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1. Introduction

Rings whose cyclic modules are continuous have been studied by Jain and
Mohamed [9]. These rings are semiperfect rings. Semiperfect rings whose cyclics
are m-injective (extending) are studied by Goel and Jain [6] (Vanaja [14]). We call
a module an FE module if every factor module is extending. It was proved in [14]
that for a semiperfect ring R, Rg is FE if and only if Ry is extending and every
factor module of R/Soc R is w-injective. One can easily extend the above result to
modules M which are projective and semiperfect in o[M]. In this case M is a direct
sum of local modules. We extend the above result for any module M which is a
direct sum of local modules.

The proof in the case when M is semiperfect and projective in o[M] heavily
depends on the fact that M is a direct sum of locals with local endomorphism ring
and this decomposition of M complements direct summands. Some sufficient con-
ditions for a decomposition of a module M as a direct sum of locals to complement
summands are proved in Section 4.

In Section 5 some important properties of an FE module which is a direct sum
of two local modules are obtained. In Section 6 FE modules which are direct sum
of local modules are considered. We do not assume that M is projective in o[M]
or that the endomorphism ring of these local modules are local. We show that
if M = @,c; M; is an FE module, where each M; is a local module, then this
decomposition complements summands and any factor module of M is isomorphic
to @;c; M;/X;, for some X; C M; (6.2). Our main theorem (6.3) is as follows.

Let M = ®i€ ; M;, where each M; is a local module. Then the following are
equivalent:
(a) G}iel M,;/X; is uniform-extending, for all X; C M;;
(b) @;c; Mi/X; is extending, for all X; C M;;
(c) every factor module of M is extending;
(d) every factor module of M is uniform-extending;
() M is uniform-extending and @, ;(M;/Soc M;)/Y; is m-injective, for all Y; C
Mi /SOC Mz,



382 A.O. AL-ATTAS and N. VANAJA

(f) M is extending and every factor module of M/Soc M is w-injective.

Suppose M is a direct sum of local modules. We prove that M? is FE if and
only if M™ is FE, for all n € N. Also M®™ is FE if and only if M¥) if FE, for
any set K. If M is a self-generator also, then M is SFE (i.e. every subfactor module
of M is extending) if and only if M is SE (i.e. every submodule of M is extending)
and FE. Also, a self-projective self-generator modules is SFE if and only if M is
FE.

We also study Fr modules M (i.e. with every factor module of M is m-injective),
where M is either a direct sum of locals, of M is projective in o[M] and is a direct
sum of indecomposables.

2. Definitions and notation

All rings considered are associative rings with identity and all modules consid-
ered are right unitary modules. A module M is called extending (uniform extending)
if every (uniform) submodule is essential in a summand of M. An extending module
M is called w-injective if whenever M, M5 are summands of M with M; N My = 0,
then M; @ M, is a summand of M. An extending module is called continuous if
any submodule isomorphic to a summand is a summand.

Let N be a submodule of M. By N < M we mean that N is an essential
submodule of M and by N <« M we mean that N is small submodule of M. If
every proper submodule of M is <« M, then M is called a hollow module. We shall
denote the Jacobson radical and the socle of M by Rad M, Soc M respectively. For
any module M we define Top M = M/Rad M and M = M/Soc M.

By a subfactor of M we mean a submodule of a factor module of M or equiva-
lently, a factor of a submodule of M. o[M] denotes the full subcategory of Mod-R
whose objects are submodules of M-generated modules. If N € o[M] we denote
by N the injective hull of N in o[M]. We call a module N in o[M] semiperfect
(f-semiperfect) in o[M] if for every (finitely generated) submodule K of N, N/K
has a projective cover in o[M].

A module is called uniserial if its submodules are linearly ordered by inclusion.
If a module M is a direct sum of uniserial modules, then we say M is serial A
module M is called Aomo-uniserial if for any non-zero finitely generated submodules
K, L of M, the factor modules K/Rad K and L/Rad L are simple and isomorphic.
A module M is called homo-serial if it is a direct sum of homo-uniserial modules.
A submodule N of M is said to be a finitely contained submodule (denoted briefly
by f.c. submodule) with respect to the decomposition M = @, ; M; of M if N is
contained in @, M, where K is a finite subset of I.

For a module M we define the following.
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FUE every factor of M is uniform extending

FE every factor of M is extending

Fr every factor of M is m-injective

FI every factor of M is injective in o[M]
SFE every subfactor of M is extending
SFrn every subfactor of M is m-injective
SE every submodule of M is extending
S every submodule of M is w-injective

Finally we recall the definition of a quasi-discrete module, which is the dual
notion of a m-injective module. A module M is called lifting if for every submodule
A of M, there is a decomposition M = M;® M, such that M; C A and ANM, < M.
A module M is called quasi-discrete if it is lifting and if M; and M, are summands
of M with M = M, + Ms, then M; N M, is a summand of M.

For other standard definitions are notations we refer [4], Mohamed and Miiller
[12] and Wisbauer [15].

3. Preliminaries

We study here conditions under which a module is a direct sum of local modules
and the conditions under which every submodule X of a module M = @ ; M;
has a decomposition X = @?:1 X;, where each X; C M;.

Lemma 3.1. Let M be a local module such that M is FUE. Then M is unis-
erial. Hence any FUE module M which is semiperfect and projective in o[M] is
serial.

Proof.  For any submodule X of M, M/X is indecomposable and uniform
extending. Hence Soc(M/X) is either zero or simple. By Wisbauer [ 15, 55.1] M is
uniserial. 0O

Proposition 3.2. Let M be a finitely generated self-projective extending module
such that M is an FE module. Suppose M satisfies one of the following conditions:
(1) M is continuous;
(i) M is projective in o[M];
(iili) M is f-semiperfect in o[M],
Then M is serial.

Proof. By [4, 9.3 (ii)] M is a direct sum of uniform modules and by Dung
[3, proposition 13] M is a direct sum of uniform modules. Let M = @?:1 M;,
where each M; is uniform. Without loss of generality we may assume that each M;
is non-simple.
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(i) Suppose M is continuous. Then End M; is local as the endomorphism
ring of an indecomposable continuous module is local. Hence each M; is a local
module. By 3.1 each M; is uniserial and therefore M is serial.

(i1) Suppose M is prOJectlve in O'[M] Then M = D, M;. Since M; is
uniform End M; is local. M; is local as M; is projective in o[M]. Now M; is
isomorphic to a summand of M. By the previous case M, is serial. Therefore M;
is uniserial.

(iii) Suppose M is f-semiperfect in o[M]. M/RadM is FE, as SocM C
Rad M, and hence is a direct sum of uniform modules [4, 9.3 (ii))]. As M/Rad M
is regular it is semisimple. Hence M is semiperfect. By 3.1 M is serial. O

For evsy reference we define the following.

DEerFINITION 3.3. Let M be a finitely generated self-projective module. We say
M is a module of type A if M satisfies one of the following conditions:

(i) M is continuous;

(i) M is projective in o[M];

(iii) M is f-semiperfect in o[M],

Let M = @,.; M; be an R-module. The following gives a sufficient condition
for every X C M to have decomposition X = @iel X;, X; C M;, where I is a finite
set.

Lemma 3.4. Let M = ", M; be such that Hom(A, B) = 0, where A and
B are subfactors of M; and M; respectively, 1 < i, j < k andi # j. If X C M,
then X = @F_, X;, X; c M,.

Proof. LetX;=XNM,Y = @le X;and n: M — M/Y be the natural
map. For any K C M, let n(K) = K*. Then M* = @le M} and X* N M} =0,
fori=1,...,k. The proof is by induction on k.

