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1. Introduction

In [1], E. Bannai introduced the concept of fusion algebras at an algebraic
level, a purely algebraic concept for fusion algebras in mathematical physics. He
showed that there exists a one-to-one correspondence between character algebras
(Bose-Mesner algebras at algebraic level) and fusion algebras at an algebraic level.
The concept of character algebras is a purely algebraic concept for Bose-Mesner
algebras of association schemes.

For any commutative association scheme, a character algebra and the corre-
sponding fusion algebra at algebraic level are constructed. But this fusion algebra
at an algebraic level is far from a fusion algebra in mathematical physics. A fusion
algebra in mathematical physics is integral, its matrix S is symmetric (and unitary),
and it has the modular invariance property. But these are not true for fusion alge-
bras at an algebraic level. So he asked which fusion algebra at an algebraic level
have these properties.

In this paper, we construct some p-groups and check the properties of their
group association schemes. For our groups, the fusion algebras are integral and S
is unitary but not necessary symmetric. Section 4 is a generalization of [2].

2. Fusion algebras at an algebraic level and character algebras

For the definitions of fusion algebras and character algebras, we refer to [1,
Definition 1.1 and 2.5].

Theorem 2.1 [1, Theorem 3.1]. There exists a natural one-to-one correspon-
dence between fusion algebras at an algebraic level and character algebras.

The correspondence in Theorem 2.1 is the following. Let 2 = (yo,v1,- -, ¥a)
be a character algebra with basis yo,y1,- - -, ys and the multiplication

d
Vil = D PhUk-
k=0



338 A. HANAKI AND T. OKUYAMA

[kik;
k ifj &
N;; = e Pijs

where k; is as in [ 1, Definition 2.5], and let A = (o, %1, - -, z4) be the algebra with
basis g, z1, - -, x4 and the multiplication

d
X = E NEz
il = ijLk-
k=0

Then A = (xg,z1, -, xq4) becomes a fusion algebra at an algebraic level. When all
Ni’“j are non-negative integers, we call 2 integral

Now we consider a finite group G. The character algebra (Bose-Mesner alge-
bra) of the group association scheme of G can be identified with the center of the
group a algebra over the complex number field. The ba51s of the character algebra is
{Cs,C1,- -+, Ca}, where CI(G) = {Co,C4,++,Cq} and C; = 32 gec: 9-

Put

Define

CiC; = Ztkck

In this case, k; = |C;|, so the structure constant of the corresponding fusion algebra
at an algebraic level is

= VICLI/(C.IIC,) t;

Let Irr(G) = {xo0,X1, ", Xd}, and let e; be the central primitive idempotent
corresponding to x;. Then {eg,e1,---,eq} is also a basis for the character algebra.
Thus there exist non-singular matrices P = (p;;)o<i,j<d» @ = (gij)o<i,j<d such that

(6\'0,6\1,"',6:1) = (601617"'76d)P7
(IGleo, |Gles, -, |Glea) = (Co,C1, -, Ca)Q.
It is easy to see that

_ _|GIxi(=5)
Y Cal(zj)Ixa(1)

qi; = xi(V)x;(zi)-

A matrix S is determined from a fusion algebra at an algebraic level [1, The-
orem in §4]. In mathematical physics, S is always unitary and symmetric (if S is
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symmetric, then S is unitary). But this is not true for fusion algebras at an algebraic

level.

For group case, it is shown in [1, §5] that S is unitary if and only if the lengths
of conjugacy classes and the squares of the degrees of irreducible characters of G
coincide with the multiplicity, and S is symmetric if and only if P = Q. So we
discuss these conditions in the following sections. If S is symmetric we call the

group self dual.
In the rest of this paper, S shall denote the matrix obtained from G in this way.

3. Construction of groups and some properties

Throughout this paper, we use the following notation.
Let g be a prime power, s and ! be positive integers, and 6 be a generator of
the Galois group of GF(q®) over GF(q). We define

G = {u(a1,aq2,--,a;) ; a; € GF(¢°)}.

We write an element u(a,az, -, a;) of G by u(a;) to simplify our description. We
define the multiplication in G by u(a;)u(b;) = u(c;), where

i—1
i
¢ =a; + Zaf_jbj + b;.
i=1

Then G is a group. Note that

ai 19 O

az ay 1

u(al,az,...’al) 3 a3 ag a?Z 1

9 02 ol—l
ap aj_y o *°" A 1

with the usual matrix multiplication.
We regard 6 as an automorphism of G by u(a;)? = u(a?). We also regard X €
GF(g®)* as an automorphism of G by u(a;)* = u(\(a;), where A = [];Z4 A®.
We define some subgroups of G as follows:

Gr = {u(a;) €G; a; =0, fori<k} forl1<k<Ii+1,
H = {u(e;) € G ; e; € GF(q)},
H, = Gy N H.

Then obviously, G; = G, G141 = 1, |Gi| = ¢**17%), and H = Cg(#) and abelian.
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We assume the following:

HypoTHEsis. (1) s is odd, and [ is less than the least prime divisor of s.
(2) (s,9) =1
(3) (s,9-1)=1

Let Tr : GF(¢®*) — GF(q) and Norm : GF(¢°)* — GF(g)* be the usual trace
map and the norm map, respectively.

