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1. Introduction

We consider the following Cauchy problem of nonlinear Schrodinger equations
in n space dimensions,

(1) {Luzia,u+Au=f(t,x,u),

u(0,x) = $(x),

where A=X"_,8?/0x* and f(f,x,u) is a complex valued function of Gevrey class
in (t,x,u)e Rx R"x C. We study the regularizing effect for (1.1). In what follows,
we show that if the initial data ¢ is in some Gevrey class of order s with respect
to x- V., then the solution u is in Gevrey class of order max(s/2, 1) with respect to x.

Concering the regularizing effect for dispersive equations, many works have
been done ([1], [2], [5], [6], [7], [8], [9]). All the above works treat regularizing
effects with respect to Sobolev spaces. In [4], N. Hayashi and one of the authors
treat regularity in time for nonlinear Schrodinger equations. They have shown
that if the initial data is in Gevrey class of order s (>1) with respect to x*V and
V, then the solution is in Gevrey class of order s in space-time variables for
t#0. In [3], A. de Bouard, N. Hayashi and one of the authors treat Gevrey
regularizing effect for nonlinear Schrodinger equatons in one space dimension and
Korteweg-de Vries equation. They have shown that if the initial data is in Gevrey
class of order s (>1) with respect to x-V and V, then the solution is in Gevrey
class of order max(1, s/2) (or max(l, s/3) for KdV) with respect to the space
variable for 0. We extend their results to the case that the nonlinear term is
not polynomial, and for the local property, we extend their results to the case of
higher space dimensions.

We introduce some notation and some function spaces to state the result
precisely. Let H™() denote Sobolev space of order m with respect to L? for an
open set Q in R". For simplicity we write H"=H™(R"). For a vector field Q
with analytic coefficients and for a positive number M, we define a function space
of Gevrey class G%,(Q;H™) in R" as follows:
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GW(Q; H™) ={ge H™; llgl s, @;um = Igllam+ Y. M7~ 1| Q| gm /1 — 1)~ < 00}
ji=1

We also define a function space of Gevrey class (([0,7]; G3(Q; H™) as follows:
A0, T];GM(Q;H™)

={ge ([0, T];H™); |||g|||C([o,n;G§\,(Q;Hm))= sup gl G (@ Hm) < ©}.
te[0,T]

We write P=2t0,4+x-V, withV,=(0,,,---,0,,) and set m=[n/2]+1 throughout
this paper.

AssumpPTION 1.1. The nonlinear term f satisfies
(P 1)t,%,0)| gm < C A} Y

for all integers / and for some constants C, and 4, .

AssuMPTION 1.2. For every positive number K, there exist constants C= C(K)
and 4= A(K) such that

(02P'3%3E F)| < CA'H*+¥ 11Kk’ for xeR", [ul <K, |y|<m

for all integers /, k and k' with k+k'>1, where 9; is the differentiationn with
respect to the complex conjugate of u.

AssuMpTION 1.3. For every positive numbers K and R, there exist positive
constants C=C(K,R) and 4= A(K,R) such that

(0102350% 1)(t,x,u)| < CA*H 1+ K+K [1sgok1oke  for |x|<R, |ul <K

for all nonnegative integers /, k and k' and for some real number ¢ satisfying
max(s/2, 1)<a<s.

We state our main results.

Theorem 1.1. We assume that Assumtions 1.1 and 1.2 are valid. Suppose
that the initial data ¢ is in G (x-V,; H™) for some positive constant M,. Then
there exist positive constants T and M such that the Cauchy problem (1.1) has a unique
solution u(t,x) in C([0,T];H™C'([0,T];H™ %) and that the solution satisfies
ue C([0,7];Gyu(P; H™)).

Theorem 1.2. We assume that Assumptions 1.1, 1.2 and 1.3 are valid. Suppose
that the initial data ¢ is in G (x-V,; H™) for some positive constant M. Then
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the solution u to (1.1) constructed in Theorem 1.1 satisfies the following property:
For any positive number R there exist constans C= C(R) and A= A(R) such that

(1.2) 1%t )| gmip gy < CAt ™ 19”  for  te[0,T7] with t#0,

where o is a real number with max(c/2,1)<o <s appearing in Assumption 1.3 and
By is a ball with radius R.

