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1. Introduction

In this paper we obtain three results concerning laws of the iterated logarithms

(LILs) for certain functionals of some Markov processes.

The first is for symmetric diffusions whose transition densities satisfy upper and

lower bounds similar to those of Aronson for uniformly elliptic divergence form op-

erators in R^. We suppose the transition densities pt(x, y) are symmetric in x and y

and satisfy an estimate of the form

< p,(χ, y)

_ l̂ C3ί CΛJJ I —C4 I I I,

V \ t / /

where J(x, j ) is the distance between x and 3; and ci, C2, C3, C4, ί4, and dw are con-

stants. Examples of such processes include ones associated to uniformly elliptic op-

erators in divergence form in Rd, of course, but also Brownian motions whose state

space is an affine nested fractal, such as the Sierpinski gasket, and Brownian motions

on Sierpinski carpets. (See the Appendix of this paper and also [14], [6] and [3].)

For such processes we first prove a large deviations principle similar to that of

Schilder for Brownian motion (cf. [24]). When the state space is a fractal, one cannot

prove as much as in the case of Brownian motion; in fact, it can be shown (see [10])

that the direct analog for Schilder's theorem is not true. Nevertheless, the large devia-

tions principle that we do prove is sufficient to obtain a functional law of the iterated

logarithm similar to that of Strassen; see Theorem 2.11. This is the content of Section

2.

Next in Section 3 we consider arbitrary Markov processes, not necessarily contin-

uous nor symmetric, and look at functionals of the path that are nondecreasing, con-

tinuous, subadditive, and satisfy a uniform scaling property. For these functionals we
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show that one has an upper bound for a LIL. We give several examples to illustrate

the hypotheses of Theorem 3.1.

Finally, for our third result, in Section 4, we restrict attention to Brownian mo-

tion whose state space is an affine nested fractal or a Sierpinski carpet. Such processes

have local times lt(x) and one can ask about limsup and liminf LILs for L*(Y) =

supx tt(x). Some results on the limsup LIL were obtained in [16]; we complete these

and then obtain the corresponding liminf LIL. Such processes also have a range that

has nonzero μ-measure, where μ is the invariant measure for the state space; there

is no analog of this fact for diffusions in R^ except for the uninteresting case when

d = 1. It thus makes sense to talk about an LIL for the μ-measure of the range, and

this is also obtained in Section 4. We comment that neither L*(t) nor the μ-measure

of the range is a continuous functional of the path, so cannot be handled by the tech-

niques of Section 2.

Section 5 is an appendix recalling a few facts about fractals and diffusions on

fractals.

2. Large deviations and Strassen's LIL for diffusion processes with Aronson-
type estimates

In this section, we consider diffusion processes on a complete metric space E

whose transition densities satisfy Aronson-type estimates. We show that a functional

type LIL holds for these processes.

2.1. Diffusion processes with Aronson-type estimates and their properties

Let (E, d) be a locally compact complete separable connected metric space which en-

joys the midpoint property, i.e., for each x, y e E there exists z e E such that

d(x, z) = d(z, y) = (l/2)d(x, y). Let μ be a σ-finite Borel measure whose support is

E which satisfies

(2.1) β(B(x, 2r)) < Mxμ(B(x, r)) for all x e E, r > 0,

(2.2) μ(B(x, 1)) < M2 for all x e £,

for some constants Mi, M2 > 0 where B(x, r) = [y e E : d(x, y) < r}. (2.1) is often

called a doubling condition of a measure.

Let (Ω, J7, {Px}, {X(t)}) a diffusion process on E which is symmetric with respect

to μ. We assume the following for the process.

ASSUMPTION 2.1. There exists a jointly continuous symmetric transition density

pt(x, y) for X(t) with respect to μ on E which satisfies the Chapman-Kolmogorov

equations and the following:

, y), t)) < pt(x, y) < c23Γ
ds/2 exp(-c2.4Ψ(έ/(Jc, y\ 0)
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f o r a l l 0 < t < o o , x , y e E , w h e r e Ψ ( z , t) = (z<*wt-iγ/(dw-\)9 a n d ^ > l , d w > 1, a n d

^2i, C2.2, C2.3, C2.4 are positive constants.

The setup here is nearly the same as that of the diffusions on fractals studied in

[2]. Note, though, under our setup we only have μ(B(x,r)) < Mτ,(rγ v 1) for some

γ > 0 and do not require the lower bound in general.

There are various examples of diffusion processes which have these estimates.

(a) E = Kd, {X(t)} is the diffusion whose generator C is the divergence form elliptc

operator

9
 is

 9

where {tf/7(jc)} is bounded, symmetric, measurable and uniformly elliptic. Assumption

2.1 then holds with ds=d,dw = 2 ([1]).

(b) Brownian motion on a Riemannian manifold M. Suppose there is a single C°°

map from R^ onto M such that with respect to these coordinates the coefficients of the

Riemannian metric are bounded and uniformly elliptic. Then it may be shown that the

infinitesimal generator of Brownian motion on M will be a nondegenerate time change

of an operator such as the one in (a) and that Assumption 2.1 holds.

(c) Diffusions on fractals. Another class of processes which satisfy these conditions

are diffusion processes on fractals. Concrete examples are:

(1) Brownian motion on affine nested fractals ([14])

(2) Brownian motion on Sierpinski carpets ([5], [6])

See the Appendix for the definition of these fractals and of diffusions on them.

Note that (1) contains Brownian motion on nested fractals whose heat kernel estimate

was obtained in [19]; Brownian motion on the Sierpinski gasket ([7]) is a typical case.

As we will discuss in the Appendix, Assumption 2.1 holds for these examples.

We now summarize some facts that may be deduced from our assumptions on

(E, d, μ) and Assumption 2.1. For A c £, we set σA = inf{t > 0 : X(t) e A}.

Proposition 2.2. (1) For each x,y e E, there exists a geodesic path {y(t) :

0 < t < 1} such that y(0) = x, γ(l) = y and d(γ(s), γ(t)) = \t - s\d(x, y) for all

0<s < 1.