Let p; : M* — M} be the projection map for ¢ = 1,2,...,k. Suppose k = 2.
As X*N M3 =0, g = p |x~ is a monomorphism. But then the map peg~! from
g(X™*) to My is the zero map. Hence py is zero on X*. Similarly, p; is zero on
X*. Hence X = X; @ X,. Suppose the assertion is true for n < k. Suppose
M =@ M. Let ¢y = @ ,p;. Then gy is one-one on X*. By induction
hypothe51s q1(X™) @1_ A;, where A; C M}, i = 2,...,k. By assumption the
map plq1 is zero on each A; and hence is the zero map. This implies that p; is
zero on X *. Similarly, p; is zero on X*, for any ¢ = 2,3,...,k. Therefore X* =0

and X = @®F_ X,. O

The above Lemma was extended to any arbitrary set I in [13, 2.3] which we
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state below.

Proposition 3.5. Let M = @, ., M;. Then the following are equivalent:

(a) for distinct k and j in I, no two non-zero subfactors of My, and M, are iso-
morphic;

(b) for distinct k and j in I, Hom(Ay, A;) =0, where A, and A; are subfactors
of My, and M respectively;

(c) fordistinct k and j in I, o[My] N o[M;] = 0;

(d) forany k€1, o[My] N o[M*] =0, where M* = @, 1\ (1) Mi;

(e) for any N € o[M] there exists a uniqgue N; € o[M;], ¢ € I, such that N =

@iel N;.

DEFINITION 3.6. Let M be an R-module. We say o[M] = @,; o[M;] if M =
€;cr M; and any one (and hence all) of the equivalent conditions in Proposition
3.5 is satisfied.

Suppose o[M] = @,;0[M;]. If X C M, then X = @, ; X;, where each
X; € M;. X is extending (w-injective) if and only if each X; is extending (-
injective). Thus M is FE (Fr) if and only if each M; is FE (Fr). Whenever we
want to prove some result regarding a module M we try to get a decomposition of
o[M] and use the above observations.

4. Extending property of a module with a semisimple summand

We are interested in the extending property of a direct sum of local modules
where we do not assume that the endomorphism rings of the local modules are
local. It has been proved in [12, 2.22] that if M is 7-injective and is a direct sum
of uniform modules, then this decomposition of M complements summands. We
prove here a similar result. Suppose M = N @ K, where N = @,.; N;, each N; is
a hollow module and K = @ e Si» each S is simple and N-injective. We show
that (i) if N is uniform extending, then M is uniform extending, and (ii) if N is
m-injective, then M is extending and M = @,c; N; ® B, ; S; complements direct
summands.

We first state some known results regarding extending and m-injectivity of mod-
ules which will be used often in the sequel.

The following Result is Theorem 2.13 in Mohamed and Miiller [12] which gives
a necessary and sufficient condition for a direct sum of w-injective modules to be
m-injective.

Resurt 4.1. Let {M; : i € I} be a family of w-injective modules. Then the

following are equivalent:
(a) M =@, M; is m-injective;
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(b) @jez\{i} Mj is M;-injective, for all ; € I.
Using 4.1 and Theorem 12 in Harada and Oshiro [7] we get the following.

Corollary 4.2. Suppose M = @, ; M; is uniform extending, where each M;
is uniform, End M; is local and M; is M;-injective for i # j, 1,5 € I. Then M is
m-injective.

Kamal and Miiller have proved the following result in [11, Lemma 4].

ResuLT 4.3. Let M, N be R-modules, ¢ : E(M) — E(N) an arbitrary ho-
momorphism and X = {z € M : ¢(z) € N}. If there exists a homomorphism
Y:Y - N, X CY C M, such that ¢(z) = ¢(z) for all z € X, then X =Y.
Moreover the submodule B = {z + ¢(z) : ¢ € X} of M & N is closed.

We now give some sufficient conditions for a module M which is a direct sum
of hollow modules to be uniform extending. The following Lemma can be easily
proved.

Lemma 44. Let M = A@® B be a module and p : M — B be the projection
map. Suppose that C is a submodule of M such that p|c : C — B is one-one and
p(C) is a summand of B. Then M = A® C & D, where B = p(C) & D.

Proposition 4.5. Let M = N & K be an R-module, where K is a semisimple
module.

(1) If M is extending, then for any simple submodule S of K, S is N -injective.

(2) If N is uniform extending and K is N-injective, then M is uniform ex-
tending.

(3) If N =@;c; Ni, where each N; is a hollow module, is uniform extending
and any simple submodule of K is N-injective, then M is uniform extending.

Proof. (1) Letf:L/SocN — S be anon-zero map, where SocN C L C N.
Consider g = fn, where n : L — L/Soc N is the natural map. We have Keg 2
SocN. As N is extending, L < T, a direct summand of N. Let g : E(T) — E(S)
be an extension of g and U = {x € T : g(x) € S}. We claim that U =T.

Let V={z+g(z):2€U}. Then VdS=UdS. As ST is extending V
is a summand of T® S (4.3). Let S®T =V & W. Since S has exchange property,
either S®@¥T =V oW dSor=VoW @S, where V’/ (resp. W') is a summand
of V (resp. W).

Suppose S®@T =VOW'®S. Then S®T =U & S & W’. This implies U is a
summand of T. AsUIT,U =T.



MODULES WITH EXTENDING FACTOR MODULES 387

Suppose S®T =SdV' @ W. Let ¢ : V — U be given by ¢(z + g(z)) = =.
Then ¢ is an isomorphism. Let V. =V' @ V", U’ = ¢(V') and U"” = ¢(V"). Then
U=U'®U"” and U" is simple. We have V'S =U'®S and SO&T = SoV'eW =
SeU ®@W. So U’ isasummand of T. Let T =U'®T'. Then U =U' & (T'NU)
and g is zero on (I" NU), since g is zero on Soc N. g|y can be extended to T by
defining g(7”) = 0. By 4.3 we must have T' = U. It is now easy to prove that f can
be extended to N.

(2) LetU be a uniform submodule of M. Supposep: M — Nandg: M — K
are the projection maps. As U is uniform either p|y or g|y is one-one. Suppose
q|u is one-one. As ¢(U) is a direct summand of M we get M = N @U &V, where
K =q(U)®V (4.4). Suppose ¢ |y is not one-one. Then p|y is one-one. Consider
f:p(U) = K, where f = gp~!. As f is not one-one and K is N-injective, f can
be extended to g : N — K. There exists a summand L of N such that p(U) < L.
We have U = {z + g(z) : z € p(U)}. Now W = {z + g(z) : = € L} is a summand
of M and U < W. Hence M is uniform extending.

(3) Let N=@D;; Ni, K = @D, Sj, where each N; is hollow and each S; is
simple.

Suppose U is a uniform submodule of M. If U is simple, then U C L =
@.cr Ni @ T, where F is a finite subset of I and T is a finitely generated submodule
of K. By (2) L and hence M extends U.

Suppose U is not simple. Let p; : M — N, g; : M — S; be the projection maps
foreach i € I and each j € J. By [13, 7.5] there exists ¢ € I such thatp; |y : U — N;
is one-one. If ¢;(U) =0, for all j € J, then U C N. N extends U and so M also
extends U.

Suppose ¢;(U) # 0, for some j € J. Let f = g;(p; |v)~!. As S; is N-injective,
f:pi(U) — S; can be extended to N;. Since N; is hollow N; = p;(U). By 4.4 U is
a summand of M. ]

Since any finite direct sum of uniform modules is extending if and only if it is
uniform extending [4, 8.5] we get the following proved in [13, 6.4].

Corollary 4.6. Let N be a finite direct sum of uniform modules, K a finitely
generated semisimple module and M = N @ K. Then the following are equivalent:

(a) M is extending;

(b) N is extending and K is N -injective.

As a Corollary to 4.5 we get [4, 8.14].
Corollary 4.7. Let M = P,;.; M; ® D, ; M;, where each M is simple, each

M, is indecomposable of length 2, fori € I, and M; and My are relatively injective
fori# ke l. Then M is extending.
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Proof. Let N = @,.; M;. Then N is m-injective by 4.1. By 4.5 M is uniform
extending. Hence M is extending [4, 8.13]. O

Theorem 4.8. Let M = @, N; ® D;c;S;, where each N; is hollow and
each S;, is simple. Suppose N = @, ; N; is w-injective and any S; is N-injective.
Then

(1) M is extending;

(2)  The decomposition M = P, ; N; ® D ,c; S; (and hence any decomposi-
tion of M into indecomposables) complements direct summands.