Remark 1.1. If s=2 and o=1, the solution is analytic with respect to the
space variables for t€(0,77], in spite of the fact that the initial value ¢(x) belongs
to only the Gevrey class of order 2.

We give several examples of nonlinear terms which satisfy Assumptions 1.1-1.3
and several examples of initial data which satisfy the assumption of the theorems.

ExampPLE 1.1 (Examples of nonlinear terms). (1) A polynomial Fl(u,it) of u
and # with F0,0)=0.
a(x)

() f(tsx,“)=mlj »

where a(x)e G5,(x-V,; H™ and a(x) is locally in Gevrey class of order a.

_ Fui)
3) flxn=r 5

where Fu,i) is a polynomial of u and &# with F(0,0)=0.

ExaMPLE 1.2 (Examples of initial data). (1) |x%(l+|x|?)~ with 2b—n/2
>a>m—n/2 is in Go(x-V; H™R"). If a is not even integer, |x|%(1+|x|*)~" has
a singularity at the origin.

(2) V(x—aW(b—x) with a<b is in G3(x-V; H'(R)), where y(x)=exp(—1/x)
(x>0), =0 (x<0).
2. Preliminaries

In this section, we prepare several propositions to prove the main theorems. We
write | ||,,=| - |lgm for abbreviation.

Proposition 2.1. Let m=[n/2]+1. If u, v are in H™(R") then uv is also in
H™(R") with

”uU“mS C2”u“m“U"m )
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where C, is a positive constant depending only on n.

Proposition 2.2. There exists a constant Cs without depending on | such that

1 1
e Oy
vir =1+ 1)+ 1) (+1)?

Proposition 2.3. Suppose that u;e H™ (j=1,---,N) with 0<m;<n/2 and
N ym;=n/2. Then II}_ u;e L* with

N N
2.1 ITT el < €7 TT gl o
j=1 j=1

where C, is a constant depending only on n.

Proof. We can prove the proposition by using Sobolev’s imbedding theorem.

O

Proposition 2.4. Suppose that u is in C®([0,T]xR";C) and f() is in
C>(C;C). We have

l| k k+k’
22 Prat)= Y —— 3w Y [|-Pu [] — P
1<kt <1 klk') 1,+~--l+lkl+k'=tj=1l,-!

jok 1 1]
=

Lemma 2.1. Suppose that g(x,u)e C*(R"x C;C) satisfies |0%0%0% g(x,u)| <My
for k+ k' +|y|<m, xe R", [u|<K, and u,ve H™. Then g(x,ujve H™ with
(2.3) lig(x,u)vllm < Cs MgG(llull )0l m 5

where G(-) is a polynomial of order m and Cs is a positive constant depending only
on n and m.

Proof. We can prove this lemma by using Proposition 2.1 and Proposition 2.3.

a

Lemma 2.2. Suppose that ue H™ and that fe C*([0,T]x R"x C; C) satisfies
Assumptions 1.1 and 1.2. Then there exist constants Cg and A, such that

24 ILP' £1(tx,u)llm < Cod'IY,

for all le N. Here Cg and A, depends only on |ul,,.

Proof. Since we can write
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1
P'f(t,x,u)=P'f(t,x,0)+ J VP (t,x,0u)d0 - (u, 1)

0

with V, ;=(0,,0;), we have
1
ICP £ 1(t %)l < ICP' £ 18 X,0) | + IIJ V,.oP' f(t,x,0u)d0 - (u,0) |, -
0

Applying Lemma 2.1 to the second term, we have for constants C; and A,
depending on |ul|,,
IPLf(t, %0l < Cr ALY +2CsCr A G(lull )]l
< CeAblYs,
where C¢=C,+2C;C,G(|ull,)ull,, and A,=max(4,,4;). O

In the following, we write
(2:5) gl xm.py= ”g"(;sM(P;Hm)— lglm-

Lemma 2.3. Suppose that u is in G3(P;H™) for some constant M >0 and
that fe C*(R x R" x C; C) satisfies Assumptions 1.1 and 1.2. If we take a positive
number M'(< M) small enough, we have

C9||”||X(M'.P)
’
(1- CIOM'"u”X(M’,P))Z

(2.6) I/ (& x,u)ll xuar, py < Cs +

where Cg, Cy and C,, are positive constants depending only on f, |u|,, m and n.
REMARK 2.1. We note that [[ullyne py<llullxp,p if M'<M.

