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1. Introduction

A manifold M is assumed in this paper always to be connected and smooth and

have dimension n > 3.

A Weyl structure on a manifold M is a torsion free affine connection D preserv-

ing a conformal structure [g]. Namely, a torsion free affine connection D is called a

Weyl structure if Dg — ω ® g for a 1-form ω.

The definition of Weyl structure goes back to the work of H. Weyl. In his fa-

mous book ([23]) he introduced Weyl structure to unify gravitational fields and electro-

magnetic fields.

The notion of Einstein-Weyl structure is originated in the paper of N.Hitchin

([11]) in which he developed the 3-dimensional minitwistor theory associated to the

3-dimensional monopole theory and observed that the minitwistor theory can be gener-

alized over a 3-manifold endowed with a Weyl structure obeying a certain Ricci tensor

condition, namely an Einstein-Weyl structure. Refer also to [12].

The exact definition of Einstein-Weyl structure is the following.

A Weyl structure (-D, [g]) is Einstein-Weyl if the symmetrized Ricci tensor is pro-

portional to a metric g representing [#];

(1) RicD(X,Y] + RicD(Y,X) = Λ g(X,Y), Λ G C°°(M)

Thus an Einstein-Weyl structure is a generalization of Einstein metric in terms of

affine connection.

The Levi-Civita connection V of an Einstein metric g indeed gives an Einstein-

Weyl structure (V, [g]) with trivial ω.

Einstein-Weyl structures enjoy a conformal invariance as a significant feature.

Gauduchon showed that after applying a suitable conformal factor every Einstein-Weyl

structure on a compact manifold M is conformally equivalent to a standard structure,

that is, one having coclosed 1-form ω\ d*ω = 0 ([7], [22]). As K.P. Tod claimed, this

coclosed 1-form turns out to be the dual of a Killing field ([22]).
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We confirm ourselves in this paper instead of the full Einstein-Weyl equation to

the Killing dual field equation together with the simplified Einstein-Weyl equation to

investigate Einstein-Weyl geometry over compact manifolds.

For each compact Einstein-Weyl n—manifold (n > 3) with coclosed 1-form ω we

can exhibit that the scalar sg — ((n + 2)/4)|α;|2 is constant (sg is the scalar curvature

of g) and observe that the ω satisfies a non-linear elliptic equation;

(c n-4 ,
(2) V*Vu;=: — μ

\n 4

where c — sg — ((n + 2)/4)|cj|2. This associated constant c behaves like the scalar

curvature of an Einstein metric.

Notice that

(3)

where SD = trgRίcD is the scalar curvature of D with respect to g whose sign is

conformal invariant.

The idea of this paper is to make crucial use of the associated constant c together

with the strong maximum principle on the coclosed form ω.

The sign of the associated constant c causes difference in geometrical aspec-

t of compact Einstein- Weyl manifolds. Actually, as will be shown in § 3 compact

n— dimensional (n > 4) Einstein- Weyl structures of c < 0 and with coclosed 1-form

are exhausted by Einstein manifolds of sg < 0.

For Einstein- Weyl manifolds M of c > 0 the situation is quite similar to the

Seiberg-Witten monopole equations in which the strong maximum principle was ap-

plied([14], [13], [5]). We obtain the sup-norm estimates as

Key Proposition (Theorem 3 in § 5). Let M be a compact Einsteίn-Weyl n-

manifold (n > 5) with coclosed form ω. If the associated constant c > 0, then

(4) maxla;!2 < — - — c and max|.RicJ2 < knc
2

M n(n — 4) M

In addition, as shown in § 5, any compact Einstein-Weyl n—manifold M with co-

closed ω and of c > 0 has positive (semi-)definite Ricci tensor; Ricg > 0 and the first

Betti number 61 (M) < 1. Furthermore for such an M having b\ (M) = 1 the universal

covering M splits into M = N x R1 for an Einstein manifold N of positive scalar

curvature.

Remark that conversely any Einstein manifold TV of positive scalar curvature

yields an Einstein-Weyl structure on the product N x Sl, which is locally conformal to

Einstein manifold. Additionally we can characterize compact Einstein-Weyl manifolds

which are locally conformal Einstein (see Theorem 5, § 5).



