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1. Introduction

The mathematical theory of wave in layered media is still posing interesting
mathematical problems even in the linear, stationary case.
In Jager-Saito [9] and [ 8], we studied the spectrum of the reduced wave operator

(1.1) Ho = —po(z) 1A,

where po(z) is a simple function which takes a two positive values po; and poz on
0, and Q, respectively. Here Q, £ = 1,2, are open sets of RY such that

Q;NQy =0,
(1.2) { A

Q_lugzzﬂl UQ_2=RN,

Q being the closure of §2,. Under a new condition on the separating surface
S = 9y = 909, we have established the limiting absorption principle for Hy which
implies that Hy is absolute continuous. Our condition is satisfied, for example, for
the case where S is a cylinder.

In this work we are going to extend the results in [9] to the multimedia case, the
case where po(z) can take finitely or infinitely many values (see §2). The limiting
absorption principle will be established and, again, the operator Hy is absolute
continuous. Also we shall consider short-range or long-range perturbation of Hy,
that is, we shall study the operator

(1.3) H = —u(z)7tA,
where
(1.4) u(z) = po(z) + p1(z)

IThe second author was partly supported by Deutche Forschungs Gemeinschaft through SFB
359.
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and pq(x) is short-range or long-range. In this case we shall prove that the point
spectrum, if it exists, is discrete, and the limiting absorption principle holds on any
interval which does not contain an eigenvalue.

As for the study of the reduced wave operators with discontinuous coefficients,
many works have been done for the stratified media in which the coefficients of the
operator are the functions of 2’ € R¥ ¢ R, k < N. Some perturbed operators
of the above type have been discussed, too. Here we refer Wilcox [16], Ben-Artzi-
Dermanjian-Guillot [2], Weder [14], [15], DeBiévre-Pravica [4], [5], Boutet de
Monvel-Berthier-Manda [3], and Zhang [17]. In [5] S. DeBiévre and D.W. Prav-
ica proved there is no point spectrum for the stratified propagators without any
additional conditions other than sufficient smoothness of the coefficients at infinity.

It seems that there are rather few results for the nonstratified case. Eidus [6] was
the first to consider the reduced wave operators Hy with a cone-shape discontinuity.
He imposed the following assumptions on the separating surface S: there exist
positive constants c¢; and co such that

(1.5) n{(@)] > e (z€S),
and
(1.6) lz-nM(z)] < ey (z€8),

where n9) (), £ = 1,2, is the unit outward normal of Q; at x, and x - n(V)(z) is the
inner product of x and n(Y)(z) in RN. Note that a cone having its vertex at the
origin and the positive z y-axis as its axis satisfies (1.5) and (1.6). Under the above
assumptions, Eidus [6] proved the limiting absorption principle for Hy, that is, by
denoting by Rg(z) the resolvent of Hy, the limits

(1.7) E%Ro()\iin) =Ro+(\)  in B(Lz1(RN),Ly_1(RY))
exist for A > 0, where the weighted L. space Lg’t(RN ), t € R, is defined by
(1.8) LoyyRY) = {f : (1+2)'f(z) € Lo(RM)}
with its inner product and norm
(9= [ @@,
RN
e = (£, £

(1.9)

and B(X,Y) is the Banach space of all bounded linear operators from X into Y.
Then, Saito [13] showed that Ly ; (R™) and Ly, (R") in (1.7) can be replaced by
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L2 s(RY) and Ly _s(RYN) with § > 1/2, respectively. This means that the limiting
absorption principle for Hy holds on the same weighted L, spaces as are used for
the Schrédinger operator (cf. Agmon [1], Ikebe-Saito [7] and Saitd [8]). Recently
Roach-Zhang [10] has shown that u = R¥(\)f, where A > 0 and f € Ly s(R")
with § > 1/2, is characterized as a unique solution of the equation

(1.10) (—po(z) "A=Nu=f

with the radiation condition

(1.11) Rlilx;o}—l%/BR Vu F iy/Mu(@)Ful? do = 0 (5: %) :
Bpr being the ball with radius R and center at the origin. The condition (1.11) is
a natural extension of the radiation condition for the Schrodinger operators ([7],
[8]). [10] also gave another proof of the limiting absorption principle for Hy.

In the recent work [9] and [8], we studied the reduced wave operators Hy with
a cylindrical discontinuity in which the separating surface is assumed to satisfy that

(1.12) (moz — po1) (@ - nM) = (o1 — poz)(z - n@) >0 (z € 9).

The condition (1.12) is satisfied if {2; is an infinite cylindrical domain which con-
tains the origin and pg2 > uei. Then it has been shown again that Hy is absolutely
continuous. So far it seems that the absence of the point spectrum can not be ob-
tained without imposing some additional conditions such as (1.5)—(1.6) or (1.12).

In §2, we define the reduced wave operator Hy with multimedia and we state
our assumption on the separating surface S and the positive function pg, in which
to can take countably infinite values although the condition is a natural extension
of the condition (1.12). §3 is devoted to showing the limiting absorption principle
for the unperturbed operator Hy. Here the arguments are quite parallel to the one
in [8] or [9], and hence we shall omit some of the proof. In §4 we shall discuss
the point spectrum of the perturbed operator (1.3). It will be shown that the point
spectrum of H is discrete. Also some sufficient conditions for the nonexistence
of the point spectrum of H will be given. We shall show in §5 that the limiting
absorption principle for H holds on any closed interval which does not contain the
point spectrum.

ACKNOWLEDGEMENT.  This work was finished when the second author was
visiting the University of Heidelberg from October 1994 through March 1995. Here
he would like to thank Deutsche Forschungs Gemeinschaft for its support through
SFB 359. Also the second author is thankful to Professor Willi Jager for his kind
hospitality during this period.
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2. The operators Hy and H
In this section, we are going to define a reduced wave operator
@.1) Ho = —po(2) ™',

where po(z) is a positive, simple function on RY which will be specified below,
and its perturbed operator

(2.2) H=—u(z) "4,
where
(23) w(z) = po(x) + p1(x)

such that p(z) is a positive function on RY and yu;(z) decays to 0 at infinity.

Let us describe the conditions on po(z). Let N be all positive integers and
let N_ be all negative integers. Let L be a subset of integers satisfying one of the
following:

I L=N_U{0}UN,

2.4) () L={L_,L_+1,---,—1,0}UN,
' ) L=N_u{0,1, ---, L;},
(V) L={L_,L_+1,---, —-1}u{0}u{1,2,---,L,},

where L_ € N_U {0} and L, € {0} UN.

AssUMPTION 2.1. Let N be a positive integer such that N > 2. Let L be as in
(2.4). For each £ € L, let , be an open set in RY. Let y be a positive function on
RY. The family {0 }¢cr and the function pg are assumed to satisfy the following

(i) ~ (ii):
(i) {Q¢}ecr is a disjoint family of open sets of RY such that

2.5) RY =9,
Lel

where Q; is the closure of €. For any R > 0, the open ball Br with center at the
origin and radius R is covered by a union of a finite number of Q, i.e., for R > 0
there is a finite subset Ly of L such that

(2.6) QUNBr=0 (¢€L-Lg).