(2) For each x, y e E,

x, y) < c22d{x, y)
d^d-~ι\
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(3) There exist C2.5, c2.β > 0 which depend only on to > 0 such that

Px(supd(Xs, Xo) > λ) < c2.5 exp ( - c2.6( )
s<t ^ \ ί /

/or α// λ > 0, 0 < t < t0, x e E.

(4) There exist c2j, C2.8 > 0 which depend only on to > 0 swc/z

M <t)< c2j exp ( - c2.s[—

for all r > 0,0 < t < to, x e E.

(5) There exist C2.9, β > 0 swc/i that for each x, x',y € E,t > 0,

\Pt(χ, y) - Pt(χ\ y)\ < c2.9{d(χ, χf)rxιd-γrd^2.

Proof. (1) and (2) are straightforward from our assumption. (3) and (4) are

proved in the same way as Lemma 3.9(α) and (3.11) of [2]. (5) follows by the ar-

gument in [13], Section 3. In fact, Assumption 2.1 also implies a parabolic Harnack

inequality; cf. [13], Section 3 or [6], Section 7, although we do not need this fact.

D

In this situation, we can also obtain a 0 — 1 law analogous to the one which was

obtained in [6] Theorem 8.4 for the case of Brownian motion on the Sierpinski carpet.

Proposition 2.3. Suppose A is a tail event: A e Γ\tσ{Xu : u > t). Then, either

PX(A) is 0 for all x or else it is 1 for all x.

Proof. We follow the proof of [6]. Let € > 0 and ήx xo e E. By the martingale

convergence theorem, E^IIAIJ7^ -• lA almost surely as ί —• 00. Choose to large

enough so that

(2.3) Ex*\Ex»[lA\Ftΰ]-lA\<€.

Write Y for £*°[lA|.Fίo]. Using Proposition 2.2(3), choose M large so that

PXQ(supd(Xs,x0) > Mtl/dw) < 6.
s<to

For each t, by Proposition 2.2(5) we have the continuity of Ptf(x) in x with a mod-

ulus depending only on t and ||/||oo We choose t\ large so that

(2.4) \PtJM - PtJ(xo)\ < €||/||oo, d(x,x0) < Mtl
0

/d\
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We note

(2.5) \PX°(A)- EX°(Y;A)\ = \EXo(lA;A)-EXo(Y;A)\ < 6.

Since A is a tail event, there exists C such that A = C o θtQ+t]. Let f(z) = PZ(C). By

the Markov property at time t\,

(2.6) Ew(\c oθtι) = EwEm)lc = Ewf(Xt]) = Pt]f(w).

By the Markov property at time to and (2.6),

(2.7) EX»(Y;A) = Ex°[YEx<">\lc oθh)] = E*>[YPtJ(Xh)],

while

(2.8) P«(A) = EXHA = Ex°Ex{'°\lcoθt,) = Ex°[Ptl /(X,o)].

If d(Xl0,xo) < Mt{

o

ldw, then \P,J{XJ - P,J(xo)\ < e by (2.4). Since

Ex°[YP,J(Xl0)] = Ex°[YPtJ(Xt0);At0]

+Ex°[YP,lf(Xtoy,d(X,o,xo) > Mt*/d~],

then

\Eχo[YPtlf(X,o);Ato] - Pίlf(x0)EnY;Ato]\ < e,

where A,o = {d(X,0,x0) < Mt^4"1}. Also

Eχo[Y;A,o] = EX0Y - Ex°[Y;d(Xl0,x0) > Mt^].

Hence

(2.9) \E*>[YPh fiXJ] - Ptl f(xo)Ex°Y\ < 3e.

Similarly

(2.10) \Ex°Pt]f(Xt0) - Pt]f(xo)\ < 36.

Combining (2.5), (2.7), (2.8), (2.9), and (2.10),

\PXo(A)- PX0(A)EX0Y\ <l€.

Using this and (2.3),

\PX0(A) - PXo(A)PXo(A)\ < 86.
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Since e is arbitrary, we deduce PX°(A) = [Px°(A)f, or PX°(A) is 0 or 1. Since

PX(A) = ExPtιf(Xt0) = Pt0(PtJ)(x) is continuous in x (by Proposition 2.2(5)) and

E is connected, then PX(A) is either identically 0 or identically 1. D

Note that invariant events (i.e., an event B which satisfies Boθt = B for all t > 0)

are tail events, hence by this proposition they are trivial. It follows that there are no

nonconstant bounded harmonic functions on E.

2.2. Schilder-type large deviations We will now prepare notation and lem-

mas for the results on large deviations of the process. For fixed T > 0, let Ωx =

Cx([0, T] -> E) = {φ e C([0, T] -> E) : 0(0) = x}, furnished with the uniformly

continuous topology. For φ e Ωx, define an /-functional by

/x(0) = hmsup 2 ^ ( , _ . )

A = {tQj],...JN}

where Ix(φ) = σo if the right hand side is oo. Here we set |Δ | = max\<i<M(ti — ί/_i).

When φ e C([0, T] —> E) (no restriction on 0(0)), we denote the corresponding I-

functional as 7(0). Note that if Aφ(t) = \ims^t+0 d(φ(s), φ(t))/(s — t) exists for all

0 < t < T and is continuous, then the /-functional can be expressed as

IAΦ) = I (Aφ(t))d"/(d»-l)dt.
Jo

For Δ : 0 = to < t\ < t2 < tm = T and φ e Ωx, we set Π Δ 0 =

(0(ίi), . . . , φ(tm)}. Also, define 0 Δ e Ωx by taking points {φ(tj)} and joining the suc-

cessive ones by geodesic paths. If there is more than one geodesic path between two

such points, it is immaterial which one is chosen. Thus, 0 Δ is a piecewise geodesic

path and 0Δ(ί/) = φ(tj) (0 < j < m). We then have the following.