Proof. (1) If N;, i € I, is simple, then N; is N-injective. Hence without loss of
generality we can assume that N has no simple summand. Each N; is uniform and
by 4.5 (3) M is uniform extending. Let C be any non-zero closed submodule of M.
Then C contains a uniform summand U of M [11, Proposition 6]. Let {Uq}aer,
be a maximal local summand of M such that each U, is non-simple contained in C
and let {V3}ger, be a maximal local summand of M such that each Vj is a simple
summand of M contained in C.

Suppose A = @ cr, Ua and B = @y, V. Clearly AN B = 0. We show
A @ B is a summand of M.

Let g: M - K and p: M — N be the projection maps. As NN B = 0,
¢|B is one-one. Also ¢(B) is a summand of K. By 44 M = N & B & E, where
K = q(B) @ E. As the decomposition K = (P, ;S; complements summands
E = ®j€J1 S;, for some subset J; of J.

We next show that {p(U,) | @ € I';} is a local summand of N and hence a
summand of N. Since N is m-injective and p|4 is one-one it is sufficient to prove
that p(U,) is a summand of N, for all o € T;.

Fix a € T'y. If ¢(U,) = 0, then p(U,) = U,, is a direct summand of N.

Suppose q(Uy,) # 0. Let g; : K — S; and p; : N — N, be the projection
maps, for j € J and i € I. As q(U,) # O, there exists a j € J such that the map
g; : q(Uy) — S; is non-zero. By [13, 7.5] there exists an ¢ € I such that the map p;p
is one-one on U,. Consider the map

(2;9)(pip) ™" : (pip)(Ua) — S;.

This is not an one-one map and hence has an extension to INV;. Since every proper
submodule of N; is small in N; we must have (p;p)(U,) = N;. As p is onto we
have p; : p(Uy) — N; is an isomorphism. Hence p(U,,) is a summand of N. In fact
N =p(Ua) & Bren iy Nr-

It is now easy to see that {p(U,) | « € I'1 } is a local summand of N and hence
P(A) is a summand of N. f N=D ®p(A),thenby44 M =D AP BDE.

C=AoBo((D®E)NC). Suppose (D®E)NC #0. Then (D E)NC is a
closed submodule of M and hence must contain a uniform summand of M which
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is a contradiction to the maximality of A or B. Therefore C = A® B and hence M

is extending.
(2) IfC isasummand of M,then M = D® AP BB E, where C = A B,

D C N and E C K (from the proof of (1)). Since the decomposition N = P, N;
complements summands D = @, ;, Ni, where I, is a subset of I. Hence

M=@PNedoBsPS;
i€l JjEJ1
Thus (2) follows. By [1, 12.5] any decomposition of M into indecomposables
complements direct summands. OJ

Suppose the modules A and B are w-injective. Then A & B is w-injective, if A
and B are relatively injective. In the case when A = P,.; A; and B = ;. ; B,
where the A;’s and B;’s are uniserial, it is enough to assume that the A; and B; are

relatively injective, for all ¢ € I and j € J.

Lemma 4.9. Let A=, ; Ai and B =D, ; Bj, where all A;’s and B;’s are
uniserial modules. Suppose A, B are w-injective and A;, B; are relatively injective,
forallic€ I and all j € J. Then A® B is w-injective.

Proof. Let f: X — B be a non-zero map. X C A;. Then f(X) is essential
in a direct summand C of B. Since B = @, ; B; complements direct summands
[12, 2.22] and C is uniform, C' ~ B;, for some j € J. Hence f can be extended to
A;. Therefore B is A-injective. Similarly A is B-injective. So A @ B is w-injective.

O

5. Basic properties

Our main object is to study an FE module M which is a direct sum of local
modules. As a prelude we take up the case when M is a direct sum of two local
modules.

Proposition 5.1. Let M = A ® B, where A, B are cyclic uniserial module.
Suppose A ® Top B is extending. Then Top B~ TopX, X C A implies X = Soc A
or A.

Proof.  Suppose Top X ~ TopB, X C A. If Rad X = 0, then X = Soc A.
Suppose Rad X # 0. Then the obvious map f : X — Top B is not one-one. By 4.5
f has an extension to A, which gives us X = A. O

For easy reference we define the following condition on a decomposition of a
module.
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DEeFINITION 5.2. Let M be an R-module. The decomposition M = @&B is said
to satisfy (*) if,
(1) A and B are cyclic uniserial,
(2) TopX ~TopB, X C A implies X = Soc A or A and
(3) TopY ~TopA,Y C B implies Y = Soc B or B.

Lemma 5.3. Let M = A® B be a decomposition of an R-module M satisfying
(). If Top A~ Top B, then for all X C A, A/X is continuous and hence End A/ X
is local.

Proof. Let Y/X ~ A/X, X CY C A. Then TopY =~ TopB. Therefore
Y = Soc A or A. Hence A/X is continuous. O

Proposition 54. Let M = A® B be a uniform-extending R-module such that
A, B are local modules. Suppose A/Xo ® B|Y, is w-injective for all Xo C A and
Yy € B. Then M = A @ B satisfies ().

Proof. =By 3.1 A and B are uniserial. As A and B are local and uniform-
extending, they are uniserial. If both A and B are not simple, then by 4.6 and 5.1 the
decomposition A @ B satisfies (x). If both A and B are simple then the Proposition
is trivial. Suppose B is simple and A is not simple. Then A® TopB = A® B is
extending. Again by 5.1 we get the Proposition. U

We prove below an important property of an extending module M with a de-
composition satisfying (x).

Proposition 5.5. Let M = A®B be a decomposition of an extending R-module
M satisfying (x). If B # Soc A, then B is A-injective.

Proof. If A is simple, then the proof is trivial. We assume that A is not
simple. Let f : L — B be a non-zero homomorphism, where L. C A. Consider
the extension g : E(A) — E(B) of f and let U = {z € A : g(z) € B} and
V={z+g(z): 2z €U} Byda3Visclosed in M. Let M = V & W. Since
6 : V — U given by 0(z + g(z)) = x is an isomorphism, V is uniserial. As the
uniform dimension of M is 2, W is indecomposable and hence uniform. By [13,
7.5] W is uniserial. Let m; : V& W — V be the projection map.

Case (i): Let L be not simple. Now TopV ~ Top A or Top B.

If TopV ~Top B, then TopU ~TopB. As U D L # Soc A, U = A by (x).
Suppose TopV =~ Top A. Then TopU ~ Top A. Topg(U) ~ Top A. By (%)
g(U) = B or SocB. If g(U) = B, then TopU ~ Top B and hence U = A by ().



MoDULES WITH EXTENDING FACTOR MODULES 391

Suppose g(U) = Soc B. Then g is not one-one and so ANW = 0. We note that
0wy |a : A — U is one-one and 0 is identity on Ke f. Also Ke f = Keg. As Ke f
is a proper submodule of L, Om;(Ke f) = Ke f is a proper submodule of 871 (L).
A is uniserial and gfm;(L) = g0m1(A) = Soc B imply A = L.

Case (ii): Let L = Soc A. Then B is not simple. As before we have M =
VeW,V ~U, g:U — B is an extension of f, and g does not have any proper
extension to any submodule of A (4.3). If V is simple, then V has exchange property
and so either A or B is simple. Hence V' and therefore U is not simple. But by case
(i), g has an extension to A and hence U = A. O

Corollary 5.6. Let M = A® B be a decomposition of an extending R-module
M satisfying (x). Then:

(1) ifboth A and B are not simple, then A ® B is w-injective;

(2) B is A-injective and hence A/ Xq-injective, for all Xo C A.

Proof. (1) follows easily from (5.5).