(ii) For each ¢ € L, the boundary 852, of €, is a disjoint union of two con-
tinuous surfaces S§—> and Sé+), i.e.,

a0, = S u st
2.7) { ¢ ¢

s{79ns =0
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for £ € L, where Sé_) and S,E’L) are unions of a finite number of smooth surfaces.
Here we assume that S(—_) = ( when L has the smallest number L_ and SEJ:) =0
when L has the largest number L. Further we assume that

(2.8) sV =5)  (tel),

where we set Sé;i =0if¢+1¢L.
(iii) o is a simple function which takes the value v, on each Q,, where vy is
a positive number such that

2.9) 0<mg = inf vy <supry = My < co.
el el
Let
(2.10) n®(z) = (n{?(2), n§’ (x), ---, nQ (@) (€€ L),

be the unit outward normal of Q, at a.e. x € 9,. Then we assume that
@2.11) (e — ves1)(nO(z)-z) <0 (zeSP, Lel)

although ¢ # L, if L has the largest number L, where n(9(z) - z is the usual inner
product of n¥(z) and z in RN.

As for the function y, we have

AssuMPTION 2.2. Let u be a measurable function on R” satisfying the follow-
ing (i) and (ii):
(1) We have

mo = inf p(z) < sup wp(z) = M, < oo.
zeRN zeRN

(2.12) 0<
(ii) Let g3 = p — po. Then either p; is short-range, that is,
(2.13) w1 (2)| < e (1 4+ |z|) 2 (x € RY),

or u, is long-range, that is, p is differentiable such that

T c1 z|)7€ T Ny,
2.14) {lul( ) < ei(l+ =) (z € RY)

Vi (z)| < er(1+ |zf) 71 (z € RN),

with constants c;,e > 0. Throughout this work we assume that 0 < ¢ < 1/2 with
no loss of generality.
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Let X, and X be Hilbert spaces given by

= Ly(RY; po(z)d
2.15) {Xo L2 (RY; po(x)dz),

X = Ly(RY; p(z)dz).

The inner product and norm of X, [or X ] will be denoted by (, )x, and || ||x,
[or (, )x and | ||x], respectively. Then define the operator Hy in X, by

_ 2(RN
(216) {D(Ho)—H RY),
Hou = —po(z) " Au,

where D(T) is the domain of T, H2(R") is the second order Soblev space on R
and Au is defined in the sense of distributions. Similarly the operator H in X is
given by

— N
217) {D(H) = H*(RV),

Hu = —p(z) ' Au,
Then it is easy to see that Hy and H are selfadjoint operators in X, and X, respec-
tively.
Now we are going to give some examples of {0 }scr and po which satisfy As-

sumption 2.1. In the following examples we take N = 3 although the N-dimensional
versions of these examples can be easily obtained.

ExampLE 2.3. Let L=N_U{0}UN. Let {bs}sen_un be such that

s Kby Kby < <bo1 <0<y << by
(2.18) by — oo (£ — o),

by — —00  (m — —00),
and define {QZ}ZEL by

Qg={1‘2(.7:1,.1:2,.7:3)ERs:bz<.’E3<be+1} (ZEN),
(2.19) Qo = {z = (z1,72,23) € R® : b_; < z3 < by},
Qo ={z=(z1,72,23) ER3: bp_1 <z3<b} (£E€N_),

Then the separating surfaces Séi) are given by

S(+):a:=x,a:,$ eR3:2z3=b ,
(2.20) { M) { (z1,22,3) 3 1}

{7 = {z = (21,22,23) € R® : 03 = be}
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for £ € N,
(221) {Sé+) ={SL’= (m1a$2’173) €R32$3=b1}’
| S(()_) ={z = (21,72,%3) € R3:z35= b1},
and
(2 22) { Sé+) = {.’E = ($1,Z2, 333) € R3 T3 = b[},
Sé_) = {1' = (m1,$2,$3) € RS 1 xr3 = bf—l}

for £ € N_. Define uo by

(2.23) po(z) =ve  (z € Q)
such that

V<< <: - -<pyy<- -,
(2.24) om T )

VW<V <Vg< < V_p<---
with

Vo > O,
(2.25) Mo= sup vp< oo
LeNUN_

Since we have

(2.26) { @) z>0 (ze8H, e {0}uN)
<0

n®(z) -z ($€S§+), e N_),

we see that the condition (2.11) is satisfied. Although this is a reduced wave operator
in stratified media studied by many authors (see, e.g., [16], [14], [4]), note that €,
can be modified as far as the condition (2.26) holds good.

ExampLE 2.4. Let L = {0} UN. Let {b;}sen be such that

0<by <by<---<bp<---,
2.27) { e )

by =00 (£ — 00),

and define {Q/}¢cr by

2.28) Qo = {z = (x1,72,23) € R3 : 22 + 22 < b?},
’ Q ={z = (z1,22,23) e R®: b <z? +23 < b.,} ((€N).
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The separating surfaces Séi) are given by

Sé+) = {(l? = ($1,1‘2,$3) € R3 : CB% +IE% = bz-}-l} (E € L)’

(2.29) S\ ={z = (z1,25,73) e R®: 22 + 22 = b2} (L€ N),
S5 =0.
Define py by
(2.30) ko(x) = vy (z € Q)
such that
(2.31) VW< << <y -,
with
vy > 0,
(2.32) My = sup vy < oo.
LeN
Since
(2.33) @) -z>0 (zeSP, tel),

from (2.31) it is seen that the condition (2.11) is satisfied. Again 2, are allowed to
be deformed as far as (2.33) holds good.

3. The unperturbed operator Hy

In this section we are going to discuss the unperturbed operator Hy given by
(2.16). First we shall show the uniqueness theorem for the equation

(3.1 (—po(z) A = Nu = f

with radiation condition. Then, after showing several a priori estimates of the
solution u of the equation (3.1), the limiting absorption principle for Hy will be
proved. The arguments in this section are quite parallel to the ones in Jager-Saito
[9], and hence we shall omit the proof or give a sketch of proof in most of the
theorems given in this section.

We shall start with some notations.

NortatioN 3.1. Let z € C, z = (21,22, -, zN), T = |z|, T = (F1,Z2, ", ZTN)
=z/r,0; = 08/0z; and V = (8/0x1,0/0x2,---,0/0xN). Then we set
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() k = k(z) = k(z,2) = [zp0(x)]'/?, where the branch is taken so that
Imk(z,2) > 0;

(2) a = a(z) = a(z, z) = Rek(z, 2);

(3) b= b(z) = bz, z) = Imk(z, 2);

(4) Du= Vu+ {(N —1)/(2r)}zu — ik(z)Zu;

(5) Dru=Du-T =0u/dr + {(N —1)/(2r)}u — ik(z)uy;

Let u € H2(R")oc. Then the restrictions u|g and djulg, j =1,2,---,N, of u
and d;u = Ou/dz; onto a smooth surface G are defined as the traces of u and 9;u
on G, respectively. Thus u|g and 8;u|¢ are considered to belong to La(G)ioc.

Let z € C and let u € H2(R")joc. Define f by

(3.2) f=—po(z) ' Au — zu = po(z) " (—Au — k?u)

with k given by (1) of Notation 3.1. Now we are going to show an identity which
is an extension of Proposition 3.3 of [9] and will be used throughout this section.

