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1. Introduction

We consider the following Cauchy problem of nonlinear Schrόdinger equations

in n space dimensions,

(Lu = idtu + Δw =/(ί,x,ιι),

W
where Δ = Σ"= 1δ 2/cbc /

2 and f(t,x,u) is a complex valued function of Gevrey class

in (t,x,u)eR x Rn x C. We study the regularizing effect for (1.1). In what follows,

we show that if the initial data φ is in some Gevrey class of order s with respect

to x Vx, then the solution u is in Gevrey class of order max(,s/2, 1) with respect to x.

Concering the regularizing effect for dispersive equations, many works have

been done ([1], [2], [5], [6], [7], [8], [9]). All the above works treat regularizing

effects with respect to Sobolev spaces. In [4], N. Hayashi and one of the authors

treat regularity in time for nonlinear Schrόdinger equations. They have shown

that if the initial data is in Gevrey class of order s ( > 1) with respect to x V and

V, then the solution is in Gevrey class of order s in space-time variables for

tφΰ. In [3], A. de Bouard, N. Hayashi and one of the authors treat Gevrey

regularizing effect for nonlinear Schrodinger equatons in one space dimension and

Korteweg-de Vries equation. They have shown that if the initial data is in Gevrey

class of order s (>1) with respect to x V and V, then the solution is in Gevrey

class of order max(l, s/2) (or max(l, s/3) for KdV) with respect to the space

variable for ί # 0 . We extend their results to the case that the nonlinear term is

not polynomial, and for the local property, we extend their results to the case of

higher space dimensions.

We introduce some notation and some function spaces to state the result

precisely. Let Hm(Ω) denote Sobolev space of order m with respect to L2 for an

open set Ω in R". For simplicity we write Hm = Hm(Rn). For a vector field Q

with analytic coefficients and for a positive number M, we define a function space

of Gevrey class Gs

M(Q;Hm) in Rn as follows:
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We also define a function space of Gevrey class C([0,T];Gs

M(Q;Hm)) as follows:

= S U P II
ίe[O,T]

We write />= 2tdt + x-Vx with Vx = (3X1, A J and set w = [Λ/2] + 1 throughout

this paper.

ASSUMPTION 1.1. The nonlinear term / satisfies

for all integers / and for some constants Cί and Ax.

ASSUMPTION 1.2. For every positive number K, there exist constants C=C(K)

and A=A(K) such that

\(dγ

xP
ιdk

ud
k

uβ\<CAι+k+kΊ\sk\skΎ for xeR\ \u\<K, \y\<m

for all integers /, k and k! with k + k'>l, where du is the differentiationn with

respect to the complex conjugate of u.

ASSUMPTION 1.3. For every positive numbers K and R, there exist positive

constants C=C(K,R) and A=A(K,R) such that

|(θ{3;3ϊ5j'/K^x,M)|^C<l + |β|+t+*7!βα!σJk!<rik'!<r for |x |<Λ, \u\<K

for all nonnegative integers /, k and A:' and for some real number σ satisfying

2, \)<σ<s.

We state our main results.

Theorem 1.1. We assume that Assumtions 1.1 and 1.2 are valid. Suppose

that the initial data φ is in Gs

Mi(xVx; Hm) for some positive constant Mx. Then

there exist positive constants T and M such that the Cauchy problem (1.1) has a unique

solution u{t,x) in C([0,Γ];/ f m )nC 1 ([0,Γ];7/ m " 2 ) and that the solution satisfies

Theorem 1.2. We assume that Assumptions 1.1, 1.2 and 1.3 are valid. Suppose

that the initial data φ is in Gs

Mι(χ Vx; Hm) for some positive constant M1. Then
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the solution u to (1.1) constructed in Theorem 1.1 satisfies the following property.

For any positive number R there exist constans C=C{R) and A=A(R) such that

(1.2) \\dlu(t9x)\\H,«{BR)<CΛ^-\«y.σ for ίG[O,Γ] with

where σ is a real number with max(σ/2, l)<σ<Λ appearing in Assumption 1.3 and

BR is a ball with radius R.