COMPACT EINSTEIN- WEYL MANIFOLDS 569

Another non-trivial example of Einstein- Weyl structure is constructed over the to-
tal space of circle bundle over a compact Einstein-Kahler manifold([19]). Recently it
was shown by F. Narita([16]) that a Sasakian manifold of constant φ— sectional cur-
vature k (> 1) carries an Einstein- Weyl structure. These manifolds are endowed with
coclosed 1-form and have finite fundamental group. More nontrivial examples are con-
structed by using the connected sum argument in [20].

In the 4-dimensional case the square-norm of the associated constant c has the
upper bound represented by χ(M) - (3/2)|τ(M)|, the 4— dim topological invariant, so
that we can get the Thorpe-Hitchin inequality χ(M) > (3/2)|τ(M)| for any compact
Einstein- Weyl 4-manifold, which was already shown in [18].

Although not a few of conclusions of our theorems seem to have quite similar for-
m to those given in [22], [20], [18] and [8], the method exploited in the present paper
may have an advantage in formulating Einstein- Weyl geometry from the viewpoint of
Riemannian geometry.

2. The Einstein- Weyl equation

Let (D, [g]) be an Einstein- Weyl structure on a manifold M.
By using the Levi-Civita connection V of a metric g representing the confor-

mal structure [g] the affine connection D is then written as D = V + a for an
End(TM)- valued 1-form α so that we can rewrite (1) as

(5) Ricg + ( Vsyrnω +

where Vsymω(X,Y) = (Vxω)(Y) + (Vγω)(X) (see [19] for the details).
In the sequel we call a pair (g,ω) instead of an affine connection D an Einstein-

Weyl structure when (g,ω) is a solution of (5).
Since from the equation (1) the affine connection D does not depend on confor-

mal change of a metric, the Einstein- Weyl equation (5) is invariant under the con-
formal changes. More precisely, if (g,ω) is a solution of (5), so is (</,uJ), where
g = e 2 f g , ω = ω + 2cjf , / € C°°(M).

The equation (5) with trivial 1-form ω is just the Einstein metric equation. More-
over if a solution (g,ω) of (5) has closed 1-form ω, then ω is locally exact so that
the metric g is locally conformal to an Einstein metric. Thus, Einstein- Weyl structure
is considered as a generalization of Einstein metric from the viewpoint of conformal
geometry on conformal structures together with the R* gauge action on 1 -forms.

We assume now that M is compact.
From the results given by Gauduchon and Tod, as explained in § 1, by taking con-

formal change by a suitable positive function e2f we can split the equation (5) into
the Killing dual field equation and the simplified Einstein- Weyl equation([22]);

(6) Vsyrnω = 0 or V c^ + Vj u;. = 0
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(7) RiCg H — ω <8> ω = kg or Rij -\ — ωι ωj = Λ^

From (7) we have Λ = (l/n)(sg + (n-2)/4\ω\2) where sg is the scalar curvature

of #, so (7) reads

(8) (Ricg -?1 g} +
n

n — 2 / 1, .9 λ
—— (ω®ω- -\ω\2g) = 0

4 \ n J

EXAMPLE. Let (M,g) be the Riemannian product of an Einstein (n—1)—manifold

(N,gχ) and the unit circle S1. Since jRic5 = Ric9N Θ Λicsi = (SN/(Π — I))#ΛΓ θ 0,

the scalar curvature is s^ = SΛΓ So

(9) Λic^ -0 = L__JΛ
-1)' n)

y — "JV '̂ "̂'t) I / ^ \ J 5 /
n \n(n — 1) n(n

Let β be the angular coordinate on 51. Then dθ is a 1-form on M whose dual d/dθ

is Killing on (M,#). We put ω = adθ so that

. | α 2 (n-2). . /I 1 1-n
00)

and hence the equations (6) and (7) are fulfilled for the (0,ω), provided α =
(n — l)(n — 2)). So the (M,g,ω) gives an Einstein- Weyl manifold with

Killing dual 1-form ω. This is, however, locally conformal to an Einstein manifold.

Lemma 1. Let (</,u;) be an Einstein-Weyl structure with Killing dual l-form ω,

namely (#, ω) be a solution of (6) and (7). Then,

(i)

is constant which we denote by c and

(11) the form ω satisfies

(12) V*Vu;= f--
n 4

Proof, (i) is shown by taking the divergence of the both hand sides of (8).