Proposition 3.2. Let u € H?(RN),. and let f be given by (3.2). Let ¢ be
a real-valued, continuous function on [0,00) such that £ has piecewise continuous
derivative. Set o(z) = a(z)é(|z|), where o is a simple function which is constant on
each Q. For 0 <r < R < oo, set

(3.3) B.r={zeR" : r<|z|<R},

Then we have
/ (bg0+ 1%) |Du|2dm+Z/ ©Im {E@a} ds
Brr 2 87' el 99N B,r Bn

+/ (i’i _ 8—“’) (IDul? — |Dyul?) dz
B.r ' 87'

+cN/ r? <f - 2"18—('0 +b<p) |u|? dz
Bon r or

(3.4) =Re /B ouo(z) fDrudzx

+2-12/ cp{(ﬁ:—l)b+|k|2}(z-n)|u|2ds
el OQ¢NBrR

+ 271 / ¢ (2|Dyul? — [Dul®* — enr?|uf?) dS
Skr

-2 / ¢(2|Dyul? — |Dul? — enr?|ul?) dS,
Sr
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where Q satisfies (i), (ii) of Assumption 2.1, 8/9n in the integrand of the sur-

face integral over 90y N B,.g means the directional derivative in the direction of the
outward normal n = n® of 8, and

(3.5) ey = (N —=1)(N — 3)/4.
The proof will be omitted since it is essentially the same as the proof of Propo-
sition 3.3 of [9].

Theorem 3.3. Assume Assumption 2.1. Let u € H?(RN ). be a solution of
the homogeneous equation

(3.6) —po(z) ' Au — Au =0 (A>0)

on RN such that

2
(3.7) lim inf ( Qul” | |u|2) ds =0,
R—o0 Sk or

for N >3, or
. e ba dul? 2

(3.8) liminf R —| +|ul*}dS=0
R—oo Sk or

with a > 0 for N = 2, where

(3.9) Sp={ze€R"N : |z| = R}.

Then v is identically zero.

Sketch of Proof.  Theorme 3.3 can be proved by starting with Proposition
3.2 and proceeding as in the proof of Theorem 3.2 of [9] (for N > 3) or proof of
Theorem 7.1 of [9] (for N = 2). Only difference here is that, instead of the last
inequality of (3.20) in [9], we have to use

(3.10) Z/a o|k*(@ - n)|u?dS <0,

€L QeNBrr

where n in the integrand is the unit outward normal n(9 (z) of Q, at z. In fact, it
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follows from (i) and (ii) of Assumption 2.1 that

S [ ekP@E wlas

teL /OUNBr
3.11 = (/ / )<pk25-n ul?dS
(3.11) =2 sonmn T Sy ) A E
= /\Z/ (ve = ves1) (@ - n®)|ul?ds,
teL /s )”BR '

where we should note that we are dealing with a finite sum because of (i) of As-
sumption 2.1. Then (3.10) is obtained from (iii) of Assumption 2.1. //

The following corollary guarantees the uniqueness of the inhomogeneous equa-
tion
(3.12) —po(z) TAu—du=f
with one of the conditions
(3.13) 1D ulls-1, 5, < oo,
where 6§ > 1/2,
(3.14) DHEy = du/dr + {(N - 1)/(2r) }u F ik(z)u,
(3.15) Er={z € RN : |z| > R},

and, for a measurable set G in RV,

(3.16) ol 6 = / (1 + [2)2¢~ Do (z)[? de.
G

Corollary 34. Let A > 0 and let f € Ly(RN)oc. Then the solution u €
H?(RN)oc of the equation (3.12) with one of the radiation conditions in (3.13) is
unique.

The proof is the same as the proof of Corollary 3.8 of [9].

Let Ly :(R") be the weighted Hilbert space defined by (1.8). Let the resolvent
(Ho — 2)~ ! of the operator Hy be denoted by Ro(z). Now consider u € X, defined
by

u = RO(z)fa
f € Ly s(RN).
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For 0 < ¢ < d < 0o a subset Ji(c, d) of C are defined by

Ji(ec,d)={z=A+ip : c<A<d,0<n<1},
(3.18) {J+( ) =A{ Ul n }

_(e,d)={2z=A+1m : c<A<d, -1<n<0}.

In the next theorem, we are going to evaluate the radiation condition terms
Du. Here and in the sequel we agree that C = C(A, B,---) in an inequality means
a positive constant depending on A, B,---. Now we are evaluating the radiation
condition term Du.

Theorem 3.5. Suppose that Assumption 2.1 holds. Let1/2 < § < 1. Letu be
given by (3.17).
(i) Let N > 3. Then there exists a constant C = C (6, mg, Mg) > 0 such that

(3.19) [Dulls-1 < C||fllss

where Du is as in Notation 3.1, || ||¢ is the norm of Ly (RYN), and the constant
C(6) is independent of f and z satisfying (3.17).

(ii)) Let N =2. Let0 < ¢ < d < oo and let J1(c,d) be as in (3.18). Letu
be given by (3.17) with z € J,(c,d)U J_(c,d). Then there exists a positive constant
C = C(b,¢c,d, mg, My) such that

(3.20) IDulls—1.0 < C(I1flls + lull—s)
where

2 _ 2 2t 2
(3.21) loll?. = /B felloe)* de + /E (14 o) (o)

Sketch of Proof. = We have only to proceed as in the proof of Theorems 4.1
and 7.2 of [9]. Set in (3.4) a(z) = 1//uo,

- r (0<r<1),
(3. ) g("') = 2—(25—1)(1+7‘)26_1 (7. > 1)

for N > 3, and

r? (r <1/2),

N =

(3.23) &(r) =

1
"2%(14‘7')26_1 (7‘2 1)



THE REDUCED WAVE EQUATION IN LAYERED MATERIALS 279

for N = 2. Let the second term of the left-hand side of (3.4) be denoted by Iy,.
Then it is easy to see that

(3.24) Ip=>) / ©lm {E‘?ﬁﬂ} dS =0
ter /92NBrr on

(cf. (3.11)). Similarly we see that the second term of the right-hand side of (3.4) is
nonpositive. All other terms of (3.4) can be evaluated exactly in the same manner
as in the proof of Theorems 4.1 and 7.2 of [9], which completes the proof. //

Now that we have established the uniqueness of the solution of the equation
(3.12) with the radiation condition (Corollary 3.4) and the estimate of the radiation
condition term (Theorem 3.5), we can show the limiting absorption principle for
Hy by proceeding as in §5, §6, and §7 of [9]. Let ¢ € R. The weighted Sobolev
spaces H (RN), j = 1,2, are defined as the completion of C$°(RY) by the norms

1/2
(3.25) ullse = [ [ a0 (vu + o)) dw] ,
RN
and
/ 1/2
(3.26) llull2, =[ (147)% |8"u|2dx} ,
t RY w%z

respectively, where

¥ = (Y72, >IN,
(3.27) =7+ + -+,
6711,: (81)71 '--(aN)’YN’u (6J 28/6.’1,'J)

The inner product and norm of H7(RN) will be denoted by ( , );: and || ||;.:.
For an operator T, the operator norm in B(HZ(R"), Hf(R")) will be denoted by

||T||E§§)), where 7,£ =10,1,2, s,t € R, and we set

(3.28) HJ(RN) = L, .(RM).
Let D4 C C be given by

Dy={z=X+in: A>0,n>0},
(3.29) { +=1 n n }

D_={z=X+in: A2>0,n<0}.
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Also, for 0 < ¢ < d < oo, let Ji(c,d) be as in (3.18). The closures J.(c,d) are
given by

Ji(e,d)={z=XA+in : c<A<d, 0<n<1}CDy4,

(3.30) —
J_(e,d)={z=X+in : c<A<d, —1<n<0}cCD._.