(2) If B is not simple, then (2) follows from 5.5. Suppose B is simple and L
a proper submodule of A. As the decomposition A @ B satisfies (*) there exists no
non-zero map from L to B. Hence B is A-injective. ]

Let M be as in Proposition 5.5. We give a sufficient condition for A/X, to be
B-injective.

Proposition 5.7. Assume that the decomposition of an extending module M =
A @ B satisfies (¥). Suppose B @ A/Xo, where Xo C A, is m-injective. If A/Xo #
Soc B, then A/ X, is B-injective.

Proof. If Soc B =0, then B = B and trivially A/ X, is B-injective. Assume
SocB # 0 and let f : L — A/X,, where L C B, be a non-zero homomorphism.

If f is not one-one, then f induces a map g : L/Soc B — A/X, which has an
extension h : B — A/Xy. Then nh is an extension of f, where n : B — B is the
natural map.

Suppose f is one-one. Then f(SocB) # A/Xo as Soc B % A/X,. Let f(L) =
T/X,. Consider f~! : T/Xo — L. By 5.6 and f~! can be extended to 6 : A/ X, —
B. Im 6 # Soc B and the decomposition B @ A satisfies (*) implies Imé = B. Then
61 is an extension of f. Hence A/X, is B-injective. O

Proposition 58. Let M = A® B, where A and B are local modules. Suppose
A/X @ B/Y is uniform extending for all X C A andY C B. Then A/X, ® B/Yo
is m-injective, for all Xo C A and Y, C B.
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Proof. By 3.1 and 5.1 the decomposition A @ B satisfies (x). If both A/Xo,
B/Y, are not simple, then A/X, ® B/Y, is 7-injective (5.6). Suppose A/Xj is
simple. Then A/Xo @ B is extending implies A/ X, @ B is 7-injective (4.5). By
4.1 A/X, ® B/Y, is m-injective. The proof is similar in the case when B/Yj is
simple. J

Theorem 5.9. Let M = A® B be an extending R-module such that A, B are
local and A/ Xo ® B/Y, is n-injective for all Xo C A and Yy C B. Then:

(1) if B/Y and A are not simple, then B/Y @ A is w-injective.

(2) if TopA # Top B, then o[M] = o[A] ® o[B] and M is Sm and Fr.

(3) ifboth A and B are not continuous, then o[A] N o[B] = 0.

Proof. By Proposition 5.4 the decomposition M = A @ B satisfies ().

(1) follows from 5.6 and 5.7.

(2) By 3.5 o[A] N g[B] = 0 if and only if there is no non-zero isomorphism
between subfactors of A and subfactors of B. Let 6 : A;/A; — By/B; be a non-zero
isomorphism, where SocA C A; C A; C A and SocB C B; C By C B. 6 has an
extension g : A/A; — B/B;. Then Top A ~ Top B, a contradiction.

Let X ¢ M. Then X = X; @ X,, where X; C A and X, C B (3.4). So M is
S7 and Fr.

(3) ByS53TopA # TopB and by 5.6 (1) A® B is m-injective. Suppose X C A.
We claim that Top X % TopB. If Top X ~ Top B, then N = SocA. Since B is
not continuous there exists a proper submodule B’ of B such that B’ ~ B. As
A is B-injective the obvious map f : B” — X C A can be extended to B. This
contradicts that the decomposition A@ B satisfies (). Similarly for any submodule
Y of B, TopY # Top A.

Suppose f : X — B/Y is a non-zero map, where X C A. From the above
observation it follows that B/Y is not simple. By (1) f has an extension g to A.
Then Top g(A) ~ Top A, a contradiction. Thus (3) follows. OJ

6. FE modules which are direct sum of local modules

In this Section we first derive some properties of the module M = @,.; M;,
where each M; is local and @, ; M;/X; is uniform extending, for all X; C M;. We
use these to prove our main Theorem. Suppose M = P,.; M;, where each M; is
local. We show that M?2 is FE if and only if M(™ is FE, for all n € N. Also M®
is FE if and only if M¥) if FE, for any set K.

Lemma 6.1. Let M = @, ; M; be a uniform extending R-module, where
each M; is local and non-simple. Suppose that M;|Y; ® M;|Y; is n-injective, for all
Y; C M;, Y; C M;. Then M is w-injective.
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Proof. It is easy to see that each M; is cyclic uniserial and the decomposition
M; & M; satisfies (x), for i # j € I (5.4). Let

I, = {i € I | M; is continuous} and

I, = {i € I | M; is not continuous}.

By 5.6 (1) and 4.9 it is enough to show that A = ,.; M; and B = @, ;, M; are
m-injective.

For each : € I;, End M; is local and hence by 5.6 (1) and 4.2, A is 7w-injective.
5.9 implies that o[My] N o[M;] = 0, for j # k € I,. Hence o[B] = D;¢;, o[Mi]
(3.5). It is clear that B is w-injective. O

The next Proposition is an important step in proving our main Theorem.

Proposition 6.2. Let M = D, ; M;, where each M; is a local module, be such
that if Y; C M;, for alli € I, then @, ; M;/Y; is uniform extending. Suppose for
eachic I, X; C M;. Then
(1) @z’eh M,;/X;, where I, = {i € I | M;/X; is non-simple}, is T-injective.

2) D,y Mi/X; is extending;

(3)  the decomposition @, M;/X; complements summands;

(4)  any uniform submodule of @,;.; M;/X; is a f.c. submodule;

(5) if 1 is finite, then for any X C M, M/ X ~ @, M;/Y;, for someY; C M;;

(6) if f: M — L is an onto map, then f(M;) is a summand of L, for alli € I;

(7) if' Y C M, then there exists Y; C M;, for all i € I, such that M|Y ~
@iel M;/Y;

(8) forallY C M, any decomposition of MY into indecomposable modules com-
plements summands.

Proof. We first note that if Y; C M; and Y, C ﬁj, where ¢ # 7 € I, then
M, /Y; ®M,/Y; is m-injective (5.8). Let I = I'\ I;, where I; is as in (1). For j € I
and k € Iy, M;/X; ® My /Xy is extending. Hence M/ X is M;/X;-injective (4.5)
and hence is N-injective.

(1) can be easily derived from 6.1 and S.1.

(2) and (3) follow from 4.6 and 4.5.

(4) Let U be a uniform submodule of @, ; M;/X;. Then U is essential in a
uniform direct summand V of ,.; M;/X;. By (3) V ~ M;/X;, for some i € I and
hence V' is cyclic. Therefore U is a f.c. submodule of @, ; M;/X;.

(5) We use induction on |I], the cardinality of I. If |I| = 1, then the result is
obvious. Assume that the result is true for all I such that |I| < n. Suppose |I| =n
and X C M.

If X is not essential in M, then M = B @ C, where X < B. By (3) the given
decomposition of M complements summands and hence B ~ EBie 1 M;, where I !
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is a proper subset of I. By induction hypothesis we get the result.

Suppose X < M. Let A; = X N M, for each i € I, D = @,.; M;/A; and
¢ : M — D be the obvious map. Then ¢(X) N M;/A; = 0, for any j € I, and
so ¢(X) is not essential in D. By applying the previous case to D we get that
D/¢p(X) = P;c; Mi/Yi. As M/X ~ D/¢(X) (5) follows.

(6) Let N;=M;and N = @iGI N;. Fixiel Let A= Zjel\{i} f(N])

If Anf(N;) = 0, then f(N;) is a sumand of L. Suppose 0 # z € ANf(N;). There
exists a finite subset J of I'\ {i} such that zR C 3~ ; f(N;). By (5) X2, ; f(IN;) =
@®,cs N;/Y;. Since zR is uniform there exists j € J such that zR is isomorphic to
a submodule of N;/Y;. As f(N;) ® N,/Y; is m-injective and xR C f(N;), f(IN;) is
isomorphic to a submodule of N;/Y; and hence f(N;)-injective. If j # i, j € I, then
f(N;) is f(N;)-injective and so f(NV;) is A-injective. Therefore f(NN;) is L-injective
and a direct summand of L.