In fact the first term of the left hand side reduces to ((1/2) — (l/n))VjS9 and the

second term to ((n-2)/4)(-(l/2) - (l/n))V j(|α;|2) so that Vj(sg - ((n + 2)/4)|u;|2)
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To prove (ii) we have

(13) V*Vcj = Ric(ω), i.e., - V*V; ω, = R} ω<,

since the dual of ω is Killing.
On the other hand

= - (c + ̂ M2) 9 ~(14)

So Ricg(ω) = ((c/n) - ((n - 4)/4)|α;|2)α;. D

REMARK 1. a. (i) is seen also in (31), [8], where the normalization is different
from ours.

b. The conformal scalar curvature SD — trgRicD of a Weyl structure D is given
in terms of sg as SD = sg - (n - l)d*ω - ((n - l)(n - 2)/4)|u;|2 (see [19]) so that
for an Einstein- Weyl structure with coclosed 1-form ω we have from Lemma 1

(15) S- = c - f

so that the formula (12) is rewritten

SD

(16) V*Vω = — ω
n

which appears in [20].
c. When n = 4, c = SD. If n > 5, then c < 0 implies SD < 0.

3. The case of c < 0

We integrate over M the scalar product of V*Vω with ω. Then we have from
(12)

(17) / \Vω\*dvg = - ί \ω\2dvg - -̂̂  / \ω\4dυg
JM n JM 4 JM

which gives (i), (ii) of the following theorem characterizing Einstein- Weyl structures
of c < 0.

Theorem 2. Let (g,ω) be an Einstein-Weyl structure on M with Killing dual 1-
form ω. Then we have
(i) if n > 5 and c < 0, then ω = 0, that is, g is an Einstein metric of sg < 0.
(ii) if n = 4 and c < 0, then ω = 0, that is, g is Einstein and sg < 0, and
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(iii) if n = 4 and c — 0, f/zen f/ze /0rw ω is parallel so that either g is Ricci flat

or M has bι (M) = 1 and the universal covering of (M, g) is isometric to the

Riemannian product 53xR1, where S3 is a round 3-sphere of constant curvature

(1/4)M2.
In addition,

(iii) if n — 3 and 4c < -3|α;|2 but not identically equal, then ω — 0, that is, g is an

Einstein metric of sg < 0 and

(iv) i f n = 3 and 4c = —3|u;|2, then ω is parallel so that either g is flat or ί>ι(M) =

1 and the universal covering of (M, g) is isometric to the Riemannian product

S2 x R1, where S2 is a round 2-sphere of constant curvature (l/4)|ω|2.

REMARK 2.a. The statement (iii) characterizes almost completely compact Ein-

stein-Weyl 4-manifolds with coclosed 1-form and of c = s° — 0. See [8, Theoreme 3]

where we find a quite same statement.

b. From a, Remark 1 (i), (ii), (iv) in the theorem are easily shown from Propo-

sition 2.3 in [20], proved originally in [21] and [8], since the hypotheses on c imply

SD < 0 or SD < 0.

Proof. We will prove (iii), (iv) and (v). The proof of (iv) is similar to that of

(i) and (ii), since the right hand in (12) is non-positive.

To prove (iii) and (v) let (g,ω) be an Einstein-Weyl structure with coclosed 1-

form ω.

Suppose n = 4 and c = 0 or n = 3 and 4c = —3|α;|2. Then from (12)

(18) V*Vω = 0

from which on a compact M the form ω is parallel. For the case ω = 0 g must be

Einstein, and the scalar curvature sg = 0 so that g is Ricci flat or flat according to

n = 4 or n = 3.
If ω Φ 0, then the Ricci tensor has eigenvalues 0 with multiplicity 1 and (l/2)|cj|2

with multiplicity 3 for n = 4 (resp. (l/4)|α;|2 = -(l/3)c with 2 for n = 3). So by

applying the splitting theorem on nonnegative Ricci curvature ([4]) we get the Rieman-

nian product statements in (iii) and (v).

Next we will show b\(M) = 1 for the both cases. Actually V*Vα; = 0 implies

that ω is parallel and hence harmonic.

Let θ be any harmonic 1-form. Then V*V0 + Ric(θ) = 0. Since Ricg > 0, θ is

parallel. Decompose θ into θ = φ + a ω, α G R , where φ is orthogonal to ω pointwise.

Applying again the Weitzenbock formula to φ we conclude that φ must vanish, since

is positive in the direction to φ. D
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4. The case of c > 0

Now we suppose that for a compact Einstein-Weyl n—manifold M with coclosed
1-form ω the associated constant is positive.