For \ > 0, let
(3.31) Ro+(N\) = liﬁ} Ro(A £ in),
n

and extend the resolvent Ry(z) on Dy by

Ro(A+in)  (A>0,n>0),
3.32 Ro(A+1in) =
332 o+ ) {Ro+(A) (A>0,7=0)
for z € D, and
. Ro(X +in) (A>0,7<0),
3.33 Ro(A =
339 o3+ ) {Ro_u) (A>0,7=0)

for z € D_. Then we have

Theorem 3.6. Suppose that Assumption 2.1 holds. Let1/2 < § < 1.

(i)  Then the limits (3.31) is well-defined in B(L s(R"), H?;(RY)), and the
extended resolvent Ro(z) is a B(Las(RN), H? 5(RN))-valued continuous function
on each of Dyand D_.

(ii) Foranyz € D, [or D_), Ro(2) is a compact operator from L, s(RY) into
H! (RM).

(iii) The selfadjoint operator Hy is absolutely continuous on the interval (0, c0).
The operator Hy has neither point spectrum nor singular continuous spectrum.

(iv) For 0 < ¢ < d < oo there exists a constant C = C(c,d, b, mg, My) > 0
such that, for z € J,(c, d)U J_(c, d),

/ (1+7)"5(IVRo(2) P + K| Ro(2) f?) de

K]

339 <CH+s) BV (521, f € Lys(RY)),

IDRo(2)flls-1 < Cliflls  (f € L2,s(RM)),
where, for A € D, N (0, co) or D_ N (0, co), Du should be interpreted as
DHy = Vu + {(N — 1)/(2r)}zu — ik(z)Zu
(A€ D4 N (0, )),
DOy = Vu + {(N - 1)/(2r)}zu + ik(z)Fu
(A€ D_n(0, x)).

335) Du=
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(v) Let N > 3. Then there exists a constant C = C(6,mg, My) > 0 such that

r _ Cc? _ _

[ @0 R 12 de < o048 1
- : (>0, feLyys),
. _ C
IR)lligs” < —= (s€DyuD.),

9=V

LIIDRo(2) flls—1 < C||flls (z€ Dy UD_, f € Lag).

Finally we are going to prove a modification of Theorem 3.5, where the range
of ¢ is slightly wider. This modification will be useful in the next section.

Proposition 3.7. Let Assumption 2.1 be satisfied. Let 1/2 < 6 < 3/2. Let
f€Lys(RN) andlet z € D, UD_. Letu = Ry(z)f.
(i) Let N > 3. Then there exists a constant C = C(6,mg, My) > 0 such that

(3.37) [Dyulls—1 < Clflls (f € Las(RY), z€ Dy UD_)

where D,u is given in Notation 3.1, (6), and for A € D, N (0, co) [or D_N (0, o0)],
D,u should be interpreted as D) [or D,(f)]

(ii) LetN =2. Let0 < c < d < co. Then there exists C = C(6,c,d, mg, Mp) >
0 such that

(3.38) | Drulls—1x S Cllflls (f € Las(RN), z € T (c,d) UT_(c,d)),

where | Dyul|s—1,« is given by (3.21).

Proof. In view of the continuity of the extended resolvent of Ry(z), we only
have to prove (3.37) and (3.38) for non real z. Then we should note that we have
u = Ro(2)f € HZ(RV) (cf, e.g., [12], Lemma 2.1). As in the proof of Theorem
3.5, we start with (3.4) with £ given by (3.22) or (3.23) and a(z) = 1/,/po. Let the
J-th term of the left-hand side be denoted by Ir;, where j = 1,2,3,4. Then we have
I =0, and, since

- ¥ _2—1%

>0
T or —

(3.39)
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and |Du| > |Dru|, we have

1
Ipi+ I3 > / d¢ —~|Dul? dz + (f - —cp)(lDu|2 — |Dyul?) dz
Br 2 8 Brr T 3

= / (i’i - 1W)]D 2 de — / (f - %>|Dru|2dx
B,g\T 20 Brn ar

2/ (f la‘P)m |2dx—/ (“’ a‘p>|D ul? dz
Brr T 2 8 Brr T (9

19¢ 24
- D,u
/BRMI 2d

As for the fourth term I 4, we have Ir4 > 0 for N > 3, and for N = 2 we have, as
in (7.19) and (7.20) of [9],

(3.40)

It < Gy + Cs / inlful? de
R2
(3.41) < Cilulli_, +C3(|f| lul)o

Cullullf_z + =~ (llfllerII'uH2 )

IN

with C; = C1(6, mp), C2 = Cs(c,d), and C3 = C3(8,c,d, mg, My). Here we can
evaluate ||u||s—2 as

(3.42) {6 € (1/2,1] = |ulls—2 < ||ull-s < C"||flls»

6 € (1,3/2) = |lulls—2 < C”"||fll2—s < C"|flls,
with C" = C'(6,¢,d, wo) and C”" = C"(6, ¢, d, po). We can evaluate the right-hand of
(3.4) by proceeding as in the proof of Theorems 4.1 and 7.2 of [9] Therefore, letting

r — 0 and R — oo, where we have to use the fact that u = Ry(2)f € HZ(RV), w
obtain (3.37) and (3.38), respectively. This completes the proof. O

4. The point spectrum for H

Throughout this and the following sections we shall assume that Assumptions
2.1 and 2.2 are satisfied. Let the operator H be as in §2. Let 0,(H) be the set of all
eigenvalues of H, and let V,,(H) be the set of all eigenvectors of H, i.e.,

4.1 Vo,(H)={ue H*R"):u#0,(H-Nu=0 with \co,(H)}.

Now we need to introduce a set ap *) (H) of the extended eigenvalues of H and a set
jE)(H ) of the extended eigenvectors of H.
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DEFINITION 4.1. Let 1/2 < § < 1/2 + € if py is short-range, i.e., ui satisfies
(2.13), and let 1/2 < 6 < (1+¢€)/2 if pu; is long-range, i.e., pu; satisfies (2.14), where
€ is given in Assumption 2.2. Denote by b}(f’)(H) [or E,(,—)(H)] the set of all A >0
such that there exists a function u satisfying

(i) u€H)R)pe, u#0,

(i) ue€ Ly _s(RN),

(iii) [ PDu|ls_1,8, < 00, [or | DT u|ls_1,8, < o],
(iv) —p(z) 'Au—Au=0,

(4.2)

where D(*)y are given by (3.35), and k = k(z) = [Auo(z)]'/? is as in §3. Let
V) (H) be the set of all uw € X which satisfy (4.2) with \ € 55> (H). We call
u € Vp(i)(H ) which satisfies (4.2) an extended eigenvector of H associated with the
extended eigenvalue .

Since 0 ¢ o,(H), we have V,(H) C V,fi)(H) and o,(H) C Eéi)(H) by defini-
tion. In this section we are going to prove that

(4.3) op(H) = 551 (H) =507 (H),
and o,(H) is a discrete set on (0, c0).

