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1. Introduction

A manifold M is assumed in this paper always to be connected and smooth and
have dimension n > 3.

A Weyl structure on a manifold M is a torsion free affine connection D preserv-
ing a conformal structure [g]. Namely, a torsion free affine connection D is called a
Weyl structure if Dg =w ® g for a 1-form w.

The definition of Weyl structure goes back to the work of H. Weyl. In his fa-
mous book ([23]) he introduced Weyl structure to unify gravitational fields and electro-
magnetic fields.

The notion of Einstein-Weyl structure is originated in the paper of N.Hitchin
([11]) in which he developed the 3-dimensional minitwistor theory associated to the
3-dimensional monopole theory and observed that the minitwistor theory can be gener-
alized over a 3-manifold endowed with a Weyl structure obeying a certain Ricci tensor
condition, namely an Einstein-Weyl structure. Refer also to [12].

The exact definition of Einstein-Weyl structure is the following.

A Weyl structure (D, [g]) is Einstein-Weyl if the symmetrized Ricci tensor is pro-
portional to a metric g representing [g];

6} RicP(X,Y) + RicP(Y,X) = A g(X,Y), A€ C®(M)

Thus an Einstein-Weyl structure is a generalization of Einstein metric in terms of
affine connection.

The Levi-Civita connection V of an Einstein metric g indeed gives an Einstein-
Weyl structure (V,[g]) with trivial w.

Einstein-Weyl structures enjoy a conformal invariance as a significant feature.
Gauduchon showed that after applying a suitable conformal factor every Einstein-Weyl
structure on a compact manifold M is conformally equivalent to a standard structure,
that is, one having coclosed 1-form w; d*w = 0 ([7], [22]). As K.P. Tod claimed, this
coclosed 1-form turns out to be the dual of a Killing field ([22]).
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We confirm ourselves in this paper instead of the full Einstein-Weyl equation to
the Killing dual field equation together with the simplified Einstein-Weyl equation to
investigate Einstein-Weyl geometry over compact manifolds.

For each compact Einstein-Weyl n—manifold (n > 3) with coclosed 1-form w we
can exhibit that the scalar s, — ((n + 2)/4)|w|? is constant (s, is the scalar curvature
of g) and observe that the w satisfies a non-linear elliptic equation;

2) V*Vw = (_c_ -z 4|w|2> w,
n 4

where ¢ = s, — ((n + 2)/4)|w|?. This associated constant ¢ behaves like the scalar
curvature of an Einstein metric.
Notice that

n(n — 4)

ol

A3) c=sP+
where sP = tr,RicP is the scalar curvature of D with respect to g whose sign is
conformal invariant.

The idea of this paper is to make crucial use of the associated constant ¢ together
with the strong maximum principle on the coclosed form w.

The sign of the associated constant ¢ causes difference in geometrical aspec-
t of compact Einstein-Weyl manifolds. Actually, as will be shown in § 3 compact
n—dimensional (n > 4) Einstein-Weyl structures of ¢ < 0 and with coclosed 1-form
are exhausted by Einstein manifolds of s, < 0.

For Einstein-Weyl manifolds M of ¢ > 0 the situation is quite similar to the
Seiberg-Witten monopole equations in which the strong maximum principle was ap-
plied([14], [13], [5]). We obtain the sup-norm estimates as

Key Proposition (Theorem 3 in § 5). Let M be a compact Einstein-Weyl n-
manifold (n > 5) with coclosed form w. If the associated constant ¢ > 0, then

2 .12 2
@ mﬁx|w| < c and mﬁx|chy| < knc

4
n(n — 4)

In addition, as shown in § 5, any compact Einstein-Weyl n—manifold M with co-
closed w and of ¢ > 0 has positive (semi-)definite Ricci tensor; Ricy > 0 and the first
Betti number b; (M) < 1. Furthermore for such an M having b; (M) = 1 the universal
covering M splits into M = N x R! for an Einstein manifold N of positive scalar
curvature.

Remark that conversely any Einstein manifold N of positive scalar curvature
yields an Einstein-Weyl structure on the product N x S, which is locally conformal to
Einstein manifold. Additionally we can characterize compact Einstein-Weyl manifolds
which are locally conformal Einstein (see Theorem 5, § 5).
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Another non-trivial example of Einstein-Weyl structure is constructed over the to-
tal space of circle bundle over a compact Einstein-Kdhler manifold([19]). Recently it
was shown by F. Narita([16]) that a Sasakian manifold of constant p—sectional cur-
vature k (> 1) carries an Einstein-Weyl structure. These manifolds are endowed with
coclosed 1-form and have finite fundamental group. More nontrivial examples are con-
structed by using the connected sum argument in [20].