We can then make use of the strong maximum principle applied to the Seiberg-
Witten monopole equation to get the sup-norm estimates on the 1-form ω and the Ric-

ci tensor Rίcg.
Since V*V(|α;|2) < 2(V*Vu;,u;), at a point where \ω\2 attains the maximum one

has from (12)

(19) o < Vv(μ|2) < -μ|2 - ~μ|4.
Z 7 7 / 4

So, if μ|2(p) > 0, then ((n - 4)/4)|ω|2(p) < (c/n). Thus we have the sup-norm
estimate.

Theorem3. Let (M,g,ω) be a compact Einstein-Weyl n—manifold with co-
closed 1-form ω. Ifn>5 and c > 0, then

(20) maxμi2 <.J.lΛ'.^Y. WV ^ f A\

M ' ' - n(n-4)

(21) m&x\RiCg\2 < kn c2

M

where kn is a universal positive constant depending only on n.

The sup-norm estimate (21) on Ricg is easily derived from (14) and (20).
Similar estimates on ω and Rίcg valid for all dimension n > 3 are available in

terms of the scalar curvature sg.
In fact, let (g,ω) be an Einstein-Weyl structure with coclosed 1-form ω. Then,

since V*Vu; = Ric(ω), we have from (8)

(22)

So, suppose maxM sg > 0. Then

(23) max μ
M '

2

(24) rnaxlΛzcJ2 < en(m&xsg)
2

M ' »* ~ ^ M

where tn is a universal constant depending only on n.
From the uniform bound on the Ricci tensor in Theorem 3 we can investigate

the space of compact Einstein-Weyl n—manifolds satisfying certain geometric inequal-

ities(see for instance, [2], [15] and [1]).
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5. The Ricci positivity

That the Ricci tensor Ricg is positive definite for any Einstein- Weyl structure of

c > 0 follows from (8) and Theorem 3. Actually this will be stated in the following

way.

Theorem 4. Let (<7,cj) be an Einstein-Weyl structure with coclosed l-form ω

defined on a compact n— manifold M. If the constant c > 0, then Ricg is positive

semi-definite.
In particular (i) if n — 3, 4, then Rίcg is strictly positive definite, so that

7Γι(M) < 00,

(ii) if n > 5 and ω satisfies \ω\2 < (4/(n(n — 4)))c, then Ricg is strictly positive

definite so πι(M) < oo, and
(iii) if n > 5 and \ω\2 — (4/(n(n — 4)))c, then b\(M) = 1 and the universal

covering of (M, g) is isometric to the Riemannian product of (N, h) and the straight

line (R1,^), where (N,h) is a simply connected Ricci positive Einstein manifold.

REMARK 3.a. In the case where n > 5 and \ω\2 < (4/(n(n - 4)))c, but not iden-

tically equal, b\ (M) = 0 is concluded.

b. H.K. Pak obtained in [17] 61 = 1 for certain Einstein-Weyl manifolds.

Proof. We make use of the formula (14);

(25) Ric9 = -
Tl

It is seen that Ricg is positive definite where ω vanishes.

So, suppose ω φ 0 at a point p.

Let ξ be the tangent vector at p dual of ω. Since ω(ξ) = \ω\2,

(26)

For any tangent vector X orthogonal to ξ

(27) Ricg(X,ξ) = 0 and Ricg(X,X) = - (c+ ^\ω\2} g(X,X)
n \ 2 /

from which it follows that when n = 3 or 4 Ricg is positive definite at p.

When n > 5 we make use of the estimate on \ω\2 obtained in Theorem 3 so that

from (26) Ricg(ξ,ξ) > 0, that is, Ricg is positive semidefinite.

(ii) is easily derived from (26). To see (iii) suppose \ω\2 = (4/(n(n — 4)))c.

Then from (26) the Ricci tensor is degenerate in the direction to ξ. The Ricci cur-

vature splitting theorem ([4]) can be again applied so that the universal covering space
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of (M,#) is isometric to the Riemannian product of (TV, ft) and the straight line R1.
Since the zero eigenspace is one-dimension, (TV, ft) must be Einstein.

The proof of b\ (M) — 1 may be given, same as in the proof of Theorem 2. Π

Finally we will remark on locally conformal Einstein, Einstein-Weyl manifolds.

