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1. Introduction

The Fefferman-Phong inequality, which is a two derivatives Garding type
inequality, has been proved by its authors for pseudo-differential operators with
symbols in the class S{",. It has been extended by HORMANDER [5], in his work
on the Weyl calculus, to symbols in the general class S(m,g) where g is a slowly
varying and temperate metric satisfying the uncertainly principle. Further works
on spectral theory and singularities for nonlinear hyperbolic equations showed the
necessity to relax the temperacy condition on the metric and DENCKER [3],
BoNy-LERNER [1] introduced new classes allowing to deal with these applications.
However the Fefferman-Phong inequality was not proved for these classes. In a
recent work, CoLoMBINI, DEL SANTO, ZUILY [2], we have also been led to consider
non temperate metrics and the above mentioned inequality was required in the
proof; it turned out that these metrics were locally temperate in the sense of
DENCKER [3]. The purpose of this work is then to prove the Fefferman-Phong
inequality for properly supported pseudo-differential operators with symbols in
locally temperate classes. Unfortunately, because of the complexity of the
quantification, this inequality is still not available in the general case of the
Bony-Lerner classes.

2. Notations, statement of the result, examples

We first recall some definitions taken from HORMANDER [5] and DENCKER [3].

Let V be an n dimensional vector space and W=V@® V"’ where V' is the dual
of V. Elements in ¥V will be denoted by x and those in W by w or (x,¢).

Let G be a metric on V, assumed to be slowly varying i.e.

( there exist constants a, >0, 4,>1 such thatfor x,y in V:

. 1 G
( G x—y)<a,=>-——-<—<A,.
0 y

2.1)

Let g be a metric on W which is also slowly varying i..
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( there exist constants a; >0, 4, >1 such that for w,w’ in W

(2.2) |
guw—w)<a, =<2 <4,
1 8w
We shall also assume that
2.3) for every (x,{) in W, G.<g,,.

The space W is a symplectic space with the standard symplectic form
(2'4) G(W,W’)=<)’,f>—<xﬂ1> lf W=(X,é), W’=(y,’7)e W
The dual metric of g with respect to ¢ is then defined by

|2
@3) g2 ()= sup 17
w0 Zwo(W)

The metric g will also be assumed to separate the uncertainly principle which reads
(2.6) g,<g% for every win W.

We then define the function A on W by

@7 Ry = sup &) < 1.
w#0&w(W)
The metric g is said locally temperate if :
J there exist positive constants a,, 4, and Ne N such that
(2.8) Gx—y)<a, =g, <Ag,(1+gw—w)"
I if w=(x,&) and w' =(y,n).

We introduce now the order functions. These are positive functions m on W for
which one can find constants ;>0, B;>1, j=0,1 and MeN such that

1
(2.9) gww—w)<by=>-—<——"-<B,, wweW,

G(x—y)<by = m(w) < Bym(w')(1 +g5(w—w)

(2.10) {
if w=(x,£) and w'=(y,n).

Given G, g, m as above we define the class of symbols S(m,g) to be the set of
C® functions a on W such that
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for every ke N one can find C,>0 such that for every
W,Wq,---w, in W we have
(2.11) .
la®(w)wy, -, w)l < Com(w) [T (gu(wi)) /2.
i=1

We define a metric G on Vx ¥V by

(2.12) G, ,(5,0)=G () +G1)

and we consider the G distance of a point (x,y)e ¥'x V to the diagonal

(2.13) D(x,y)= inf G,O,XO(x —Xg, Y — Xg)-

xoeV

If £>0, we shall set D,={(x,y)e V'x V, D(x,y)<¢}.
Given 0<¢ <e¢ one can construct y such that

(2.14) xeS(1,G), suppy< D,, y=1on D,.

We shall call such a function properly supported.
Given ae (W) and y properly supported we can define a pseudo-differential
operator by the Weyl quantification

X+
2

(2.15) ayu(x)=(2m) _"J‘fei“‘_"’{> ¥ (x, y)a( 4 , £> u(y)dy d¢.