In the 4—dimensional case the square-norm of the associated constant ¢ has the
upper bound represented by x(M) — (3/2)|7(M)|, the 4—dim topological invariant, so
that we can get the Thorpe-Hitchin inequality x (M) > (3/2)|7(M)| for any compact
Einstein-Weyl 4-manifold, which was already shown in [18].

Although not a few of conclusions of our theorems seem to have quite similar for-
m to those given in [22], [20], [18] and [8], the method exploited in the present paper
may have an advantage in formulating Einstein-Weyl geometry from the viewpoint of
Riemannian geometry.

2. The Einstein-Weyl equation

Let (D, [g]) be an Einstein-Weyl structure on a manifold M.

By using the Levi-Civita connection V of a metric g representing the confor-
mal structure [g] the affine connection D is then written as D = V + a for an
End(TM)—valued 1-form a so that we can rewrite (1) as

_2
) Ric, + "T(Vsymw fw®w) = Ag,

where V¥ (X,Y) = (Vxw)(Y) + (Vyw)(X) (see [19] for the details).

In the sequel we call a pair (g,w) instead of an affine connection D an Einstein-
Weyl structure when (g,w) is a solution of (5).

Since from the equation (1) the affine connection D does not depend on confor-
mal change of a metric, the Einstein-Weyl equation (5) is invariant under the con-
formal changes. More precisely, if (g,w) is a solution of (5), so is (g,w), where
g=¢e*g, w=w+2df, feC°M).

The equation (5) with trivial 1-form w is just the Einstein metric equation. More-
over if a solution (g,w) of (5) has closed 1-form w, then w is locally exact so that
the metric g is locally conformal to an Einstein metric. Thus, Einstein-Weyl structure
is considered as a generalization of Einstein metric from the viewpoint of conformal
geometry on conformal structures together with the R* gauge action on 1-forms.

We assume now that M is compact.

From the results given by Gauduchon and Tod, as explained in § 1, by taking con-
formal change by a suitable positive function €2/ we can split the equation (5) into
the Killing dual field equation and the simplified Einstein-Weyl equation([22]);

6) VY™ =0 or V,-wj + iji =0
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-2 -2
@ Ricy + nTw ®w =Ag or R;; + nTw,- wj = Agi;

From (7) we have A = (1/n)(sy+ (n—2)/4|w|?) where s, is the scalar curvature
of g, so (7) reads

. s n—2 1
t)) (chg - Zg g) + — (w@w - ;|w|zg) =0

ExampLE. Let (M, g) be the Riemannian product of an Einstein (n—1)—manifold
(N, gn) and the unit circle S'. Since Ricy = Ricg, ® Rics: = (sn/(n—1))gn @0,
the scalar curvature is s, = sy. So

o 50, o di 1 . _1 1
©) Ric, ng_sNdlag(n(n—l)’ "n(n-1)’ n)

Let 6 be the angular coordinate on S'. Then df is a 1-form on M whose dual 8/96
is Killing on (M, g). We put w = adf so that

n-2(1 o, _a*(n-2) 1 11-n
(10) (;le g—w®w) = leag o

4 n’ n

and hence the equations (6) and (7) are fulfilled for the (g,w), provided a =

+(2/sn/y/(n —1)(n —2)). So the (M, g,w) gives an Einstein-Weyl manifold with

Killing dual 1-form w. This is, however, locally conformal to an Einstein manifold.

Lemma 1. Let (g,w) be an Einstein-Weyl structure with Killing dual 1-form w,
namely (g,w) be a solution of (6) and (7). Then,
()
n+2
(11) 8 — le|2
is constant which we denote by c and
(ii) the form w satisfies

(12) V'V = (5 - 4w) w.
n 4

Proof. (i) is shown by taking the divergence of the both hand sides of (8).

In fact the first term of the left hand side reduces to ((1/2) —(1/n))V;s, and the
second term to ((n—2)/4)(—(1/2) — (1/n))V,(lw|?) so that V;(sy — ((n+2)/4)|w|?)
=0.
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To prove (ii) we have
(13) V*Vw = Ric(w), ie., - V'V; w; = R; wi,

since the dual of w is Killing.
On the other hand

o1 n, o n—2
(14) Ric, = - (c+ §|w| )g———4—w®w.

