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Abstract
We express the Casson-Walker invariants for the cyclic rogespaces of the
three-dimensional sphere branched along satellite knotgeiims of companions,
patterns, and winding numbers.

1. Introduction

Let C be a knot inS®, andK a knot in a tubular neighborhood(C) of C. Let
y be a generator of the kernel of: Hi(dN(C); Z) — Hi(S® — IQI(C);Z), wherei
is the inclusion. We regargr as a simple closed curve a®N(C). Then, there is
a unique embedding : N(C) — S°, up to isotopy, such that the exteri@(f(C)) =
S f(l\ol(C)) is the solid torus and (y) bounds a disk irE(f(C)). Denote byCy the
core circle of E(f(C)). The knotP = f(K) is called apattern knotfor K associated
to the companiorC. The 2-component linkP U Cq in S® is called a pattern link, and
w = |Ik(P, Co)| is called thewinding number(cf. Fig. 1). We denote by ther-fold
cyclic covering space ove®® branched along a kndf. In this paper, we present the
Casson-Walker invariant of thefold cyclic covering space), of S* branched along
a satellite knotK in terms of patterns, companions, and the winding numbers.

A Laurent polynomialA(t) € Z[t, t71] is called aknot-Alexander polynomigbro-
vided that A(t™) = A(t) and A(1) = 1. Namely, a knot-Alexander polynomial can
be written as a finite suni\(t) =co+ >, _,Ci(t' +t'), wherec € Z andco =1 —
2> ¢. The Alexander polynomialk (t) of a knotK in a homology sphere is a knot-
Alexander polynomial. Conversely, given a knot Alexandelypomial A(t) there is a
knot K with Ag(t) = A(t). We also use Conway’s version of the Alexander poly-
nomial Vk(z2) = 1 +>°_ @i 7%, where we denote bwy (K) the 2-th coefficient of
the Conway polynomiaV (z), which is equivalent taAk (t) via z=t"%2 —t¥/2, Note
that ax(K) = 1/2A% (1), where A} (t) is the second derivative oAk (t). Note also
that when|H. (= ; Z)| is finite, the order is determined by the Alexander polyndmia
as |Hi(Zk; Z)| = |[[1Z Ak(€')|, where¢ is therth primitive root of unity. Recall
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Fig. 1.

that H. Seifert [19] showed the equatiaxk (t) = Ap(t)Ac(t¥) between the Alexander
polynomials for a knotk with a companionC and a patterrP.

A compact orientable 3-manifold/ is called arational homology circleif the
homology groupH.(M; Q) is isomorphic to that of the standard solid torD€ x S'.
Note that each rational homology circle is homeomorphicht éxteriorE(K, H) of a
knot K in a rational homology spherkl and the symmetrized Alexander polynomial
Ak (t) € Q[t,t~Y] is naturally defined so thak (1) = 1 (cf. [23]) anday(K) = 1/2A% (1).

In 1985, A. Casson introduced an integer valued invarfarfor integral homo-
logy spheres that counts the number of the conjugacy clasdesrreducible
SU(2)-representations of the fundamental group in some sgfisl], [18]). For two
homology spheredd and H’, if H’ is obtained fromH by the (3/n)-surgery along
a knot K in H, then A(H’) = A(H) + n/2A% (1). The Casson invariant was ex-
tended to rational homology spheres by K. Walker [23], whovfted a method of
defining this invariant in a combinatorial way. Casson’'sgsty formula is generalized
as A(M’) = A(M) + gq/pa(K c M) + A(L(p, q)), where M’ is obtained fromM by
the g/ p-surgery on a knoK in M, and the value of the Casson-Walker invariant of
the Lens space (p, q) is written as the Dedekind sum. C. Lescop [13] extended the
Casson-Walker invariant to all closed 3-manifolds.

To state our theorem, we need the following notation: For @rm@ponent link
| Uk, we defineq] (k) as follows: Letk™ denote the preferred longitude fér Let
v I — S be ther-fold cyclic cover branched along Let k' denote a component
of ¥~1(k) andk™* the component ofy ~(k*) corresponding tk*. Then, whenx[ is
a rational homology sphere, K{, k) is an integer and we put/ (k) = Ik(k™*, k). It is
easy to see thaw/>1(K)| = 2 for the Whitehead linkV =k Ul. Then we show that
A(Zk) is written in terms ofP and C as follows:

Theorem 1.1. For a satellite knot K with a pattern P associated to a compani
C whose winding number i, where u = gedf, w), A(Zk) = A(Zp) + ,u/\(ErC/“) -
;wer(Co)az(C - E{:/") when X is a rational homology sphere
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We notice thatx} is a rational homology sphere if and only if each Bf and
Zé” is a rational homology sphere. As a special case, we haveotlogving corollary:

Corollary 1.2. For a satellite knot K with a pattern P associated to a compan-
ion C whose winding number is zemm(X} ) = A(Xp) — rep(Co)az(C) when = is a
rational homology sphere

Several authors investigate the Casson-Walker invariéntjp for some satellite
knots. A satellite knot is called amntwisted doubled knoif P U Cy forms the
Whitehead link. J. Hoste proved that for untwisted doubledt& DP about P in
S, AM(Zp) = 2a,(P)r [9, Theorem 3.2]. In [21], Yasuyoshi Tsutsumi generalizieid t
result for satellite knots whose patterns are two-bridgetkmnd companions are based
on certain Conway'’s rational tangles. See Ishibe [10] foregal doubled knots. In [6],
Fujita gave a formula for the Casson-Walker invariant of thanifold obtained from
two rational homology circles by gluing their boundarieeeJ17] for a simple proof.
See also [7] and [3].

D. Mullins [14] gave a relation among the first derivative oé thones polynomial
at —1 J;(—1), the Casson-Walker invariant of the double branched rca¢gZ) and
the ordinal signaturer(K). Shinohara [20] gave a relation between the signatures of
satellite knots and the companion, patterns. It is easy ¢otkat when the winding
numberw = 0, K and the pattern have the same signature. Combining Cordllar
with Mullins’ result, we have the following:

Corollary 1.3.  J/ (—1) = J5(—1)—6ra3(Co)ax(C) if the winding number is zero

There are several relation betweef(k) and some other invariants. In facct,z(k)
is related to Cochran’s beta-invariant [4] of the 2-compuriank and the derived links
[2]. One also notices that/ (k) can be derived from Kojima-Yamasaki’'s function [12]
and equivariant linking numbers. 8, we show the following:

Proposition 1.4. Let N > 2 be a natural number greater than aneGiven N
integersiy, As, ..., An, A, there are knots K in Ssuch thatAg(t) =1 and

v |2ra if2<r <N
MEk) = 2ra ifN<r

We note that Collin and Saveliev [5, Theorem 1] showed thatetiuivariant Casson
invariant AZ/" of = is determined by a Tristram-Levine equivariant signatufeko
that is, the signature of Hermitian form @ e*'k/"S+ (1 — e 27k/MST for k =
0,1,...,n—1, whereSis a Seifert form ofK. This implies thatrZ/"(£) = O if
Ak (t) = 1 since any knots with trivial Alexander polynomials are@uivalent to the
unknot. They also showed that/"(x}) = A(Z}) for a graph knotk [5, Theorem 3].
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Hence, most knots constructed in the proof of Propositi@gnchnnot be a graph knot,
and the difference betweert¥/"(=}) and A(ZR) is due to the variation o&" for cer-
tain links. According to Garoufalidis and Kricker [8], thidifference can be written
in terms of residues of the 2-loop polynomials related to Kemtsevich integral of
the knot.

2. Proof of Theorem 1.1

Let V be a rational homology circle. TheldV is a single torus and a generator of
the kernel ofi,: Hi(0V;Z) —» H1(V;Z) is called alongitude for V, wherei: 3V — V
is the inclusion. There are a primitive elemente H,(dV; Z) and a positive integer
3(V) such thats(V)p € H1(dV; Z) is the longitude forV. Then, there is a properly
embedded orientable surfa&in V such that §S] = §(V)p in H1(8V;Z) andadS con-
sists of §(V) components. It is well-known that(V) is unique andS is also unique
up to isotopy. Such ai® is called acharacteristic surface for V

A meridiany for a rational homology circlé/ is a non-trivial simple closed curve
(or its isotopy class) 0@V which intersects the longitude transversely ir§(V) points.
A rational homology circleV equipped with a paird, y) on dV is called aframed
homology circle where the pair4, y) is also regarded as a pair of homology classes in
H1(dV;Z). We denote byV the rational homology sphere obtained framby attach-
ing a solid torusD? x S so that the boundary of a meridian diglP? x {+} is identified
with y. The linking number kK4, K7) for a link K; UK, is defined as (the number of
algebraic intersections dk; with a characteristic surface d&(K))/S(E(K2)). Then,
the linking number k¢, -) for two disjoint oriented knots iV and the Alexander-
Conway polynomials of knots iV are well-defined as in/. And, we puti(V) =
A(V). We note that, ifM =V UV’ is a rational homology sphere obtained from
by gluing a rational homology circl®&/’ so that the meridian o¥/’ is identified with
the longitude ofV, then the linking numbers of links iv¥ ¢ M and the Alexander
polynomials of knots iV c M coincide with that ofV.