(7) As M is extending and the given decomposition of M complements sum-
mands ((2) and (3)) we can assume that Y < M. Suppose N; = M; and N =
@,y Ni. It is enough to prove that for Y C N, N/Y ~ @,.; N;/Y;, for some
Y, C N,

Let X be a proper submodule of N. Consider the natural map f: N — N/X.
Consider the collection {A;};cs of non-zero submodules of N/X satisfying the
following properties:

(i) JCIandforeachjeJ, A; =~ Nj/Xj, a factor module of N;;

(i) {A,;}jes is a local direct summand of N/X;

(i) Y27 f(N;) = A, where A=, , 4;.

The collection of such submodules is non-empty as f(N;) # O for at least one
: € I, and for this 7, {f(V;)} satisfies the above conditions by (6). By Zorn’s
lemma we choose a maximal family {A;};c; satisfying the above properties. Let
A = @D,c;A;- We claim that each f(N;) C A and hence A = N/X. Suppose
F(N;)NA =0, for i ¢ J. Then {A;}jes U {f(N;)} is a family of submodules
of N/X satisfying conditions (i), (ii) and (iii) (using (6)). This contradicts the
maximality of {4;};cs. Leti ¢ Jand 0 #Y = f(N;)N A. Then Y <V, a direct
summand of A. By (4) V C @keK Ay, where K is a finite subset of J. Hence V
is a summand of N/X also. Let N/ X =V @ T. Then f(N;)+V =V & L, where
L=Tn(f(V;) + V). It is easy to check that LN A = 0.

Let p : N/X — T be the projection map along V. Then pf : N — T is onto
and pf(N;) = L. By (6) L is a summand of T and hence a summand of N/X.
L~ (f(N;)+V)/V = f(N;)/(V N f(N;)). Hence L ~ N;/X;, for some X; C N;.
Also f(N;) C(A®L). If L #0, then {A;}jes U{L} is a family subsets satisfying
conditions (i), (ii) and (iii), which contradicts the maximality of {A;},;cs;. Hence
L=0.So f(N;) CA,foralliel.

(8) This follows from (7), (3) and [1, 12.5]. O
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Theorem 6.3. Let M =@, c1 Mi, where each M; is a local module. Then the
following are equivalent:

(a) &D;c; Mi/ X, is uniform-extending, for all X; C M;;

(b) D;c; Mi/X; is extending, for all X; C M;;

(¢) M is FE;

(d) M is FUE;

(e) M is uniform-extending and @, M;Y; is n-injective, for all Y; C M;;

(f) M is extending and M is Fr.

Proof. (a) = (b) follows from 6.2 (2).

(b) = (c) follows from 6.2 (7).

(c) = (d) is trivial.

(d) = (e). Let N, =M, forallicIand A= @iel N;/Y;. By 6.2 (1) we get
that the direct sum of all non-simple N,/Y;’s is m-injective. By 5.8, for i # j € I,
N;/X; ® N;/X; is m-injective for all X; C N; and X; C N;. By 49 A is m-injective.

() = (f). By 6.2 (7) applied to M we get that any factor module of M is
w-injective. It remains to prove that M is extending. By 6.1 A, the direct sum of
all non-simple M;’s, is m-injective. If M; is non-simple and M is simple, where
i,j € I, then M; ® M; is extending implies that M is M;-injective (4.5 (1)). Hence
M; is A-injective. By 4.8 M is extending.

(f) = (a). Let A=, ; M;/X;. Define

I, = {iel]|X;+#0and M;/X; is non-simple}.
I, ={ieI|X;=0and M;/X; is non-simple}.
Is ={iel|X;#0and M;/X, is simple}.
I, = {iel|X;=0and M;/X; is simple}.

Let Aj = EBite M;/X;, for j = 1,2,3 and 4. Clearly A; is w-injective. Also Az
is m-injective by 6.1. By 5.9, for ¢ € I and j € I3, M;/X; and M;/X; are relatively
injective. Using 4.9 we get that A; @ A, is m-injective.

Letk € I3. As A, ® Ay @ My /Xy, is m-injective, My /Xy, is A; @ Az-injective and
hence A, ®As-injective. Let k € I4. Since EBZEII M; @ieh M;®My /X is extending
M/ Xk is (@ieh M; @, ;, M;)-injective (4.5) and hence A; ® Ay-injective. By 4.8
A is extending and hence uniform extending. O

Corollary 6.4. Let M = P, ; M;, where each M; is a local module. Then the
following are equivalent:

(a) M?is FE;

(b) M™ is FE, for alln € N.
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Proof. (a) = (b). Let
K = {i € I | M; is non-simple}.

Define N = @ycx My and L = @, Mi- As M? is FE, N? is m-injective
and hence self-injective. This implies N™ is m-injective (in fact self-injective). Also
any simple submodule of L™ is N-injective and hence N™-injective. By 4.8 M™ is
extending.

Let M" = @], (B;c; Mij), where M;; ~ M;, for each j = 4,...,n. By
6.3 (e) it is enough to show that A = @}_, (B,c; Mi;/Xi;) is m-injective, for each
Xi; C M—,J We can write A = @;;1 A;, where each A; is a factor module of
@ieIM_iJ" Since M? is FE, A; @ Ay is m-injective, for 1 < j, k < n. Therefore A
is m-injective by (4.1). O

Corollary 6.5. Let M = @ie ; M;, where each M; is a local module. Then the
following are equivalent:

(a) M®)is FE;

(b) MK is FE, for any set K.

Proof. (a)=>(b) LetN=M® = @D,y Nj, where each N; ~ M;, for some
tel As N;j/X; ®N;/X; is FE, End(N;/X;) is local (5.3). For any countable
subset L of J, @, Ni/X; is extending as it is a factor module of M®_ Hence
@, Nj/X; is extending [2, Theorem 2.4]. By 6.3 (b) M) is FE.

(b) = (a) is obvious. O

Let M be an R-module. Every simple module in o[M] is isomorphic to a
subfactor of M. Hence if M is a self-generator, then M generates every simple
module in o[M]. For a projective module M in o[M], M generates every simple
module in o[M] if and only if M generates every module in o[M].

Lemma 6.6. Suppose M is an FUE module which is a direct sum of local
modules. If M generates every simple module in o[M), then M is a homo-serial
module.

Proof. Let M = @iel M;, where each M, is local. As M is FUE each
M; is uniserial. Let X be a cyclic proper submodule of M;. By the hypothesis
TopX ~ TopMj, for some j € I. For i # j and 4,5 € I, the decomposition
M; ® M; satisfies (x) (5.1). Hence either X = Soc M; or Top X ~ Top M;. Thus
M; is homo-uniserial. J

Corollary 6.7. Let M be a direct sum of local modules such that M generates
every simple module in oM. Then M is FUE if and only if M is uniform extending
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and M is SFr.

Proof. By 6.3 it is enough to prove that if M is FUE, then M is SFm. By
6.6 M = @ie 1 M;, where each M; is uniserial and each M; is homo-uniserial. Let
J={ieI|{M;)>3} Supposejec J,icIandi+#j Then TopM; % TopM,

as M; @ Top M; is extending. Hence o[M;] N o[M;] = 0. Thus

o) = @ {3 @ o(B),
i€J

where B is the direct sum of those M;’s which are of length 2. It is easy to see that
M is SFr. |

Next we consider the case when M is self-projective.

We recall that a module M is FI if M/X is M-injective, for all X C M. If
M is an R-module, then any injective module in o[M] is an epimorphic image of
M, for some set I. Hence we get the following.

Lemma 6.8. Let A be a local FI module. Then any uniform injective module
in o[A] is a factor module of A and uniserial.

Proposition 6.9. Let M = A be an FUE module, where A is local and I is
an infinite set. Then A is noetherian.

Proof. ~ We have o[M] = o[A]. By 5.8 A is an FI module. Assume V =
@D,.cn Va is such that each V,, € o[A] is a uniform A-injective module. Consider
W =A@V. By 6.8 W is a factor module of M and hence uniform extending. By
[4, 8.10] W is self-injective and therefore V is A-injective. By Wisbauer [15, 27.3]
A and hence A is noetherian. O

Proposition 6.10. Let M = @, ; M; be a self-projective module, where each
M; is local. M is FUE if and only if M is uniform extending and every M -generated
subfactor of M is m-injective.