Proposition 4.2. Assume that Assumptions 2.1 and 2.2 hold. Let u €
H?(RM)1oc be a solution of the equation —u(z) *Au — du = 0. Let p(z) = £(|z|)
and let £(r) satisfy the following (a) ~ (c)":

(a) & is a nonnegative, continuous function on (0, c0),

(b) & has a piecewise continuous derivative &' such that

(4.4) ¢'(r) >0,
and

§(r) 1,
4.5) e 55 (r)>0

for almost all r > 0.
() IfN =3,

(4.6) £(r) =O(r) (r —0).
(c) IfN =2,
@ { £(r) = 0(r?) (r—0),
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(i) Suppose that u, is short-range in the sense of (2.13). Then there exists a
constant C = C(\, po) > 0 such that, for R > 1,

o] _
/ S luf? do < 2mg” / ol [ul D] d
Br T Br

4.8)
+ C¢(R) / IDF)u|? dS
Sr
for N > 3, or
Op, o ~1 (+)
a—|u| dzx < 2mg ol ||u|| Dy u| dz
Br T Br
4.9 + (2moA)~? / r2 (f — 2_1?—(8) |u|? dz
Br T or
+ C¢(R) / [DF)y)? ds
Sr
for N = 2.

(ii) Suppose that p, is long-range in the sense of (2.14). Then the relation
(4.8) or (4.9) holds again with the first term Kg, of the right-hand side of (4.8) or
(4.9) replaced by

) |u|? dz.

(4.10) K =mg! /B <

Proof. (I) We shall prove (4.8) and (4.9) for D£+)u. These formulas for
Dﬁ_)u can be proved in quite a similar way. For the sake of simplicity of notation
we set DV u = D,u and Dy = Du. Since we have from (iv) of (4.2) —Au —
Mo(z)u = Apq(z)u, we can apply the formula (3.4) with f and z replaced by
Ao(x)1ui(z)u and ), respectively, to obtain, for 0 <7 <1 < R < oo,

19 _
/ “’|D 2 da +Z/ @Im{k%ﬁ} ds
B.r ter Y 92NBrr on

o (£-52) (pur - ral?) e

4.11) +CN/ r2 (f &p)Iulz dz
Brr T 3

~Re [ Now(o)uDrude
BrR

6_90
Brﬂ

O
1 +‘WW

+2-1§:/3Q N ©ok?(Z - n)|ul* dS
eeL 7O uNBrr
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+ 2_1/ ©(2|Drul? — |Duf® — enr?[ul?) dS
Sr
- 2_1/ ¢(2|Du|? — |Dul? — enr~2|ul?) dS.

(II) Suppose that p; is short-range. Proceeding as in the proof of [9], Theo-
rems 3.2 or 7.1, we have

/ 2 22 Duf? do +

cplm{k—u} dS
el J9uNBr
19,5 2 / 19¢ 2
. >
(4.12) /28k|]da:+ 23 |Vu|* —

—¢(R) /SR {k%u}d&

where we should note that all the integrals in (4.12) is well-defined even in the case
of N = 2 because of (4.7). Therefore it follows from (4.11) and (4.12) that

/ 1I<:28—('0|u|2 dz
Br 2 37‘
_10¢ 9 ou
Z_2
+/Bm<r or )('V Nl i
+cN/ _2< -27 8"0>lu|2d1‘
B r or

< Re / Apps (z)uDr da
B'r-R

ou
or

)m

)d:r

(4.13) +2—1Z/ o|k|*(Z - n)|ul?dS
teL VOuNBrr

+ 2‘1£(R)/ (2|Dyu)? — |Du|? — eyr~2|ul?) dS
Sr

= 279¢() [ @Douf? = [Duf - eyr~?uf?)ds
Sr
/ 1‘9‘p|Du|'~’dx+Z/ wlm(k—u) ds
B, ver JounB,

+ER) [ Im(k%ﬂ) ds.

It follows from (2.11) that the second term of the right-hand side of (4.13) is nonpos-
itive. Therefore we can drop it from the right-hand side of (4.13). Further, we see
from (4.5) in (b) that the second term of the left-hand side of (4.13) is nonnegative,
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and it can be dropped, too. Then, letting » — 0 along an appropriate sequence
{rn}, we obtain

1 Op, o 2P 109 2
)\/BR S10() 22 ul dm-}-cN/BRr 2 %) o
<3 [ @D dz
Br

+27%(R) / @Dyuf2 — [Duf? — enr=2u[?) dS
Sr

(4.14)

+wa&m@%@w.

<A /B ol (2) 1l |Dr dz

+C§(R)/SR (

Here we noticed from (c¢) and (c)’ that

ou

2
2
o + |ul ) ds.

(1 2 2 20,12\ 7q —
lim 1(r)1f f(r)/ (2|Drul® — |Dul® — enr™%|ul?) dS =0,
T— S,

2_1§(R)/ (2|Drul? — |Dul? — enr~2|ul?) dS
(4.15) ) o

oul? 9
o +|u|)dS

| s

with a constant C. Since ¢y > 0 for N > 3 and ¢y = —1/4 for N = 2, (4.8) and
(4.9) follows from (4.14) if we can prove

(4.16) /SR (

with a constant C’.

(III) (Proof of (4.16).) Multiply both sides of the equation —Au— p(z)Au = 0
by @, integrating over Bg, use partial integration and take the imaginary part to
obtain

4.17) / Im{@ﬂ} dS =0.
Sk or

ou

2
+ |u|2) ds < c’/ |DF)u|? dS
87‘ Sr
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Now we can proceed as in the proof of [9], Theorem 3.7 to obtain (4.16).

(IV) Suppose that u is long-range. We have only to evaluate the first term
K, of the right-hand side of (4.11). In fact, we have by partial integration

Kgy = ARe / pp1(z)uD,ude
BrR

A 8|u|2 —1y,,12
> | mwlu)( o V= ) ) da

(4.18) N o) \
_ N PH1 2 A 2
- 2/B,R LI dx+2/SRwliu| as
A
_5/ ppalul® dS
Sr

Since the third term of the right-hand side of (4.18) converges to 0 as r — 0, we see
that K5, in (4.10) can replace the first term Kg; of the right-hand side of (4.8) or
(4.9), which completes the proof. O

Proposition 4.3. Assume that A:ssumptions 2.1 and 2.2 hold. Suppose that
w1 is short-range. Suppose that u € V,,(+)(H ) [oru € V,,(—)(H )] with an extended
eigenvalue \ € E,(,+)(H) [or X e Eﬁ")(H)] such that

u € Ly _si:c(RV),
(4.19) { 2-6+5¢(R7)

—-6+je<0

with a nonnegative integer j. Then we have

(4.20) { u € Ly sy (j+1)e(RY),
DI u€ Ly gy a1ye®Y)  [or Du € Ly s (1) (RY)],

and

@21) { ull 54 G+1)e € VRO ull—s4se (N > 3),

lull-6+G+1)e < Clcj(z)”u”—éﬂe (N=2),

where CJ(N) = C](.N)(é,e,mo,Mo) for N >3 and C](?) = C’J(.z)()\,&,e,mo, Moy).