REMARK 1.1. lϊ s = 2 and σ = l , the solution is analytic with respect to the

space variables for ίe(0,Γ], in spite of the fact that the initial value φ(x) belongs

to only the Gevrey class of order 2.

We give several examples of nonlinear terms which satisfy Assumptions 1.1-1.3

and several examples of initial data which satisfy the assumption of the theorems.

EXAMPLE 1.1 (Examples of nonlinear terms). (1) A polynomial F(u,u) of u

and ΰ with /(0,0) = 0.

(2)

where a(x)eGs

M(xVx;H
m) and a(x) is locally in Gevrey class of order σ.

where F[u,u) is a polynomial of u and ΰ with F(0,0) = 0.

EXAMPLE 1.2 (Examples of initial data). (1) |x|fl(l + |x | 2 )" b with 2b-n/2

>a>m-n/2 is in Gσ

M{xV; Hm(Rn)). If a is not even integer, |x|fl(l + |jc|2)"~b has

a singularity at the origin.

(2) φ(x-a)φ(b-x) with a<b is in G2

M{x- V; H\R)\ where ιK*) = e x p ( - l /x)

= 0

2. Preliminaries

In this section, we prepare several propositions to prove the main theorems. We

write || | | m = || | |H m for abbreviation.

Proposition 2.1. Let m = [«/2] + l. If u, v are in Hm(Rn) then uv is also in

Hm(Rn) with

\\uv\\m<C2\\u\\Jv\\m,
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where C2 is a positive constant depending only on n.

Proposition 2.2. There exists a constant C 3 without depending on I such that

Proposition 2.3. Suppose that u}eHmi (j=l,'~9N) with 0 < m J < « / 2 and

^=1mj = n/2. Then Π j L ^ e L 2 with

(2.1) l l Π M Π N i

where C 4 w α constant depending only on n.

Proof. We can prove the proposition by using Sobolev's imbedding theorem.

D

Proposition 2.4. Suppose that u is in C°°([0,Γ] xRn;C) and /(•) is in

C™{C;C). We have

n k i k + k' i

(2.2) l*fW,x))= Σ TUT^Au) Σ ΠTT**'" Π nPhύ-
l<k + k'<lKlK I lί + -+lk + k' = l J = l f/! j = k + l / /

Lemma 2.1. Suppose that g{x,u)eC"°{RnxC\C) satisfies \dy

xd
k

ud
k

ΰg(x,u)\<Mκ

for k + k' + \y\<m, xeRn, \u\<K, and u,veHm. Then g{x,u)veHm with

(2.3) II^ΦL<C 5M xG(||t/| |JbL,

where G() is a polynomial of order m and C5 is a positive constant depending only

on n and m.

Proof. We can prove this lemma by using Proposition 2.1 and Proposition 2.3.

D

Lemma 2.2. Suppose that ueHm and that / G C ° ° ( [ 0 , Γ ] xRn x C C) satisfies

Assumptions 1.1 and 1.2. Then there exist constants C6 and A2 such that

(2.4)

for all leN. Here C6 and A2 depends only on \\u\\m.

Proof. Since we can write
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Plf(t,x,u)=P>f(t,X>0) + \ Vu,sP'(t,x,θu)dθ(u,a)
Jo

with VUtu={du,d^, we have

Γ ,θu)dθ-(u,ύ)\\m.II Γ Vu,ΰP
ιf(t,x,

Jo

Applying Lemma 2.1 to the second term, we have for constants C 7 and A3

depending on ||w||m

<CβΛ
ι

2l\\

where C6 = Cx-{-2C5CΊG{\\u\\m)\\u\\m and A2=max(AuA3). Q

In the following, we write

(2-5)

Lemma 2.3. Suppose that u is in Gs

M(P;Hm) for some constant M>0 and

that fe C°°(Λ x RnxC;C) satisfies Assumptions 1.1 and 1.2. If we take a positive

number M\<M) small enough, we have

(2.6) ^ Z P )

C 8 , Cg and C l o are positive constants depending only on f ||w||m, m and n.