Proof. As M is a direct sum of finitely generated modules and is self-
projective M is projective in o[M].

Suppose M is FUE. Then M; is uniserial for all i € I. As M is projective
in o[M], Top M, ~ TopM; implies that M; ~ M;, for i,j € I. Hence M =
@jeJ M;K’), where Top My, % Top M;, for k # j in J. By 5.9 (2) and 3.5

o[M) = @ o [M;").

JjeJ
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Let T be an M-generated subfactor of M. Then T = Y/X,X CY C M. There
exists an onto map f : M(K) — T, where K is a set, and this map can be lifted to
g:M¥) Y. If Z=1Img, then Y/X ~ Z/(Z N X). So without loss of generality
we can assume that Y is generated by M.

Now Y =@, Y;, where ¥; C M{". Let k,j € J and k # j. By 5.8 and 5.4
the decomposition M}, @ M; satisfies (x) and hence it is easy to see Hom(My, M;) =
0. Therefore Y; is Mj-generated for all j € J. Thus it is enough to prove the case
where M = N, where N is local and 0 # Y is M-generated.

If |K| = 1, then the result is obvious. Suppose |K| > 2. In this case N is

injective and projective in o[M]. We claim that ¥ ~ N(KI), where K’ C K. If | K|
is infinite, N and hence N is noetherian (6.9). It is enough to show that Y contains
a summand isomorphic to N.

As Y is a non-zero submodule of M there exists 0 # Z C N such that Z is an
homomorphic image of Y. As N @ N satisfies (x) (5.8 and 5.4), any map from N
to N is onto. Since Z is M-generated, Z = N. Since N is projective in o[M], Y
has a summand isomorphic to N.

The converse follows from 6.3. OJ

Corollary 6.11. Let M be a projective semiperfect module in a[M). Then the
following are equivalent:

(a) M is FUE;

(b) M is uniform extending and every M -generated subfactor of M is -
injective.

Corollary 6.12. Let M be module of type A (3.3). Then the following are
equivalent.

(a) M is FE;

(b) M is extending and every M -generated subfactor of M is m-injective;

(c) M is exteding and M is Fr.

Proof. (a) = (b) follows from 3.2 and 6.11.
(b) = (c) is trivial and (c¢) = (a) follows from 3.2 and 6.3. O

Taking M = R we get the following [14, 3.5].

Corollary 6.13. Let R be a ring. Suppose Ry is of type A (3.3). Then the
following are equivalent:

(a) Rgis FE;

(b) Rg is extending and R/Soc R is Fr;

(¢) Rg is extending and R/Soc R is SFr;

(d) Rpg is extending and R/Soc R is a ring direct sum of right uniserial rings
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and a semisimple ring.

In the next Section we show that a module M of type A is an FE module if
and only if it is an SFE module.

7. SFE modules

Suppose M is an FUE module which is a direct sum of local modules. If every
simple module in o[M] is generated by M, then M is homo-serial (6.6). In this
Section we consider FE modules M which are direct sum of local modules and
for which M is homo-serial. In this case we show that M is SE if and only if M
is SFE, if and only M; and M; are relatively projective, for all i # j € I with
£(M;) = £(M;) = 2. Hence any self-projective, self-generator, FE module which is
a direct sum of local modules is SFE.

First we consider some properties of the indecomposable summands of an FE
module M which is a direct sum of local modules and M is homo-serial.

Lemma 7.1. Let M = @, ; M;, where each M; is local and M; is homo-
uniserial, be an FUE module. Let k € I be such that {(My) > 3. Suppose T; =
Top M; and S; = Soc M; for all i € I. Then
(1) o[My]No[M;]=0, forj #ke,

(2) o[Mi]Nno[M;]=0,if {(M;)>3 andj+#kel,
(3)

oM =PoMeo [GB Ml} ;

i€l i€l

where I = {i € I | £(M;) > 3 and M, is homo-uniserial} and I, = I\ I;
(4) My and M; are relatively projective, if £(M;) > 2 and j # k € I.

Proof. (1) Let M; be not simple. Then M, @ T; is extending implies that
T, # T;. My @ M;j is m-injective (6.2 (1)) and T % T gives us Ty % S;. As M;,
and M; are homo-uniserial we get (1).

(2) Now S # S; as M}, @ M; is m-injective and T}, % T;. So (2) follows from
(1),

(3) is an easy consequence of (1).

(4) This follows trivially by (2), if £(M;) > 3. In the case when ¢(M;) = 2,
(4) can be easily proved using (1). ]

Proposition 7.2. Let M = @, M;, where each M; is local and M; is homo-
uniserial, be an FUE module. Suppose L is any serial submodule (subfactor) of M.
Then
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(1) L~ Li, where each L; C M;;
(L~ @,y Xi/Yi, where eachY; C X; C M;);

(2) L is w-injective, if L has no simple summand,

(3) L is extending and any decomposition of L into indecomposable modules com-
plements summands.

Proof. Let L be a serial submodule of M.

(1) Suppose J = {i € I | M; is not simple}. A = @,.,; M; and B =
@ieI\J M;. Then L = (LN B) ® T, where T is isomorphic to a submodule of
A. T is also a serial module as any semisimple module has exchange property.
Suppose T = @, To. As A is w-injective (6.2 (1)) and is a direct sum of uniform
modules, there exists a family {A, | « € I'} such that each T, < A, C A and
P cr A is a summand of A [12, Theorem 2.22]. Also any decomposition of A into
indecomposables complements summands [12, Theorem 2.22] and so T ~ @, ; T%,
where each T, C M;,. Thus L ~ EDZ.GI L;, where each L; C M;.

(2) Suppose L = ®;c;L;, where each L; C M;. Define

I = {ieI|L;is simple},
I, = {t € I | L; is non-simple and L; # M},
Is = {i e I | L; is non-simple and L; = M;}

and Uy = @ielk L;, for k =1,2, and 3. For every i € I3, ¢(M}) > 3 and hence by
7.1 (2) U, is w-injective. By 6.2 (1) Us is m-injective. Suppose j € I3 and k € I3.
Since M; @ M, is w-injective, Ly = M, is Lj-injective. If £(M}) > 3, then by 7.1 (2),
L; is Ly-injective. If £(M}) = 2, then M; & Mj, is m-injective and 7.1 (1) imply that
L; is Lg-injective. Hence by 4.9 U, @ Uz is w-injective. Thus if L has no simple
summand, then L is mw-injective.

(3) 7.1 (1) imply that for any k € I, Ly is Uz ® Us-injective. By 4.8 L is
extending and any decomposition of L into indecomposable modules complements
summands.

Suppose L is a subfactor of M and L ~ Y/X, where X C Y C M. Then
MY ~ @, M;/Y; (6.2 (7)) and M/Y satisfies the hypothesis of the Proposition.
Hence any subfactor of M also satisfies (1) through (3) of the Proposition. O

Suppose M satisfies the hypothesis of 7.2. We saw that every serial subfactor
of M is extending. We prove that the converse is true if M is also a self-generator.
We need the following Lemma which can be proved by just imitating the first part
of the proof of Proposition 1.5 proved by Garcia and Dung [5].

Lemma 7.3. Suppose every submodule of a module N is generated by {N;}ic
and each N; has ACC on the submodules {Ke f | f € Hom(N;,N)}. Then any
local summand of N is closed in N.
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Proposition 7.4. Let M = @, ; M;, where each M; is local, be an FE module
and a self-generator. Any subfactor T of M is serial if and only if it is extending.

Proof. By 6.6 each M; is homo-uniserial. It is enough to prove that an
extending subfactor T of M is serial (7.2).

By 7.1 (3) we can assume without loss of generality that if £(M;) > 3, then
Soc M; is simple and % Top M;.