This formula can be extended to the case where ae S(m,g), as an operator sending
Cg(V) into &'(V) and C*(V) to 2'(V). The symbolic calculus for this class of
operators and the L? continuity, when m is bounded, have been achieved by
DeNCkER [3]. The purpose of this work is to prove that the FEFFERMANN-PHONG
inequality [4], which has been proved by HORMANDER [5] when the metric is
temperate, still holds for locally temperate metrics and properly supported
operators. Thus the main result of this work is the following.

Theorem 2.1. LetaeS(h™?,g),a>00n W. Let x be properly supported. Then
one can find a positive constant C such that
(aYu,u)+ Cllull}.>0, for ue C&(V).
ExAMPLE 2.2. As we said before, locally temeperate metrics occur in proving

Carleman estimates with singular weights (see [2]). Let V=R;xR,, V'=R;xR,.
Let 68(y) be a C® function on R such that
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0y)=e¢’ if y<0, 0p)=21if y=>1, 0<0<2.

We set ®X(x,y;En)=1+0*p)E|*+n|>. For G we take the flat metric on V,
G, (s,0)=|s]>+*. Then the metric

déz +d’72

s :dx2+d 2+——__
8x.yitm Y O*(x,y; &)

is slowly varying, locally temperate, satisfies the uncertainly principle and (2.3),
but is not temperate in the sense of HORMANDER [5].

3. Proof of Theorem 2.1

The first step is to prove an analogue of Lemma 18.6.10 in [5].

Proposition 3.1. Let G (resp. g) be one positive definite quadratic form on
R" (resp. R?"). Let us assume
3.0 G(<g(tr), (t)eR™,

g(t,‘[) _/12<1

3.2 =A<
62 0 &°(47)

Let ae C®(R?"), a>0, be such that for each ke N one can find a constant C,>0
such that for X, Ty,--+, Ty in R*"

(3.3) la®(XXTy, -+, Tl < Ckl_""ﬁ (T2

Let xe S(1,G), suppx = D,, x=1on D,., & <e. Then there exists a constant C>0
such that

(3.4) (ayu,u)+ Cllull}->0 for ue CE(R".

ko
Here C is independent of g, G and depends on a only through a finite sum ). C,,

k=1
where kg is independent of a.

Proof. Let us first assume ae #(R*"). Then we shall have a} =b" if
(1 1
a 5(X+y),y—x xx.y)=b 5(x+y),y—x

where ~ is the Fourier transform with respect to the second variable.
Taking the inverse Fourier transform we obtain
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b(x,é)=exp(—i<Dt,D,,>)[x<X+§,x—%)cl(x,n)]

t=0 *
n=¢

By Proposition 2.4 in [3] and Theorem 18.4.11 in [S5], the mapping a+—b has a
continuous extension to a weakly continuous linear mapping from S(1~2%,g) to
S(2~2,g). Moreover the remainder term

1
jt

N
b)Y (- i<D,,D.,>)"[x (x+§, x—%)tz(x,n)]

o
Jj=0 ¢

(=
n=
is weakly continuous with value in S(A¥~!,g) and its semi-norms in this space
depend on N and on the semi-norms of a in S(17% g) of y in S(1,G). Since y=1
near the diagonal we get, if N=1:b=a+r with reS(1,g). Therefore ay =a"+r".
Now, by Lemma 18.6.10 in [5] we have (a"u,u)> — C,|lu|?. with C, independent
of a and g. On the other hand, since reS(1,g) we have by Theorem 18.6.3 in
[5]: |(r*u,u)| < C,lul|?., where C, depends on a fixed number of semi-norms of r
in S(1,g), therefore on a fixed number of semi-norms of a in S(A~2,g) and of y
in S(1,G). It follows that (ayu,u)>Cllullf. with C as claimed. O

Now we return to general a, g, G and we localize the problem in the balls
constructed in Lemma 18.4.4 of [5].

Let G, g be metrics on V and W, satisfying (2.1) to (2.8).

