SELF DUAL GROUPS OF ORDER p5 (p AN ODD PRIME)

AKIHIDE HANAKI

(Received December 14, 1995)

1. Introduction

Let G be a finite group, $Irr(G) = \{\chi_1, \dots, \chi_k\}$ be the set of all irreducible characters, $Cl(G) = \{C_1, \dots, C_k\}$ be the conjugacy classes of G, and x_i be a representative of C_i . We call G self dual if (by renumbering indices)

(*) $|C_j|\chi_i(x_j)/\chi_i(1) = \chi_j(1)\chi_j(x_i)$, for all i, j.

This condition is found in E. Bannai [1]. T. Okuyama [4] proved that self dual groups are nilpotent, and that a nilpotent group is self dual if and only if its all Sylow subgroups are self dual. So if we consider self dual groups we may deal with only p-groups. Obviously abelian groups are self dual. Some examples of self dual groups are discussed in [2].

If G is self dual it is easy to check that $|C_i| = \chi_i(1)^2$ for all i. It is easy to see that non abelian p-groups of order at most p^4 cannot satisfy this condition, and so they are not self dual. By the classification of groups of order 2^5 , there is no group of order 2^5 satisfying this condition. For odd p, in classification table of groups of order p^5 [3], we can see that one isoclinism family Φ_6 satisfies this condition. We will show that all of groups in Φ_6 are self dual.

2. Definition of groups

We fix an odd prime p. Let G be a p-group of order p^5 which belongs to Φ_6 defined in [3], namely

$$G = \langle a_1, a_2, b, c_1, c_2 \mid [a_1, a_2] = b, [a_i, b] = c_i, a_i^p = \zeta_i, b^p = c_i^p = 1 \ (i = 1, 2) \rangle$$

where (ζ_1, ζ_2) is one of the followings:

- (1) (c_1, c_2) ,
- (2) (c_1^k, c_2) , where $k = g^r$, $r = 1, 2, \dots, (p-1)/2$,
- (3) $(c_2^{-r/4}, c_1^r c_2^r)$, where r = 1 or ν ,
- (4) $(c_2, c_1^{\nu}),$
- (5) (c_2^k, c_1c_2) , where $4k = g^{2r+1} 1$, $r = 1, 2, \dots, (p-1)/2$,
- (6) $(c_1, 1), p > 3,$
- (7) $(1, c_1^r)$, where r = 1 or ν , and p > 3,
- (8) (1,1),

358 A. Hanaki

where g denotes the smallest positive integer which is a primitive root (mod p), and ν denotes the smallest positive integer which is a non-quadratic residue (mod p).

In this paper, we shall show that

Theorem 2.1. G is self dual.

We treat cases (1)–(8) above simultaneously. In any case, Z(G), the center of G, is $\langle c_1, c_2 \rangle$ and D(G), the derived subgroup of G, is $\langle b, c_1, c_2 \rangle$.

3. Irreducible characters and conjugacy classes

First, we consider irreducible characters of G. It is easy to see that $G/\mathbb{Z}(G)$ is isomorphic to the extraspecial group of order p^3 and exponent p. So we know all characters of $G/\mathbb{Z}(G)$. We put

$$Irr^{0}(G) = \{ \chi \in Irr(G) \mid \ker \chi \ge D(G) \},$$

$$Irr^{1}(G) = \{ \chi \in Irr(G) \mid \ker \chi \ge Z(G) \text{ and } \ker \chi \not\ge D(G) \}.$$

Let χ be an irreducible character of G whose kernel does not contain Z(G). Then $\ker \chi$ contains some subgroup K of Z(G) of order p since Z(G) is not cyclic. So we consider characters of G/K for a fixed K. We put

$$\operatorname{Irr}^2(G|K) = \{\chi \in \operatorname{Irr}(G) \bigm| \ker \chi \not \geq \operatorname{Z}(G) \text{ and } \ker \chi \geq K\},$$

and

$$\operatorname{Irr}^2(G) = \bigcup_K \operatorname{Irr}^2(G|K),$$

where K runs over subgroups of $\mathrm{Z}(G)$ of order p. Observe that this is a disjoint union. Then obviously

$$\operatorname{Irr}(G) = \operatorname{Irr}^0(G) \cup \operatorname{Irr}^1(G) \cup \operatorname{Irr}^2(G).$$