Lemma 3.1. (1) Ker Tr is an (s—1)-dimensional GF(q)-subspace of GF(g°).

For a € GF(¢®)*, a Ker Tr = Ker Tr if and only if a € GF(q)*.

In particular, a Ker Tr + Ker Tr = GF(q°) for any a € GF(q)*, a # 0.

(2) For1<i<l, a® =a if and only if a € GF(q).

(3) GF(q®) = GF(q) ® Ker Tr.

(4) GF(¢®)* = GF(¢)* x Ker Norm. For 1 < i < [l and A € Ker Norm,
XD =1 ifand only if A =1.

Proof. (1) This holds in general and is easy to prove.

(2) By Hypothesis (1), (%) = ().

(3) By Hypothesis (2), GF(¢®) = GF(q) ® Ker Tr.

(4) By Hypothesis (3), a € Ker Tr for a € GF(q)* — {1}. Thus GF(¢*)* =
GF(g)* x Ker Norm. We assume A € Ker Norm and A) = 1. By the definition of
A6,

(A(z))G(A(z))—l — /\01')\~1 =1.
So A% = . Thus A € GF(g)* N Ker Norm = 1, by (2). O

For z = u(a1, -, a;) € G, we write the i-th entry a; by ;.

Lemma 3.2. (1) Assumexz € G;,y€ Gj,zi=a,y;=>b, andi+j=1. Then
[z,y]x =0,  fork<I, and
[z,y]; = a®b— ab?".

(2) With the assumption of (1), suppose a # 0. Then a®b— ab? = d(cb —
(cb)?"), and

{aejb —ab? ;i be GF(¢°)} = d Ker Tr,

where t is given by Hypothesis (1) such that1 <t <s—1, 67 = 6" and

t -1\ 1
d _ aolk c= H aezk
y = .
k=0 k=0
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Moreover a € GF(q) if and only if d € GF(q).
Proof. (1) We have

(zy)r = (YZ)k, for k < I,
(zy) — (yz)1 = a®b—ab?.

Thus zy = yzu, where u = u(0,---,0, a®’b— abei). _ ,
(2) The equation in (2) holds as dc = a®" = a% and dc? = a%° = a. So

{aejb —ab’ s be GF(¢°)} = d Ker Tr.
Assume d € GF(g). Then @ =dand ®“"” =a. Thusa® = a. By Hypothesis
(1), a € GF(g). U

REMARK.  G/Gj4j—1 is isomorphic to a group defined by (i + j) instead of .
Thus if 1 4+ j < I, Lemma 3.2 holds with [ replaced by i + j.

Lemma 3.3. (1) [Gi,Gj] = GH—j lf i+73<1 and [Gi,Gj] =1 le +7>L
In particular, G, is abelian if and only if 2m > 1+ 1.
2 Ifom>1+1,

G = Hy X [Gry,y 6],
[Gm, 0] = {u(a;) € Gy, ; a; € Ker Tr}.

Proof. (1) If ¢+ j > [, then obviously [G;,G,] = 1. If i 4+ j = I, then
[Gi,G;] = G; by Lemma 3.1 (1) and Lemma 3.2. In general, the result follows by
induction on ! — (i + j) and Lemma 3.2 (and its Remark).

(2) Let2m >1+1. Then G,, is abelian. By Hypothesis (2), G, = Cg(0) x
[Gm,0]. For u(a;) € Gn, u(a;)™! = u(—a;). Thus we get the presentation of
[Gm, 6] O

Lemma 34. (1) Cg(u) = HGi41—; for u € H;\ Hi11, 1 <i <.
(2) Assume2m >1+1,m <1, o € Irr(Hy,), and opy, # 1. By Lemma 3.3
(2), we can see

o € Irt(Hp,) = Irr(G /[Gm, 0]) C Irr(Gry).

Then [Gp,, 0]*[Gm,0] D Gy, forz & HGi41—m.
In particular, 1g(0) = HG41—m, where 1g(o) is the inertia group of o in G.



342 A. HANAKI AND T. OKUYAMA

Proof. (1) Assumeye€ Gj,y € Cg(u), andi+j < 1. Weputu; =e € GF(q)
and y; = b € GF(¢®). Then 0 = [u,y)i1; = e(b— b ) by Lemma 3.2 (1). Thus
b€ GF(q) and y € HG,4+1. As H C Cg(u), we can repeat this argument to get the
result.

(2) HG;41-m normalizes G, 8]. So we may assume that there exists a posi-
tive integer ¢ such that x € G;, x; = a € GF(q), and i+ m < I. Then m <[ —4, and
[Gi—:,0] C [Gm,0]. So

[Gon, )% [Gom, 8] D [[Gi—s, 61, 2] (G, 6.