Let p>0 be so small that, with a;, 4; defined in (2.1) to (2.8),

(3.5 p<a,, 3243p<a,, 8A¢p<a,.
Let us set with py<p,
Bv':{w:gwu(w_wv)SpO} < Uv={W:gwu(w_wv)Sp} < lev

U,={w:g,Ww-w)<a,}.
Let ¢,e C£(B,) be real such that Y p2=1 and 0,e C2(U,), ,>0, 6,=1 on B,, ¢,

and 0, uniformly bounded in S(1,g). If we set we get a,=0,a we get a=) ¢,a,0,

and the semi-norms of a, in S(h~ 2, g) are uniformly bounded by those of ain S(h~2, g).
We also fix ¢>0 so small that

(3.6) 1648 <a,, 8A%<a,

and we take a properly supported y with supp y < D,, y=1 near the diagonal. We
also assume that y is real and y(y,x) = x(x,y). Since a,>0, it follows from Proposition
3.1, that
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(3.7 (@uu)+Cllulz.20, ueCy,

where Cis independent of G,g and v. Applying (3.7) to ¢y, u, instead of u, we get
(pveav, @yt ) + U@y @y, u) > 0

since (), )*= ), , because y is real and y(x,y)=y(,x).
Taking the sum with respect to v we get

(3.8) (ZW‘&, u, u) +C (Z(p;”xq);"l, u, u) >0.
(1 )]

Lemma 3.2. The operator Y @%@, is bounded on L*.

Proof. As in the proof of the L? continuity in [5] we shall use the
Cotlar-Knapp-Stein Lemma. Let us set 4,=¢}, - ¢y,. We have to show

(39) supY 4,422 <C, supYlA¥A, |2 <C.
v onp

v ou

The proof of course is completly symmetric for the two terms. Let us consider
the firstt. We have (here the norm is the L>*—L? operator norm), [A,A4}|

<oVl - l@v@iell - llouyll.

Since ¢, € S(1,g) has uniformly bounded semi-norms in this space, ¢}, is bounded
in L? with uniformly bounded operator norm (see the Remark after Theorem 4.3
in [3]). Therefore the first part of (3.9) will be a consequence of the following
estimate.

For every /e N one can find C,> 0 such that for every v
" (P:vvl(p:,x” < Cl(l + dvu)—"

(3.10)
One can find /,e N such that

sup) (1+d,,) "' < + o0.

v ou

The proof of 3.10 is close to that of Theorem 4.3 in [3] and we give it for sake
of completess and the convenience of the later use in the proof of Lemma 3.3. Let

YeS(1,G), y=1 on {(x,y):3z: x(x,2)x(z.y) #0}.
Then by formula (4.22) in [3] we can write

(31 1) (P;Vx(p;:x = ;vud/



FEFFERMAN-PHONG INEQUALITY 853

i - =
0vu(xs é) = exp(EG(DzaDC > Dt’Dt)>[FX,¢(Z’ A c’ T)],g;tz;g
(3.12) F dz,t,0,0)=x(x+z+t,x+z—t)(x+z+t,x—z+1)
0, x+z,¢4+ Do (x+t,E+1).

We claim that, denoting by nU, the projection of U, on V:

(3.13) inf G(x—1)>Age=supp F, ;=¢.

tenU,

Indeed let (z,2,{,1)esupp F, .. Then x+zenU,, x+tenU,, (X,Y)esuppy, (X,Z)
esuppy where X=x+z+t, Y=x+z—t, Z=x—z+t It follows that D(X,Y)<e,
D(X,Z)<e. By Lemma 22 in [3], since e¢<a,, we get Gy(X—Y)<4A.e,
Gy(X—Z)<4A,e. 1t follows that Gy(X —X)=1Gy(X—Y)<A,e<a, so by (2.1),

1
Gm(z)=ZGX+Y(X—Z)5$GX(X~Z)SAée.
2

Since t=x+zenU, this contradicts (3.13).
It follows that, on the support of 6,, we have

inf G(x—t)<AZe
tenU,

(3.14)
inf G(x—z)<A3e.

zenU,

We shall show that this implies

(3.15) {\r’tGﬂUv G(x—1)<2A%e+44,p  (<min(ay,a,))

VzenU, G,(x—z)<2A4§+44op (<min(ay,a,)).

