M
28�

m !n
FS,

where2 :=
�PNm�=0 j�̃�j2��2��PNm�=0 j�̃�j2��PNm�=0 
̂�(X00)2j�̃�j2�� �PNm�=0 
̂�(X00)j�̃�j2�2	

is nonnegative everywhere onM. Then by (3.14) and (3.20),

(3.21)

8>>>>>>>>>>><
>>>>>>>>>>>:

ḟ X,m(Æ0) � ḟ X,m(0) + C15Æ0q
Z

M
28�

m !n
FS

� �q`+1�nC10k�̂kL2(M,!(`)) + C15Æ0q
Z

M
28�

m !n
FS,

ḟ X,m(�Æ0) � ḟ X,m(0)� C15Æ0q
Z

M
28�

m !n
FS

� q`+1�nC10k�̂kL2(M,!(`)) � C15Æ0q
Z

M
28�

m !n
FS.

By (3.20) and [15], Lemma 3.4, the proof of Main Theorem is reduced to showing the
following three conditions for allm� 1:

i) ḟ X,m(Æ0) > 0> ḟ X,m(�Æ0), ii)
Z

M
28�

m !n
FS> 0, iii) t (m)

X � X 2 Um.

Since iii) follows from Remark 3.31 below, we have only to prove i) and ii). Then by
(3.21), it suffices to show the following for allm� 1:

(3.22) C15Æ0q
Z

M
28�

m !n
FS� C10q

`+1�nk�̂kL2(M,!(`)) > 0.

Let us define real numberŝe1, ê2, e1, e2 by setting

ê1 :=
Z

M

PNm�=0 
̂�(X00)2j�̃�j2PNm�=0 j�̃�j2 !(`)n, ê2 :=
Z

M

�PNm�=0 
̂�(X00)j�̃�j2PNm�=0 j�̃�j2
�2 !(`)n,

e1 :=
Z

M

PNm�=0 
�(P)2j�̃�j2PNm�=0 j�̃�j2 !(`)n, e2 :=
Z

M

�PNm�=0 
�(P)j�̃�j2PNm�=0 j�̃�j2
�2 !(`)n.

By the Cauchy-Schwarz inequality, we always haveê1 � ê2 and e1 � e2. Now, the
following cases are possible:

CASE 1: ê1 > 2ê2.
CASE 2: ê1 � 2ê2.
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In view of the identities in (3.13), we can write

ê1 = qnn!
Z

M

PNm�=0 
̂�(X00)2j�̃�j2h(`)
1 +

P�̀=0 �kqk+1 + um,`q`+2
!(`)n,

e1 = qnn!
Z

M

PNm�=0 
�(P)2j�̃�j2h(`)
1 +

P�̀=0 �kqk+1 + um,`q`+2
!(`)n,

Z
M
28�

m !n
FS = mn

Z
M
2f!(`) + �m,`q`+2gn,

and hence, given a positive real number 0< " � 1, both ê1 and
R

M 28�
m !n

FS above
are estimated, for allm� 1, by

(1� ")qn

(
NmX
�=0


̂�(X00)2

)
� ê1

n!
� (1 + ")qn

(
NmX
�=0


̂�(X00)2

)
,(3.23)

(1� ")qn

(
NmX
�=0


�(P)2

)
� e1

n!
� (1 + ")qn

(
NmX
�=0


�(P)2

)
,(3.24)

(1� ")q�n
Z

M
2 !(`)n � Z

M
28�

m !n
FS� (1 + ")q�n

Z
M
2 !(`)n,(3.25)

where we used the Remark right after (3.2). Moreover, we can write e2 in the form

(3.26) q�2k�̂k2
L2(M,!(`)) = e2 � e1.