By applying Theorems 2, 3 and 4 we get

Theorem 5. Let (M,g,ω) be a compact Einstein-Weyl n—manifold (n > 4). //

M is locally conformal Einstein, but not globally conformal, then M has b\(M) — 1

and the universal covering space of (M,g) is globally conformal to N x R1, where N

is an Einstein manifold of positive scalar curvature.

Proof. By a conformal change we assume that the closed 1-form ω is coclosed.

So ω is non-trivial and harmonic, because M is not globally conformal.

In addition, we have from Theorem 2 the associated constant c > 0, if n > 5

(resp. c > 0 if n = 4). So from Theorem 2 together with (iii), Theorem 4 we get

bι (M) — 1 and the proof is completed. D

6. Four-dimensional case

We now restrict ourselves to Einstein-Weyl 4-manifolds.

The following theorem tells us that 4-dimensional Einstein-Weyl structures are

closely related to the topological invariants, the Euler characteristic χ(M), the signa-

ture τ(M), same as Einstein 4-manifolds ([9], [3]).

Theorem 6. Let (M,g,ω) be a compact, oriented Einstein-Weyl ^-manifold.

Then the inequality holds',

(28) JL ̂  |W±|2 + -JL-c\0ι(M) < X(M) ± |r(M)

from which the following holds',

(29) χ(M) > ||r(M)|,

The equality holds here if and only if either (M,g,ω) is conformally equivalent

to a Ricci flat, half conformally flat (i.e., (anti-)s elf-dual) ^-manifold with ω = 0 or

bι(M) = I and the universal covering space (M,</,ώ) is conformally equivalent to

S3 x R1 with a parallel l-form ω = eλ\fk dt, where S3 is a 3-sphere of constant

curvature k.

We remark that Pedersen, Poon and Swann obtained in [18] a quite similar inte-

gral inequality from which they asserted (29).
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Proof. For each oriented Riemannian 4-manifold the following holds ([3],[6]);

2 4π2

where W^ denotes the (anti-)self-dual Weyl conformal curvature.
Let (g,ω) be an Einstein-Weyl structure on a 4-manifold M. Without loss of gen-

erality we may assume that (g,ω) satisfies the Killing dual field equation and the sim-
plified Einstein-Weyl equation so that for the (<7,ω) sg = c+ (3/2)|u;|2. Then

2 _ 2 I ,2 9ι .4

and from (14)

02) \Ric \2 = - + 3cμι2 + -μι4

4 4 4

so, s2 - 3\RίCg\2 = (l/4)c2 + (3/4)c|α;|2. Thus, (30) reads as

(33)

It is easily seen that c/M \ω\2 > 0 for any case of c > 0 and c < 0. Therefore

(34) χ(M) ± |r(M) >

and hence we obtain the Thorpe-Hitchin inequality (29).
Suppose χ(M) = (3/2)|r(M)|. Then from the above inequality either W+ or

W~ vanishes and c must be zero.
So, from (iii), Theorem 2 (M, #, ω) must be either Ricci flat, half conformally flat

and with ω = 0, or the universal covering of (M, g, ω) is isometric to the Riemannian

product S3 x R1. D

REMARK 4.a. From the Thorpe-Hitchin inequality we can claim like the Einstein
4-manifold case (see [18])that a connected sum of certain compact 4-manifolds carries

no Einstein- Weyl structures. For instance a connected sum of ί copies of the complex
projective plane P2(C) can admit no Einstein- Weyl structures, if ί > 4.

b. The inequality (28) imples that the constant |c| has the uniform upper bound,
just given by the topological invariants, provided the volume of g is unit;

(35) c2 < 192π2 (χ(M) - ||
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Finally, we consider an Einstein-Weyl 4-manifold M whose metric is half-

conformally flat (i.e., self-dual; W~ = 0). We have actually

Theorem 7. Let M be a compact, oriented Einstein-Weyl ^-manifold of c > 0. If

M is half-conformally flat, then M is conformal to 54 or P2(C) with the canonical
conformal structure.

REMARK 5. From (ii), (iii) of Theorem 2, a compact half-conformally flat,
Einstein-Weyl 4-manifold of c < 0 is either conformal to a compact half-conformally
flat, Einstein 4-manifold of non-positive scalar curvature or has the universal covering
space which is conformal to S3 x R1.