By Lemma 3.2 the set of I-th entries of elements of [[Gi_;,6],z] C G is {aboi -
a® b ; b € Ker Tr}, where j = | —i. We have

{ab” —a”b; be Ker Tr} + Ker Tr = {ab” —a”b; be GF(q*)} + Ker Tr
= d Ker Tr + Ker Tr = GF(¢®),

where d is the element defined in Lemma 3.2 (2). Thus [[G;—;, 0], z][Gi,6] D G; and
(G, 0% [Gom, 6] O G

As o, # 1, z € Ig(o) and thus Ig(0) C HGi41—m. It is easy to see that
Ig(O') D) HGl+1—m O

Lemma 35. (1) If u€ H and [u,z] €g H, then [u,z] = 1.
2) If we H;\H;y1 and 2k+1i > 141, then [u, G| = [Gk+4,6]. In particular,
if [u,z] € Gy, then [u,z] € [G,6)].

Proof. (1) Assume u € H; \ H;4; and u; = e € GF(g)*. For z & Cg(u) =
HGiy1-i, we shall show [u,z] ¢g H. We may assume z € G;, i +j < I, and
z; = a € GF(g). Then [u,z] € Gi4; and [u,z];4; = e(a — a®) by Lemma 3.2.
Suppose [u,z] € H. Then [u,z];y; € GF(g), and a — a? € GF(g) N Ker Tr = 0.
Thus a = a®" and so a € GF(q). This is a contradiction.

(2) In general, we have [u,zy] = [u, y][u, z][[u, Z], ]

If z, y € Gi, then [u,z] € Giy; and [[u,z],y] € Gokyi = 1. Gi4; is abelian
since 2(k + 1) > 1 + 1. Thus

[u, Gk] = {[u, 2] ; = € Gk} C Gii.

As v’ = u, [u,Gy] is f-invariant and [u,Gx] N H = 1 by (1). Hence [u,Gx] C
[Gk+i’0]'
If K+ ¢ > 1+ 1, then [u,Gk] = [Gk4i,0] = 1. Assume k +¢ <. Then
|[w, Gi]| = |Gk : Cg,. (u)]

= |Gk : HGi41-4]
B
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and

[[Grys,0]| = q(s—l)(l+1—i_k) .

So [U,Gk] = [Gk+i,0].

When [u,z] € G, we apply Lemma 3.4 (1) to G/G; and we get x € HG,_;. If
i =1, then [u,z] = 1. If « < then, [u,z] € [Gy,6] by applying the above argument
tok=1—1. U

In order to calculate the values of the irreducible characters of G we will need
some properties of a certain quadratic form over GF(g). For the rest of this section,
let V be an n-dimensional vector space over GF(g) and let f : V — GF(q) be a
quadratic form with the symmetric bilinear form g : V x V' — GF(q). Namely

FOz + py) = N f(z) + 4 f(y) + Aug(z, )

for z, y € V and A, u € GF(q). For the following facts, we shall refer to [4, Chap.6,
§2].

Assume f is non-degenerate and n is even. Put n = 2ny. There exists a basis
{v1,v2,-+,vn} for V such that forz = Y7 | A\iv;, s € GF(q), one of the following
holds.

(1) f@) =372 AiXidno.
(=1) When q is even, f(z) = 221—1 Aiditng—1 + A2_1 + An—1n + @X2, where
t? +t + o € GF(q)[t] is irreducible.
When ¢ is odd, f(z) = 277" Aidigno—1 + N2_; — a2, where t2 — o €
GF(q)[t] is irreducible.
Then, for (¢), e = £1, and a € GF(g)*, we have

H{x eV ; f(z) =0} = (g™ —¢e)g™ ' +eq™,
tH{z eV ; f(z) =a} = (g™ —e)g™ .

For a @-invariant GF(g)-subspace U of GF(¢°), let [U,0] = {u" —u; ue U,T €
(6)}. Then for the trace map Tr : GF(¢°) — GF(q),

Ker Tr = [GF(¢°), ]

Let ! > m > k > 0 such that m + k = [, and put m — k = . We define
f:[GF(q*),0] — GF(q) by

f(a) = Tx((a® - a"")a),
and g : [GF(¢%), 0] x [GF(¢®),6] — GF(q) by

g(a,b) = Tr((a® —a®™ )b+ (b* — b7 )a).
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Then f is a quadratic form and g is the corresponding symmetric bilinear form. We
have

g(a,b) = Tr((a — )b+ (07" a)? — " a)
= Tr((a — a®)?" b — (a — a® )p"),
and
{a—a’; a € [GF(¢*),0]} = [GF(¢*), 6)-

So if g(a,b) = 0 for all a € [GF(g®), 6] then b € GF(q) N [GF(¢®),6] = 0 by Lemma
3.2 (2). Thus g is non-degenerate and so is f.

Note that dimgp(4)[GF(¢®),0] = s — 1 is even. We want to determine which of
the cases (1), (—1) hold for (£, [GF(¢°),6)]).

Put s = t?r;---r,, where r;’s are distinct primes. We define ¢; = *1, i =
1,2,---,n, by ¢"V/2 = ¢; (mod 7;), and define ¢, = [1;_; €. If s is square then
we define €, = 1.

Lemma 3.6. For (f,[GF(¢*),0]), (¢s) is independent of k and m.

Proof.  Assume that the case (¢) occurs for (f, [GF(¢®),0]). Note that f and
g are f-invariant, namely f(a®) = f(a) and g(a?,b%) = g(a,b).