STEP 7. We first consider Case 1. Then from (3.17), (3.23), (3.24),(3.25),
(3.26), ê2 < ê1=2 and the definition ofÆ0, it follows that

L.H.S. of (3.22)

� (1� ")C15Æ0q
1�n

Z
M
2 !(`)n � q`+1�nC10k�̂kL2(M,!(`))

� (1� ")C15q
1�nÆ0(ê1 � ê2)� q`+2�nC10

p
e1

� (1� ")C15Æ0q1�nê1

2
� (1 + ")1=2C10q

`+2�n=2(n!
NmX
�=0


�(P)2

)1=2

� (1� ")2C15Æ0q
�PNm�=0 
̂�(X00)2

	
n!

2
� 2(1 +")1=2C10q

`+2�n=2(n!
NmX
�=0


̂�(X00)2

)1=2

�
(

n!
NmX
�=0


̂�(X00)2

)1=2�p
n!(1� ")2C15q`0+3=2

2
� 2(1 +")1=2C10q

`+2�n=2�,

for m� 1. Now we see that, if̀ > (n� 1)=2 +`0, thenq`+2�n=2=q`0+3=2 converges to
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0 asm !1. Thus, if m � 1, then by choosing̀ such that` > (n� 1)=2 + `0, we
now see from the computation above that L.H.S. of (3.22) is positive, as required.

STEP 8. Let us finally consider Case 2. For each fixed`, the Kähler form�m

converges to!0, asm!1, in C j (M)-norm for all positive integersj (cf. [25], [14];
see also the Remark right after (3.2)). Note thatX00 2 p?. In view of

R
M �X00 �n

m = 0,
we see that

(3.27) k�X00k2
L2(M,�m) � C16k�̄�X00k2

L2(M,�m) = C16k8�
mX

00
T Mm

k2
L2(M,�m),

for someC16, where by abuse of terminology, the differential (8�1
m )� : T Mm ! T M is

denoted by8�
m. Moreover, by (3.19) applied tot = 0, we obtain

(3.28) k8�
mX

00
T Mm

k2
L2(M,�m) � (C12C13)

�1q�1


8�

mX
00
T M?

m



2
L2(M,�m).

From now on until the end of this proof, we assume thatm � 1. By (3.27) together
with (3.28) and (3.7), there existC17 and C18 such that

(3.29)
k8�

mX
00
T M?

m
kL2(M,�m) � C17q

1=2k�X00kL2(M,�m)

� C18q
1=2k�X00kL2(M,!(`)) = C18q

3=2pê2.

We now observe the pointwise estimateq1=2jX 00jMm
j!FS = jX 00jMm

j�m � jX 00
T M?

m
j�m. Hence

by (3.20) and (3.29), we obtain

(3.30)
f̈ X,m(t) � C15

Z
Mm

(q1=2jX 00jMm
j!FS)

2 !n
FS

� C15q
�n


8�

mX
00
T M?

m



2
L2(M,�m) � C19q

3�nê2,

for some C19. As in deducing (3.21) from (3.14) and (3.20), we obtain by (3.14)
and (3.30) the inequalities

ḟ X,m(Æ0) � R

and

ḟ X,m(�Æ0) � �R,

where R := �q`+1�nC10k�̂kL2(M,!(`)) + C19Æ0q3�nê2. Hence, it suffices to show that
R> 0. In view of the definition of�̂ and e2, we see fromê1 � 2ê2 and (3.26) that

R = C19Æ0q3�nê2 � C10q
`+2�npe2 � C19Æ0q3�nê1

2
� C10q

`+2�npe1.
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Here by (3.23) and (3.24), we obtain

Æ0q3�nê1

q`+2�npe1
= q3=2+`0�`s ê1

e1

s
ê1PNm�=0 
̂�(X00)2

� C20q
(3+n)=2+`0�`

vuutPNm�=0 
̂�(X00)2PNm�=0 
�(P)2
� C20

2
q(3+n)=2+`0�`

for someC20, where the last inequality follows from (3.17). Therefore,by choosing`
such that̀ > (3 +n)=2 +`0, we now conclude thatR> 0 for m� 1, as required.