Proof. Using Proposition 2.4, we have

P 0,05 f(t,x,u)

27 PUExu]=PfEtxu+ ¥ ) 3

=1 1<kri < KK

U+
r'>1
k 1 k+k’ 1
X y []-:Pw [] Pl
Iyt les =0 f=llj! j=k+1 j!
;=1

Taking H™-norm of the both sides, we have from Assumptions 1.1-1.2, Proposition
2.3 and Lemma 2.1,

Il
28  IPL/xw)]lln<IPf{t,x,0)ll,n+ Y Y —_——
PAT Sl skEk sy ,l+ml+lkl+k'=',l klk"
> =
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k+k’ 1
x || PY 0%k £(t,x,u) H P'fu n — Py,
=l j=k+ !
<[P f(t,%,8)llm
Y Y I I+ kK T Lay | "
+ ———Cyy Ay 1"k Sk 1S ChH = | Priul,,,
l';g'ft 1<k+k' <l i+ 1“"1”‘ = 1”lk|k'| 11 11:11 1 |

where C,, and A, are positive constants which are independent of |Piu],,
(j=1). Multiplying M"~!'/I\l—1)*"! to the above quantity and making a
summation with respect to /, we have

2.9) 1/ @x, ) xmr,py <11 + 15,

where

— 2 M/I—lls—1C6A12

1=1
and
° @ e R (1 0 I
I — C Al +k+kln!sk!sk/!s
g ,20,;“ ;5, @+ + l”—l)!“‘l”!k!k’! T
k+k'

« Lo anln nP'fuu,..
I+t =0
1;>1

First we estimate I, . If we take C,, and A, sufficiently large with IS~ 1C 4L < C,, 4,
and we take M’ so small that M'A, <1, we have

a0 o0 C
2.10 I,<Y M*'"iFticAb<C MA) 1= 12
(2.10) 1 & 642 121=21( a) 1—M'A,

Next we estimate I,.

nMs

R e T O
LASKFRSE bt Sl =V (I 2Y - DYk + Kk — 1"
i

"' +k+k' —1 k+k’ -1
« M Condl ek e T oM
IS e+ — D)1 o =1

1Pl

00 o ” 1744 k+k’ 1=s Nns— 12 - ’
SC“ Z Z Z AzM‘( k ) (k+k)s le+k 1A£+k

I"=0U=11<k+k'<sl'

k+k’ Mllj_l
X Z Ck+k—1 _ﬁ"Pl}u"m.
b o= j=1 L=
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If we take C;; and A so large that 4,<As and (k+k)~'C,, A5T% <C 345",
we have

(2.11) 125C13<Z (M’As)’”)As Y, (M'Agktt
I'"=0 k+k'>1
0 , k+k’ M”j‘l
xY Y [ [P,
I'=1 ‘1+ml+i"fk'=r ji=1 lj!(lj_ )iy
j=

If we take M’ so small that M'4;<1, we have

(212 I,<Cy3 Y, (CaM' A~ ullypr py *

5
’
1-M'Ask+i21

A5 X ’ ’
=Cij3——— CM'A )1 .
131—M'A5<k21( 4 5) "u"X(M ,P)

+y Y (C4MIA5)k+kl—1”“"X(M',P)k+kl>

k=1k'=0
If we take M’ so small that C,M'A|ullxpa py<1, we have

As < “u"X(M’,P) + ”u”xw',r) )
1—-M'As\1—C,M'As|ullxprpy (1—CaM'As|lull xpr,p)?