So Ricy(w) = ((¢/n) = ((n — 4) /4 |w|*)w. O

ReEMARK 1. a. (i) is seen also in (31), [8], where the normalization is different
from ours.

b. The conformal scalar curvature s” = tr, RicP of a Weyl structure D is given
in terms of s, as s = s, — (n — 1)d*w — ((n — 1)(n — 2)/4)|w|? (see [19]) so that
for an Einstein-Weyl structure with coclosed 1-form w we have from Lemma 1

D n(n —4)

(15) sP=c- —-—4——|w|2

so that the formula (12) is rewritten

D
(16) V*Vw = fn—w

which appears in [20].
c. Whenn =4, c=sP If n>5, then ¢ <0 implies s <0

3. The case of c <0

We integrate over M the scalar product of V*Vw with w. Then we have from
(12)

a7 / |Vw|?dv, = E/ |w|?dv, — Sl/ |w|*dv,
M nJm 4 Ju

which gives (i), (ii) of the following theorem characterizing Einstein-Weyl structures
of ¢ <0.

Theorem 2. Let (g,w) be an Einstein-Weyl structure on M with Killing dual 1-
form w. Then we have
(i) ¥fn>5and c<O0, then w=0, that is, g is an Einstein metric of sy < 0.
(ii)) ifn=4and c<O0, then w =0, that is, g is Einstein and sy < 0, and
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(iii) if n = 4 and ¢ = 0, then the form w is parallel so that either g is Ricci flat
or M has bj(M) = 1 and the universal covering of (M,g) is isometric to the
Riemannian product S®xR!, where S® is a round 3-sphere of constant curvature
(/)

In addition,

(iii) if n =3 and 4c < —3|w|? but not identically equal, then w = 0, that is, g is an
Einstein metric of sq < 0 and

(iv) if n =3 and 4c = —3|w|?, then w is parallel so that either g is flat or by (M) =
1 and the universal covering of (M,g) is isometric to the Riemannian product
S? x R!, where S? is a round 2-sphere of constant curvature (1/4)|w|?.

ReEMARk 2.a. The statement (iii) characterizes almost completely compact Ein-
stein-Weyl 4-manifolds with coclosed 1-form and of ¢ = s = 0. See [8, Théoréme 3]
where we find a quite same statement.

b. From a, Remark 1 (i), (ii), (iv) in the theorem are easily shown from Propo-
sition 2.3 in [20], proved originally in [21] and [8], since the hypotheses on ¢ imply
sP<0orsP <o

Proof. = We will prove (iii), (iv) and (v). The proof of (iv) is similar to that of
(i) and (ii), since the right hand in (12) is non-positive.

To prove (iii) and (v) let (g,w) be an Einstein-Weyl structure with coclosed 1-
form w.

Suppose n =4 and ¢ =0 or n = 3 and 4c = —3|w|?. Then from (12)

(18) V*Vw =0

from which on a compact M the form w is parallel. For the case w = 0 g must be
Einstein, and the scalar curvature s, = 0 so that g is Ricci flat or flat according to
n=4orn=3.

If w # 0, then the Ricci tensor has eigenvalues 0 with multiplicity 1 and (1/2)|w|?
with multiplicity 3 for n = 4 (resp. (1/4)|w|?> = —(1/3)c with 2 for n = 3). So by
applying the splitting theorem on nonnegative Ricci curvature ([4]) we get the Rieman-
nian product statements in (iii) and (v).

Next we will show by (M) = 1 for the both cases. Actually V*Vw = 0 implies
that w is parallel and hence harmonic.

Let 6 be any harmonic 1-form. Then V*V@ + Ric(8) = 0. Since Ricy > 0, 6 is
parallel. Decompose @ into § = ¢+a w, a € R, where ¢ is orthogonal to w pointwise.
Applying again the Weitzenbock formula to ¢ we conclude that ¢ must vanish, since
Ric, is positive in the direction to ¢. U
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4. The case of ¢ > 0

Now we suppose that for a compact Einstein-Weyl n—manifold M with coclosed
I-form w the associated constant is positive.

We can then make use of the strong maximum principle applied to the Seiberg-
Witten monopole equation to get the sup-norm estimates on the 1-form w and the Ric-
ci tensor Ricg.

Since V*V(Jw|?) < 2(V*Vw,w), at a point where |w|? attains the maximum one
has from (12)

n_4|wl4.

1
(19) 0< 5V V(Iwf?) < Sl -

So, if |w|%(p) > 0, then ((n —4)/4)|w|?(p) < (¢/n). Thus we have the sup-norm
estimate.