First, we assume that s = r¢, where r is a prime. Then r is odd by our
assumption. Since 6 has no fixed point on [GF(q®), 6] \ {0}, r divides the length of
any (#)-orbit on it. Thus for a € GF(q)*,

tHz eV ; f(x)=a} = (¢ V% —e)qt*" V271 =0 (mod 7).

Thus ¢©*~1/2 = ¢ (mod 7).

Notethat s—1=7°—1=(rc=1)/(r —1)-(r —1).

If z is even, then (r® — 1)/(r — 1) is also even and (s — 1)/2 is a multiple of
r—1. So q¢*"1/2=1 (mod r) and € = 1.

If z is odd, then (r° — 1)/(r — 1) is also odd and ¢(*~1/2 = ¢(r=1)/2 (mod r).
Thus € = ¢("~1/2 (mod r). Therefore € = ¢;.

Now, in general, we assume s = ru, where r is a prime and (r,u) = 1. We put
6, = 6", 6, = 6“. By the action of 6; on [GF(q®),6], we have

[GF(¢°),6] = ([GF(¢"),0] n GF(¢")) & [[GF(¢"), 6], 61]
= [GF(¢"™), 6] ® [GF(g°),61].
By the action of §; on [GF(q®), 61], we have
[GF(¢°),61] = ([GF(¢°),6:] N GF(q*)) & [[GF(¢°), 6], 2]
= [GF(¢"),6:] ® [[GF(¢°), 61], 62].
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Thus [GF(¢*), 8] = [GF(¢""), 62] ®[GF(¢%), 6:)®[[GF(g*), 61],02]). This is an orthog-
onal decomposition for g since g is §-invariant and (s,q) = 1, and the restriction of
f to each component is non-degenerate.

Put W = [[GF(q¢®), 01],02]. Then dim W = (r¢ — 1)(u — 1). 6 acts on W and
has no fixed point on W\ {0}. As |65 = r¢, by the same argument as above, if (ey)
occurs for (f, W) then ey = ¢""~D(®=1)/2 = 1 (mod r) and ey = 1.

This argument can be applied to any non-degenerate f-invariant f and g. (€,c)
occurs on the first component and (e,,) occurs on the second component by induc-
tion. Thus e,ce,ew = €5 occurs on [GF(g®),6]. The proof is complete. O

4. Conjugacy classes and irreducible characters

In this section we determine the conjugacy classes and the irreducible characters
of G.

Theorem 4.1. {1} U {u(e;)* ; u(e;) € H \ {1}, € Ker Norm} is a complete
set of representatives of the conjugacy classes of G.

Proof.  Assume u(e;)* =g u(f;)*, where u(e;),u(f;) € H\ {1} and )\, u €
Ker Norm. If u(e;) € Hi\ Hr1, then u(f;) € Hg \ Hey1 and (A=) Fley, = fi # 0.
Thus A\~ 1)*) € GF(¢)* N Ker Norm = 1. By Lemma 3.1 (4), A = u. Now
u(e;) = u(f;) by Lemma 3.5 (1).

The set in the theorem is a subset of the representatives of conjugacy classes.
Consider the sum of their lengths,

1
s __ 1 s 1
1+q— Z |G : Cg(u)| = 1+q—_'i‘Z|G:HGl+l—i“Hi\Hi+1|
170 wemy E
s !
=1+ %—__—11 Zq(s—l)(l—i)(qH—l—-i — g b
=1
l .
=1+ (¢°-1) qu(l—z)
1=1
= 1+(qSl _ 1) :qsl — IGI
(We used Lemma 3.4 (1) in the first equation.) The result follows. 0

Corollary 4.2. There exist (¢° —1)q*~* conjugacy classes of size ¢'*= (=9 for
1<i<1l—1 and q° conjugacy classes of size 1.

We need some terminology from character theory. Let K be an arbitrary finite
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group, Z < K and let p € Irr(Z) be linear and K-invariant. We call z € K p-special
if [z,9] € Z implies [z,g] € Ker p for g € K. If y € K is not p-special, then
x(y) = 0 for any x € Irr(K|p) (See [3, Chap.11]).

For p € Irr(H,), we can regard p € Irr(G)) since G; = H; x |G}, 0]. We assume
p # 1 in the following.

Lemma 4.3. Ifx € G is p-special then x €c H or z € G).

Proof. Assume z € G;. By Theorem 4.1, z =g u* for some u € H; \ Hit1,

i <1-—1, and A € GF(¢°)%, Norm A = 1. Since z is p-special, so is u*. By
Lemma 3.5 (2), [u*, Gi—i] = [u,Gi—;]* = [G1,6)*. Assume X # 1. Then AU # 1
by Lemma 3.1 (1) and A\®Ker Tr + Ker Tr = GF(¢°) by Lemma 3.3 (2). Thus
[G1,6]*[G1, 0] = G,. This contradicts the fact that p # 1. So A=1and ¢ =g u € H.
O

Lemma 4.4. For x € Irr(Glp), x(1) = ¢®=DU=1/2 and |x(u)|? = ¢~V for
’U,EHZ'\HH.L?:Sl-—L

Proof. For u € G we denote the conjugacy class of G containing u by C,.
If (u=1)*u?¥ €c HG), then u"lu¥* " €c HG), namely [u,yz=1] €¢ HG;. Then
[u,yz~1] € G; by Lemma 3.5 (1). By Lemma 3.4 (1), yz~! € HG,_;, and by
Lemma 3.5 (2), [u,yz~!] € [G},6]. Thus

CorCy =G : Cg(u)l[él,\ﬁ] + (non p-special conjugacy class sums).
We consider the value of x of this equation and we have

|G : Ca(w)P|x(w)*/x(1)* = |G : Ca(u)lg*™".

