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Let P and Q be rings, and pM, Ny and pVy a left P-module, a right Q-module
and a P-Q-bimodule, respectively. Let ¢ : M x N — V be a P-Q-bilinear map. Then
we say that (pM, Ngy) is a pair with respect to ¢ or simply a pair (see [12], [14],
[10] or [1, Section 24]). For elements x € M, y € N and for submodules pX < pM,
Yo < Ng, by xy we denote the element ¢(x, y), and by XY we denote the P-Q-
subbimodule of pVy generated by {xy|x € X,y € Y}. A pair (pM, Nyp) is said to be
colocal if pM Ny is colocal both as a left P-module and as a right Q-module. In [10]
and [7], we studied colocal pairs related to some results in [S5] and [4].

We shall define a semicolocal pair (pM, Ng) as a generalization of a colocal pair.
A P-Q-bimodule pUy is said to be semicolocal if (i) the rings P and Q have com-
plete sets {ej, ez, ...,en} and {f1, f2,..., fu} of orthogonal idempotents, respectively
such that each e;Ugp and each pUf; are colocal modules and (ii) the socle of pU co-
incides with the socle of Up. Moreover a pair (pM, Np) is said to be semicolocal if
pM Ny is semicolocal. Anh and Menini investigated semicolocal modules with some
conditions related to duality (see [2]). In this note, we shall give some generalizations
of results of [10] and [7] using the term “semicolocal pairs”, and in particular give
characterizations of finitely cogenerated injective modules (Theorems 2.4 and 2.5).

Throughout this note, P, Q and R are rings with identity and all modules are
unitary. Let M be a module. Then L < M (L < M) signifies that L is a (proper) sub-
module of M. By S(M), T(M) and |M|, we denote the socle, the top and the com-
position length of M, respectively. Moreover by Pi(R), we denote the set of primitive
idempotents of R. Every homomorphism is written on the side opposite to the scalars.

1. Semicolocal pairs

A module My is said to be colocal if My has an essential simple socle.

Lemma 1.1. Let f be an idempotent of R and Mg a colocal module with
S(Mgr) = T(hRg) for some h € Pi(Q), where Q = fRf. Then Mfy is a colocal
module with S(Mfp) = S(Mg)f = S(Mg)h Q.
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Proof. Let 0 #x = xf € S(MR)f and O # y = yf € Mf. Then xR = S(Mp) <
YR, so xQ < yQ. This shows that Mf, is a colocal module and S(Mfy) = S(MR)f.
Moreover S(Mg)hQ = S(Mg) f holds since 0 # S(Mg)hQ < S(Mg)f. |

A P-Q-bimodule pUy is said to be colocal (resp. faithful) if both pU and Ug
are colocal (resp. faithful).

Remark 1. For a P-Q-bimodule pUy, the following hold.
(1) Both S(pU) and S(Uyp) are subbimodules of pUg.
(2) If pUyp is a colocal bimodule, then S(pU) = S(Uyp).
(3) For any idempotents e € P and f € Q, S(eUp) = eS(Up) and S(pUf) =
S(pU)f.

A finite set {e}, e2, ..., e,} of orthogonal idempotents of R is said to be complete
ife;+e;+---+e, =1€R.

Let P and Q be rings. Then a P-Q-bimodule pUy, is said to be semicolocal if
the following conditions (i) and (ii) are satisfied.

(i) The rings P and Q have complete sets {e;, ez, ..., e,} and {fi, f2,..., fu} of
orthogonal idempotents, respectively such that each e;Uy and each pUf; are
colocal modules.

@ii) S(pU) = S(Uyp).

Let pM and Ny be modules and (p M, Ng) a pair and put U = pMNg. Then the
pair (pM, Ny) is said to be semicolocal if pUg is a semicolocal bimodule.

RemARK 2. If pUp is a bimodule and e and ¢’ are idempotents of P with eP =
€ P, then eUyp = €'Uy. This is easily seen since there exist elements a = eae’ and b
= ¢'be in P such that ab = e and ba = €'.