Lemma 2.4. (a) On C([0, T] -> E) we have

inf /(0) = ( — ^ ) w ,
Φ(β)=b H

where the infimum is attained by the geodesic path on E.

(b) On Cx([0, T] -> E) we have

l/(dw-l)

inf IX(Φ) = IΛΦ*)=~ " " " " "
1=1

where A : 0 = to < t\ < < tm < Γ, XQ = x, x\, . . . , xm € E and 0 Δ w β piecewise

geodesic path with 0 Δ (ί 7 ) = Xj (0 < j < m).
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Proof. Note that (b) is an obvious extension of (a). For (a), it is enough to

consider the case a = 0, β = Γ, as otherwise the infimum is attained by the path

which does not move in the intervals [0, a] and [β, T]. Now let φ(tι) = yi9 f(ί) =

d(yt, yi-ύ/(ti - ti-\) for 1 < / < N and define L(φ) = £\ d(yi9yi-ι). Then,

Σ
0=tn<t\ < --tλj

Here we use Jensen's inequality for the first inequality and the second inequality holds

because L{φ) > d(a, b). As χ~ι/^-χ) i s strictly convex, the equalities hold if and only

if /(/) is constant and L(φ) = d(a, b). In this case we have the geodesic with the

natural parameterization. We thus obtain the result. D

Using the results, we see for φ e Ωx and 0 < a < β < T

/d(φ(a), i)4\i/(4-D /d(φ(β),
IX(Φ) > ( ) + 1 —

V a / V β -
V β-a

β-a

Thus,

(2.11) d(φ(a), φ{β)) < Ix(Φ)idw~l)/dw(β ~ ot)

For ψ, φ e Ωx, define ||ψ - φ\\ = supo^^y d( ψ(t), φ(t)).

Lemma 2.5. (1) The function Ix(φ) is lower semi-continuous. Further, for ev-

ery N > 0, {φ : Ix(φ) < N] is compact.

(2) If C C Ωx is closed in Qx, then

lim inf Ix(φ) = inf Ix(φ),
δ 0 φ C φeC



632 R.F. BASS AND T. KUMAGAI

where Cs = [φ £ Ω^ : \\φ — ψ \\ < δ for some ψ e C).

Proof. For the lower semi-continuity, it is enough to show that if Ix(φn) < N

and ||0Λ — 0|| -> 0, then 7^(0) < N. But this can be easily proved. Next, (2.11) shows

that the elements of F = {φ : 7^(0) < N] are equicontinuous and {0(0 : φ e F] is

relative compact for each t e [0, T] (note that E is locally compact). As F is closed

by the lower semi-continuity of Ix, (1) follows from Ascoli's theorem. Using (2.11)

and (1), (2) can be proved in the same way as in [28], p. 159. D

Let P* be the law for Xx(et) where Xx is the process starting at x. We now state

our large deviation theorem.

Theorem 2.6. There exist C2.10, C2.11 > 0 such that for each A C Cx([0, T] ->•

-C210 inf Ix(φ) <]hn
φelntA

<-C211 inf IX(Φ)
φeC\A

REMARK. There are cases where one can not choose C2.10 = C2.11. ^n m e s e cases

Schilder's large deviation theorem does not hold with its original form. Indeed, the fol-

lowing holds for Brownian motion on the Sierpinski gasket ([10]):

For each z e [2/5, 1), A c C,([0, T] -> £),

- z)
//2\ \

< limsup - z) logP?2/5rz(A) < ~
\\J φe

where {7^}z€[2/5,i) is a family of (different) 7-functions whose ratios are bounded from
above and below by some positive constants.

Theorem 2.6 can now be proved following the argument of the corresponding
proof of [27] (see also [10]). Although the strategy is the same, we state the key lem-
mas of the proof for the reader's convenience.

Lemma 2.7. Let C C Ωx be a closed set of the form Π^Λ, where A e Em is

closed. Then

( ^~ 1 ) log P*(C) < -c2 11 inf Iz

x(φ).
<t>eC
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Proof. Using Proposition 2.2(2) and Lemma 2.4, this can be proved in the same

way as Lemma 3.1 of [27]. •

For m G N, let Am : 0 = to < t\ < tj < tm = T be an equally spaced partition,

i.e., tj = jT/m (0 < j < m).

Lemma 2.8. For every 8 > 0,

l imsuplimsup6 1 / ( ^- υ log P€
x(\\φ - φAm \\ > <$)) = -σo.

0

Proof. Using Proposition 2.2(4), the proof is the same as Lemma 3.2 of [27].

D

From these lemmas, we can prove the third inequality of Theorem 2.6. Indeed, it

is enough to prove the inequality when A is closed. Let λf(ω) = infω':||ω
f-ω\\<δ Iχ((*)r)

and define Tg = infωecδ Ix(ω). If ω e C then Iδ(ω) > T§ and therefore

P*[C] < P€
x[Iδ

x(ω) > TS] < Pe

x[\\ω - ωAJ >δ] + P/[

From Lemma 2.8,

l imsupl imsup6 1 / ( J u ' " 1 ) logP/[ | |ω-ω Δ w | | > 8] = -oo .

As the set {Ix(ωAm) > T8} is equal to

we see from Lemma 2.7 that

1 / ( ^ 1 ) > T8] < -c2.nTδ.

Combining these facts with l im^o T8 = infφeA Ix(φ), which comes from Lemma

2.5(2), we obtain the third inequality of Theorem 2.6.

Next comes the lemma for the lower bound.

Lemma 2.9. Let f e Ωx, V = {φ e Ωx : \\φ - f\\ < 8} where 8 > 0. Then
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Proof. Using Proposition 2.2(2), Lemma 2.4 and the third inequality of Theorem
2.6, this can be proved in the same way as Lemma 3.4 of [27]. D

Using this lemma, we can prove the first inequality of Theorem 2.6. Indeed, it is
enough to prove the inequality when A is open. For / e A, take a sphere V around
/ contained in A. Then, by the above lemma,

g / ( ) 1) log P€
X(V) > -c2Λ0Ix(f).