Thus
|G : Co(W)Ix(@)* = ¢ *x(1)*.
By Lemma 4.3,
' =16 = Ix@)
z€G
= Y 1G:Ce)lix@P+ 3 Ix(2)?
uwEH\H, 2€G1

= ¢* " Ix(1)%4(H \ Hy) + ¢°x(1)*
= (¢"Y(¢" — q) + ¢°)x(1)?
= ¢""x(1)%
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Thus x(1)? = ¢C~D¢D. x(w)]? = |G : Ca(w)|'g* 'x(1)? = ¢~V for u €
Hi\ Hipp,i <1—1. O

By Lemma 4.3, each x € Irr(G|p) is 6-invariant. By Hypothesis (2), we may
define the Glauberman correspondence between Irr(H) and Irrg(G), the set of 6-
invariant irreducible characters of G. Let x = xo € Irr(G|p) correspond to a €
Irr(H). (See [3, Chap.13].)

Proposition 4.5. Assume v € H;\ Hj41,1 <1 —1, and |l — i is odd. Then
x(u) = g~V 2a(u).

Proof. Putk=(l—i+1)/2and m= (I+¢+1)/2. By Lemma 3.3 (2), G,
is abelian. As (|G|,s) = 1 and G,, is #-invariant, there exists o € Irrg(G,,) such
that (0%, x) # 0 [3, Theorem 13.27]. By Lemma 3.3 (2), G,n, = H,, X [Gm, 0] and
so Ker 0 D [Gp,,0] and o, = p # 1. By Lemma 3.4 (2), Ig(0) = HGj and there
exists 7 € Irr(HG},) such that n¢ = x. Then 7 is f-invariant and 7 corresponds to
a by [3, Theorem 13.29].

Since [u, HGk| = [u,Gk]) = [Gm, 0], v € Z(HGk mod [Gr,,0]). Thus n(u) =
n(L)aw).

Assume u® € HGy for z € G. Then [u*, Gi| = [u, Gk]* = [Gm, 0]*. If z € HGk,
then, by Lemma 3.4 (2), [Gm,0]*[Gm, 0] D Gy, and so u* € HGy, is not o-special.
Hence n(u®) = 0. Now we have x(u) = n%(u) = n(u) = n(1)a(u). The result
follows by Lemma 4.4, ]

Proposition 4.6. With the assumptions of Proposition 4.5, suppose thatl — i is
even. Then x(u) = £, V20 (u), where ¢, = +1 is as defined in Section 3.

Proof. Putk = (I—-1)/2 and m = (I +¢)/2. As the proof of Proposition 4.5,
there exists o € Irr(H,,) C Irr(Gy,) such that of, = a and (0, x) # 0, and there
exists 7 € Irrg(HGg41|0) corresponding to a such that n¢ = x.

Since [u, HGk+1] = [Gmi1,0] C [Gm,0], u € Z(HGr4+1 mod [Gp,,0]). Since
[u®, HGg+1] = [Gm+1,0)%, if u € HGg41 and = € HGj, then n(u®) = 0 as in the
proof of Proposition 4.5. Thus

xw =n@= > n@)=) n(uua)=n))_ ouz).

z€HGr11\HGx

Put u; = e € GF(q). Then e # 0. Let z € G and zx = a € GF(¢°). We
apply Lemma 3.5 (2) to G/G, and then [u,z] € [Gn,0]G;. Thus Tr([u,z];) = 0 for
j <1—1 by Lemma 3.3 (2). We shall show that Tr([u,z];) = Tr((a®" — a?")a)e.
Put v € H; such that v; = e, v; = 0 for j # 4, and put y € G such that yx = a,
y; =0 for j # k. Then u € vH;41 and z € yGi41. Now [u,z] € [v,y][Gm+1, 6] by



348 A. HANAKI AND T. OKUYAMA

Lemma 3.3 (2) and the formula for commutators. Thus Tr([u, z];) = Tr([v,y];) for
1<j <L Putz=[v,y]. We have (vy); =0, (yv)r = a, (yv); = e, (Yv)m = a®e,
and (yv); = 0 for j # k,i,m. As 2, = e(a —a?'),

ezi_; +a°" (a—a® )e—i—zl =0.
Tr(zi—;) =0byl—i<1l-1,5s0

Tr(z) = Tr(agmagi —a"a)e

m

= Tr(aom_ia —a®a)e
= Tr((a® - a’")a)e.