REMARK 3.31. In the above proof, it is easy to check the condition iii) in Step 6
as follows: In view ofjt (m)

X j < Æ0, it suffices to show that, ifm� 1, then

(3.32) t � X 2 Um, for all (t , X) 2 R� p00m with jt j < Æ0.

For each Q 2 p, let uQ 2 C1(M)R denote the Hamiltonian function for the holo-
morphic vector fieldQ on the Kähler manifold (M, !0) characterized by the equalities

i Q !0 =

p�1

2� �̄uQ

and Z
M

uQ !n
0 = 0.

Define compact subsets6(p0m), 6(p) of p by setting

�6(p0m) := fQ 2 p0m; k�̄uQkL2(M,!0) = 1g,6(p) := fQ 2 p; k�̄uQkL2(M,!0) = 1g.
Choose an orthonormal basisS := fs0, s1, : : : , sNmg for the Hermitian vector space
(Vm, �h(`)). For the spaceHm of all Hermitian matrices of orderNm + 1, define a norm

Hm ! R�0, A = (a�� ) 7! kAkm :=
p

tr A�A =
sX
�,� ja�� j2

on Hm. Let m� 1. The infinitesimal action ofpm on Vm is given by

Q � s� =
NmX
�=0

s�
��(Q), Q 2 pm,



HITCHIN-KOBAYASHI CORRESPONDENCE FORMANIFOLDS, II 135

where
Q = (
��(Q)) 2 Hm denotes the representation matrix ofQ on Vm with respect
to S. Let X 2 p00m, and letÆ0 be as in Step 5 above. Fort 2 R with jt j < Æ0, we put
X̃ := t X. In order to prove (3.32) above, it suffices to show

(3.33) � (ad X̃)Q =2 p00m for all Q 2 6(p0m).

Let Q 2 6(p0m). For a suitable choice of a basisS as above, we may assume that the
representation matrix
Q of Q is a real diagonal matrix. Note also that tr
Q = 0. Let8m : M ! PNm(C) be the Kodaira embedding ofM defined by (cf. (3.2))

8m(p) := (s̃0(p) : s̃1(p) : � � � : s̃Nm(p)).

In view of the definition�m := 8�
m !FS=m of �m, the Hamiltonian function�Q on

(M, �m) associated to the holomorphic vector fieldQ is expressed in the form

�Q =

PNm�=0 
̂��(Q)js̃�j2
m
PNm�=0 js̃�j2 .

We define ˆ
Q := (
̂��(Q)) 2Hm by setting ˆ
��(Q) := f
��(Q)+mcQgÆ�� for Kronecker’s
delta Æ�� . As in deducing (3.16) from ˆ
�(X00) = 
�(X00) + mcX00 , we easily see that

k
Qk2
m � k
̂Qk2

m.

Recall that�m is expressible as!0 + (
p�1=2�)q ��̄�m for some real-valued smooth

function �m on M such that

(3.34) k�mkC3(M) � C21,

where allC j ’s in this remark are positive constants independent of the choice of m, X
and Q. We now observe that

(3.35) �Q = uQ + q(Q�m).

Note that Q 2 6(p0m) � 6(p). Since Q sits in the compact set6(p), and since6(p)
is independent of the choice ofm, there existC22 and C23 such that

0< C22 � Z
M

u2
Q !n

0

�
=
Z

M
�2

Q �n
m

� � C23.

Note that both�m and !(`) converge to!0 as m ! 1 (see (3.3) and the statement
at the beginning of Step 8). Note also that, by the Remark right after (3.2), the func-
tion (n!=mn)

PNm�=0 js̃�j2h(`) on M converges uniformly to 1, asm!1. Again by the
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Remark right after (3.2), it now follows from the Cauchy-Schwarz inequality that, for
m� 1,

(3.36)
k
Qk2

m =
NmX
�=0


��(Q)2 � C24m
n
Z

M

PNm�=0 
��(Q)2js̃�j2PNm�=0 js̃�j2 !(`)n

� C24m
n+2

Z
M

(8�
m'Q)2 !(`)n � C25m

n+2
Z

M
(8�

m'Q)2 �n
m

for someC24 and C25, where8�
m'Q is as in (3.4). Then form� 1,

C26 = max
J26(p)