Indeed let toenU, be such that G, (x—1t,)<AZe. Since t,, t are in nU, we have
G (t—t)<g,w—w)<p, G,(to—t)<p. Since p<a, we obtain G,<A4,G,
<A}G,,. Therefore

G(x— ) <2[G(x—to)+ Gty — )] <2[Ade+2A4,p].
O

It follows from [5], formula (18.4.12) that, for every ke N one can find C, >0,
independent of v such that

-k
(3.16) 16,,(w)| < Ck<1 + inf [g%(w—w")+ [g%(w— w’)]> .

w'el,
w'elU,
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We would like to replace the right hand side of (3.16) by
-k
(1+ inf gi(w—w)+ inf gﬁ,(w—w”)) .
w'el, w'ely,
This will follow from
(3.17) guww—w)+gi(w—w")<C(1+g;, (w—w")4 g5 (w—w))"

for some n, independent of w, w', w".
If we set w=(x,&), w =(y,n), w’=(z,0), it follows from (3.15) that G (x—y) and
G,(x—z) are bounded by a,. It follows from (2.8) that

gw <Ay, (1 +g5(w—w)"
uwr < Asg (1 +g5 Aw—w)"
which implies
gw<Agi A1 +gh(w—w))"
gw <A (1485 (w—w)"
$O
gulw—w)+gn(w—w") < A2+ g (w—w)+gh (w—w ) L.
It follows that (3.17) will be a consequence of
(3.18) gww—w)+gL (w—w)<C1+gL(w—w")+g5 (w—w))?

ffor some ge .
Let us set w;=w'+w"—w. Since w'=(y,n)eU,, w'=(z,{)e U, (3.13) implies
that G(x—y)<a,, G,(x—z)<a,. We deduce from (2.1) that G,(x —z) < AJG,(x —2)
<2A8¢+4A3p<a,. Sincew,—w=w"'—w=(z—x,{—¢)and w’ =(y,n), (2.8) implies
8w S Ax8, (185w —w )Y
g S A28, (1+80 (W —w)".
This implies
g, (W—w )< Ay(1+gow—w)¥ !

3.19
19 ww—w) <A,(1+go (w—w)" "1

By symmetry one gets
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(3.20) {j'fv' < 4,85, (1+g5,w —w)
v <Aygh (1485, W —w))".

It follows from (3.19) and (3.20) that
gu(w—w)+gL (w—w')< QA1 +g5(w—w") +goAw—w))
for some g. This is (3.18). Therefore (3.17) is proved and by (3.16) we get

-1
(3.21) |0vu(x,£)|sC,<l+ inf g¢(w—w')+ inf g&(w—w”)) .

w'ely w''ely,

Let woe U, and wye U, be such that

(322) gw(w - Wb) = inf gw(w - W’), gw(w - Wg) = inf gw(w - W”).

w'ely, w'elUy,

Since woe U, it follows from (3.15) that G, (x—xp)<a,. Then (2.8) implies
g, < As8u(1 +g5(w—wp)". By the slow variation of g in U, we get
g (Wo—wg) S A5, (Wo—wi) < A A,80(Wo — wol(1 +go(w —wo))¥
<24, 4,[gn(Wo—w)+grw—wo)](1 +gu(w—wo)"
<24, 4,(1+ghw—wo) +gnw—wg)" 1.

It follows from (3.21) and (3.22) that if we set

(3.23) d,,= inf g, (W —w")
w'elU,
w'elU,

we have for every /€N,
(3.24) 10,,(x,9)l < C(1+d,,) "

The same estimate is true for every semi-norm of 0,, in S(1,g). It follows from [3]
(Remark after Theorem 4.3) that first part of (3.10) is valid. Let us now show
the second part. We fix so we may assume that g, (1)=|f|>. We have

k

Mo 0 ko
Y (1+d,) =Y Y (1+d,)" <Y k~'ocard M,
n=1 k=1

k=1 k—1<dou<k
where M, ={u:d,, <k}. We shall show that card M, < Ck? for some g, which will
prove (3.10).

Now if ue M, there exists w, e U,, w, € U, such that g7, (w,—w,)<k. It follows
from (2.3) that
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(3.29) g;’,;’(w:, — w;j) <Ak

Now, by (3.15), if wesupp0,,, w=(x,{) we have G}, (x—x)<a, and Gx;(x—x;j)
<a,. It follows that G(x—x))+G(x—x,)<443e+8A4%p so G [(x,—x)<8Ag¢
+16A453p. Therefore G, (x,—x;)<845+1643p<a, by (3.5), (3.6). We deduce
from (2.8) that gj.(1)< Cgy. (01 + g;'v;)(w'v—w;j))" . It follows from (2.6) and (3.25)
that g7,.(1)< C(4,)|fk". Therefore |f| <k~ imlies g, (1)< C(4,)6” so:

|z —wj| <ok~ N2 =g, (z—w,)<C'(4,)5

Now g3 (z—w,)<gy2(z—w,)+g)/2(w,—w;) < C'(4,)6+p<a, if 6 is small enough.
Therefore