(.13) I,<Ci,

C As 2llullx<M',p)
13 P ’ :
1-M As(l—c:tMAs”u”xw,P))z

From (2.10) and (2.13), we have the lemma with Cg=C;,/(1—M'A4;), C,
=C13C4ds/(1-M'A45) and Cyo=CyAs. O

Proposition 2.5. Let a be a multi-index and let v and | be integers satisfying
v<|a|+1L Then, we have

a\(1\ _ (lo|+!
(2.14) Ia,|+z,,=v<a')<l'>_< v )

The lemma is derived from the caluculation of the coefficients of the term ¢ in
the both sides of (1+)*(1+¢)'=(1+7)*"

Proposition 2.6. For a multi-index o and an integer | we assume that the
integers v; (=1) (j=1,---,k) satisfy v+ --- +v,=|a|+L Then, we have
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k . )
2.15) any il
ay+-ta=a j=1 0(]!1]!
i+ Flhe=1
lajl +1i=v;

=(ja| 4+ 1)

Proof. First, we consider the case k=2. Using (2.14), we have

ol Z (AR AR AL
aytar=a Otl!ll! az!lz!
Li+il=1

lajl +1=v;

5 ()
Jag| +13=vy \&y 11

=v1!v2!<'“l +l>=(la| +I).

vy

This proves (2.15) for k=2. In the general case, we can prove (2.15) by the
induction on k. O

3. Proof of Theorem 1.1

We prove Theorem 1.1 by the contraction principle.

Proof of Theorem 1.1. We consider the following linearized equation with
respect to (1.1),

3.1) {Lu =idu+ Au=f(t,x,v),

u(0,x) = ¢(x).
We denote the mapping which corresponds v to u by S. We write
W(M)=C([0,T];G5(P;H™) with norm || llwa, and we denote W(M,p)

={fe WM); If llwan<p} for p>0. We let p=21¢llg,cvimm -
First we show that S maps W(M,p) to itself if we take T and M sufficiently
small. The associate integral equation to the Cauchy problem (3.1) is

(3.2) u=e"p+i f e 98 f(s5,x, v(s))ds,
0

where " is an evolution operator for id,—A. Since [L,P]=2L, we have the
linearized equation for Pu,

L(P'u)=(P+2)'f(t,x,0),
(33) , ,
Pu(t,x)|p=o0=(x" V) ¢(x).

The associate integral equation to the above Cauchy problem is
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t

(3.4) Pu=e"[(x-V)p] + iJ I[P+ 2 f(5,x,0(5))} ) ds.

0

Taking H™ norm of the both sides of the above equation, we have
T

(3.5) 1P ull < N1 V)l + iJ ICP +2){ f (5%, 0(s))} | mls.
0

Let M, (<M) be a positive number to be determined later. Multiplying
M=t/ (\(I—1)1""") to the both sides of the above for /> 1 and making a summation
with respect to /, we have

T
(3.6) ||u||(;le(P;H-) <lol Gy (x-ViH™) +J | f(s,x, ()l G, (P+ Z;H"‘)ds
0

(3.7 < "d)"G-}Wl(x-V;H"')"'eZMI Tl £ (&, () llwary -

Taking suprimun with respect to ¢ in [0,7] of the both sides of the above inequlity,
we have

(3.8 eelllwaey) < |l s, [ ViHm) +e*Mi T f(1,x, D llwaryy -

From Lemma 2.3, we have with M, <M’

C9”v”X(M P)
(39 %, 0)llweaeyy < 1F (%, 0) L + Cs + syp - .
o ’ ter0,11(1 —CyoM, ||U|IX(M1,P))2

Since [If(2,x,0)lxar,.p) < IV xm,p < p, the last term of the right hand side of (3.9)
is estimated by

(3.10) _ Gp
(1—CoM,p)?

On the other hand, we have by Lemma 2.1,

(3.11) /X, 0)lm<Cia,

where C,, is a constant depending on p. So we have

(3.12) I (2, x,0)llwny < Cis

where C,5=C 4+ Cs+Cop/(1—C oM p)*>. If we take T so small that T
<p/Qe*M:C,;), we have from (3.8)

(3.13) nlummm,sgwmqusSp.
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Next we prove S is a contraction mapping in W(M,,p) with sufficiently small
M,. We show that [|Su—Svllpn,)<(1/2llu—vllwn, for uve W(M,). The
associate integral equation for u—v is

(3.14) Su—Sv=i f eIl £ (s, x,u(s)) — £ (s,x,v(s))]ds.
0
Taking W(M,) norm of the both sides, we have
(3.15) 11w — Svllwa,) <e*M TS (&,x,u(t) =6, %, ) lwar,) -
Since

f(t’x,u)_f(t’x,v)=leu,if(t’xav+9(u—v))d0'(u—vaa—6)a
0o

we have
(3.16) (18, 0) = £ (8, 0) lwaa )