Proof. (I) We shall prove (4.20) for D{Pu, and set DM u = D,u. Then u
satisfies the equation (—A — Agg)u = Aupju and the radiation condition
1D u)ls_1,m, < oo, ie.,

(4.22) u = ARo(N) (1 ' au),
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where we set Ry (A) = Ro()\). Since we have
(4.23) o tuiu| < exmg (L + [af) 717 T (1 4 |]) 0wl ],
it follows that
(4.24) po  pu € Loy sy (1) (RY).
Noting that (4.19), 1/2 < § < 1/2+ € and 0 < € < 1/2, we see that
0<1/2+e=1-6+(+1)e>1-6+e>1/2,
(4.25) —6+je<0and 0<e<1/2
= 1-6+(j+1)e<1+€<3/2
and hence we can apply Proposition 3.7 with 6 replaced by 1 — 6+ (j+1)e to obtain
(4.26) 1Dl 4 (+1)e < Amg  e1Chllull—s4je
with C:’,. = C;(«S, €, mo, Mp) for N > 3, and
(4.27) 1Dl —4-(41)e,x < Amg 'e1CF [[ull 54 je

with C = C7 (6, €, A\,mo, Mo) for N = 2.
(I1) Let Ry > 1. Set B =2(—6+ (j + 1)¢) + 1,

T (0<r<1),
(4.28) E(r) =4 27P(1+r)P (1 <r < Ry),
27°(1+ Ro)’  (r > Ro)
if N > 3, and
27 1r2 (0<r<1),
(4.29) (r) =3 277 (1 + )P (1<r < Ro),

2-P-1(14 Ry)®  (r> Ry)

for N = 2. It follows from (4.25) that 0 < 8 < 2, and hence £ satisfies (a), (b), (c)
or (c)’ in Proposition 4.2. Therefore we can apply (i) of Proposition 4.2 to obtain

/ |ul? dz + 271 + r)P~ Y u|? dx
B, Big,

<2mgle / r(1+ )" ¢ |u||Drul dzx
(4.30) B
+ 27 g te, (1 +7)P71¢|u||D,u| d
Bir

+C27P(1 + Ry)? / |D,ul?dS
Sr
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for R> Ry and N > 3, or
/ r|u|2dz+/ 827711 + )P u|t de
B, Bigrgy
< malcl / r2(1 4 r) || Dyl dx
B,
(4.31) + 2—ﬁmglc1/ (1 4+ 7)P~17¢ || D, u| dx
Bir

+ 2_ﬁ+1m51/\‘1 / 1+ r)2("s+j€)|u|2 dz
Bir

+ 0277114+ Ry)? / |D,ul?*dS
Sr

for R > Ry and N = 2, where we have used the facts that

(1+Ro)’<(1+R)’ (R>Ry),
(4.32) © 190

—=27"—=0 0<r<l),
r or ( " )

and, for r > 1,

r or

r‘2<£ - 2“%) <27h7293 <1 - g) (1+7)P3

(4.33)
< 2—B+1(1 + ,r)2(-—6+je)‘
Since
(4.34) B—1—e=(=6+je)+ (=64 (j+ 1)),
we have
(4.35) (1 + )Pl [Drul dz < [|ull st jel Drull —s4(j+1)e-

Bir

Therefore we have for N > 3

“u“2—6+(j+1)5,BRO

< Cocsllul-ssseDrul s+ gy + G+ Ro)® [ 1D,uf?as
R

(4.36)

and for N =2
”u”2—6+(j+l)e,BRO
(4.37) < Co(allull—s45ellDrvell —sp(1)e,e + A7 Ul 54 5e)
+ 5'(1 + RO)_“jf / |D,~u|2 ds,

Sr

289
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where Cy, C{, C, and C’ depend on j,6,¢,mg, and My. Note that we have from
(ii1) of (4.2)

R—o0

(4.38) lim inf / 1D, ul?dS = 0.
Sr

Let R — oo along an appropriate sequence so that the last terms of the right-hand
sides of (4.36) and (4.37) tends to 0. Therefore, noting that Ry > 1 is arbitrary, and
using (4.26) and (4.27), too, we obtain (4.21), which completes the proof. J

Proposition 4.4. Assume that éssumptions 2.1 qvnd 2.2 hold. Suppose that
w1 is long-range. Suppose that u € Vp(+)(H Y [oru € \/g_)(H )] with an extended
eigenvalue \ € 5§,+)(H) [or )\ e Eé*)(H) ]- Let € = ¢€/2. Suppose that

(4.39)

u € L21_5+j6/ (RN),
—64je <0

with a nonnegative integer j. Then we have

(4.40) u € Ly s (10 (RY),
and
N
(4.41) el 441 < VECy™ llull—s4jer

where C’J(.N) = CJ(-N)((S,e,mO,MO) for N >3 and CJ(-Z) = CJ(-z)()\, 8,€,mq, Mp).

Proof. = We shall prove (4.40) and (4.41) in the case that \ € XN/,,H')(H). We
set DYy = D,u. Let Ry > 1. Set B = 2(—=6+ (5 +1)€') + 1, and let £(r) be given
by (4.28) (with € replaced by €’). Here we should note that 0 < 8 < 3/2, and hence
our £(r) satisfies the conditions (a), (b) and (c) of Proposition 4.2. Then we have
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from (ii) of Proposition 4.2
/ wlde+ [ B2 + 1) ul2 de
Bl BIRO
< mglcl / {(1 +r) ¢ +r(l+ 7')_1_€}|u|2 dx
B,

+mgle (B + 1)2“‘3/ (1 +r)P17¢u|? dz

Bir,

(4.42) +m51012_5/ A+7r)PA+7r)" 2 de

Bir,

+C278(1+ Ro)P / D,ul? dS,
Sr

< 6’/ (1-|—1")2("5+j€/)|u|2 dx
Br
+C278(1 + Ry)? / |D,ul? dS,
Sr

where Ry < R, C = 5(3’, 6,€,mg), and we should note that 8 —1 — e = 2(—6 + j¢€').
The inequality (4.41) follows from (4.42). The case that N = 2 can be treated in
quite a similar way, which completes the proof. ' O

Now we are in a position to show that V,(H) = %(i)(H). Let

Jjo=min{j EN: -6+ je>0},
(4.43) {0 {j J }

60 = —6 -+ j06
if pq is short-range, and let
jo=min{j € N: =6+ je’ >0},
(4.44) ’ ¢ 4
6o = —6+ joel

if pq is long-range.
Theorem 4.5. Let Assumptions 2.1 and 2.2 be satisfied.
(i) Then we have

(4.45) V. (H) c HE (RY),

where b, is given by (4.43) or (4.44), and hence

{ Vo(H) = V" (H) = VD (H),

4.46
(4:46) op(H) =5\P (H) =507 (H).
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(i) Let yu, be short-range. Let u € V,(H) associated with A € o,(H). Then,
for each N > 2, there exists a positive constant CN) such that

u M (e 5|y -
(4.47) {” llso < CM (crVX)*llull—s (N >3),

ullsy < CPel|lull—s (N =2),

where jo is given by (4.43), and CN) = CWN)(6,€,mq, M) for N > 3 and C? =
C@)(\,6,e,mg, My). Further, for N > 3, we have

(4.48) op(H) C [c72(CM)) =250 o0,

(iii) Let p, be long-range. Then, for each N > 2, there exists a positive
constant CIN) = C(N)(8,e,mg, My) (N > 3),= CA(\ 68, €,mo, My) (N = 2) such
that
(4.49) lullsy < CMelull-s,
where u € V,(H), and jo and 6, are given by (4.44).