(3.26) lz—wy| <6k~ =ze U,

Now, |z—w}|<|z—wi|+|w,—w)| <ok~ N2+ gl 2w —w,) <6k~ N2+k'2, by (2.6).
Then,

(3.27) |z —wi| <6k ™N2 = |z —w)| < 2KkV2,

Let us set V,={z:|z—wj|<dk~N?}. We deduce from (3.27)

(3.28) U V. < {z:lz—wj| <2k'2}.

neMj

Now there is a bound for the number of V, which can intersect (since it is true
for U, and V, < U,. Therefore (3.28) implies

C Y, m(V,,)Sm< U V,‘>scok"/2.

pneMp ueMic

It follows that card M,. (6k~V/?)"< Ck™?. This completes the proof of Lemma 3.2.
O

We consider now the term (1) in (3.8). Using Theorem 3.3 in [3] we get
(329) (P:‘xa\‘rxgo;vx =((»0\2rav)$’ + r;vw ’

where Yy =1 on the support of y, r,eS(1,g) and

k
(3.30) [FOW)wy, - w )l < CT] g3 *wllalsu-2,g)-
i=1

Since (Z(pfav>=a$ we get
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(ayu,u)= (Zqo;"xa‘v"l(p‘v”xu, u) - ((er> u, u) .
v v w

Lemma 3.3. The operator (Xr,); is bounded on L*.

If we prove this Lemma, it will follow from (3.8) and Lemma 3.2, that
(a,‘,,”u,u)z—Cllullfz. Since, by Corollary 2.5 in [3], we have aj—a}=r} with
reS(1,g), we shall have (aju,u)> — Cllu||}. for every properly supported y, which
proves Theorem 2.1.

Proof of Lemma 3.3. We shall estimate the semi-norms in S(1, g) of the symbol
of ry, more precisely than (3.30). We split the proof into two cases. Let
w=(x,£)e W be fixed.

Case 1: g, (w—U,)= inf g, (w—w)<p.
w'ely,

We know by the construction of the balls U, (see [5] Lemma 18.4.4) that
there is at most N, (independent of w) such v. By (3.30) we get

k
Z [FOW)wy, - wH < No - CHg»lv’f(Wi)llallsm—z,g) .
i=1

v>1

Case 2: g, (w—U,)>p.

Then w¢ U, and ¢la,(w)=0. Let us set ¢}al,¢r,=dy,; then by (3.18) in [3]
and (3.29) it is easy to see that r (w)=d,(w). We want to show that for every k, /in N,

k
(3.31) dPW)wy, - wi)l < Cuh = 2(w)) [ [ gu 2wl + g0, (w—U,)~"2,
i=1

where C,, are independent of w, w; and v.

This will follow essentially from the proof of Theorem 2.2.1 in [1]. Indeed,
according to Bony-Lerner, a symbol c is said to be confined in U, if for every
integers k, / one can find constants C,, such that for every X in U, and every w;
in W we have

k
lcOX )Wy, wl < Cum(X) [ | g3/ 2wl + g5, (X = U,) "2
i=1

We shall show that since a, is supported in U, and ¢, is confined in U, then
ay,py,=by, with b, confined in U,. Then since ¢, is supported in U,, the same
argument will show that d, is confined in U,, which proves (3.31).