Let T~ X/Y,whereY C X C M. Now M/Y ~ @iel M;/Y; by 6.2 (7). Any
indecomposable submodule of M /Y is uniform and hence uniserial. It is enough
to show that T is a direct sum of indecomposable modules.

Let J={i€I|Y;+#0 and ¢(M;/Y;) > 3}. Suppose K = I\ J. If k € K and
#(My/Yy) > 3, then Yy, = 0. By 7.1 (3) applied to M/Y we have

O'[M/Y] Z@U[M]/)/J] Do [@Mk/yk

jeJ keEK

We have X/Y = P, ; X;/Y; ® Z, where Z is a submodule of P, Mi/Yi and
forall jeJ,Y; C X; C M.

We note that { M, };cr generates every submodule of Z. By 7.3 and [12, 2.17] Z
will be a direct sum of indecomposable modules, if for all ¢ € I, M; has ACC on
{Kef| fe Hom(M;,Z)}.

Fix i € I. Let f : M; — Z be a map, for some ¢« € I. Since M; is unis-
erial f(M;) < U, a uniform summand of @, x My/Yr. As the decomposition
Drcx My/Yr complements summands (6.2 (3)), U ~ M, /Y, for some k € K. Sup-
pose £(M;) > 3. By 7.1 (1) and (2) we get that, for k # i, Hom(M;, My/Y;) = 0
(7.1). If k = ¢ and ¢(My/Yy) > 3, then any non-zero f : M; — M} /Y, must be a
monomorphism, for in this case Yy = 0 and Top M; % Soc M;. Thus M; has ACC
on {Kef | f € Hom(M;,Z)}. Therefore Z and hence T is serial. O

Next we show that if M satisfies the hypothesis of 7.2 and is also an SE module,
then any submodule of M is serial.

Proposition 7.5. Let M = @,.; M; be a module such that each M; is a local
module and M; is homo-uniserial. If M is SE and FE, then any submodule N of
M is isomorphic to ®i€ ; Ni, where each N; C M.

Proof.  Any indecomposable submodule of M is uniform and hence uniserial
[13, 7.5]. It is enough to prove that N is a direct sum of indecomposable modules
(7.2). Suppose J = {i € I | M; is not simple}. Let A = @,.; M; and B =
@iEI\J M, If N C M, then N = (NN B) & L, where L is isomorphic to a
submodule of A. Hence without loss of generality we can assume that N C A, and
that if j € J and 4(M;) > 3, then Soc M; is simple and % Top M; (7.1 (3)). Every
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submodule of A is extending and any cyclic submodule of A has finite dimension
and hence is a direct sum of uniform modules. As any uniform submodule of A
is isomorphic to a submodule of M;, for some j € J, the collection of all cyclic
submodules of M;, for all j € J, generates every submodule of A. By 7.3 it is
enough to show that every cyclic submodule N; of M;, j € J, has ACC on the
submodules {Ke f | f € Hom(N;,N)}. Since N; is uniserial f(IV;) is uniserial
and hence isomorphic to a submodule of M;, i € J, i may be equal to j. If
£(N;) > 3, tnen 0 # Soc M # Top M; and 7.1 (1) gives us that f is either a zero
map or a monomorphism. Thus N is a direct sum of indecomposables. O

We next prove the main theorem of this section.

Theorem 7.6. Let M = @, ; M; be an FE module such that each M; is a
local module and each M; is homo-uniserial. Then the following are equivalent:
(a) M is SFE;
(b) M; and Mj; are relatively projective, for all i # j € I with {(M;) = £(M;) = 2;
(c) the direct sum of the non-simple M;’s is quasi-discrete;
(d) M is SE.
In this case any subfactor T of M is serial and if every indecomposable summand
of T is non-simple local, then T is quasi-discrete.

Proof.  (a) = (b). Suppose i # j € I and {(M;) = £(M;) = 2. Let N =
M; @ M;. Then N is SFE and hence is 7-injective and SE. Suppose X is not
small in N. Then X properly contains Soc N. Since X is extending X contains an
indecomposable summand of length 2 and this is also a summand of N. Hence N is
lifting. It is easy to see if A and B are proper summands of N such that N = A+ B,
then AN B = 0, and hence is trivially a summand of N. Thus N is quasi-discrete.
By [12, 4.48], M; and M; are relatively projective.

(b) = (¢). Let J = {i € I | M; not simple}. Let A = @,.; M; and B =
@ieI\J M;. By 7.1 (4) and (b), for i # j € J, M; and M; are relatively projective.
As the above decomposition of A complements summands, A is quasi-discrete [12,
4.53].

(c) = (d). It is enough to show that every submodule of M is serial (7.2). Let
X be submodule of M. Define the summands A and B of M as in the proof of (b)
= (c¢). Then X =(XNB)®Y, where Y ~ Z C A. Thus it is enough to show that
every submodule of A is serial.

Define J; = {j € J | {(M;) > 3} and J, = J\ J;. For k € J; and j € Jo,
Rad M; = SocM; # Soc My, or Top Mj, by 7.1 (1) and the fact that M; @ My is
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m-injective. Hence

o[Rad A] = €D o[Rad M;) & o
JjE€N

P Rad Mj] :

jE€J2

Therefore any small submodule of A is serial. As any decomposition of A ito
indecomposables complements summands (8.6 (7)) any direct summand of A is
serial. Since A is a lifting module any submodule of A is serial.

(d) = (a). Let X C M. It is enough to show that Z = M /X is SE. By 6.2 (7)
Z ~ @,c; M;/X;. Define sets I; and modules A;, for j =1,2,3,4, as in (f) = (a)
of Theorem 6.3. Then Z = A; ® Ay ® A3 & A4. Now 7.1 (1) and 7.1 (2) imply
that o[A;]No[As ® A3 ® A4] = 0 and that A; is SE. So it is enough to prove that
L=A® A3 A, is SE.

Let Y C L. Y = (YN (A3 ® A4)) ® C and C is isomorphic to a submodule
of A;. We note that A, is SE and FE and hence by 7.5 any submodule of A, is
~ P, 1, Ci» where each C; C M;. Thus Y is serial and hence by 7.2, Y is extending.

By 7.5 applied to factor modules of M, we get that any subfactor T" of M is
serial. By (a) <= (c) of Theorem applied to T', we get that T is quasi-discrete.

]

Corollary 7.7. Let M = @ie ;1 M; be an FE module such that each M; is a
local module and M; is homo-uniserial. If for each i € I, £(M;) # 2, then M is an
SFE module.

Using 6.6 we get the following Corollary.

Corollary 7.8. Let M = @,.; M;, where each M; is a local module, be an FE
module and a self-generator. Then conditions (a) through (d) of Theorem 7.6 are
equivalent.

Corollary 7.9. Let M = P, ; M;, where each M; is local, be a self-generator
and self-projective module. Then M is SFE if and only if M is FE.

Proof.  In this case obviously M; and M; are relatively projective for i # j € I
and the proof follows from 7.6. O

Corollary 7.10. Suppose M is a module of type (A) and is a self generator.
Then M is FE if and only if M is SFE.

Corollary 7.11. Let R be a ring of type (A). Then R is a right FE ring if and
only if R is a right SFE ring.
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8. Fm and SFm modules

Finitely generated self-projective Fr modules were studied by Huynh and Wis-
bauer in [8] and semiperfect Fr rings were studied by Goel and Jain in [6]. Sup-
pose M = @,.; M;, where each M; is local. We show that M is Fr if and only if
@ieI M, /X, is w-injective, for all X; C M;, and if also M is a self-generator, then
M is SFr. M? is Fr if and only if M™ in Fr, for all n € N. M® is Fr if and
only if M) is Fr, for any set K, if and only if M is locally noetherian and Fr.
We also study modules M such that M is a projective Fr module in ¢[M] and is a
direct sum of indecomposable modules which are not necessarily local modules.

The following Lemma has been proved by Huynh and Wisbauer in [8].