Let K be an oriented knot iV, and K* the preferred longitude foK. That is,
K* is an oriented knot i N(K) with Ik(K, K*) = 0. We denote thevinding num-
ber by w = w(K) which is defined as the absolute value of the algebraic sattion
number of K with a characteristic surfac8, which is independent of the choice &f
For a framed rational homology circlé in a rational homology sphere (or in a framed
rational homology circle), we denote by @) the framing number ofC, namely the
linking number of the framingy and the knoty* parallel toy in dC. Notice that
fr(C) is an integer. The following lemma can be shown by Fujitassnfula [6] and
Walker’s surgery formula [23].

Lemma 2.1. Let H be a rational homology spherand C a framed rational
homology circle with§(C) = 1 embedded in HLet V be a framed rational homology
circle with §(V) = 1. Denote by M the manifold obtained from H by replacing C with
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V by a meridian-longitude preserving maphen A(M) = A(H) + A(V) — fr(C)ay(V).

Proof. LetM’ denote the homology sphere obtained frémby replacingC with
V by a longitude preserving map such that the image of the maeriof V is preferred
in M’. Denote by ¢, p) the meridian-longitude pair of in M’. Notice thatM =
x(M’; (y, =1/fr(C))). By Walker's surgery formula, we have tha{M) = A(M’) —
fr(C)ax(y). Since y bounds a characteristic surface as a Seifert surfac¥’in we
see thatA, - (t) = Ay(t) and thusax(y c M’) = ay(V). On the other hand, it follows
from Fujita’s splicing formula [6] thak.(M’) = A(H)+A(V). Now we have thak(M) =
AMH) +A(V) — fr(C)ax(V). This completes the proof. ]

Let V be a rational homology circle with(V) = 1. Then, ther-fold cyclic cover-
ing spaceV' of V is obtained fronr copies ofV — S by gluing up cyclically, where
S is a characteristic surface f&f with a single boundary. Denote hy: V' — V the
covering projection. Lef, denote a component af(p) for the longitudep of V.
Notice thaty, = ¢ 1(y) is connected and intersects transversely in a single point.
Then, the pair %, por) is regarded as a meridian-longitude pair ®v". Hereafter we
assume tha¥' is a homology circle. LeK be a knot inV. It is elementary to see
that ¢ 1(K) consists ofu, = gcd@, r) componentsK; 1, ..., K ,,. We number them
so thatK; ; is mapped tdK; j+1 by a natural generator of the group of covering transla-
tions V' — V', that is, K, j+1 is next toK; ;. Then, ¢ |k, : K;; = K is anr/u-fold
cyclic cover. For the preferred longitudé™ for K, we denote byK; the compo-
nent of ;7 1(K*) that corresponds t&, ;. Here gcd(0r) =r and 0-fold cyclic covers
mean the infinite cyclic covers. Puaf,(K) = Ik(K; i, K/;), which is independent of
the choice ofi.

For a 2-component linkk Uk, we regard the exterioE(k, S°) as a framed solid
torus, K as a knot inE(k, S°). Then we putef(K) = g5 (K)-

Notice thatX} is a rational homology sphere if and only if each X)E/“, zpis
a rational homology sphere. Now we are ready to prove Thedrdm

Proof of Theorem 1.1. We denote hyk : =k — %, ¥p: 5 — S® the cover-
ing projections. Note tha€y is regarded as a knot in the homology cirdP, S°)
with winding numberw, and note also thaE(wp‘l(P), L) is ther-fold cyclic cov-
ering space ofE(P, S%). Hence,wgl(N(Co, S%) is the union ofu = gedw, r) solid
tori Uy, ..., U, and ¥ply,: Ui — N(Co, S°) is ther/u-fold cyclic cover. Note that
E(K, S is obtained fromE(P, S?) by replacing the solid torusN(Co, S°) with the
homology circleE(C, S%) via a meridian-longitude preserving map. Thex, is ob-
tained fromX}, by replacing each solid torus; with a copyU; of ther /u-fold cyclic
covering spacé (C, E'C/“) of E(C, S) via a meridian-longitude preserving map, where
Ye: EE/” — S is ther/u cyclic branched cover along@ and € = wgl(C). Re-
call that frU;) = arp/“(CO). By applications of Lemma 2.1, we have thatzy) =
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MEL) + ur(ZZ") — nalf(Co)az(€). This completes the proof. O

3. Proof of Proposition 1.4

Let | Uk(m, n) be the link illustrated in Fig. 2. Notice th&(m, n) is trivial in S3
and lk{, k(m, n)) =0. Then, it is direct to see that

0 r1n)

amm={7, T

In particular, ¢;"'(k(m, n)) = 0 ande] >"(k(m, n)) = —2m.