Thus [u,] = 2’ mod (G, 6], where &’ € Hj, z} = Tr((a®* — a®")a)e/s.
When z runs over Gy mod HGg41, zr = a € GF(¢®) runs over [GF(¢*),6]. As
o € Irr(Hp,) C Irr(Gry),

o([u,2)) = o(a’) = p(a’).
Now by Lemma 3.6,

S olhus) = Cole) =

z€HGL4+1\HGy

as py, # 1. Thus x(u) = €,¢°~Y/2n(1)a(u). The result follows by Lemma 4.4.
O

Proposition 4.7. Let x, € Irrg(G) be the character corresponding to o €
Irr(H) \ {1g}. If @ € Irr(H/Hg41) \ Ir(H/Hg), 1 < k < I, then Ker xo D
[Gk,0]GE+1, Xa(1) = g~ DED/2, x, (2) = 0 for z ¢ HGk, if © € HG, thenx
is conjugate to u € H modulo Ker x,, and foru € H,

qe~VE-D2a(u), foru € H \ Hi1,
Xao(u) = g Vi20(u), forue H;\ Hiy1,i<k—1andk —i is odd,
£:q*" Vi 20(u), foru € H;\ Hiy1,i < k—1 andk —i is even.

Proof. Note that Ker xo D Gk+1. Apply Propositions 4.5 and 4.6 to G/Gj41.
O
Theorem 4.8. Irr(G) = {Ig}U{x2 ; a € Irr(H) \ {1}, X € Ker Norm}.

Proof.  Assume x} = xj for , 8 € Irr(H) \ {1z} and A, € Ker Norm. We
have x2* ' = xg. Then a € Irr(H/Hy41) \ Irr(H/Hy,) implies 8 € Irr(H/Hi41) \
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Irr(H/Hy). Thus [Gk,6]* '[G, 6] C Ker x5 and so (Au=1)*) = 1. Now A = p
and a = . The result follows by comparing the number of conjugacy classes with
the size of our set. O

Corollary 4.9. There exist (q° — 1)¢'~* irreducible characters of degree
qs=V=9/2 for 1 <i <1 —1 and q° irreducible characters of degree 1.

Theorem 4.10.  The matrix S obtained by G is unitary.
Proof. It is easy by Corollaries 4.2 and 4.9. O

5. The fusion algebra at an algebraic level of G is integral

Let CI(G) = {C;}o<i<a. Foru € C;, v € C;, and w™! € Cy, put

tu,v,w = ﬁ{(.’L‘, y) y T=G@ U, Y =G V,2Y = w_l}'

Then ty 0 = tf;, where t¥; is defined in Section 2. We also put Ny, .., = Nf. Note

15°

that
_ ICulICy| x(u)x(v)x(w)
e xegfc) NOREE
_V |Cu”Cv||Cw| X(U)X(U)X(w)
Nu,'u,w - |G| - xegr:(c) _—X(l) .

To show that the fusion algebra at an algebraic level is integral we shall show IV, , 4,
is a non-negative integer for any u, v, w.
Put

T = {1} U {u(e;)* ; u(e;) € H\ {1}, X € Ker Norm},

representatives of the conjugacy classes of G (Theorem 4.1). In this section, we shall
assume that u, v, w € T.

Obviously, Ny, 4, is symmetric in u,v,w, and if £, 4, = 0 then Ny 4, =0

Ifue G;\Giy1, w € Gj\Gjt1,and i < j then v € G; \ Giy1 OF Ny o =
0. So we may assume u,v € G; \ Giy1 and w € G, \ Gj4; for i < j. Then
VICulICWl|Cu|/|G]| = g~ DU=+(s=1)(1=5)/2=5l We may also assume s > 3 and s
is odd.

We put

n(m Z x(u)x(v)x(w)

u,v,w 1 )
XEIrr(G/Gm41)\Irr(G/Gm) X( )
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where we regard Irr(G/Gr,) as a subset of Irr(G) in natural way, and thus

N(M) _q(s—l)(l—i)+(s-1)(l-1)/2 sl (m)

u,v,w u,v,w"

We have Ny, = anzo N,S,mv?w, where Irr(G/G)) is the empty set.

Lemma 5.1. Let A be a finite abelian group, and let B and C be subgroups of
A such that B > C. Then, forz,y,z € A,
|A/C| - 1A/B|,  ifzyz€C,
> x(@)x(¥)x(z) = -|A/B|,  ifzyz€ B\C,

Xx€lrr(A/C)\Irr(A/B) 0, otherwise.

Proof.  This is easy since 3, c1.,(4/5) X(@)X(y)x(2) = |A/B| if zyz € B and
0 otherwise. U

For z, y, z € T, We define 6,,(zyz) to be 1 if zyz € G,, and 0 otherwise. If
Tz =u,y=v, and z = w we omit uvw, namely 6,, = b, (uvw).

Lemma 5.2. If i = j, then Z —o M, ,,)w = 6;419* and Zm ON,(L v)w is an
integer.