€-•0 e-^0

As this is true for all / e A, we have the result. This concludes the proof of Theorem
2.6.

2.3. Strassen's law We now study the Strassen-type law of the iterated loga-
rithm. From now on, we assume the following additional condition on E:

There exists a continuous map F : E -^ E such that

(2.12) d(F{x), F{y)) = η~ιd(x, y) for all x, y e E where 1 < η.

Clearly, the examples in Subsection 2.1 satisfy this condition. Denote by 0 a fixed

point of F in E. For the process starting at 0 e E, set

ξn(t, ω) = Fn(X(ηnd»aognγ-d™t, ω)),

where Fn = F o o F. Then, we can prove the following proposition using Theorem

n times

2.6 by a simple modification of the proof of Theorem 1.17 in [25].

Proposition 2.10. For P°-almost all ω, the sequence {ξn{-, ω)}£° has the follow-

ing properties:

(1) {£„(•, ω)}^ is precompact in C0([0, Γ] -> E).

(2) If {ξn>( , ω)}ψ is a convergent subsequence of {£n( , ω)}£° and ψ is its limit, then

(3) If ψ G Co([O,Γ] —> E) with C2.io/o(VO — 1> t n e n there is a subsequence of

{£„(•, ω)}£° which converges to ψ.

In particular, if Φ : Co([O, T) -> E) —> R is a continuous functional, then

P°ί sup Φ(ψ) < limsupΦ(^( )) < sup Φ(ψ)) = 1,
\C2.\0 ψeK n->oo C2.11 ψeK /

where K = {φ e C0([0, T] -+ E) : I0(φ) < 1}.

With the help of Proposition 2.3, we can obtain the following functional-type law

of the iterated logarithm.
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Theorem 2.11. Let Φ : Cx([0, T) -> E) -> R be a continuous functional

such that limsup^^^ Φ(§«(•)) is measurable with respect to the the tail σ-field. Then

there exists a constant C(Φ) e [-00,00] with (l/c2.io)sup^GA: Φ(ψ) < C(Φ) <

: Φ(ψ) which depends only on Φ such that

(2.13) Px(limsupΦ(^( )) = C(Φ)) =1 VJC e E.

Proof. By the assumption on Φ, { l imsup^^ Φ(§„(•)) = C(Φ)} is a tail event.

Thus, by Proposition 2.3, the probability of the event is either 0 for all x e E or else

1 for all x e E. By Proposition 2.10, the latter occurs for some C(Ψ). D

Taking Φ(ξ) = sup0<t<ιd(ξ(t),0) in the above theorem and noting that d(ξn(s,ω),0)

= η-nd(X(ηnd»(\ognγ-d»s),0) and ηn ~ ^ ( l o g l o g ί ) 1 " 1 7 ^ if and only if t ~

ηndw(\ogn)ι~dw, we have the following classical law of iterated logarithm. Note that

by (2.11) it is easy to see 0 < supψeK Φ(ψ) < 00.

Corollary 2.12. There exists C2.12 > 0 such that

(2.14) hmsup - - = c2.n Px-a.s., x e E.

^/^(loglogί) 1" 1^

We remark that (2.14) may be proved directly via hitting time estimates.

3. Upper bounds for LILs

In this section we prove that the limsup result for an LIL for a functional F will

follow if F is subadditive and has a uniform scaling property. Here we do not require

that our Markov process have continuous paths or satisfy Aronson-type estimates. See

[8] for other properties of functional of this type.

Theorem 3.1. Let {X(t)}t>o be any strong Markov process on a topological

space E. Suppose {Ft]t>o is a continuous adapted non-decreasing functional of

{X(t)}t>o satisfying the following:

(1) (Uniform scaling near 00) There exists a constant β > 0 such that

sup Px(Fλβ > bλ) -• 0 as b -> 00.
JC,λ

(2) (Subadditivity) Ft - Fs < F r _ 5 o Θs for all 0 <s <t.

Then, there exists a constant 0 < K < 00 such that,

limsup-—-—-^— < K Px-a.s. ω, Vx e E.
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Proof. We use it to abbreviate log log. For 1 < / < [iit]9 set Λf = Fit/m] -

F(i-Dt/[Uti a n d define Bt = Ai/(t/[Ut])ι/β. We first prove that there exists a > 0 such

that

(3.1) M = supExexp(aBχ) < oo.
x,t

In fact, this can be obtained by the following routine argument using subadditivity (2)

(cf. [9]). For 0 < s < 1, set Bs = Fts/[m/(ts/[Ut])ι/β. We will show that there exists

b > 0 so that

(3.2) PX(BX >bn)<^ Wn e N, t > 0, x e E.

n = 1 is easily obtained by our uniform scaling assumption (1). Now, set Tn = inf{s >

0 : Bs > bn}. Then

PX(BX > bin + 1)) = Px{Bλ > bin + 1), Tn < 1) = />*(£] - BTn >b,Tn < 1)

< Ex[EXτ»(Bλ-Tn > b)\Tn < 1] < - s u p P y ( B i > bn),

2 y

for all x € £ , where we use the continuity of Ft for the second equality. We thus
obtain (3.2) by induction. From this, we obtain PX(B\ > λ) < c\ exp(—^λ) for all

x e E, t > 0, which is sufficient for (3.1).

Now define φ(t) = (t/[iit])λ'β[iitl Noting that Ft/φ(ΐ) < l/[Ut]Σ\eJ{] Bt and

using Chebyshev's inequality, we have

ΛUt] x . [Ut]

(3.3) Px(Ft > φ(t)λ) <PxίJ2Bi- λ [ m ] ) - exp(-βλ[££ί])£x exp ί a

for all λ > 0. As

by iterating the conditioning, we have Ex exp(α JZJff/1 5/) < M[Ut]. Thus, taking λ

large so that — tfλ + logM < — p for some p > 1, we have by (3.3),

i ^ W > φ(t)λ) < exp(-p [^ί]) < c(logί)~p.