RemARk 3. Let P and Q be semiperfect rings. Then by Remark 2, a bimodule
pUg is semicolocal if and only if for each g € Pi(P) and each h € Pi(Q) with gU #0
and Uh #0, gUg and pUh are colocal modules and S(pU) = S(Up).

Let R be a semiperfect ring and ¢ and f idempotents of R. Then in [16], Xue
defined a Nakayama pair (eR, Rf) as a generalization of an i-pair in [4] (also see [S5,
Theorem 3.1]). We define a Nakayama pair (eU, U f) for a bimodule pUy and idem-
potents e € P and f € Q (see the condition 4 in [2, Theorem 3.3]). An idempotent e
of R is said to be local if eRe is a local ring.

Let P and Q be rings and pUp a P-Q-bimodule. First, for local idempotents
g€ Pand h € Q, (gU,Uh) is called a Nakayama pair if gUp and pUh are colo-
cal modules and S(gUp) = T(hQg) and S(pUh) = T(pPg). Generally for idempo-
tents ¢ € P and f € Q with semiperfect rings ePe and fQf, (eU,Uf) is called a
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Nakayama pair if for each g € Pi(ePe) (resp. h € Pi(f Qf)) there exists & € Pi(fQf)
(resp. g € Pi(ePe)) such that (¢U, Uh) is a Nakayama pair (see Remark 2).

Let pMg be a P-R-bimodule and f an idempotent of R and put Q = fRf. Then
we always assume that a pair (pM, Rfp) signifies the pair with respect to the P-Q-
bilinear map ¢ : M x Rf — Mf defined by @(x,af) = xaf; x € M, af € Rf.

Let (pM, Np) be a pair. Then for any subsets A € M and B C N, we define
submodules r(A) (= ry(A)) < Ng and I(B) (= Iy(B)) < pM, as follows: r(A) =
{y € NJAy = 0} and I(B) = {x € M|xB = 0}. We say that the pair (pM, Ng) is
left faithful (resp. right faithful) if /(N) = O (resp. r(M) = 0) holds, and (p M, Np) is
faithful if it is left and right faithful.

Let Mg and Ni be semisimple modules. Then by Mz ~ Nk, we mean that any
simple submodule of My is isomorphic to a submodule of Ng and the converse is also
satisfied.

Lemma 1.2. Let Mgr be a module and f an idempotent of R such that
(pM, Rfp) is a left faithful pair, where P = End Mg, Q = fRf. If Mfp is colocal,
then My is colocal with S(Mg) = S(M fp)R.

Therefore, if Q is a semiperfect ring and (pM, Rfp) is a faithful semicolocal pair,
then My is a direct sum of a finite number of colocal right R-modules and S(Mg) ~
T(f RR) holds, and in particular My is finitely cogenerated.

Proof. Let 0 # x = xf € S(Mfp) and 0 # y € Mg. Since (pM, Rfy) is
left faithful, we have ya # O for some a = af € Rf. Hence xQ < yaQ, so
XR < yaR < yR. This shows that My is a colocal module with S(Mg) = S(Mfp)R.
Assume that Q is a semiperfect ring and (pM, Rfp) is a faithful semicolocal pair.
Since pMfy is a faithful bimodule, P and Q have complete sets G = {g1, 82, .- -, &m}
and H = {hy, hy, ..., h,} of orthogonal primitive idempotents, respectively such that
each g;Mfo and each pMfh; are colocal modules and S(p Mf) = S(Mfy). Hence for
any g € G (resp. h € H) there exists h € H (resp. g € G) such that S(gMfp)h =
8SMfo)h = gS(pMf)h #0, so S(§Mg) = T(hRg) by using the first assertion. Thus
S(Mg) ~ T(f Rg) holds. O

For local idempotents g and & of R, (gR, Rh) is a Nakayama pair if and only if
(¢re&R, Rhygy) is a faithful colocal pair (e.g. see [7, Lemma 3.2]). In the following
proposition, the equivalence (1) <= (3) is a generalization of this fact.