< C, sup [IV,af(t,x,v+0(u—v)llwarylle—vllweor, -
0<0<1

From Lemma 2.3, we have
(3.17) IVu,af (&, %,0 + 0 — ),
<NVuaf(t,x,0 + 0 —0))llm

+Cy+C, sup v+ 0(u— V)|l xpr,,py .
ter0,71(1 — Cy oM [0+ 0 — 0) | x(t,, )

Since ||v+ 0(u — )l xary,py < (L= OVl xar,,py+ Ollull xar,,py < p, the last term of the right
hand side of (3.17) is estimated by

p p
(3.18) Cy sup <C .
®eo.n(1—CroMpP~  ° (1= CyoM,p)?

The same argument as in the proof that S maps W(M,,p) to W(M,p), we have
(3.19) £t x,0) —f (6, %, ) lwryy < Cre Tl — vl wa,y -

Taking T so small that T<1/(2¢*M:C,), we have

1
(3.20) Su— Svlllwa,) Szlllu~vlllww,)-
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By the constraction principle, there exists a unique solution u in W(M,)
consequently. O

4. Local Gevrey Regularizing Property

In this section, we prove Theorem 1.2, which shows the local Gevrey regularizing
property of the solution u. We take a positive constant R and take a C®-function
r(x) with the property

{r(x):l for |x|<R,
rix)=0 for |x|>R+1.

We note that
“4.1) 05l < CIlAGre) ||, »

for ue H™ and for a multi-index |o| <2.
Let u(x) be a solution of (1.1) constructed in Theorem 1.1. Since [L,P]=2L,
we have

@4.2) LPu=(P+2)[f(t,x,u)].
and hence we have from d,=4P—%x"V,

4.3) AP'u= —i6,Pu+(P+2 [ f(t,x,u)]

= — Pt VP (P42 [ (xd])

Using this equation, we can estimate AP'u by at most second derivative of Plu.

Lemma 4.1. Let u(x) be a solution of (1.1). There exist constants C,, and
Ag such that

(4.4) 7)1 02 Plul|,, < C,, ALt 111

for all integer | and for a multi-index a with |a|<2.

Proof. From the fact that ue C([0,T];G%(P;H™) and Lemma 2.3, the
inequalities

4.5) 1Pullp < CygdlY,

(4.6) IPLA %, u)] ]l < CroA5IY
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hold for any />1. (4.5) is nothing but (44) for «=0. Next we treat the case
le)=1. Using (4.5)4.6), we have

@.7) )P ull < 105 (X)P'ut] y + I [1(x), 051 Pt
< IHX)P'ul s 1 + Cooll Pul]
< Co 1| Ar(X)P'ul| -y + CrgC g A1
< Corl AP Ul s + Coy ITA TPl 1 + Ca0Cyg bl
S Cos{Irx)P g /2t + [7(x)x - Vo Plutl| gy [ 21
+ 1GNP +2'Lf (%, W) ] llm— 1} + C22Cradb1Y*
-<—C217{||P’+1”||m—1/2t+ C23|[P’u|lm/2t
+ NP+ 2L (6,5, W)]llm— 1} + C22C1a 451"
< CyyCrgd7 7 I+ 1) +{Cy1(Cy3Crg+€7Cro)}t ™' A1+ Cy, Cy gAY
<{C1(C15476°+ C3C 5 +€*Cro+ Cy,Crg)} (A5t M
This yields
4.8) 176 Pull,, < CpqAdbt 1115,
Using (4.8) to estimate the term |r(x)x-V, P'ull,,/2t, we can prove (4.4) for |o|=2.

a

In the follow, we prove Theorem 1.2 by showing
4.9) |62 Pul|,, < AR 1ol (o) + 1 —2)1°11~7  for all [

for all |¢|>2. We note that (4.9) for |x|=2 hold from (4.4). So we assume (4.9)
for |f|<|«| and prove (4.9) for a multi-index o satisfying |«| > 3.