Taking t = ek and using Borel-Cantelli lemma, we have P*-a.s., V c e E,

Fek
limsup — < λ.
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For ek < t < ek+\ we have

A . < FeM φ(ek+l)

 =

 F*k+]

 cι/β (
φ(t) ~ φ(ek+ι) φ(ek) φ(eM)e \ [log*]

which completes the proof. D

Here are some examples of upper bounds that can be obtained by means of this

theorem. In each case, of course, the bounds are already in the literature.

(1) Let Xt be a diffusion on R^ associated to a uniformly elliptic operator in either

nondivergence or divergence form and let Ft = sup5 < ί \XS — XQ\. It is easy to check

that the conditions of Theorem 3.1 are met, so the upper bound for a LIL holds.

(2) Let Xt be a symmetric stable process on the line with index a e (1,2]. Let

tt(x) be the local times for Xt and let L*(ί) = s u p ^ O ) . Then F(t) = L*(t) satisfies

the hypotheses, and so the upper bound for a LIL for L*0) follows.

(3) Let Xt be a symmetric stable process of index a e (1,2] and let Ft be the

Lebesgue measure of the range of Xt. Again the hypotheses in Theorem 3.1 hold, and

consequently an upper bound for the LIL for the range.

4. LIL for local times and the range for Brownian motion on fractals

In this section, we will prove laws of the iterated logarithm for the local time

and the range of Brownian motion on fractals. The base space E and diffusion pro-

cess {X(t)} (or the corresponding Dirichlet form (S, J7)) we will treat in this section

is either of the following (see the Appendix for the definitions):

(1) Brownian motion on affine nested fractals

(2) Brownian motion on Sierpinski carpets with ds < 2

As mentioned, the process enjoys Assumption 2.1.

Here we list some other properties of the processes. See [15], [21], [19], [14],

[16], [4], [5], [22], [6] for the proof.

Proposition 4.1. (E, d, μ) and {X(t)}, (£, T) have the following properties.

(a) There exist constants df > 1 and C4.1, C4.2 > 0 such that

(4.1) c4Λr
df < μ(B(x, r » < c4.2r

r f/, Vr > 0.

(b) T C C(E, R ) and for all u e T, x , y e E,

(4.2) \u(x)-u(y)\2 <R(x,y)S(u,u),

where R( , •) is the resistance metric defined by

R(p, q)-χ = inf{£(/, /) : / e T, f(p) = 1, f(q) = 0} Wp^qeE
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and R(p, p) = 0. Further, this metric is comparable to d, i.e.,

(4.3) c43d(x, y)dc < R(x, y) < c4Ad(x, y)dc Vx, y e E,

for some positive constants C4.3, C4.4 and dc.

(c) {X(t)} is point recurrent, and each-one-point set of E has positive capacity.

(d) For all n € N, f > 0 and x e E,

(4.4) X(τ\t) under Px is equal in law to a"X(t) under Pa-«x.

(e) {X(t)} admits a local time lt(ω, y) which is jointly continuous in t, y and satis-

fies

(4.5) f it(ω, y)μ(dy) = f \B{Xs(ω))ds VB c B(E).
JB JO

(f) There exist p,θ, C4.5, C4.6 > 0 such that for all a > 0, 0 < 8 < 1 and x e E,

Px( sup \£t(ω, yύ - lt(ω, y2)\ > a) < c4.5ήδ~2df exP(
d(yι,y2)<δ

REMARK. 1. It is proved that the df in (a) is the Hausdorff dimension of

(£, d, μ). It is expressed as df = logQ/μO/logr?.

2. (b) is usually mentioned only for the compact fractal E ([14], [16], [18]), but by

an easy argument, one can also show it for the unbounded fractal E.

3. The process constructed in [5], [6] might not have (4.4) because of the lack of

uniqueness. But using the averaging method in [22] one can construct a process which

satisfies (4.4). Alternately, we may in place of (4.4) use the fact that a^nX(τ"t) is

again a process on the Sierpinski carpet satisfying all the same estimates that X(t)

does; this is all that will be needed.

4.1. Results of Fukushima-Shima-Takeda ([16]) Under the above framework,

Donsker-Varadhan's large deviation theory for Markov processes can be applied and

the results of [16] hold exactly in the same way. In this subsection, we list the main

theorems we use.

Define the occupation time distribution Lt for {X(t)} as

1 f
(4.6) Lt(ω, B)=- lB(Xs(ω))ds, VB C B(E).

t Jo

For each ω, Lt(ω, •) is an element of the space M of subprobability measures on E.
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Note that

Lt(ω, B) = - [ lt(ω, y)μ(dy).
t JB

By definition and by Proposition 4.1(d), Lt and it enjoys the following self-similarity

property for all n e N, t > 0 and x, y e E:

(4.7) Lt(ω,a1-) under Px - Lτ-nt(ω, •) under P<1χ,

(4.8) lt(ω, y) under Px - {τxμλ)
nlτ-nt{ω, a~ny) under P<x,

where *~' means 'is equal in law to.' Define the /-functional on the space M of sub-

probability measures on E in terms of the Dirichlet form by

(4.9) W

0 otherwise

Denote the distribution of the occupation time distribution with respect to Px by

QtS

QtAA) = Pχ(Lt(ω, •) e A), A c B(M).

Λ4 is endowed with the vague topology. We also consider the space ΛΛ\ of all prob-

ability measures on E endowed with the weak topology. Then the following large de-

viation principle holds:

Theorem 4.2. (i) For any closed subset K of M,

(4.10) limsup - sup log Qt,x(K) < - inf Iε(β).
t^oo t χ(z£ ' βeK

(ii) Let β be a probability measure on E with β(G) = 1 for a bounded connected

open set G C E. Let O be a neighborhood of β in M.\ and G' be a bounded con-

nected open set with G' D G. Then

(4.11) liminf-log inf Px (L,(ω, •) e 0 , t < σσ) > -Iε(β).
/-•oo t xeG

Now, define a sequence {tm, m = 1, 2, ...} of times by

(4.12) — ^ = τf,
log log tm

and set

(4.13) Ltm(ω,B) = Ltm(ω,at{ιB), B e B(E).
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Then, the following holds:

Proposition 4.3. (1) For Px-a.e. ω, x e E,

(4.14) p | ( J [Ltm{ω, )} = {βeM: Iε(β) < 1}(= C).
N m>N

(2) If Φ is a continuous functional on M. in the vague topology, then, for Px-a.e.