Proposition 1.3. Let pUgy be a bimodule and g and h local idempotents of P
and Q, respectively. Then the following are equivalent.
(1) (gU,Uh) is a Nakayama pair.
(2) Both gUg and pUh are colocal and g S(Up)h = g S(pU)h # 0 holds.
(B)  (ere8U, Qhpngr) is a left faithful pair and (gpgg P, Uhnon) is a right faithful
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pair and gpggUhpgy is a colocal bimodule.

Proof. (1) == (2). By assumption, g S(Ug)h = S(gUg)h # 0. Since S(Up)h is
a non-zero submodule of a colocal module pUh, S(pU)h = S(pUh) < S(Ug)h, so
8S(pUh < gS(Ug)h. Hence g S(pU)h = g S(Ug)h # 0 by symmetry.

(2) = (3). By Lemma 1.1.

(3) = (1). By Lemma 1.2. O

In the following proposition we give characterizations of a semicolocal bimodule
pUg for semiperfect rings P and Q. The proposition is essentially due to [2, The-
orems 3.3 and 3.4] (also see [16, Theorem 3.4], [8, Proposition 1.11] and [9, Theo-
rem 2.2]).

Proposition 1.4. Let P and Q be semiperfect rings and pUgy a bimodule such
that gU # 0 and Uh # 0 for any g € Pi(P) and any h € Pi(Q). Then the following
are equivalent.

(1) pUg is semicolocal.

2) WU,U) (=01pU,Uly)) is a Nakayama pair.

(3) Both pU and Uy have essential socles, and pUg-duals of simple modules are
simple.

(4) For each g € Pi(P) and each h € Pi(Q), gUgy and pUh are colocal, and
pS(pU) ~ pT(pP) and S(Ug)g ~ T(Qo)o-

Proof. (1) = (2) = (4). These are clear (see Remark 3).

(4) = (1). By assumption, for any &2 € Pi(Q) we have S(pU)h = S(pUh) <
pS(Ug)h since pS(Ug)h is a non-zero submodule of a colocal module pUh. This
shows S(pU) < S(Up) and by symmetry S(pU) = S(Up).

(1) = (3). Let g € Pi(P). Then we have Homp(T(pPg), U)o = gry(rad(P))g
= gS(pU)g. Hence Homp(T(pPg), U)o = S(gUp)o is simple, and by symmetry
pHomgp(T(hQyp), U) is simple for any h € Pi(Q).

(3) = (1). Let g € Pi(P). Since Homp(T(pPg), U)o = gS(pU)g, §S(pU)g is
a simple submodule of gUgy. Hence we have g S(pU)g < S(gUgp)g = gS(Ugp)o. This
shows S(pU)g < S(Ug)o and by symmetry S(pU) = S(Ug). Therefore S(gUg)g =
g8S(pU)g is simple and similarly p S(pUh) is simple for any A € Pi(Q). Thus gUp
and pUh are colocal. O

In Proposition 1.4, the condition (3) is equivalent to the following condition (3)’
since in the proof of (3) = (1), for any g € Pi(P), g S(pU)o is a simple submodule
of a colocal module gUp and g S(pU)g = g S(Ug)e holds.

(3)’ For each g € Pi(P) and each h € Pi(Q), gUgy and pUh are colocal, and
pUp-duals of simple left P-modules are simple.
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Lemma 1.5. Let (pM, Np) be a semicolocal pair and Y' <Y < Ny with Y’ =
rl(Y). If Y/Y’Q is simple, then pl(Y')/1(Y) is also simple and Y =rl(Y).