Proof.  Using Propositions 4.3 and 4.4 repeatedly, we obtain

(4.50) VE(H) C Las,(RY),

and the inequalities (4.47) and (4.49), where C(V) = C’((]N)C’fN) e CJ(-éV) and jp and
bo are in (4.43) or (4.44). Let u € 17,,(i)(H) associated with \ € Eéi)(H). Then it
follows from the equation —Au — Apu = 0 that u, Au € Ly 5,(RY) which implies
thatu € HZ, (RY). Thus we have proved (4.45). Let N > 3 and let y, is short-range.
Since we have from the first inequality of (4.47)

(4.51) lull—s < llullsy < C™ (VR |ull—s,

or

(452) (1= C™ (erV2))lull-s < 0,

whence (4.48) follows. This completes the proof. Ol

Theorem 4.6. Let Assumptions 2.1 and 2.2 be satisfied. Let o,(H) be as
above.

(1) Then the multiplicity of each )\ € o,(H) is finite.

(i) op,(H) does not have any accumulation point except A =0 and A = oco. If
N > 3, then the only possible accumulation point of o,(H) is A = oco.
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Proof.  Suppose that o,(H) has an accumulation point Ay € (0, oo). Then
there exist infinite sequences {\,} C o,(H) and {u,} C V,(H) such that

An =X (n— 00),
(4.53) (Umy Un)x =O6mn (m,n € N),
—u(x) " Aup — Apu, =0 (n € N),

where 6,,, is Kronecker’s delta. Since

Vup||2 = Mp(tn, un)x = Anlten |2
4.54) [Vl (tn, un) llunll%
= A, <sup, Ap, < 00,

we can apply the Rellich selection theorem to choose a subsequence {u,, } which
converges in Ly(R™)joc as m — oco. Let ug € La(RY)joc be the limit function. On
the other hand, in view of Theorem 4.5, there exists a positive constant C such that,
for any s > 0,

[tin,, llo, B, < (14 8)"%un,, ll6,5, < (1+8)7%[lun,, lls,

(4.55)
< C(1+8)%lup,,[l—s < C(1+ 5)"%|lun,,[lo,
and hence
C C
4.56 n < —=(1+8) 7 |up, [Ix < —=(1+35)"%,
( ) “u m“0,Es = m( S) ”u m”X = \/’I‘ITO( S)

where 6g is given by (4.43) or (4.44). Therefore u,, is small at infinity uniformly
for m € N. Thus it follows that u,_, converges to ug in X and |Juo||x = 1. Noting
that {u,,_} is an orthonormal system in X, we have

(4.57) 0= lim (un,,, Un,,,)x = |luoll% =1,

n—o0
which is a contradiction. Therefore o,(H) is discrete in (0, co0). If N > 3, (ii) of
Theorem 4.5 implies that A = 0 cannot be an accumulation point of o,(H). This
completes the proof. O
Consider the following additional condition on p;(z):
AssumpTIiON 4.7. (i) The function u; is measurable such that

(4.58) w(z) > Nui(z) + Ao(|z||p1(z)])? (a.e. z € RN)

with A\g > 0.
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(ii) The function y; is differentiable and p; satisfies

(4.59) u(z) + |m|% >0 (ae zeRY).

The following theorem gives sufficient conditions that the absence of o,(H) = 0
on some interval or whole positive half line (cf. Roach-Zhang [10], the proof of
Theorem 3.1).

Theorem 4.8. Suppose that p(z) = po(x)+p1(x), po satisfies Assumptions 2.1,
and p satisfies (2.12) of Assumptions 2.2. Suppose that (i) or (ii) of Assumption
4.7 hold. Then we have
{op(H) N[0, A =0 (if (i) holds),

(4.60)
op(H) =0 (if (i) holds).

Proof. (I) Let u € H?(RM) satisfy the homogeneous equation —Au —
Ap(z)u = 0 with A > 0. We have only to show that u = 0. We are going to multiply
both sides of the equation by 2r(8,w) + (N — 1), integrate over Bg, R > 0, and
take the real part.

(IT) Using the identity

(4.61)  2Re[(Au)r(8,7)] = div [2Re{r(8,7)Vu} — |Vu|®z] + (N — 2)|Vu|?

(Roach-Zhang [10], (3.4) with h(r) = 1) and the divergence theorem, we have

2Re/ (—Auw)r(8,7) dz
(4.62) Br
__ /BR (N = 2)|Vul? do — R/ 20,af — |Vul?) ds,

Sr

where 8,v = 8v/dr, r = |z|. Since it is easy to see that

Re/ (—Auw)(N — 1)adz

Br

(4.63)
— — u2 xTr — — u)u
_/BR(N DIVuPde - (V-1) [ Rel(@uyalds,

Sr

it follows that

Re / (—Aw){2r(8,3) + (N — 1)7} da
Br

(4.64) N1
= / |Vu|? dz — R/ (213,@[2 — |Vu[? + =——Re [(a,.u)ﬂ]) ds.
Br Sr R
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(III) Suppose that (ii) of Assumption 4.7 holds. By the use of the integration
by parts, we have

2Re /}3 (=Apu)r(d,u) dx

- [ Our@rfu?) do
Br

(4.65)
_ /\/ (Nt + r(Byp))|ul? dz
Br

AX [ e n P ds - AR [ apup ds,
€L 0,NBgr Sr

where we should note that yo does not appear in the first term of the right-hand
side. since it is constant on each €, and u; does not appear in the second term of
the right-hand side since it is continuous on R". Also we should note that

= / po(z - n'D)|ul? dS
> - ( )|l

(4.66)
:/\Z/ (Ver1 — ve)(z - nO)|u|>dS > 0
YnB

since the integrand is nonnegative by (2.11). Thus,
Re / (=Apu)[2r(8,w) + (N — 1)) dz
Bgr
(4.67) = /\/ (u 4 7(0r 1)) |uf? dz
Bgr

+ A / vesr — ve)(z - n®)|ul?dS — AR wlul?dS
5 gy e = vl [

(IV) It follows from (4.64) and (4.67) that
0 = Re / (—Au — Apu){2r(0;u) + (N — 1)u} dx
Br

- /B (IVul® + M+ r(8rp1)) ul?) dz

(4.68)

+)\E / vey1 — ve)(z - n9)|ul2dS
Z Jseo BR( £+1 e)( )|ul
1Re [(Bru)T] — /\,ulu|2) dSs.

+ R/ (IVul? - 2/6,3% -
Sr
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Since 2|6,7|? + |Vu|? + Aplu|? + (N — 1)|0,u||u| is integrable on RN, we see that
the third term of the right-hand side goes to 0 as R — oo along an appropriate
sequence. Therefore it follows from (4.68) that

0= [ (uP + A+ (@) uP?) da
(4.69) "
+ /\Z LEHU/H_I — vp)(z - n©)|ul? dS.

el

Noting that all the integrands in the right-hand side are nonnegative, we have Vu = 0
a.e., and hence u = 0 since u € H2(RV).

(V) Suppose that (i) of Assumption 4.7 holds. By using partial integration
only for the term containing po, we obtain

Re / (—Apuw) [2r(8,1) + (N — 1)u] do
Br
= -\ / [or (Br[ul?) + (N — 1)po|ul?] dz
Br
“a / 2 [2rRe(u(B,)) + (N — 1fuf?] dz
Br

= )\/ polu|? dz
Br

AX [ e n@)uPds AR [ polul?as,
¢eL ONeNBRr Sr

(4.70)

“ A /B pr [2rRe(u(8,m)) + (N — 1)|uf?] do
R
Let h(z) be a positive function to be specified later. Since we have
@71) 2@, < s (mlu? + ),
it follows from (4.70) that
Re /B (=Apw) [2r(8,7) + (N — 1)7] dz
R

2> —A/ ——lru1||Vu|2dm
Bgr h

472)
4 /B [0 — (N — 1)y — hlryaa ] uf? de
R

—AZ/ po(z - @) |ul?dS — AR/ piolu)? dS.
¢eL NyNBr Sr
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Thus (4.64) and (4.72) are combined to give

0 = Re / (—Au — Apu) [2r(8,T) + (N — 1)1] dz
Br

2/ (1—M>|VU|2dx
Br h

(4.73) + A / [,u — Npy — h|rp1|] [u|? dz
Bgr
- /\Z/ po(z - n©)|u|?dS — /\R/ polul?ds
cL Q0 NBRr Sr

N -1
R/ @bl - v+
Sr

Re [(8ru)T]) dS.