ω, x e E,

(4.15) limsupΦ(Lίw!(ω, •)) = sup Φ(β).
m-^oo βeC

From this, the authors in [16] deduced Chung's law of the iterated logarithm with

the help of Proposition 2.3. Using the distance d, the result can be expressed as fol-

lows.

Proposition 4.4. There exist c4.7 > 0 such that

/ loglogΛ 1 M /

(4.16) liminf & & sup d(Xs, Xo) = cAΊ Px -a.e. ω, x e E.
'-*00 V t ) 0<s<t

Next, set

Let Λ be the totality of non-negative uniformly continuous functions f on E with

fE fdμ < 1. The space A is equipped with the topology of uniform convergence on

compact subsets of E. For / e A, we denote Ig(fdμ) by Iε(f).

Proposition 4.5. (1) For Px-a.e., x e E,

TV m>N

(2) For a continuous functional Φ on A,

limsupΦ(£ίm(ω, •)) = sup Φ(/), Px-a.e. ω, x e E.

m-»oo fe{feΛ:Iε{f)<\}

From this the authors in [16] derived the result that

/ tm \ds/1 1

(4.17) limsup —it (ω, 0) = b0 Px -a.e. ω, x e E,

m^oo \loglogίm/ tm

 m
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where bo = sup{/(0) : f e A, V 7 € T, £(V7, VT) < 1}, which was shown to be
positive and bounded. By using Proposition 2.3 again, they derived

Proposition 4.6. There exist c4.8 > 0 such that

( t V'/2 1
(4.18) limsup -£t(ω, 0) = c 4 8 Px -a.e. ω, x e E.

r_>oo \lθg\θg tj t

4.2. LIL for the supremum of local times Set L*(t) = svφxeEί(t,x). Note

that by (4.8) we have

(4.19) L*(0 under Px - {τλμx)
nL\t/τn

λ) under P<x.

Our first assertion in this subsection is a kind of extension of Proposition 4.6.

Proposition 4.7. There exists c 4 9 > 0 such that

L*(ί)
limsup — -r-pr = c 4 9 Px-a.e. ω, Vx G £ .

Proof. Take Ψ(/) = sup^.^ /(JC) in Proposition 4.5(2), which is obviously con-

tinuous. Then one has the corresponding result to (4.17) for L*(ί), so the proof is

completed in the same way as above once we prove

K = sup{sup f(y): / e A V7 e J7, £(v7, 77) < 1} < oo.
yeE

Suppose b* - oo. Then there is a sequence /n, jcn such that fn(xn) > «• As Λ/7n G

and 5(VΛ. vTn) < 1, using (4.2) and (4.3) we have

so that \fn(y)\ > (y/n — Vc 4 4 ) 2 for all y e B(xn, 1). Taking n large, this contradicts

the fact /„ G A i.e., / £ / π dμ < 1. •

We next prove a liminf estimate of L*(ί) The proof is based on the proof of the

corresponding results for symmetric stable processes due to P.S. Griffin ([17]). As be-

fore, we sometimes abbreviate it for log log.

Proposition 4.8. There exists c4.io > 0 such that

L*(t)
liminf — = c4Λ0 Px-a.e. ω, Vx G E.
t^oo ^ - ^ ( l o g l o g / ) s / 2
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Proof. With the help of Proposition 2.3, it is enough to prove that there exists

c\, C2 > 0 such that the following holds Px-a.e. ω, VJC G E.

r • * L * Wc\ < hmint — < c2-
- ί o ίl-^/2(loglogί)-1+rf/2 ~

We will first prove the upper estimate. Note that it is enough to show that there exist

constants ξ,c > 0, 1/e < β < 1 (the choice l/e < β is for (4.22)) such that

(4.20) Px(L*(t) <

Indeed, we can then apply the Borel-Cantelli lemma. Let p G (1, ( logβ" 1 )" 1 ) and set
p. Define

Then, the Q are independent events and using (4.20),

Thus,

(4.21) P\Ck i.o. ) = 1 .

On the other hand, by Proposition 4.7 and by the choice of

(4.22) lim sup , J ,„ = 0.

Since L*(ίt+i) < L*(tk) + supx(ί,M(ω, x) - lh(ω,x)), by (4.21) and (4.22), we have

L*(t) ,. L*(tk)

. (4 t I (ω,Λ:)-£ ί t (ω,x))
+ hminrsup —3—r— < 00,

*-°° / (t/ιιιtύy-d°12

which prove the upper bound. Thus, we will prove (4.20).

For this, we first choose β', € > 0 and K e N so that the following is satisfied.

(4.23) Px(X(s) e {A\,..., A\+κ}) > β' + 2e

Vs G [τf1, 1], Vx G {A*"1, . . . , Af^" 1 }, V^ G N.

Here {Aj}^0 is a sequence of 1-complexes which satisfies 0 G A ,̂ Aj Π A\+1 ^ 0 (V/)

and there exists L e N such that {x : d(A\,x) < p} Π A{ = 0, V/ > / + L, Vι.
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See the Appendix for the definitions. An example of [A\} is a sequence of connected

1-complexes along a shortest path from 0 to infinity. In the case of the standard Sier-

pinski gasket (carpet), they are the intersections of the Sierpinski gasket (carpet) with

the unit triangles (squares) bordering the x axis. Then, (4.23) are easily verified using

the lower estimate of Assumption 2.1.

Now, take m G N such that (β')x'M > l/e where M = τf\ We set β = (β')x/M.