Proof. Obviously,

i—1

(m) _ x(w)x(v)x(w)
RTINS

m=0 x€Irr(G/Gy)
= Y x(?

x€Irr(G/G;)
= 16/Gil = ¢V

Furthermore, since uw,v,w € Z(x), Theorem 4.8 implies that for x €
Irr(G/Giv1) \ Irt(G/G;),

x(Wx(v)x(w)
x€Irr(G/Gi+1)\Irr(G/Gy)

=g} > gD B(w) B(v) B(w)

BEIrr(Gi/Git1)\1
= ¢V (bi11¢° - 1).

So we have ¢ _ ny Mo = 6ip1g"
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By definition of Ny,

i 1
Z Nt(znqj)w — q3(s—1)(l—i)/2—sl Z ngn;)w
m=0

m=0

— 61-_',1q3(s—1)(l_i)/2_31+3i.
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Now 3(s —1)(I —i)/2 — sl + si = (s —3)(1 —4)/2 > 0, and thus 3>* _ N{%),, is an

integer.

O

Lemma 53. Assumei < jandu € H. If v¢ H thenny, ., =0. Whenv €
H we definew € H byw € 6[G,,01G;41. Then 30 _ n{T) ., = 6;41 (wvi)q(s—Dit+s

and 3! _o N{wh, is an integer.

Proof.  The first statement obviously holds since ¢, , ., = 0. Suppose v € H,

and define w € H as in this lemma.
By Theorem 4.7,

j—1
Z nm))w _ Z x(w)x(v)x(w)
S _ x(1)
m x€Irr(G/Gj)
= Y x@x)
x€Irr(G/Gj)
= 6;|Cq/c, (u)]
— 6jq(j—l)+(s——1)i’
and
n{), , = gV Z a(u)a(v)a(w)

a€lrr(H/Hj1)\Irr(H/Hj)
= qUTV (6541 (woid)g? — 8;¢771).

Thus the equation holds.
Furthermore,

J J
30N, = gDt =0)/2mal § ()
m=0 ’Y m=0 w

— 5]_+1q(s—1)(l—i)+(s—1)(l—j)/2—sl+(s—1)i+j'

Now (s —1)({—4) + (s —1)(1 =j)/2—sl+(s—1)i+j=(s—3)(l-3)/2>0, and

thus 32 _ N{™),, is an integer.

m=0

a
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Lemma 5.4. If m > j, then either

n(m) - Egm—j+1)q(s—1)i+(s—1)j/2—(s—1)(m—1)/2+m—1 (6

UV, W

m+19 — 6m)

or n{™., = 0. Moreover, N\, is an integer.

Proof. We may assume u, v, w € H* for some A € Ker Norm, otherwise
nq(L"f,)w = 0. Now we may also assume A = 1, namely u, v, w € H.

By Theorem 4.7,
n(m) = g(m=i+1) g(s=Di+(s=1)j/2~(s=1)(m~1)/2

u,v,Ww
a(u)a(v)a(w)
a€lrr(H/Hpmy1)\Irr(H/Hp)
— 6gm--j-{—l)q(s—l)i+(s—1)_7'/2—(s—1)(m—1)/2((Sm_’_lqm _ 6mqm—l)

and the equation holds.
Furthermore,

NG — g(s=DU=)+(s=1)(1=5)/2=sl+(s= V)it (s=1)j/2=(s=1)(m—1)/2+m—1(

u,V,w

6m+lq - 5m)

— q3(s—l)l/2—sl—(s—1)(m—1)/2+m—1(5m+1q _ 5m)’

and

3(s—1l/2—sl—(s=1)(m—-1)/24+m—-1=(1-m+1) (553) > 0.

Thus N{%,, is an integer. O

Theorem 5.5. N, , ., is a non-negative integer for any u,v,w € G. In partic-
ular, the fusion algebra at an algebraic level is integral.

Proof.  Since ty 4, is non-negative, Ny , ., is non-negative. The result follows
immediately by Lemmas 5.2, 5.3, and 5.4. ]

6. Self duality of G

In this section, we investigate the self duality of G. Although G is not self dual
in general, if [ is less than the prime divisor of ¢ and [ = s — 1, then G is self dual.
Recall that if CI(G) = {CO, Cla I} Cd} and II‘I'(G) = {XO» X1y Xd}, then

|G|xi(z;)
ICq(z;)Ixi(1)’

25 = x5 (1)x; (),

Dij =
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where z; € C;, and G is self dual if p;; =7q;; for all 0 < 4,5 < d.
Firstly we shall show that G is not self dual if [ > p. We need an easy lemma.

Lemma 6.1. Puta € G, a; =e € GF(q) and aj = 0 for j # i. thena™ = u(b;)
where by, = ,Ce™ and ,C,, is a binomial coefficient, and b; = 0 otherwise.
In particular, for x € G; \ G;1, x is of order p if and only if ip > 1.

Proof. By the induction on n, the form of a™ is obtained. By p | ,C,, for
1 < m < p, we have the order of z € G; \ G;41. ]

Proposition 6.2. Let p be the prime divisor of q. If | > p, then G is not self
dual.

Proof.  Suppose that G is self dual. It is easy to see that

poj = |G|/ICq(z;)| = ICjl,
q; = x; (1)

Thus |C;| = x:(1)? for all 4.