Let V be a two-dimensional $\mathrm{GF}(p)$ -vector space with a nondegenerate skew symmetric form $f:V\times V\to \mathrm{GF}(p)$. That is f is bilinear, f(u,v)=-f(v,u) for all $u,v\in V$, and if f(u,v)=0 for all $u\in V$, then v=0. Note that f(v,v)=0 for all $v\in V$. Let $\alpha:Z(G)\to V$ be an isomorphism of abelian groups. We define $\gamma:G/\mathrm{D}(G)\longrightarrow Z(G)$ by $\gamma(\overline{g})=[g,b]$. Since $[\mathrm{D}(G),b]=1$, this map is well-defined and γ is an isomorphism as abelian groups by the definition of G. Put $\beta=\alpha\gamma$. Then β is an isomorphism from $G/\mathrm{D}(G)$ to V. For K, choose $x\in G$ such that $\gamma(\langle \overline{x}\rangle)=K$, and define $H=\langle x,\mathrm{D}(G)\rangle$. Then H/K is abelian by the definition. Every character in $\mathrm{Irr}^2(G|K)$ is induced from a linear character of H whose kernel contains K but does not contain Z(G), and so the character has degree p.

Let ω be a primitive p-th root of unity. For x, we define $\eta_x \in \operatorname{Irr}(\operatorname{Z}(G))$ by $\eta_x(z) = \omega^{f(\alpha(z),\beta(\overline{x}))}$. We fix $\chi \in \operatorname{Irr}(G)$ such that $(\chi,\eta_x^G) \neq 0$. Then $\chi \in \operatorname{Irr}^2(G|K)$ since f is nondegenerate skew symmetric. We define $\chi^{(i)}$ by

$$\chi^{(i)}(g) = \chi(g^i).$$

Then $\chi^{(i)}$, $1 \le i \le p-1$, is also in $\operatorname{Irr}^2(G|K)$, since it is an algebraic conjugate of χ .

Lemma 3.1. $\chi^{(i)}(y) = 0$ for $y \notin H$ or $y \in D(G) \setminus Z(G)$, and $\chi^{(i)}(y) \neq 0$ for $y \in H \setminus D(G)$.

Proof. The first statement holds since $\chi^{(i)}$ is induced from H by the action of G on b. The second assertion holds by the first assertion and the consideration of the inner product with itself.

Choose $\xi \in \operatorname{Irr}^0(G)$ such that $\ker \xi \not\geq H$. Then

Lemma 3.2. For $1 \le i$, $k \le p-1$ and $0 \le j$, $l \le p-1$, $\chi^{(i)}\xi^j = \chi^{(k)}\xi^l$ if and only if i = k and j = l.

Proof. Assume $\chi^{(i)}\xi^j=\chi^{(k)}\xi^l$. Clearly i=k by considering the restriction to Z(G). Then j=l holds by $\chi^{(i)}(x)\neq 0$ and $x\not\in\ker\xi$.

Proposition 3.3. With the above notation,

$${\rm Irr}^2(G|K) = \{\chi^{(i)}\xi^j \mid 1 \le i \le p-1, 0 \le j \le p-1\}.$$

Proof. The result follows by Lemma 3.2, and since $\sum_{\phi \in Irr(G)} \phi(1)^2 = |G|$.

Now we are going to consider conjugacy classes of G. Put

$$Cl^{0}(G) = \{ C \in Cl(G) \mid C \subset Z(G) \}$$

$$Cl^{1}(G) = \{ C \in Cl(G) \mid C \subset D(G) \setminus Z(G) \}.$$

Then $\{c_1^i c_2^j \mid 0 \le i, j \le p-1\}$ is a representative set of $Cl^0(G)$, and $\{b^i \mid 1 \le i \le p-1\}$ is a representative set of $Cl^1(G)$.

As before, we define H, K, and x. Put

$$Cl^2(G|H) = \{C \in Cl(G) \mid C \subset H \setminus D(G)\},\$$

$$\mathrm{Cl}^2(G) = \bigcup_H \mathrm{Cl}^2(G|H).$$

Then the union is disjoint and

$$Cl(G) = Cl^{0}(G) \cup Cl^{1}(G) \cup Cl^{2}(G).$$

Choose $z \in \mathcal{Z}(G) \setminus K$. Then

Proposition 3.4. $\{x^iz^j \mid 1 \le i \le p-1, 0 \le j \le p-1\}$ is a representative set of $\operatorname{Cl}^2(G|H)$.

Proof. Assume x^iz^j is conjugate to x^kz^l . Clearly i=k by considering G/D(G). For $\chi\in {\rm Irr}^2(G|K),\ \chi(x^i)\neq 0$ and $\chi(z)\neq \chi(1)$. So $\chi(x^iz^j)=\chi(x^iz^l)$ implies j=l. Now the result follows.

4. Self duality for G

In this section, we will define Ψ a correspondence between conjugacy classes and irreducible characters of G and give a proof for Theorem 2.1.