REMARK 2.1. We note that \\u\\X{M^P)<\\u\\X{MtP) if M'<M.

Proof. Using Proposition 2.4, we have

(2.7) Pιlf(t,x,u)-]=Pιf(t,x,u)+ Σ Σ iJr^Ti

pl''%ffif(t>x>u)
i' + i" = ι ί<k+k'<rl \k\k\

y π—pJu π -
. / I / I

v>ι

x

Taking //m-norm of the both sides, we have from Assumptions 1.1-1.2, Proposition

2.3 and Lemma 2.1,

(2.8) \\Pιίf(tix9umm<\\Pιf(t,x,u)\\m+ Σ Σ Σ
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* i k+k i

x ||P
r
0ϊ3*'/(/,x

>
«) Π γf'u Π ^ ' * L

<\\Pιf{t,x,u)\\m

4- V V Y C Aιy + k + kΊ"1sk1skr1sCk + k~ί VI \\PιJu\\

^ L_ L L _,i"\k\k'\ ι.κ.κ.^4. [} J]

where C n and A4 are positive constants which are independent of ||/> /"w||m
(/>!)• Multiplying M'ι~ι/l\(l-1)!5"1 to the above quantity and making a
summation with respect to /, we have

(2.9)

where

ι=ι

and

oo oo AΛ'l'^

/,= y y y

First we estimate Iγ. If we take C 1 2 and AA sufficiently large with Is ιC6A
ι

6 < CX1A\
and we take M' so small that M ' ^ 4 < 1 , we have

00 °° C
O ΛΓ\\ T ^ V ^ %/f'l— 1 is— \ /~i Λ\ ^ ri V / \ft A \l— 1 *~Ί 2

1— M v44

Next we estimate 7 2.

oo oo

/ < y y y
Γ f/'_ι_/"_n! V
\ >

l

rC1^ϊ'+ '+ ' ' ' !W!1 Π - ^ ^
* fJiljUlψ

Σ Σ <M'<
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If we take C 1 3 and A5 so large that A4<A5 and (k+ky1CliA4

+k' <,ClzA
k

5

+k' 9

we have

(2.11) / 2 <C 1 3 ( Σ (M'AsT )A5 Σ (MΆ5)
k+k'-1

r' = o J k+k'>\
oo k + k'

If we take M' so small that MΆ5<1, we have

(2.12) / 2 < C 1 3 1 ^ Σ {C*MΆ5)
k+k'-'\\u\\XiM,,P)

k+k'
l—M A

00 00

4 - V V ΓΓ' Λ/f'Λ >ϊfc + Λ ' ~ 1 l l i y l l *

+ L ZJ \^ArM Λ5) WU\\X(M',P)
k=lk' = O

If we take M' so small that C4MΆ5\\u\\XiM,fP)<l, we have

(213) I <C A s

2| |w| |X ( M % P )

l-MΆ5(l-C4MΆ5\\u\\XiMiP))
2'

From (2.10) and (2.13), we have the lemma with C 8 = C 1 2 / ( 1 - M ' Λ 5 ) , C 9

= C13C4As/(l-MΆs) and Cί0 = C4A5. Π

Proposition 2.5. Let OL be a multi-index and let v and I be integers satisfying

v<|α | + /. Then, we have

<«« Σ ( α )C)=( M + /

The lemma is derived from the calculation of the coefficients of the term f in

the both sides of (1+/)7(1+/)' = ( 1 4 / ) | 7 | 4 / .

Proposition 2.6. For a multi-index α and an integer I we assume that the

integers v , ( > 1 ) ( / = ! , • • • , / : ) satisfy v γ Λ hvk = |α |+/. Then, we have
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(2-15) «!/! Σ Π ^ ^ =
αi + + αfc=α j=ί «:!/.!
h + + ι = ι J J

Proof. First, we consider the case k = 2. Using (2.14), we have

α!/| y
1 + « 2 = α α j / j ! α 2 ! / 2 !

= Vi!v2! Y

This proves (2.15) for k = 2. In the general case, we can prove (2.15) by the
induction on k. •

3. Proof of Theorem 1.1

We prove Theorem 1.1 by the contraction principle.