Then, by (4.4), we have, by defining Ak

n = a\A\ for each n e N, k > 0,

(4.24) Px(X(Ms) e {Ak

m,..., A*+*}) > β' + 2e

Further, we can take λ, p, 6 > 0 so that the following are satisfied.

(4.25) PX(L*(M) < ( n μ i Γ ' λ ) > 1 - € VJC G £,

(4.26) P*((X(0), X(M))* > y/'V) < e Vx e E.

Here we define (X(s), X(sf))* = sup,<?<5, d(X(s), X(t)) for each 0 < s < s'. Indeed,
(4.26) is easily verified using Proposition 2.2(3). To show (4.25), assume this does not
hold. Then for each 6 > 0, there exist {xm} C E such that PXm(L*(M) > m) > 6.
Let ym = ym(ω) e E be such that /M(&>, ym) > L*(M) - 6 and choose a > 0 large in

Proposition 4.1(f) so that

P* ί sup \lM(ω, yι) - lM(ω, y2)\ > a \ < 6/2 Vi G £ .
\ /

Then, by (4.1) and (4.5),

6/2 < PXm(L*(M) > m, sup \IM((0, y\) ~ £M(G>, yi)\ < a)

< Px"(iM(ω, x) > m - a - 6, Vx G £(ym, 1/2))

lB(ymΛ/2)(Xs)ds > (m - f l - 6 ) c

which contradicts fQ lB(ym,i/2)(Xs)ds < M when m large. Thus (4.25) is verified.

Let γ(t) = (t/[at])d™/2, take n = n(t) e N such that τf < t/[Ut] < τf+1. For

k= 1,2, ...,[[^ί]/Λf] + l, set

< λ I —, x) - €(ik-i)ίΛf/[m](ω, x)} < λ

( ί ) + 1 ) m ' " "•' ( n + U m M
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= * ) > / » ' Vx

First, observe that by (4.19) and (4.25),

, x) - lkΐMmt](ω, x)} <

ι \~άsβ\

t \l-ds/2
X

/ktM\ _

\{ϊϊt]) ='

Next, by (4.4) and (4.26),

Pi faM\\* ktM

= Px( sup d{X{s\Xφ))<p(-l-
\<s<tM/[Ut] \\tlt\ϋ<s<tM/[Ut]

( s u p

0<s<M

Finally, by (4.4) and (4.24),

, X(0)) <

[Ut]
ίΔk+ι Ak+ι+κ\\

1+^}) [ for some s e [τf1, 1]]

We thus obtain (4.27). Set F{ = Πι

k=ιEk and denote ^ = σ{X(s) : s < t}. Noting that

X(tM/[Ut].[[Ut]/M]) e { A [ ^ M Γ , . . . , A ^ M ] + / : } on E[[m/Mh we have by (4.27),

π •6

> β'Px (Famm).

Iterating this, we obtain

(4.28) Px(FllUt]/m+l) > (/β'
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Observing that

[[Ut]/M]+l ^

F[[Ut]/M]+ι C JL*(ί)< sup Σ {htM/[ut](cu,x) - l(k-i)tM/[Ut](co,x)}< ξl — —

where ξ = (K + 2L)λ, we obtain (4.20).

We next prove the lower estimate. Fix p > 1 and choose λ small enough so that

(4.29) PX(L*(1) < n μ i λ ) < e~p Vx e E.

To prove this, assume (4.29) does not hold. Then, there exist {xn} c E so that

Px"(L*(l) < \/n) > e~p. Then, by (4.1) and (4.5),

Xn(σB{XnΛ) < C4.2//1) >

This contradicts Proposition 2.2(4) when n is large so that (4.29) is verified.

Now, for k= l,2,...,[t£t], let

r / f \ 1-^/21

Dk = sup(lkt/[ut](ω, x) ~ kk-\)t/[eεt](co, x)) < λ[ —— )
*• x ^ \JCtt\ ' i

As the Dk are independent events, we have by (4.19) and (4.29)

< P*(L (1) < λτ,μi) <

Thus

(n
Taking tk = 2k,

Px(L*{t) < 2 " < 1 " * / 2 ) λ ( ^ j ) 4 / f o r s o m e

whose sum converges since p > 1. Thus, by the Borel-Cantelli lemma, we obtain the

result. D

4.3. LIL for range Define R(t) = μ({x : X(s) = x, for some s < t}). In this

subsection, we will show a LIL for R(t). First, note that from (4.4), R(t) enjoys the
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following self-similarity property for all n e N, t > 0 and x e E:

(4.30) R{τ"t) under Px ~ μ^nR{f) under Pa-nx.

The limsup result of R(t) can be deduced from Theorem 3.1.

Proposition 4.9. There exists C4.11 > 0 such that the following holds,

Όff\

limsup ———— = c4 π Px-a.e. ω, Vx e £ .
^^( log log ί ) 1 -* 7 2

Proof. Using Proposition 2.2(3),

Px(R(l) > b) < Px(supd(Xs,x0) > bι/dn < c2.5

s<\

Combining this with (4.30), R(t) satisfies Theorem 3.1(1) with β = 2/ds. It is clear

that R(t) satisfies Theorem 3.1(2) so that the upper estimate is obtained by Theorem

3.1.

Now, note that defining Z(t) = {y e E : X(s) = y for some s < t}, we have

(4.31) t = ί l{t, x)μ(dx) < L*(t)R(t).
J{xεZ(t)}

Combining this with Proposition 4.8 we have the lower estimate. D

The liminf estimate is rather simple.

Proposition 4.10. There exists C4.12 > 0 such that the following holds.

liminf — ——- = c4 u Px-a.e. ω, Vx e E.

t^oc td^2(\θg\θgt)-d^2

Proof. By Proposition 4.4, P*-a.e. there exists tn —> oo so that

tn

0<s<tn

As R(t) < (sups<td(Xs, X0))df, we have P*-a.e.

/ t \df/dw

R(tn) < C[ —γ- ί.O.
\ l l ί /

Noting df/dw = ds/2, we obtain the upper estimate.