Proof. Put U =pMNp, X =1(Y) and X' = I(Y'). Since pUy is semicolocal and
Y /Y’ is simple, there exist an idempotent f € Q and an element y = yf € Y such that
pUf is colocal and ¥ = yQ+Y' < Ng. From ri(Y') =Y’ <Y < ri(Y), we obtain X
=1(Y) < I(Y') = X’'. For any x € X', the left multiplication map % : Y/Y’Q — xYg by
x is an epimorphism. This shows that xYy < S(Up), so X'Yy < S(Up). Therefore we
have 0 # X'y < S(Up)f = S(pU)f = S(pUf). Thus pX'y = S(pUf) is a simple left
P-module. On the other hand, the map 1 : pX'/X — pX'y defined by (x + X)n = xy
is a monomorphism. Thus pI(Y")/I(Y) (= pX’/X) is simple. By the same argument, it
follows that ri(Y)/rl(Y')o is simple. Hence we have Y = ri(Y) from ri(Y') = Y’ <
Y < rl(Y). O

We say that a pair (pM, Ng) satisfies [-ann (resp. r-ann) if [r(X) = X (resp. ri(Y)
= Y) hold for any X < pM (resp. Y < Npyp), and (pM, Ng) is dual if (pM, Np)
satisfies /-ann and r-ann.

In the following theorem, the implications (1) <= (2) = (3) are essentially due
to [12, Theorem 1.1] (and [14, Theorem 1.1]).

Theorem 1.6. Let P and Q be rings and (pM, Ng) a faithful semicolocal pair,
and consider the following conditions.
@) |N, Ql < Q.
2 [pM] < oo
(3) (pM, Nyp) is a dual pair.

Then the implications (1) <= (2) = (3) hold, and in case either P or Q is a
perfect ring, the conditions are equivalent.

Proof. The implications (1) <= (2) = (3) are easily seen from Lemma 1.5
(see the proof of [10, Theorem 1.4]).

Assume that (pM, Ng) is a dual pair and P is a perfect ring. Then any factor
module of pM has finite Goldie dimension (see [3, Corollary 1.6] or [11, Theorem
1.7]). Hence by the proof of [13, Propositions 2.9 and 2.12] (or [11, Lemma 1.9]) pM
has finite length. (]

2. Finitely cogenerated injective modules

Throughout this section, we always assume that R is a semiperfect ring.

Let Mg and Lg be right R-module modules. Following Harada [6], M is said to
be L-simple-injective if for any submodule K of Lg, any homomorphism 6 : Kz —
My can be extended to a homomorphism 7 : Lg — Mpg. Moreover M is said to be
simple-injective if M is N-simple-injective for any right R-module N.
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Lemma 2.1 (see [7, Lemma 4.1]). Let My be a finitely cogenerated module with
S(Mg) ~ T(f Rgr) and assume that M fp has finite Loewy length, where f is an idem-
potent of R and Q = fRf. If Mg is R-simple-injective, then Mg is injective.

Proof. Since S(Mp) is essential in Mg and S(Mg) ~ T(MRg), Iy (Rf) = 0 holds.
Hence Lf # 0 for any non-zero submodule L < Mg because Lf = LRf. Let I be
a non-zero right ideal of R and 6 : I — M a non-zero homomorphism and put J =
rad(R). Then 0 # 0(I(fJf)X) = O(I)(fIf) < S(Mfp) for some integer k > 0. Put K
= I(fJf)*R. Since S(Mfg)R = ur(fIF)R < Iy(J) = S(Mg), 8(K) < S(Mg) holds.
By assumption we have S(Mg) = S;®--- @ S, for a finite number of simple modules
S; (1 <i < n). Hence the restriction map f|x : K — M of 0 can be represented as
0l = 61+---+0, for some homomorphisms §; : K — M with Im#; < S; (1 <i <n).
Therefore we have (6 — X)(K) = 0 with left multiplicaltion £ : R — M by some
element x € M. If § —% : I - M 1is a non-zero homomorphism, then (6 — X)(I)f #0
(ile. k> 1) and 0 # (0 —)UI(fJIf)") < S(Mfp) for some integer m with k > m > 0.
Iterating the above argument, we have (6 — $)(I) = 0 for some element y € M. Thus
My, is injective. O

The following lemma is related to [9, Theorem 1.6].