Theorem 3. Let (M, g,w) be a compact Einstein-Weyl n—manifold with co-
closed 1-form w. If n > 5 and ¢ > 0, then

4
n(n — 4)

IA

2
(20) max |w] c

@1 mAz}x|Ricg|2 < ky, c?
where k,, is a universal positive constant depending only on n.

The sup-norm estimate (21) on Ric, is easily derived from (14) and (20).
Similar estimates on w and Ric, valid for all dimension n > 3 are available in

terms of the scalar curvature s,.
In fact, let (g,w) be an Einstein-Weyl structure with coclosed 1-form w. Then,

since V*Vw = Ric(w), we have from (8)

(22) V*Vw = (S—g _(n-Din-2) |w|2> w
n 4n

So, suppose maxps g > 0. Then

4
2
[ —
(23) max |w|* < - Dn=2) max sy

(24) max |Ric,|?

IN

Zn(mﬁx sg)2

where £, is a universal constant depending only on n.

From the uniform bound on the Ricci tensor in Theorem 3 we can investigate
the space of compact Einstein-Weyl n—manifolds satisfying certain geometric inequal-
ities(see for instance, [2], [15] and [1]).
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5. The Ricci positivity

That the Ricci tensor Ric, is positive definite for any Einstein-Weyl structure of
¢ > 0 follows from (8) and Theorem 3. Actually this will be stated in the following
way.

Theorem 4. Let (g,w) be an Einstein-Weyl structure with coclosed 1-form w
defined on a compact n—manifold M. If the constant ¢ > 0, then Ricy is positive
semi-definite.

In particular (i) if n = 3, 4, then Ricy is strictly positive definite, so that
m (M) < oo,

(ii) ifn>5 and w satisfies |w|*> < (4/(n(n—4)))c, then Ric, is strictly positive
definite so 71 (M) < oo, and

(iii) ifn > 5 and |w|? = (4/(n(n — 4)))c, then by(M) = 1 and the universal
covering of (M, g) is isometric to the Riemannian product of (N, h) and the straight
line (R, g1), where (N,h) is a simply connected Ricci positive Einstein manifold.

REMARK 3.a. In the case where n > 5 and |w|? < (4/(n(n — 4)))c, but not iden-
tically equal, by (M) = 0 is concluded.
b. H.K. Pak obtained in [17] b; = 1 for certain Einstein-Weyl manifolds.

Proof. We make use of the formula (14);

. 1 n, 9 n—2
(25) chg—g(c+ §le )g—Tw®w
It is seen that Ric, is positive definite where w vanishes.
So, suppose w # 0 at a point p.
Let ¢ be the tangent vector at p dual of w. Since w(§) = |w|?,

c n-—4

; _[(c_ 2 2
6) Ricy(6,6) = ( £ = 12 ol?) ol
For any tangent vector X orthogonal to &
. . 1 n, o
@7 Ricy(X,€) = 0 and Ricy(X, X) = — (c+ 2l ) 9(X, X)

from which it follows that when n = 3 or 4 Ric, is positive definite at p.

When n > 5 we make use of the estimate on |w|? obtained in Theorem 3 so that
from (26) Ricy(&,€) > 0, that is, Ricy is positive semidefinite.

(ii) is easily derived from (26). To see (iii) suppose |w|?> = (4/(n(n — 4)))c.
Then from (26) the Ricci tensor is degenerate in the direction to €. The Ricci cur-
vature splitting theorem ([4]) can be again applied so that the universal covering space
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of (M,g) is isometric to the Riemannian product of (N,h) and the straight line R!.
Since the zero eigenspace is one-dimension, (N, h) must be Einstein.
The proof of b; (M) =1 may be given, same as in the proof of Theorem 2. []

Finally we will remark on locally conformal Einstein, Einstein-Weyl manifolds.
By applying Theorems 2, 3 and 4 we get

Theorem 5. Let (M,g,w) be a compact Einstein-Weyl n—manifold (n > 4). If
M is locally conformal Einstein, but not globally conformal, then M has bj(M) = 1
and the universal covering space of (M, g) is globally conformal to N x R, where N
is an Einstein manifold of positive scalar curvature.

Proof. By a conformal change we assume that the closed 1-form w is coclosed.
So w is non-trivial 'and harmonic, because M is not globally conformal.

In addition, we have from Theorem 2 the associated constant ¢ > 0, if n > 5
(resp. ¢ > 0 if n = 4). So from Theorem 2 together with (iii), Theorem 4 we get
b1 (M) =1 and the proof is completed. Ol

6. Four-dimensional case

We now restrict ourselves to Einstein-Weyl 4-manifolds.