Proof of Theorem 1.1. We consider the following linearized equation with
respect to (1.1),

Uu = idtu + ΔM =f(t9x,v)9

\

We denote the mapping which corresponds υ to u by S. We write
W{M)=C{l^Tγ,Gs

M{P\Hm)) with norm |||- HU(Λ/) and we denote W{M,p)
= {/e W{MYΛ\n\wm<p} for p>0. We let P = 2 | |0 | | G S M ( X . V ; H W ) .

First we show that S maps W(M,p) to itself if we take Γ and M sufficiently
small. The associate integral equation to the Cauchy problem (3.1) is

(3.2) u = eHAφ + i\ ei(t-s)*f(s,x,υ
Jo

where eitA is an evolution operator for idt — A. Since [L,P] = 2L, we have the
linearized equation for Pιu,

The associate integral equation to the above Cauchy problem is
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(3.4) Pιu = eu*l(x V)ιφ] + i ei{t'S)Δ [(/> + 2)'{/(J, JC, φ))}]ώ.
Jo

Taking Hm norm of the both sides of the above equation, we have

(3.5) l|ΛlL^II(χ V)l0||w

Let MX(<M) be a positive number to be determined later. Multiplying
M[~γ l(l\(l—\)\s~ι) to the both sides of the above for /> 1 and making a summation
with respect to /, we have

(3.6) (* v;tf")+ Wf(s9xί Jo

(3.7) ^ ^ ^ ^ ,

Taking suprimun with respect to ί in [0, Γ] of the both sides of the above inequlity,
we have

(3.8) lllwlllRTCJiro ̂  IIΦII σ ^ i ( *-v s »->+

From Lemma 2.3, we have with Mι<M'

(3.9) ll|/ftx,»)lllιr(Af1,^ll/(ίΛ»)IL+C8+ syp

Since \\\f(t,x,v)\\\X{MuP)<\\v\\X{M9p)<ρ, the last term of the right hand side of (3.9)
is estimated by

(3.10)
(ί-C10MlP)

2

On the other hand, we have by Lemma 2.1,

(3.11) ll/(ί,*,f)L<C1 4,

where C 1 4 is a constant depending on p. So we have

(3.12) lll/'(ί,*.»

where C 1 5 = C 1 4 + C8 + C 9 p/(l-Ci 0 M 1 p) 2 . If we take T so small that T

15)<p/(2e2MίC15), we have from (3.8)

(3.13)
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Next we prove S is a contraction mapping in W(Mup) with sufficiently small
Mx. We show that \\\Su-Sv\\\W{Mι)<(l/2)\\\u-v\\\W{Mι) for u,veW{Mγ). The
associate integral equation for u — υ is

-Sυ = i\ e«-
Jo

(3.14) Su

Taking W(MX) norm of the both sides, we have

(3.15) lll&i-Si l l k M ^ ^

Since

f(t,x,u)-f(t9x9Ό)= VUtSf(t9x9Ό + θ(u-
Jo

we have

(3.16) \\\At9x9u)-f{t9x9Ό)\\\mMi)

<C2 sup

O<

From Lemma 2.3, we have

(3.17) IH

SUp l|f + 0(w-f)llχ,M1,P)
|O.Tl (1 - C 1 0 Af!

Since llt + ̂ w - ^ l l ^ ^ ^ ^ ί l - ^ l l ϋ l l ^ ^ ^ + θlliill^^^^p, the last term of the right
hand side of (3.17) is estimated by

(3.18) C9 sup P \sup ^ C * « r \ * M '

ίe[0,r](l - Cl0Mγp)2 (1 - Cl0Mxp)2

The same argument as in the proof that S maps W(Mup) to W(Mup), we have

(3.19) lll/^^^-Zα^^lll^M^^C^ΓIIIw-t
Taking T so small that Γ<l/(2e2 Λ f lC1 6), we have

(3.20) P w - ^ | | | ^ ( M l ) < i | |
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By the constraction principle, there exists a unique solution u in W(Mγ)

consequently. •

4. Local Gevrey Regularizing Property

In this section, we prove Theorem 1.2, which shows the local Gevrey regularizing

property of the solution u. We take a positive constant R and take a C00-function

r(x) with the property

r(jc)=l for \x\<R,

= 0 for \x\>R+ΐ.