Let z; € Hi/H2. By Lemma 6.1, 2;Gpy1 € G/Gp41 has order p?. Thus there
exists o € Irr(H/Hp41) \ Irr(H/H)) such that a(z;) = w, where w is a primitive
p2-th root of unity. Let x; = Xqo € Irr(G/Gp41) \ Irt(G/G,). Then

Xi(@:) = es¢*7V 2w,

where €, = +1 is as defined above.

Since |C;] = ¢~V we have x;(1) = ¢C~VE-1/2 and x; € Irr(G) \
Irr(G/Gy). Similarly, z; € Gi—p41\ Gi—p42. Now ({—p+1)p—1l = (I-p)(p—1) >0
and so (I —p+ 1)p > I. Thus z; has order p and x;(z;) is a real multiple of a p-th
root of unity.

Since p;; and g;; are real multiples of x;(z;) and x;(z;), respectively, we have

Dij # Qij- OJ
By Proposition 6.2, if G is self dual, then | < p. We do not know whether G is
self dual or not if I < p. We have the following result.

Proposition 6.3. Assumel <p and | =s— 1. Then G is self dual.

Proof. Put g = p'. We denote the usual trace map from GF(q) to GF(p) by
Tr,/p to distinguish it from Tr, the trace map from GF(q®) to GF(g). Note that the
exponent of G is p by Lemma 6.1, and H is elementary abelian. We fix a primitive
p-th root of unity w.
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Put K = GF(q) x---x GF(q) (I-times) as a direct product of the additive group
GF(q), and put K; = {(a1,---,a;)) € K ; a; =0, forj<i}forl <i<I1+1
For z € K, we denote the i-th entry of z by ;. By Lemma 6.1, H is elementary
abelian and so there exists an isomorphism ¢ : H — K such that p(H;) = K; for
1<i<1+1 and u; = p(u); for u € H;.

For u € H, we define o, € Irr(H) by

8) = T (e #050)

Then the map v — «,, is an isomorphism from H to Irr(H). Note that a,(v) =
a,(u) for any u,v € H. Also u* — xéu induces a one-to-one correspondence
between C1(G) and Irr(G). We denote X, by Xxu. We shall show P = @ by this
correspondence. By Theorems 4.1 and 4.8, we can index the conjugacy classes and
irreducible characters of G by u € H and A € Ker Norm.

Note that if u € H; \ Hiy; then |Cy| = ¢~V o, € Irr(H/H;_iy2 \
Ircr(H/Hi—i+1), Xu € I't(G/Gi—iy2 \ Irr(G/Gi—i11), and x.(1) = q(s_l)(l_i)/Q.

We assume u € H; \ H;11, v € H; \ Hj4+1, and A, u € Ker Norm.

First, we assume i + j > [ 4+ 1. Then obviously u* € Ker x* and v* € Ker x;.
Now

prsy = —1CPa0")
“T G (o)X (1)
= glsmD0=3)

Guror = X5 (1)xv (ut)
= g(s=D=9),
ThUS pu)\vu = qu)‘v"'
Second, we assume i + j < [+ 1. If X\ # p, then x(v*) = x*(u*) = 0, and so
the result holds. We may assume A = u = 1. Then

A0
Puv = G () xu(1)

= (i) g(s=1)(=1) g~ (s=1)(1=/2 (6= 13 /24, ()

= e(=i=D)gls=D(+i=4)/2 ()

)

Quv = Xv(l)Xv(u)
— agl—i—j)q(s—l)(l—j)/2q(3—1)i/2av(u)

= el=i=d)gla=D+i=3)/2g (0.

Thus py, = Guy by au(v) = av(u)'
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Finally, we assume ¢ + j = [+ 1. Put u; = a € GF(q) and v; = b € GF(q). We
may assume that u = 1. We define @ € H; to be u* € 4[G;,6]G;41 and ¥ € Hj to
be ’U’\_1 € fl[Gj,O]Gj.g.l. Then

(@); = Tr(aA®)/s = a Tr(\®D)/s,
®); = Te(AD ") /s = b Tr(AD 1) /s.

Thus
xa(v) = ¢ V=92, (3),
Xv(u’\) — q(s—l)(l—j)/2av(ﬁ)_
We shall show a,(9) = a, (). Since
0w (B) = T @D/
(abTr(A)) /s

Q, (ﬂ) - wT‘rq/p

it is enough to show that Tr(A\® — A®) ™) = 0. We have

i—1 Jj-1
’I‘r()\(i) - ,\(J‘)"l) = Tr (H 2* _ H(/\ok)—1>
k=0

k=0
i—1 s—1
=Tr (H plage H(A"k)‘l)
k=0 k=1
s—1 s—1
=Tr ((H L 1) (,\"k)"l)
k=0 k=i
= 0.
Thus a,(9) = a, (). Now
Glxa (v)

Purv = G (v)Ixa (1)
= (5D g=(s=1)(=i)/2(s=D) (=) /2, (75)

= ¢~ VU=Dq, (3),

Qury = Xo(1)Xw(u)
— q(s-‘1)(’—]')/2(1(3—1)(1—1')/2av(a)

= ¢~V =9g, (@).

Thus py», = @ur,. This completes the proof. U
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