The following theorem tells us that 4-dimensional Einstein-Weyl structures are
closely related to the topological invariants, the Euler characteristic x(M), the signa-
ture 7(M), same as Einstein 4-manifolds ([9], [3]).

Theorem 6. Let (M,g,w) be a compact, oriented Einstein-Weyl 4-manifold.
Then the inequality holds;

1 £)2 1 » 3
— M) < + -
(28) e /M |W=|* + To5.2¢ vol(M) < x(M) 27'(M)
from which the following holds;
3
29) x(M) > Sjr(),

The equality holds here if and only if either (M, g,w) is conformally equivalent
to a Ricci flat, half conformally flat (i.e., (anti-)self-dual) 4-manifold with w = 0 or
bi(M) = 1 and the universal covering space (M,§,&) is conformally equivalent to
53 x R! with a parallel 1-form w = 2k dt, where S® is a 3-sphere of constant
curvature k.

We remark that Pedersen, Poon and Swann obtained in [18] a quite similar inte-
gral inequality from which they asserted (29).



576 M. ItOH

Proof.  For each oriented Riemannian 4-manifold the following holds ([31,[6]);

W2 4+ 2 -2
GO X% 5700 = g [ W+ g [ (5h = 3lRiey )
where W denotes the (anti-)self-dual Weyl conformal curvature.

Let (g,w) be an Einstein-Weyl structure on a 4-manifold M. Without loss of gen-
erality we may assume that (g,w) satisfies the Killing dual field equation and the sim-
plified Einstein-Weyl equation so that for the (g,w) s, = ¢+ (3/2)|w|?. Then

31 2 _ o2 4 3elwl? 9 14
(€3)) s, = c” + 3c|w| +Z|w|
and from (14)

(32) lecgl2 = — + c|w|2 —|w|4,

50, s2 — 3| Ricy|* = (1/4)c® + (3/4)c|lw|?. Thus, (30) reads as

3 1 1 1 3
+ = - +2 - -2 b 2
(33) x(M) 2T(M) 47r2/M|W | +487r2/M <4c +4c|w|>

It is easily seen that c [ M |w|? > 0 for any case of ¢ > 0 and ¢ < 0. Therefore

3 1
(4 XD £ 37(00) 2 5 [ W + ebvl()

and hence we obtain the Thorpe-Hitchin inequality (29).

Suppose x(M) = (3/2)|7(M)|. Then from the above inequality either W+ or
W~ vanishes and ¢ must be zero.

So, from (iii), Theorem 2 (M, g,w) must be either Ricci flat, half conformally flat
and with w = 0, or the universal covering of (M, g,w) is isometric to the Riemannian
product S® x R, ]

ReEMARK 4.a. From the Thorpe-Hitchin inequality we can claim like the Einstein
4-manifold case (see [18])that a connected sum of certain compact 4-manifolds carries
no Einstein-Weyl structures. For instance a connected sum of £ copies of the complex
projective plane P?(C) can admit no Einstein-Weyl structures, if £ > 4.

b. The inequality (28) imples that the constant |c| has the uniform upper bound,
just given by the topological invariants, provided the volume of g is unit;

(35) ? < 19272 (x(M) - g|‘r(M)|>
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Finally, we consider an Einstein-Weyl 4-manifold M whose metric is half-
conformally flat (i.e., self-dual; W~ = 0). We have actually

Theorem 7. Let M be a compact, oriented Einstein-Weyl 4-manifold of ¢ > 0. If
M is half-conformally flat, then M is conformal to S* or P%(C) with the canonical
conformal structure.

RemArk 5. From (ii), (iii)) of Theorem 2, a compact half-conformally flat,
Einstein-Weyl 4-manifold of ¢ < 0 is either conformal to a compact half-conformally
flat, Einstein 4-manifold of non-positive scalar curvature or has the universal covering
space which is conformal to S3 x R1.

Proof. Since M is Einstein-Weyl, M carries a half-conformally flat metric g with
a coclosed 1-form w. For this Einstein-Weyl structure (g,w) one has from (11) s, =
c+(3/2)|w|? > 0.

Because of ¢ > 0 we have from Theorem 4 7 (M) < oo so that the first co-
homology group H'(M) = 0. It follows then from [20, Cor. 3.3] that M has an E-
instein metric g; of positive scalar curvature in the conformal structure [g]. One can
apply Hitchin’s theorem (see [10] or [3, Theorem 13.30]). So, (M, g;) is isometric to
S* or P2(C) with their canonical metrics. O
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