Let y be a multi-index with |y|=2 and we put o'=a—y. We estimate the
each term of the right hand side of the identity,

4.10) 1% Ply = 07r1%10% Py + [r'*,07]0% Plu.
Lemma 4.2. Assume that (4.9) holds for |p|<|a]. Then we have
(4.11) I0,0710% Plull < Cos AB Ve~ 1 (o | 4 D11,
Proof. Let 0y=20;0, with 9;=0,, and set r;=0;r, r,=0,r. Then, since

[P*,00) = — {ledr’™! ™ 'r @ + '™~ 10
+ol(loel = D= = 2r iy + o= 1 @2)},
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we have
1L, 03105 Plull,
<l 70,05 Plull+ 1o 7141~ 1 1,,0,0% Plutl,
+lod(ler] = DI~ 205 Plull+ 1] 11(02r)0% Pl -
First we treat the case |o'|>2. Then from (4.9) for |B|<|«|, we have
1L, 010% Plull
<2C, 6l A1 1= Yo | 41— 1)1l
+ (o) = DAR N 1= N (o | 4 1= 2)10 0150
+ Cyqo AN (o) 4 L= 2)00 15
S Crg A1 1= o | 4 1)1,

Here, we used |a|<3(jo’|+/). Next we treat the case |o'|=1. Since |a|=3, we get
(4.11) by (4.4). This proves (4.11). O

In order to estimate the H™-norm of the first term of the right hand side of (4.10)
we use the estimate (4.1). Then, We have

412)  (|030E Pl < 111910 Pull s,
< C,yAr®o% Py,
< Caollr™0y AP'u |+ | [A, 1105 Plutl| )}
< C,o{||IF10% P 1u|,, / 2t + |PF0% x - V P, | 2t
+IrHa3(P+2 LS (6%, )] m
+1[A, 0% Plull,u}-

Now, we estimate the each term in the right hand side of (4.12).
Lemma 4.3. Assume that (4.9) holds for |B|<|a|. Then, we have
(4.13) ILA, P05 Pl < Cao A1 2711 (ja | - D)1,

We can prove this lemma by the same way as in the proof of Lemma 4.2.

Lemma 4.4. Let o be a positive number with 6 >s/2. Assume that (4.9) holds
for |B|<|a|l. Then the inequality

4.14) [0 P Yy, < Cyy A1 1 (o | - D)1
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holds with &' =a—7y and |y|=2.

Proof. Since 6>s/2 and |o|>1, we have (/+1)°"°/(|¢'| +/)°<1. Hence, if
|o'| =2, we get from (4.9)

0% P tull,, < | F1=105 P ull,,
AR o) 1= 1)+ 1)
= AFV 1 /(| DY+ Dl
< AR o) Do

and get (4.14). We also have (4.14) for |«|=1 from (4.4). O

Lemma 4.5. Assume that (4.9) holds for |B|<|a|. Then there exists a constant
Cs, such that

4.15) [P90% x - V_Pu||,, < Cy, Al 1+~ 181= (o | 4 1)1 115 =7

holds with o/ =o.—y and |y|=2.

Proof. Using the boundedness of supp r(x), we have from (4.9) for |B|=]a|—1
and f=o
0% x - V. Plull,

<
J

< C32Ak‘l|+1t_|a’|_ l(lall +1)!a'“s—d

™M=

I171%1x0,0% 8;Pull i+ Y. o}lIr'™0% Plul),,
j=1

1

This proves (4.14). O

Lemma 4.6. Let f(t,x,u) be a function satisfying Assumption 1.3. Assume
that (4.9) holds for |B|<|a|. Then, we have

(4.16) P05 (P + 2L (8, x,u(t, X))l < Ca3 Al 11~V |+ D111~

Proof. We note that we have

(BI+1=2t=(1BI+ D! /{(BI+1—1)IBI + D}
< Ca(BI+D/ (B +1+1)2,

for ||+ =2, which and (4.9) for |f| <|a| yield
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4.17) IPIOLP U] < Cag AP~ 1P B+ X(IBI + 1= 1)1
x 1B /(IBl+1+1)?

for 2<|B|<|x|. We note that, from (4.4), the above (4.17) holds also for |B|+/>1
with =0 or |f|=1. Moreover, from the Assumption 1.3 we have

4.18) (A% (P + 2 F)(t, - u(t, - )| w < Cy s AR 1 111,
(010204 r'*10%(P + 2)'0*ud¥ f)(t,x,u(t,x))|
S Cyg AR R o [V (ke + K)o~ 1
for j+j +yl<m