Z
M
jJj2!0

!n
0 �

Z
M
jQj2!0

!n
0 � C27

Z
M
jQj2�m

�n
m

= C27m
Z

M

�PNm�=0 
̂��(Q)2js̃�j2h(`)
m2

PNm�=0 js̃�j2h(`) � �2
Q

� �n
m

� C28

mn+1

�Z
M

NmX
�=0


̂��(Q)2js̃�j2h(`) �n
m

�� C29m

� C30

mn+1

(Z
M

NmX
�=0


̂��(Q)2js̃�j2h(`) !(`)n

)
� C29m

� C31
k
̂Qk2

m

mn+1
� C29m,

for someC26, C27, C28, C29, C30 and C31. Hence, ifm� 1, then

(3.37) k
Qk2
m � k
̂Qk2

m � C32m
n+2.

for some C32. Now by � (0) = 1, we define a real analytic functioñ� = �̃ (x) on R

satisfying �̃ (0) = 0 by

�̃ (x) := � (x)� 1.

For X 2 p00m above, by choosing an orthonormal basis for (Vm, �h(`)) possibly distinct
from the original one, we may assume that the representationmatrix 
X of X is a real
diagonal matrix. Recall that̃X = t X, wherejt j < Æ0 := q1=2+`0=k
̂X00km. Put X̃00 := t X00.
Then by (3.18),

r
q

C11
k
X̃km � k
̂X̃00km = jt j � k
̂X00km � q1=2+`0,

i.e., k
X̃km � pC11q`0. Hence, ifm� 1,

(3.38) k
�̃ (ad X̃)Qkm � C33q
`0k
Qkm,
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for someC33. Now by the same argument as in (3.36), we see that, for someC34,

(3.39) k
�̃ (ad X̃)Qk2
m � C34m

n+2
Z

M
8�

m'2�̃ (ad X̃)Q �n
m, if m� 1.

Put am :=
qR

M 8�
m'2�̃ (ad X̃)Q

�n
m. Then for m� 1, by (3.37), (3.38) and (3.39),

(3.40) am � C35q
`0

for someC35. Consider the Laplacians��m and�!0 on functions for the Kähler man-
ifolds (M, �m) and (M, !0), respectively. Note that� (ad X̃)Q = Q + �̃ (ad X̃)Q. Then
for m� 1, by (3.35), we obtain

(3.41)

����
Z

M
(��m�Q)�� (ad X̃)Q �n

m

����
=

����
Z

M
(��m�Q)(�Q +8�

m'�̃ (ad X̃)Q) �n
m

����
� k�̄�Qk2

L2(M,�m) �
����
Z

M
(��m�Q)(8�

m'�̃ (ad X̃)Q) �n
m

����
� k�̄fuQ + q(Q�m)gk2

L2(M,�m) � amk��mfuQ + q(Q�m)gkL2(M,�m)

� (1� �)Rm � (1 + �)amSm,

where we putRm := k�̄fuQ + q(Q�m)gk2
L2(M,!0) and Sm := k�!0fuQ + q(Q�m)gkL2(M,!0),

and � � 1 is a positive constant independent of the choice ofm, X and Q. Since
Q belongs to the compact set6(p), by (3.34) and the equalityk�̄uQkL2(M,!0) = 1, we
obtain constantsC36 and C37 such that

(3.42)

(
Rm � 1� 2qk�̄(Q�m)kL2(M,!0) � 1� C36q,

Sm � k�!0uQkL2(M,!0) + qk�!0(Q�m)kL2(M,!0) � C37.

Then for m� 1, by (3.40), (3.41) and (3.42), we finally obtain

����
Z

M
(��m�Q)�� (ad X̃)Q �n

m

���� � (1� �)(1� C36q)� (1 + �)C35C37q
`0 > 0,

which implies (3.33), as required.
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