We note that

(4.1) \\da

x(ru)\\m<C\\A(m)\\m9

for ueHm and for a multi-index |α |<2.

Let u(x) be a solution of (1.1) constructed in Theorem 1.1. Since [L,/ ) ]=2L,

we have

(4.2)

and hence we have from dt = γtP—γtx-V,

(4.3) APιu= -idt

= --Pι+ ιu + -

Using this equation, we can estimate APιu by at most second derivative of Pιu.

Lemma 4.1. Let u(x) be a solution of (IΛ). There exist constants C 1 7 and

A6 such that

(4.4) \\r(xpdΛ

xP
ιu\\m<ClΊA

ι

6Γ^l\s

for all integer I and for a multi-index α with |α |<2.

Proof. From the fact that M6C([0 , r ] ;GyP;// m ) ) and Lemma 2.3, the

inequalities

(4.5) \\Pιu\\m<Cί8Λ
ι

7l\\

(4.6)
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hold for any / > 1 . (4.5) is nothing but (4.4) for α = 0. Next we treat the case

|α| = l. Using (4.5H4.6), we have

(4.7) \\r{X)dlPιu\\m< \\e*xr(x)P'U\\m+1

<\\tfx)P>u\\m+1 + C2O\\Pιu\\m

< C 2 1 ||r(x)Δ/*u||m_, + C2 11| [ Δ , K Λ ) ] P I « I L - , + C20Cl8A<Ίll°

,x,um\m-i} + C22Cl8A
l

7l\
ll\°

This yields

(4.8) \\rdxP
ιu\\m<C2AA

ι

6ΓH\s.

Using (4.8) to estimate the term || r(jc)jc • VXJP'M|| m / 2/, we can prove (4.4) for |α| = 2.

D

In the follow, we prove Theorem 1.2 by showing

(4.9) \\r^da

xP
ιu\\m<A^+ι-iΓ^{\oί\ + l-2)\Ί\s-' for all /

for all |α |>2. We note that (4.9) for |α| = 2 hold from (4.4). So we assume (4.9)

for |/?|<|α| and prove (4.9) for a multi-index α satisfying | α | > 3 .

Let j be a multi-index with |y| = 2 and we put α' = α—γ. We estimate the

each term of the right hand side of the identity,

(4.10) rWδx

xP'u = dlrW

Lemma 4.2. Assume that (4.9) holds for \β\ < |α|. Then we have

(4.11) | |[rWδϊK'/"M|| m <C 2 5 ^r i + '^ | 0 l Ί " 1 ( |αΊ + /)!<τ/!s"<τ

Proof. Let dy

x = djδk with δj=δXJ and set r~δjr, rk=δkr. Then, since

" 2rfk + |α|rW "
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we have

<|«|||rl«l- 1rjdkdx'P'u\\

+ |α | ( |α |- l)| |

First we treat the case |α ' |>2. Then from (4.9) for |/?|<|α|, we have

Here, we used |a| < 3(|a'| +/). Next we treat the case |α'| = l. Since |α| = 3, we get

(4.11) by (4.4). This proves (4.11). •

In order to estimate the //"-norm of the first term of the right hand side of (4.10)

we use the estimate (4.1). Then, We have

(4.12) ||δ£

<C29ArWd*xP<u\\

Now, we estimate the each term in the right hand side of (4.12).

Lemma 4.3. Assume that (4.9) holds for \β\ < |α|. Then, we have

(4.13) | | [Δ,Hα l]^'/>'M| |m<C 3o^!?' l + ' ί" | α Ί" 1( |αΊ+/)!< τ/! s"< τ

We can prove this lemma by the same way as in the proof of Lemma 4.2.

Lemma 4.4. Let σ be a positive number with σ>s/2. Assume that (4.9) holds

for \β\<\cc\. Then the inequality

(4.14) | | r l α l a ^ + 1ί/|
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holds with α' = α — y and \y\ = 2.