Proof. Since M is Einstein-Weyl, M carries a half-conformally flat metric g with
a coclosed 1-form ω. For this Einstein-Weyl structure (g,ω) one has from (11) sg =

c + (3/2)|α;|2>0.
Because of c > 0 we have from Theorem 4 πι(M) < oo so that the first co-

homology group Hl(M) = 0. It follows then from [20, Cor. 3.3] that M has an E-
instein metric g\ of positive scalar curvature in the conformal structure [g]. One can
apply Hitchin's theorem (see [10] or [3, Theorem 13.30]). So, (M,0ι) is isometric to
54 or P2(C) with their canonical metrics. Π

References

[1] K. Akutagawa: Yamabe metrics of positive scalar curvature and conformally flat manifolds,
Diff. Geom. Appl. 4 (1994), 239-258.

[2] M.T. Anderson: Ricci curvature bounds and Einstein metrics on compact manifolds, J. Amer.
Math. Soc. 2 (1989), 455-490.

[3] A.L. Besse: Einstein manifolds, Ergeb. Math. Grenzgeb. 10, Springer, Berlin, 1987.
[4] J. Cheeger and D. Gromoll: The splitting theorem for manifolds of nonnegative Ricci curva-

ture, J. Diff. Geom. 6 (1971), 119-128.
[5] S.K. Donaldson: The Seiberg-Witten equations and 4-manifold topology, Bull. Amer. Math.

Soc. 33 (1996), 45-70.
[6] T. Friedrich: Self-duality of Riemannian manifolds and connections, in Self-dual Riemannί-

an geometry and instantons ed. by T. Friedrich, Teubner-Texte Math. 34, 56-104, Leipzig,
Teubner, 1981.

[7] P. Gauduchon: La l-forme de torsion d'une variete hermitienne compacte, Math. Ann. 267
(1984), 495-518.

[8] P. Gauduchon: Structures de Weyl-Eΐnstein, espaces de twisteurs et varietes de type S1 x S3,
J. reine angew. Math. 469 (1995), 1-50.

[9] N.J. Hitchin: Compact four-dimensional Einstein manifolds, J. Diff. Geom. 9 (1974), 435-
441.

[10] N.J. Hitchin: Kάhlerian twistor spaces, Proc. London Math. Soc. 43 (1981), 133-150.
[11] N.J. Hitchin: Monopoles and geodesies, Comm. Math. Phys. 83 (1982), 579-602.
[12] N.J. Hitchin: Complex manifolds and Einstein equations, in Twistor geometry and non-linear

systems, Lect. Notes in Math. 970, 79-99, Springer, Berlin, 1982.



578 M. ITOH

[13] J. Jost, X. Peng and G. Wang: Variational aspects of the Seiberg-Witten functional, preprint.
[14] P. Kronheimer and T. Mrowka: The genus of embedded surfaces in the projective plane,

Math. Res. Letters, 1 (1994), 797-808.
[15] H. Nakajima: Hausdorff convergence of Einstein ^-manifolds, J. Faculty Sci. Univ. Tokyo,

35 (1988), 411^24.
[16] F. Narita: Einstein-Weyl structures on almost contact metric manifolds, Tsukuba J. Math, to

appear.
[17] H.K. Pak: Canonical flows of Einstein-Weyl manifolds, preprint, 1996.
[18] H. Pedersen, Y.S. Poon and A. Swann: The Hitchin-Thorpe inequality for Einstein-Weyl man-

ifolds, Bull. London Math. Soc. 26 (1994), 191-194.
[19] H. Pedersen and A. Swann: Riemannian submersions, Four-manifolds and Einstein-Weyl ge-

ometry, Proc. London Math. Soc. 66 (1993), 381-399.
[20] H. Pedersen and A. Swann: Einstein-Weyl geometry, the Each tensor and conformal scalar

curvature, J. reine angew. Math. 441 (1993), 99-113.
[21] H. Pedersen and K.P. Tod: Three-dimensional Einstein-Weyl geometry, Adv. Math. 97 (1993),

74-109.
[22] K.P. Tod: Compact ^-dimensional Einstein-Weyl structures, J. London Math. Soc. 45 (1992),

341-351.
[23] H. Weyl: Raum Zeit Materie, J. Springer, 1923.

Institute of mathematics
University of Tsukuba
305-8571, Tsukuba, JAPAN
e-mail: itohm@sakura.cc.tsukuba.ac.jp