Accorting to (3.8) in [3] we have
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(3.32) b(X)= n'2"jje“"‘r“"'z‘X’aV(Z)(pV(T)x(x +z—tt+z—X)
x(t+z—x,x+t—2)dZ dT,

where X=(x,¢), T=(,1), Z=(z,().
Let X, =(x0,¢o) be such that g, (X,)=1, (g5, (X))"*=0(X,X,). Then

1
5<X0aDz>(2i0'(T—Xa Z—-X)=0o(T—X, X,)=[g%(T—X)]'.
It follows that
1 k
(1 + E(XO’DZ>) eZia(T—X,Z—-X) =(1 +g:,°(T— X)I/Z)keZiu(T—X,Z— X)'
Therefore
. 1 k
bv(X)=n’2"ﬂez'””_"’z‘x’(l +g30(T—X)”2)_"</)v(T)(1 +E<X0,Dz>>
la,@D)x+z—t,t+z—x)y(t+z—x,x+t—2z)]dZ dT.
Now since ¢, and a, are confined in U, and y € S(1,G), the Leibniz formula will give
(3.33) by
<C| qovIlo,nllavllk,nllxII§(1,a)ﬁ(1 +gn(T—X) "Y1+, (T-U)~"?
(1 4+gn(T—=U) MG dxo) + G xo) + G2 (xo0))'dZ dT.
Now in the integral defining b,, since a, is supported in U, , we get exactly as in (3.15)
(3.34) VsenU, G x—s5)<2A3e+4A4,p (<min(ay,a,)).
It follows that on the support of the function inside the integral in (3.32) we have
Gx +z-t < AOGz

Gt+z—xSAOGz
Gx+t—z SAOGz'

Since zenU, (because Zesuppa, = U,) we get G,<A3G, ; by (2.3), G, <g..,
therefore

G- (xo) + GE - o) + G - (x0) < C(A )8, (Xo) = C(A).

We deduce from (3.33),
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(.35 [bJ(X)I
< CIIqovllo,,llavIIk,NIIx||§u,a,J (A+gn(T—X) (1 +g,,(T-U)~"?
(1+g5,(Z—U,)"MdzadT.
Now
1+g, (X=U)<C1+g5 (X—T)+g,(T-U,).

(3.36) 1+g3,(X-U)<A1+g, (X—=T))1+g,,(T—U,)).
On the other hand for every w' in U,

1+g5,.(Z—-w)<1+42g, (Z—w)+2g, (W —w)<3+2g7 (Z—w)
because g<g’ and the radius of U, is smaller than one. It follows that
(3.37) (1+g5,(Z-U) " '<Cl+g,(Z—w)) L
Taking in (3.35) N=2n+1, k=1+2n+1, we deduce from (3.36) and (3.37)

6.1 Clgylolaylzns 141, 20+1(1 +85(X—U) 1
- U“ (X =T V14 g, (Z—w) "+ PdZ dT.

Since the product of the determinant of g, and g7, is equal to one and

lolos<M, Nalzne1 41,20+ 1< Crpsup h™3(X),
XeU,

we get our claim. We estimate the derivatives by the same method. This proves
(3.31).
Now, from the definition (2.7) of & we have for every w' in U,,

g, (W—wW)=h"(w,)g,, (W —w).
Since we are in case 2 it follows that
(3.38) g, w—U)=ph™2(w,).
Now, let wy=(x5,¢)e U, be such that
(3.39) guw—U,)=g5, (w—wp).

It follows from (3.34) that G, (x—x,)<a, and from (2.8)



860 F. Coromsini, D.D. SANTO AND C. ZUILY

8, < A28,(1 +8%,(w—wo)".
By the slow variation of of g in U, we deduce

8w, <A1 A,8,(1+ 4,85 (w—wp)".

From (3.31), (3.38) and (3.39) we get
k
(3.40) IrOw)w -+ Wl < Can [ [ 80w (1 + 25, (w—U) 55+
i=1

Assume we U,. Using the slow variation of g in U, and (3.34) we get
g;ASAlg:;SA1Azg:;;,(1 +336(W_W;J))N
and therefore
guaw—wo) <A A,(1+ 4,87, (w—wo)¥ 1.
(3.41) 1+ inf g% (W —w")<C(4,,4,01+g5, w—U))"*.

w'el,
w''elU

Recall that we defined in (3.23) d,, by

d,,= inf g%.(w —w").
w’eU,
w''eU,

By (3.40), (3.41) and the slow variation of g on U, we get for every k,ge N

k

(3.42) P W, W)l < Cog [ T 802w (1 +d,) 7%

=1

Using the second part of (3.10) we obtain that the semi-norms of Xr, are uniformly
bounded in S(1,g); it follows that the operator (Zr,)}, is bounded on L?, by Theorem
43 in [3]. The proof is complete. O
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