Lemma 2.2 (see [10, Corollary 2.6]). Let Uy be a module with P = EndUg
and g and h local idempotents of P and Q, respectively. If gUg is a U-simple-
injective module and 0 # x = gxh € S(gUyp), then gUg and pUh are colocal mod-
ules with S(gUg) = xQ = T(hQp) and S(pUh) = Px = T(pPg). Therefore, for any
idempotents e € P and f € Q with semiperfect rings ePe and fQf, if eUg is a U-
simple-injective module and S(eUy) is essential in eUgy with S(eUg) ~ T(f Qg), then
(eU, Uf) is a Nakayama pair.

Proof. By [10, Lemma 2.2] (or {7, Lemma 3.6]), gUy is a colocal module with
S(gUg) = xQ. Let 0 # y € Uh. Then we have rpg(y) < hJ = rpp(x), where J =
rad(Q). Hence the map 6 : yQ — gU via 6(yc) = xc (c € Q) is well-defined. There-
fore by U-simple-injectivity of gUy we have x = ay for some a € Homy(U, gU) =
gP. Thus x € Py, which implies that pUh is a colocal module with S(pUh) = Px.

O

Lemma 2.3. Let M be a finitely cogenerated simple-injective right R-module
with S(Mg) ~ T(fRg), where f is an idempotent of R, and assume that End M is
a semiperfect ring. Then (pM, Rfp) is a faithful semicolocal pair, where P = End M

and Q = fRf.
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Proof. By Lemma 2.2 for each g € Pi(P) (resp. & € Pi(Q)), there exists h €
Pi(Q) (resp. g € Pi(P)) such that (gM, Mh) is a Nakayama pair. Therefore by Lemma
1.1 for a bimodule pMfy, (§Mf, Mfh) is a Nakayama pair. On the other hand by the
proof of [10, Lemma 2.1], (¢pgg M, Rfhygp) is faithful. This shows that (p M, Rfp) is
a faithful semicolocal pair by Proposition 1.4. OJ

Generalizing [10, Theorem 2.7] and [7, Theorem 4.2], we have the following the-
orem.

Theorem 2.4. Let M be a finitely cogenerated right R-module with S(Mg) ~
T(f Rg), where f is an idempotent of R, and put P = End Mg and Q = fRf. Con-
sider the following conditions.

(1) Mgy is injective.

(2) Mpg is simple-injective and P is a semiperfect ring.

3) (pM, Rfp) is a faithful semicolocal pair satisfying r-ann.
(4) Mgy is R-simple-injective.

Then the implications (1) = (2) = (3) = (4) hold. Moreover, in case M fQ
has finite Loewy length, these conditions are equivalent.

Proof. Note that in case (pM, Rfg) is left faithful, I,(1) = Iy (I f) holds for any
right ideal of I of R.

(1) = (2). This is clear.

(2) = (3). By Lemma 2.3 (pM, Rfp) is a faithful semicolocal pair. Let Ly
be a submodule of Rfy. Assume that L < rI(L). Then (rI(L)R/LR)f # 0, so
(rl(L)R/LR)h # O for some h € Pi(Q). Hence there exist right ideals I and K of
R such that LR < K < I <rl(L)Rg and I/Kg = T(hR). Therefore I(L) > I(Kf) >
I(If) = Iri(L) = I(L). Thus Iy(K) = Iy(Kf) = Iyy(If) = Iy (I). On the other hand
I/Kg(Z T(hR)) is isomorphic to a direct summand of S(M). Hence we have a map
0 : I — M such that Im6 simple and Kerd = K. Then by simple-injectivity of M,
there exists an element x of M such that xc = 6(c) for each ¢ € I. This implies that
x € ly(K) —Iy(I), a contradiction. Thus L = ri(L) and (pM, Rfy) satisfies r-ann.