Lemma 8.1. Let M = @, ; M;, where each M; is uniform module, be an Fr
module. Then every non-zero f € Hom (M;, M;), with ¢ # j is an epimorphism. If
M; is M;-projective, then f is an isomorphism.

Lemma 8.2. Let M = M, & M,, where My, My are local and Top M, #
Top M, be a Fr module. Then o[M;]No[M;] =0

Proof.  Suppose f : X — M,/Y be a non-zero map, where X C M;. Then
f has an extension to M;, which must be an onto map by 8.1. This contradicts the
fact that Top M % Top M. 0

Proposition 8.3. Let M = @,c; Ni, Ni = @ ek, Mi;, where each M, is local
and Top M;; ~ Top My, if and only if i =k, for alli,k € I, j € K;, | € Ki. Then
thie following are equivalent:

(a) M is Fr;

®) () oM =, olN;

(ii) each N; is Fr;
(©) DiciD®jek, Mi,/Xi; is w-injective for all X;; C M;;.

Proof. (a) = (b) follows from 8.2 and 3.5.
(b) = (a) and (a) = (c) are trivial.
(c) = (a) follows by 6.2 (7). O

Now we give equivalent condition for a module which is a direct sum of local
modules to be an FI module. We recall that a module M is called an FI module if
every factor module of M is injective in o[M], i.e. M-injective.

Proposition 84. Let M = @, ; M; be a direct sum of local modules. Then
the following are equivalent:
(a) M is FI;
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(b) M™ is FI, for alln € N;
(c) M" is Fr, foralln € N;
(d) M? is Fr.

Proof. (a)= (b). Let M" =P, ; N;, where each N; = M;, for some i € I.
We have @, ; N;j/X; ~ @;_; M/A;. As each M/A; is M-injective, @, ; N;/X;
is M-injective. By 6.2 (7) any factor module of M™ is of the form @, ; N;/X;.
Hence M™ is FL

(b) = (¢) = (d) is obvious.

(d) = (a) is trivial since, for any X C M, M/X & M is w-injective. [

Proposition 8.5. Let M = @, ; M;, where each M; is a local module. Then
the following are equivalent.

(a) MM if Fr and hence FI;

(b) M is locally noetherian and is FI;

(¢) M) if Fr and hence FI, for any infinite set K.

Proof. (a) = (b). Each M; is noetherian (6.9). Therefore M is locally
noetherian.

(b) = (c). Let J be any infinite set and let L = @ jegAj be such that, for each
Jj€J, Aj ~ @, Mi/Xj,. Then each A; is M-injective as it is a factor module of
M. Since M is locally noetherian, L is M-injective. By 6.2 (7) applied to M) we
get that M) is Fr.

(c) = (a) is clear. O

Proposition 8.6. Let M be a direct sum of local modules such that M is a
self-generator. M is an Fr module if and only if M is an SFr module.

Proof.  Suppose M is an Fr module. By 8.3 it is enough to prove the case
when M = @iel M;, where each M; is a local module and Top M; ~ Top M, for
all ¢,j € I. As M generates any simple module in o[M], each M; is homo-uniserial
(6.6). If M; is not simple, then M; @ Top M; is not m-injective. Hence either M is
homo-uniserial or semisimple. Therefore M is an SFr-module. O

From the proof of Proposition 8.6 we get

Corollary 8.7. Let M be sefl-generator and of type A. Then the following are

equivalent:
(a) M is Fr;
(b) M SFr;

(c) M is a direct sum of fully invariant submodules which are either homo-
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uniserial or semisimple.

Taking M = R, we get the following result in which the equivalence of (a) and
(c) has been proved in Goel and Jain [6, Theorem 2.4].

Corollary 8.8. Let R be a ring of type A. Then the following are equivalent:
(a) Rg is Fr;

(b) Rpg is SFr;

(¢) R is a direct sum of rings which are right uniserial or semisimple.

In general an FI module need not be an SFE module. For example the Z-
module Q& Q is FI but not SFE. In the following we consider Fr and SFr modules
M which are projective in o[M] and is a direct sum of indecomposable modules
which are not necessarily local modules. By [4, 9.3] if M is a finitely generated FE
module which is projective in o[M], then M is a direct sum of uniform modules.

The decomposition of an Fr finitely generated self-projective module M is
studied by Huynh-Wisbauer in [8]. They do this by grouping together the inde-
composable summands whose endomorphism rings are division ring and the inde-
composable summands whose endomorphism rings are not division ring. We prefer
to group together the indecomposables whose endomorphism rings are local and
those whose endomorphism rings are not local.

Proposition 8.9. Let M be an R-module which is projective in o[M] and is a
direct sum of indecomposables. The following are equivalent:

(a) M is Frm;

(b)  There exists a decomposition

M=PN" o Pu;,

i€l jeJ

where each Nz-(Ki) is Fr with End N; a local ring and each U; is uniform
with EndU; and a local ring, such that

o[M] = PN e Polu;)
i€l =
If further M is a self-generator, then |K;| =1, for alli € I.
Proof.  We first note that if M is finitely generated, then the assumption that
M is a direct sum of indecomposables is superfluous [4, 9.3].

(a) = (b). Let M = @, x My, where each M is indecomposable. Let N be
the direct sum of all M}’s whose endomorphism rings are local (and hence are local
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modules) and L be the direct sum of the remaining summands. As M is projective,
we can write N = @, Ni(Ki) such that each N; is local and Top N; # Top N;,

for all « # j € I. By 8.3 o[N]| = @iela[Ni(K")]. Let L = P, ;U;, where each
U; is indecomposable and EndUj is not a local ring. It is enough to show that
o[N;]NolU;] =0and o[Us) No[U;] =0, forallie I and j #k € J.

Leti€ I and j € J. Suppose Y C N; and f:Y — U;/X is a non-zero map.
Then f can be extended to N;. As N; is projective in o[M] we get a non-zero map
from N; — U;. By 8.1 the above map must be an isomorphism, a contradiction.
Hence o[N;] N o[U;] = 0.

Let k # jand k,j € J. As EndUj is not local, U; is not continuous and hence
contains a proper submodule X isomorphic to it self. Suppose f : U; — Uy is a non-
zero homomorphism. By 8.1 f is an isomorphism. But then f|x : X — Uy is not an
isomorphism. Hence Hom(U;,Uy) = 0. It is easy to verify that o[U;] N o[Ux] = 0,
forall j # ke J.

(b) = (a) is easy to prove.

If M is a self-generator, then each N; must be homo-uniserial and hence |K;| =
1, forallie I O

Corollary 8.10. Let M be as in 8.9. Then

(1) M? is Fr if and only if M™ is FI, for alln € N.

) M s pr if and only if M is locally noetherian and FI, if and only if
ME) is FI, for any set K.

Proof. From 8.9 every indecomposable summand of M is local. The Corol-
lary follows from 8.4 and 8.5. ]

Corollary 8.11. Suppose M is finitely generated and projective in o[M). If M?
is an Fr module, then M is semiperfect in o[M].

Proposition 8.12. Let M be a projective module in o[M| such that M =
&b s M; @K, where each M; is indecomposable and non-simple, and K is semisim-
ple. The following are equivalent:

(a) M is SFr;

(b) o[M] =D, 0[M;] ®0[K] and M; is SFr, for all j € J.

If M is finitely generated, then the assumption that M is a direct sum indecom-
posables is superfluous.

Proof. (b) = (a) is obvious and we prove (a) = (b). Using 8.9 we see
that (b) follows if we prove that if A is a local non-simple module, then A ® A is
not SFr. Let B be a cyclic proper submodule of A. As A is FE, A is uniserial.
A @ Top B is m-injective. But the map f : B — Top B cannot be extended to A, a
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contradiction. O

[1]
[2]
[3]
[4]
(5]
[6]
[7]
(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

Taking M = R we get

Corollary 8.13. Let R be a ring. Then the following are equivalent:

(a) R is a right SFr ring;

(b) R is a ring direct sum of rings R;’s, where each R; as a right R-module is
either a uniform SFr module or a semisimple module.
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