Let | UK (m, n) denote the link obtained fromuk(m, n) by replacingk(m, n) with
the untwisted Whitehead double abdytn, n). See Fig. 3-(1) fol U K(—1, 1). Note
that K(m, n) is also a trivial knot inS®. Note also that UK (m, n) is a boundary link.
Let K'(m, n) denote a component af,~1(K (m, n)), wherey, : S* —» S is ther-fold
cyclic cover branched along Then,

1
A|Z'(m,n)(t) = [1 + Zﬂ(tl/z — t—1/2)2 g J[E; '

Put K*(m, n) = x(I;(K(m, n), =1))# x (I;(K(=1, 1), 1)). We see thahy.mn(t) =1
since each factor is obtained from a trivial kroand| U K(m, n) is a boundary link.
Further we have thaEj. . » = X} ¢.mn.—1) § Zy0:(k (-1,1).1) and

2
emn = (5" 0

by the additivity of the Casson invariant.
Now we have the following claim.

Claim 3.1. For an integer number > 2, there is a knot K such thatAk, (t) =1,
MER,) =20, A(ZC") =0 and A(Z&:K”) is divisible by2r.

Proof of Proposition 1.4. By taking connected-sumsKkof(m, n)'s according to
the given integers fon=N, N—-1, N —-2,..., 2, we get a desired knot. ]

Since the exterioE(K) of a knotK in S® is a Haken manifold E(K) is uniquely
decomposed into hyperbolic manifolds and Seifert fibereatep by characteristic tori.
Hence, if we define the volume v#{() of K as the sum of volumes of the hyperbolic
manifolds in the JSJ-family, it is a topological invariaritaoknot. Then, we can define
a graph knot as that of whose volume is zero. The constructicknots in the proof
of Proposition 1.4 always yields satellite knots. There segeral ways to prove the
next proposition. Here we refer the reader to Kawauchi'qineqes [11] or Myers’
gluing lemma [15].
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Fig. 2. 1 Uk(m, n).
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Proposition 3.2. Given a knot K in & there are infinitely many hyperbolic knots
K** such that K* have the same Seifert form as Kj.. is hyperboli¢c and A(Z..) =
AMZy) for any r.

Proof of Proposition 3.2. Le® be a Seifert surface fdky = K of positive genus.
Take two disjoint trivial knotsK;, K, in E(S) so thatK; and K, bound disjoint
disks in E(S), and take disjoint genus one Seifert surfa&sS, contained in dis-
joint 3-balls B; and B, for Ki, Ko, Let I'g, ', ', be spines ofS, S, $. Then,
I'oUT, UT, forms a 3-component graph embeddedSh By Kawauchi [11, The-
orem 1.1] there are grapHg U T'; U T such thatE('j U T} UT3) is hyperbolic and
rguTryur; —ry is isotopic tol'yUT U, =T for i =0, 1, 2. We construct Seifert
surfacesS;, Sf, S5 alongI';’'s for knots K =4S}, Ky =4S}, K; =S} corresponding
to S, S, S respectively such thaKj UK UK —K;* is equivalent tokKoUK1 UKy —K;.
Since K5 UKj UKJ bounds a disconnected Seifert surfége) S; U S; whose exterior
is hyperbolic and since each of the components has posiémag it follows from [22,
Proposition 3.1] thakjUK;UK3 is a hyperbolic link inS®. By Thurston’s hyperbolic
surgery theorem [16], twistings along§; and K3 produce infinitely many hyperbolic
knots K** of distinct volumes such the(S;*) is hyperbolic, where§* is the Seifert
surface obtained frong; by twisting alongK; and K3. Then Xj.. is hyperbolic by
[22, Proposition 3.2]. We shall show that the sequence ofkties K** is a desired
one. Lety: Xt — S® be ther-fold cyclic branched cover, ang: =k., — S° the
r-fold cyclic branched cover. Note thaty.. is obtained fromZ} by 1/n-surgeries on
all components ofp~}(K; UK3). SinceS;US; is disjoint from S, ¢=%(S; US;) con-
sists ofr-copies of §f U S;. Since §* is contained in a 3-ball which lifts t&}, we
see thatp~1(K; U K3) is a boundary link such that the Alexander polynomial ofreac
component is trivial. Then we see the=} ..) = A(Z}). This completes the proof.L]
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