(3) = (4). Let I be a right ideal of R and 6 : I — M a homomorphism with
Im6@ simple, and put K = Kerf. Then I/K = T(hR) for some h € Pi(Q). Hence
we have Kf < If because of Kh < Ih. Smce (pM, Rfp) satisfies r-ann, [y (K) =
IM(Kf) > Iu(If) = Iy(I). Thus we have an element x € Ip(K)—1Iy(I). Since I /K =
T(hR), I = aR + K for some a = ah € I. Put y = f(a) and z = xa. Then y and z
are non-zero elements of p S(Mg)h. By assumption p S(IMg)f = In(J)f < Ius(fJIf)
= pS(Mfp) = pS(pMf) holds; where J = rad(R), and p S(pMf)h = pS(pMh) is
simple. Hence p S(Mgr)h = p(S(MR)f)h = pS(pMf)h is simple, so we have Py =
Pz (= p S(Mg)h) and in particular y = ¢(z) for some ¢ € P. Therefore we have 6(a)
= p(z) = p(x)a. Thus M is R-simple-injective.
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(4) = (1). By Lemma 2.1. U

ReMARK 4. In Theorem 2.4, the condition “P = End Mg” can be replaced by the
condition “pMpg is a P-R-bimodule” except for the implications (1) = (2) = (3).

ReMARrk 5. For the implication (2) = (3) in Theorem 2.4, we can give another
proof by using Propositions 1.4 and 1.3, [11, Lemma 2.4] and [7, Lemma 3.4].

The following theorem is related to [16, Theorem 3.4].

Theorem 2.5. Let M be a right R-module and f an idempotent of R and put
P=End Mg, Q = fRf. If |[Rfg| < oo is satisfied, then the following are equivalent.
(1) Mp is finitely cogenerated injective with S(Mg) ~ T(f Rg).

(2) (pM, Rfp) is a faithful semicolocal pair.

Proof. In case (2) is satisfied, by Theorem 1.6 and Lemma 1.2, (p M, Rfp) sat-
isfies r-ann and Mg is a finitely cogenerated module with S(Mg) ~ T(f Rg). Thus the
assertion follows from Theorem 2.4 since |Q¢| < |Rfp| < oo. O

The following proposition is related to [5, Theorem 3.1], [4, Theorem 3], [16,
Theorem 3.4] and [2, Theorem 3.4]. The “only if” part of this proposition is well-
known (see e.g. [1, Theorem 30.4 or Exercise 24.8]). However, for the benefit of the
reader we provide a direct proof.

Proposition 2.6. Let My be a finitely generated right R-module and f an idem-
potent of R and assume that (pM, Rfp) is a faithful pair with |Rfp| < oo, where P
= End Mg and Q = fRf. Then the bimodule pMfy defines a Morita duality if and
only if (pM, Rfp) is semicolocal.

Proof. “If” part. By Theorem 2.5, My is injective. Hence P = End Mf by [5,
Lemma 2.1] (this lemma is valid for a semiperfect ring R). By assumption, Q is a
right artinian ring and M f is finitely generated. Since (p M f, Qo) is a faithful semi-
colocal pair with [Qg| < oo, Mfy is injective by Theorem 2.5. Thus the bimodule
pMfo defines a Morita duality.

“Only if” part. Since Q is a right artinian ring, Mfy is a finitely generated in-
jective cogenerator. Hence by Lemma 2.3, (pMf, Q) or equivalently (pM, Rfp) is a
semicolocal pair. O

REMARK 6. Let (pM, Np) be a pair which satisfies (i) (p M, Np) is a semicolo-
cal dual pair with a faithful bimodule pUgy, where pUg = pM Ny, (ii) Q is a right
artinian ring and (iii) N has finite length. However, this situation does not necessar-
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ily imply that pUp is a dual bimodule or equivalently (P, pUgp, Q) is a Baer duality
(see [8] and [2], respectively for the definitions a dual bimodule and a Baer duality).
Let R be a right artinian ring such that an injective hull Eg of T(Rg) is not finitely
generated, (see e.g. [15, Remark 2.9] for such a ring R). Then by Lemma 2.3 and
Theorem 1.6, (pE, Rg) is a semicolocal dual pair, where P = End Ex. But by Theo-
rem 1.6, (p P, Eg) is not a dual pair, so pEg is not a dual bimodule. Moreover, this
example shows that in Proposition 2.6, the assumption “Mpy is finitely generated” can
not be removed.
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