Combining (4.31) with Proposition 4.7, we have the lower estimate. D
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REMARK. AS we have seen in (2.14) and (4.16), the following holds P*-a.e. ω,

,<, d(Xs,X0)

If

(4.32) R(t) = (sup d(Xs,X0))df

s<t

held, then the loglog order of the limsup of R(t) would be df — ds/2 instead of 1 —

ds/2. On the other hand, the order of loglog for the liminf of R(t) is —ds/2, which is

what one would expect if (4.32) held. This suggests that the trajectory of the process

is essentially 1-dimensional at times when the limsup of R(t) is attained whereas it is

more like a uniform covering at times when the liminf of R(t) is attained.

5. Appendix

In this appendix, we will briefly explain about affine nested fractals, Sierpinski

carpets and diffusion processes (or Dirichlet forms) on them.

Let {Ψ/}^! be similitude maps on Rd, i.e., Ψ,x = α ^ ^ x + ft.x e R^ for some

unitary maps (/;, α, > 1, βi e Rd. We also assume the open set condition for {Φ,-}^,

i.e., there is a non-empty, bounded open set V such that {Ψ/(V)} are disjoint and

U^jΨ/ίV) C V. As {Ψ/}^! is a family of contraction maps, there exists a unique non-

void compact set E such that E = U^Ψ^E 1 ) . Assume further that E is connected. We

now give the definition of affine nested fractals and Sierpinski carpets following [14]

and [6].

1. Affine nested fractals

Let F be the set of fixed points of the Ψ/'s, 1 < i < N. A point x e F is

called an essential fixed point if there exist /, j e {l,...,Λf}, i ^ j and y e F

such that Ψ ( t) = Ψ/(;y). We write F ( 0 ) for the set of essential fixed points. Denote

Φ f l /„ = Ψ/, o . . . o Ψ/n. We will call the set Ψ, 1,...,ί |I(F(0)) an n-cell and Ψ,-,,...,,-,,^)

an n-complex. Set F(n) = u£ / n = 1^i,..., ) n(F ( ( ) )). Then, E is called a (compact) affine

nested fractal if the following holds in addition to the above conditions:

(AN1) (symmetry) If x, y e F ( 0 ) , then reflection in the hyperplane Hxy = {z : \z — x\ =

\z- y\] maps F{n) to itself.

(AN2) (nesting) If {i\, . . . ,/„}, {j\,..., jn} are distinct sequences, then

*.•„...,.•„(£) Π *h,...jΛE) = *,•„..../. (^ ( 0 )) Π Φ;.. . A ( F ( 0 ) >

We say Ψ/(£) and ^j(E) are the same size if they can be mapped to each other by

the composition of the reflection maps which appear in (AN1). In that case, the con-

traction rates of two maps are the same. When all the contraction rates are the same,
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E is called a nested fractal ([23]).

2. Sierpinski carpets

Let d > 2, F o = [0, 1]^, and let / e N, / > 3 be fixed. Set S = {Π?=iK*/ " 1)//, A:///] :

1 < &i• < I (1 < Ϊ < d)}. We assume that each Ψ, maps F o onto some element of S.

Set F\ = U^jΨ/CFo). Then, F is called a (compact) Sierpinski carpet if the following

holds in addition to the conditions mentioned above:

(SCI) (Symmetry) F\ is preserved by all the isometries of the unit cube F o .

(SC2) (Non-diagonality) Let B be a cube in F o which is the union of 2d distinct el-

ements of S. (So B has side length 2/"1.) Then if Int(Fi Π B) is non-empty, it is

connected.

(SC3) (Borders included) F\ contains the line segment {x : 0 < x\ < 1, x2 = = Xd =

0}.

The assumptions (SC2) and (SC3) are included for technical reasons which are not es-

sential. We will denote / = a\ to unify the notation, although each 1-complex is the

same size in this framework.

Note that the biggest difference between the two examples is whether the fractal

is finitely ramified or not, i.e., whether it can be disconnected by removing a certain

finite number of points or not (affine nested is finitely ramified due to (AF2)). We also

note that both of the examples have strong symmetry with respect to reflections.

Let μ be a Bernoulli probability measure on E such that /x(Ψ/(F)) = μ, > 0,

where Σi M/ = 1 and μ, = μ7 if Ψ/(F) and Ψ 7(F) are the same size. (Thus, for the

case of nested fractals and for the case of Sierpinski carpets, μ, = l/N V/.) Then we

can construct a local regular Dirichlet form (£, T) on L 2 (F, μ) such that

where S e [—σo, — 1) U (0, oo] is determined during the procedure of the construction

(here we use the convention 1/ ± oo = 0). Set τ; = μ . τ/"1 is the time scaling

factor for Ψ/(F). Denoting by {X(ΐ)} the corresponding diffusion process, the law of

{X(t)} is invariant under reflections with respect to F.

Now assume without loss of generality that Ψi(x) = a^xx. Then, the affine nested

fractal or the Sierpinski carpet F is constructed as F = U ^ α ^ F . The local regu-

lar Dirichlet form (£, T) on F, whose restriction to E is £, can be constructed on

L 2 (F, μ) (where μ is a Bernoulli measure on F so that μ\% = μ) and has the follow-

ing scaling property:

, g) = M 7 1 / 5 £ ( / ° *«•> g ° */) v / ' g e ^*

There is also a metric (called shortest path metric) on F which has the following scal-

ing: d{ot\x, a\y) = ηd(x, y) for all x, y e E by some constant η > 1. For the case of

the Sierpinski carpet, yy = a\ = I and this metric is equivalent to the Euclidean metric,
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but for the case of affine nested fractals, there is in general no relation (although they

induce the same topology) between the two metrics. For these examples, Assumption

2.1 holds with ds = 21og(l/μi)/logτi = 25/(5+ 1), dw = logτi/logr?. For the case

of affine nested fractals, 0 < S < oo so that ds < 2, but for the Sierpinski carpets, S

could be less than —1, in which case ds could be greater than 2, when d is large.
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