We denote by C(y) the conjugacy class of G containing y. Fix $x \in G \setminus D(G)$, and put $H = \langle x, D(G) \rangle$, $K = \gamma(\overline{H})$. Let χ be in $\operatorname{Irr}^2(G|K)$, let z be in $Z(G) \setminus K$ such that $\chi(z) = \omega \chi(1)$, and let ξ be in $\operatorname{Irr}^0(G)$ such that $\xi(x) = \omega$ (obviously such z and ξ exist). We define $\Psi(C(x^iz^j)) = \chi^{(i)}\xi^j$. By Proposition 3.3, 3.4, this is well-defined. Now we shall show that $\chi^{(i)}\xi^j(x^kz^l) = \chi^{(k)}\xi^l(x^iz^j)$. We have

$$\begin{split} \chi^{(i)} \xi^{j}(x^k z^l) &= \chi^{(i)}(x^k) \chi^{(i)}(z^l) \xi^{j}(x^k) / \chi^{(i)}(1) \\ &= \chi(x^{ik}) \chi(z^{il}) \xi(x^{jk}) / \chi(1) \\ &= \chi(x^{ik}) \omega^{il+jk}. \end{split}$$

Similarly $\chi^{(k)}\xi^l(x^iz^j)=\chi(x^{ik})\omega^{il+jk}$. Thus $\chi^{(i)}\xi^j(x^kz^l)=\chi^{(k)}\xi^l(x^iz^j)$.

We extend Ψ to the correspondence between $\mathrm{Cl}^2(G)$ to $\mathrm{Irr}^2(G)$ naturally. If $\chi_1 \in \mathrm{Irr}^2(G|K_1)$ for $K_1 \neq K$, then $\chi_1(x) = 0$. Thus

$$\Psi(C(x_1))(x_2) = \Psi(C(x_2))(x_1)$$

for all $C(x_1)$, $C(x_2) \in Cl^2(G)$ and (*), denoted in section 1, holds for them.

Now we consider $\operatorname{Cl}^1(G)$ and $\operatorname{Irr}^1(G)$. We know $\{b^i|1\leq i\leq p-1\}$ is a representative set of $\operatorname{Cl}^1(G)$. Fix $\phi\in\operatorname{Irr}^1(G)$ and define $\phi^{(i)}$ similarly as $\chi^{(i)}$. We define $\Psi(C(b^i))=\phi^{(i)}$. Then obviously $\Psi(C(b^i))(b^j)=\Psi(C(b^j))(b^i)$. It is also clear that $\chi(b^i)=0$ for $\chi\in\operatorname{Irr}^2(G)$, $\xi(b^i)=1$ for $\xi\in\operatorname{Irr}^0(G)$, $\phi^{(i)}(x)=0$ for $x\in G\setminus \operatorname{D}(G)$, and $\phi^{(i)}(z)=p$ for $z\in\operatorname{Z}(G)$. Thus (*) holds for $C(x_1)\in\operatorname{Cl}^1(G)$ and $C(x_2)\in\operatorname{Cl}(G)$.

Finally, we consider $\mathrm{Cl}^0(G)$ and $\mathrm{Irr}^0(G)$. If $z\in\mathrm{Z}(G)$ and $\xi\in\mathrm{Irr}^0(G)$ then $\xi(z)=1$ and (*) holds. It remains to consider the cases $C(x)\in\mathrm{Cl}^2(G)$ and $C(z)\in\mathrm{Cl}^0(G)$. We define $\Psi(C(z))\in\mathrm{Irr}^0(G)$ by

$$\Psi(C(z))(x) = \omega^{f(\alpha(z),\beta(\overline{x}))}.$$

Then Ψ defines a one-to one correspondence between $\mathrm{Cl}^0(G)$ and $\mathrm{Irr}^0(G)$ since f is nondegenerate. Now

$$\Psi(C(x))(z) = p\omega^{f(\alpha(z),\beta(\overline{x}))}$$

and so (*) holds.

Now Ψ defines a one-to-one correspondence between $\mathrm{Cl}(G)$ and $\mathrm{Irr}(G)$ and (*) holds for all cases. The proof of Theorem 2.1 is complete.

References

- [1] E. Bannai: Association schemes and fusion algebras (an introduction), J. Alg. Comb. 2 (1993), 327-344.
- [2] A. Hanaki and T. Okuyama: *Groups with some combinatorial properties*, Osaka J. Math. **34**, to appear.
- [3] R. James: The groups of order p⁶ (p an odd prime), Math. Computation 43 (1980), 613-637.
- [4] T. Okuyama: Self dual groups are nilpotent, preprint.

Faculty of Engineering Yamanashi University Takeda 4, Kofu 400, Japan