Using these estimates we prove (4.16). Since (4.16) is trivial when |o'|+/=0, we

may assume |o'|+/>1. Then, from the differentiation of composite function and

(4.17)(4.18) we have
05 (P + 2 'L (t,x, u(t, )]l m
< NP +2) 1)t x,u(t, ) | m

C z 2 o'l
+Cy, e
BB = ASkHRSIB+E BNk
S
18| +1'#0
X sup |3L0lef(108 (P+2)" 8k3k )
|x|<R+1,j+j +|y|<m
. k1
xCyTt Y [ M),
Bit+ A Brr=p J'=1ﬂj'lj'
i+t =1l
1851 +1;#0
k+k’ 1
ﬂ _||rlﬂjlagjpl:g||m
j=k+1 _,'1'

< Cys AR 11008

o' \[ 1
+Cs > > > ( ,)(1,>
VAV g e LSk S| B

v # =1

1B +1#V
X C36ALﬁ”|+l”+k+k'ﬂn!alu!s(k+kl)!a—1

x Cy*k- 1Kﬂ’,l’,k+k' >

where
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k+k'
— il+1;—1
Ky v pore=p1" )y [T Csudlfi*t
BrtetPreri=p j=1
L+t lesper =1
181 +1;#0

B+ = 10 OB+ [ 17

- OB
B}
Now, we use Proposition 2.6 and Proposition 2.2. Then, we have
Ky pisie SCRTV APV K= (B 41—k — K)o~ 210
g

viteet e =+
(1B +1)! 1

5 L1 B (B +1;+1)?

X

X
BrttHPrrw=p j=1
hitetlerw =1

181 +15=v;
< Cg;k’Al)ﬂ’|+l’—k—k’t—|p’|(|ﬁ/| +l:)|(lﬁ1|+11_k_kl)|a— llr!s—a
k+k’ 1

X
2
vkt =g+ j=1 (V;+1)

SC:I;+k’—lcgz-k’Agi’|+l’—k—k’t—|ﬂ’|(|ﬁ/l+l/)!(|ﬁll+l/__k_k/)!a—-l
X' (1B +1+1)%

Hence, using Proposition 2.5 now, we have from |f'|+/'=v" and |B"|+]"=V"

1105 (P + 2 LA (t,x,ut, X)) |

< Cys Al 1+

el

x CyeAy HRHK Br1o] 15k 4+ k)1~ 1

X CkHK =1 CkHk =1 Okl gy —k=k =8y
X(V —k—=kN U/ (V +1)?

< CysAl 1o )1s
+(C37C36/ CoCAR N =N ||+ D)o~ 110
Y (Ag/ Ag)”" | (v' +1)?
vy =)+l
x{vivt Y <a’)<l>}
ﬁl ll

4T = v

X
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x{ Z (C3C4Cs4Ag [ Ag)H+}.

1<k+k'<v’

Here, we used B"1°I"1°<v"1” and {v'!(k+k)N(v —k—k)}°" 1 <(lo’|+ )"~ 1. Hence,
assumming A,>2A4, and 4,>2C;C,C5,4,, We get
1719905 (P + 2 Lf (2, ,u(t, )]l m
< Cys AP o)+ Dol
+16(C3,C36/ CoC) AL =11 (o | 4 1) 115 =0,

This proves (4.16). O
Now, we are prepared to prove Theorem 1.2

Proof of Theorem 1.2. For any fixed positive constant R we take a C*-function
r(x) satisfying (4). In order to prove (1.2), we have only to prove (4.9) for any
o with |a|>2. Note that (4.9) for ||=2 holds from (4.4). So it suffices to show
(4.9) for |¢|=N=>3 under the assumption that (4.9) holds for |x|<N. Let y be a
multi-index with [y|=2 and let «'=a—y. From Lemmas 4.2-4.6, we have

[720%P" Uy <(Cy 5+ C29(C30+ Cay + Cap + Ca)) AR =11 Yo' |+ 10110,

Retaking the constant A, so large that A,>C,s+4 Cyo(C30+ C3; + C35+C33) we
have the inequality (4.9). O
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