Proof. Since σ>s/2 and |α' |>l, we have (/+ l)s~7(|α'| + /)σ<l. Hence, if

|α'|>2, we get from (4.9)

and get (4.14). We also have (4.14) for |α'| = l from (4.4). •

Lemma 4.5. Assume that (4.9) holds for \β\<\oc\. Then there exists a constant

C 3 2 such that

(4.15) ||r'αl^'x V xP
ίM||m<C 3 2^| )

α ' l + ί r | α ' | -H|αΊH-/) ! < τ / ! s " σ

holds with α' = α — y and \y\ = 2.

Proof. Using the boundedness of suppφr), we have from (4.9) for |/?| = |α| — 1

and /J = α'

Σ «'j\\

This proves (4.14). Π

Lemma 4.6. Let f(t,x,u) be a function satisfying Assumption 1.3. Assume

that (4.9) holds for \β\ < |α|. Then, we have

(4.16) lk'α|δ^P + 2) '[/(^^^

Proof. We note that we have

(\β\+ι-2)\=(\β\+ιy./{(\β\+ι-mβ\+i)}

for \β\ + l>2, which and (4.9) for | 0 |< |α | yield
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(4.17) \\rwdiPtu\\m<C3AAψ+'-irW(\β\ + W\ + l-^''-1

xlls-"/(\β\+l+l)2

for 2<\β\<\x\. We note that, from (4.4), the above (4.17) holds also for
with β=0 or \β\ = l. Moreover, from the Assumption 1.3 we have

(4.18) \\(rMδ«x(p+2)ιM, At,•))\L<C35A[*Ί+'«Π\\

< C36A^+ι+k+k'a.]'Ί\sk\lc'\(k+kγ.'

for j+j' + \γ\<m

Using these estimates we prove (4.16). Since (4.16) is trivial when |α'| + /=0, we
may assume |α'| + />l. Then, from the differentiation of composite function and
(4.17H4.18) we have

+ c 3 7 Σ
/»'+/»;;=«' ι<k+k <\β \+ι β"\l"\k\k'\

x sup
\x\<.R+l,j + ϊ

χck+k'~ι

k + k' 1

Π ^
+ ιo

2^ Lu Lu \ (V ]\V
>" = \a'\ + l β' + β" = a' 1 <fc + fc'<|/J'| + Γ \P / Vl l l

β'\+l'Φx'

where
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k + k'

Π

Now, we use Proposition 2.6 and Proposition 2.2. Then, we have

k'Aψ+ι'-k-kΊ-vχ\pw

x

/«.+ +Λ+k.-/» Λi ftjy
1^1 0

k + k' 1

x Σ Π — —

xl'\s-σ/(\β'\ + Γ + l)2.

Hence, using Proposition 2.5 now, we have from \β'\ + l' = v' and \β"\ + l" = v"

+ lo

y y y
La La La \ of l\ V

V' + V" = \Λ'\ + 1 β' + β" = β l<k + k'<v' \P / VPΊ + c = v

Σ
v' + v" = |a'| + l

Σ
'\ + v =
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x{ Σ (
fc'<v'

Here, we used β"\ΊΎ<vΎ and {v'\k+ky.{V -k-kj.}*-1 <{W\ + ψ-\ Hence,

assumming A0>2A9 and AO>2C3C^C34.A9, we get

This proves (4.16). Π

Now, we are prepared to prove Theorem 1.2.

Proof of Theorem 1.2. For any fixed positive constant R we take a C00-function

r(x) satisfying (4). In order to prove (1.2), we have only to prove (4.9) for any

α with |α |>2. Note that (4.9) for |α| = 2 holds from (4.4). So it suffices to show

(4.9) for |α|=7V>3 under the assumption that (4.9) holds for |α|<Λf. Let γ be a

multi-index with |y| = 2 and let α' = α — γ. From Lemmas 4.2-4.6, we have

^

Retaking the constant Ao so large that A0>C25 + C29(C30 + C31 + C32 + C33)
 w e

have the inequality (4.9). •
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