Then, letting R — oo along an appropriate sequence in (4.73), we obtain

02/ (1— M)]VUP(M
RN h

4.74)
+ A / [4— Nupy — hlrps|]|uf? de,
RN

where we have used (4.66), too. Let A € [0,)p) be an eigenvalue of H with its
eigenfunction u. Set n = A/Xg € [0,1) and

@rs) o) — { 1 (f m(z) = 0),
' Xolrpa (@) (f pi(z) # 0).

Then we have

(4.76) 1 )\|1"l;z;():c)| _ { 1 (lf p(z) =0),
L—n  (f m(z) #0),
and hence, by using (4.58)
Ho >0 (if p1(z) =0),
(477 w(z) — Npai(z) = hlrpa(2)| = ¢ p() = Npa(z) = do(rpa(z))? >0
(if p1(z) # 0).
Therefore, we have from (4.74)
(4.78) 0>(1-1n) /RN |Vu|? de,

i.e., Vu =0 or u is identically zero almost everywhere. This completes the proof.

O
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5. The limiting absorption principle for H
Throughout this section we assume that § satisfies

5.1 E <6<

3 +

€
43

N |~

where € is as in (2.13) or (2.14). Let u € X be given by

u=R(2),
f € L2,6(RN)a

where R(z) = (H — z)~!. Then u satisfies the inhomogeneous equation (—p~1A —
z)u = f which is equivalent to

(5.3) (~ug'A=2u=g (9= (uf +zmu))
with k = /zug. Let p; be short-range. Then, since

pru € Lo s(RN),

(5.4) u€ Ly _s(RY) = {
lrulls < cillull-s,

we see that g € Ly _s(R™N). In the case that y, is long-range, the inequality

(5.5) nlllullf o < C(U£1, ulo

will be useful, where C = C(u), || ||l1,0 is the norm of H'(RY), and (, )o is the
inner product of Ly(RY). For the proof of (5.5), see, e.g., Eidus [6], [13], Lemma
2.1. Then, by a direct application of Theorem 3.5 to our case, we can evaluate the
radiation condition term Du.

Theorem 5.1. Suppose that Assumptions 2.1 and 2.2 hold. Leté be as in (5.1).
Let0 < c<d< oo and let Ji(c,d) be as in (3.18). Let u be given by (5.2) with
z € Jp(c,d) U J_(c,d). Then there exists a positive constant C = C(8, c,d, mg, Mp)
such that

(5.6) IDulls—1 < C(IIFlls + llull-s)
for N > 3, and
(5.7) IDulls—1,6 < C(IIflls + llull-5)

for N =2, where || ||;.« is as in (3.21).
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Proof. We can proceed as in the proof of Theorem 3.5. Since f in the proof of
Theorem 3.5 should be replaced by g = pg ' (uf + zuyu) (see (5.3)), our additional
task is to prove, for any e > 0,

(58) I=Re /B e (@)yuDyude < C(| |2 + llull? 5 + e Dul2_y)

with C = C(e,é,c,d, mg, My), where ¢ is as in the proof of Theorem 3.5, and
||Dul|s—1 in (5.8) should read | Dul|s—1,« if N = 2. Suppose that y, is short-range.
Then (5.8) follows directly from (5.4). Suppose that u is long-range. Then we have
from the definition of D,u ((6) of Notation 3.1) and partial integration

I = )\Re/ o1 (z)uDru dz —nIm/ pp1(z)uDrude
B.r BrR

A
= -= 3r(<PM1)|U|2d$+>\/ b [uf® dz
(5.9) 2 JB.r Brr

- nIm/ op1(z)uDyudz + I4(r) + Is(R)
BT'R

I+ 1+ I3 +I4(7‘) + IS(R),

where the terms I4(r) and I5(R) tend to zero as r — 0 and R — oo along appropriate
sequences, respectively. It follows from (5.1) and the definition of ¢ ((3.22) or (3.23))
that opu, is bounded on RY, and hence I, and I3 can be evaluated by using (5.5).
On the other hand, since

(5.10) B (1) = O((1+7)%7279) = O((1 + 1)~ %),

the term I; is evaluated by ||u||® 5, which completes the proof. J

As in §4, let 0,(H) be the set of all eigenvalues of H which is a discrete set
in (0, co) (Theorem 4.6). Let A > 0 such that A & o,(H). Let u € H*(RN)joc N
Ly _s(RY) be a solution of the homogeneous equation —u(z) " !Au — du = 0 with
the radiation condition ||[D™H)uls_1,5, < oo or ||D7)u||s_1,g, < co. Then it follows
from Theorem 4.5 that u € Ly 5,(R") where & is given by (4.43) or (4.44). Since
A is supposed not to be an eigenvalue, we have u = 0. Therefore we can prove the
limiting absorption principle for A € (0,00)\o,(H) by starting with Theorem 5.1,
proceeding as in §5 ~ §7 of [9]. Let D4 C C be given by (3.29). For A > 0, let

(5.11) Ry () = lim R(\ & in),
n

and extend the resolvent R(z) on D4 by

R(\ +1n) (A>0,7>0),

(5.12) R(x +in) = { Ry () (A>0,7=0)
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for z € D4 and

R(\ + i) (A>0,n<0),

(5.13) R(A+1m) = {R_(A) (A>0,7=0)

for z € D_. Then we have

Theorem 5.2. Suppose that Assumptions 2.1 and 2.2 holds. Let § satisfy
(5.1).

(i) Then the limits (5.11) is well-defined in B(Ly s(R"™), H2;(RN)) for X €
(0,00)\0,(H), and the extended resolvent R(z) is a B(Ly s(RN), H? ;(RY))-valued
continuous function on each of D \o,(H) and D_\o,(H).

(i) For any z € D \op,(H) [or D_\op(H) ], R(z) is a compact operator from
Ly s(RY) into H! s(RN).

(iii) The selfadjoint operator H is absolutely continuous on the interval [c, d]
such that 0 < ¢ < d < oo and

(5.14) [e, d|Nop(H) = 0.

The operator H has no singular continuous spectrum.
(iv) For0 < ¢ < d < oo satisfying (5.14) there exists C = C(c,d, 8, mg, My) > 0
such that, for z € J 4 (c, d)UJ_(c, d),

(L+7)"2(|[VR(2)fI* + |kI*|R(2) f|?) d

(5.15) < C?(1+45)" @ V|f2(s > 1, f € Las(RY)),
IDR(2)flls-1 < Cllflls (f € La,s(RN)),

where, for A € D4 N (0, 0o) [or D_ N (0, 00)], Du should be interpreted as D'*) [or
D), and T+ (c, d) are given by (3.30).
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