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1. Introduction

The Fefferman-Phong inequality, which is a two derivatives Garding type
inequality, has been proved by its authors for pseudo-differential operators with
symbols in the class S™0. It has been extended by HORMANDER [5], in his work
on the Weyl calculus, to symbols in the general class S(m,g) where g is a slowly
varying and temperate metric satisfying the uncertainly principle. Further works
on spectral theory and singularities for nonlinear hyperbolic equations showed the
necessity to relax the temperacy condition on the metric and DENCKER [3],
BONY-LERNER [1] introduced new classes allowing to deal with these applications.
However the Fefferman-Phong inequality was not proved for these classes. In a
recent work, COLOMBINI, DEL SANTO, ZUILY [2], we have also been led to consider
non temperate metrics and the above mentioned inequality was required in the
proof; it turned out that these metrics were locally temperate in the sense of
DENCKER [3]. The purpose of this work is then to prove the Fefferman-Phong
inequality for properly supported pseudo-differential operators with symbols in
locally temperate classes. Unfortunately, because of the complexity of the
quantification, this inequality is still not available in the general case of the
Bony-Lerner classes.

2. Notations, statement of the result, examples

We first recall some definitions taken from HORMANDER [5] and DENCKER [3].
Let V be an n dimensional vector space and W= V® V where V is the dual

of V. Elements in V will be denoted by x and those in W by w or (x9ξ).
Let G be a metric on V, assumed to be slowly varying i.e.

( there exist constants ao>0, Λo>\ such that for x9y in V:

Let g be a metric on W which is also slowly varying i.e.
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there exist constants aί>0, Aί>ί such that for u>, wf in W\

Aγ gw,

We shall also assume that

(2.3) for every (*,£) in W, Gx<gXtξ.

The space W is a symplectic space with the standard symplectic form

(2.4) 0(w9w') = (y,ξy — (x,ηy if w = (x9ξ)9 w' = (y,η)e W.

The dual metric of g with respect to σ is then defined by

(2.5) gσ

wo(w) -

The metric g will also be assumed to separate the uncertainly principle which reads

(2.6) gw^gw f° r every w in W.

We then define the function h on W by

(2.7)

The metric g is said locally temperate if :

I there exist positive constants a2, Λ2 and NsN such that

(2.8) J Gx(x-y)<a2=>gw <Λlgyv{\ + g ^ ( w - W)f

if w = (x,ξ) and w' = (y,^).

We introduce now the order functions. These are positive functions m on W for

which one can find constants bj>09 Bj>l, j=0,\ and MeN such that

(2.9) g w ( w - i ^
Bo m{wf)

(2 10) fcjx-yH^ ^m(w)<BM
[if w = (x, ξ) and w' = (y, ή).

Given G, g, m as above we define the class of symbols S(m,g) to be the set of

C°° functions a on W such that
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for every keN one can find Q > 0 such that for every

w,wί9 --wk in W we have

(2.11) 1

1,--,wk)\<Ckm(w)

We define a metric G on Vx V by

(2.12) Gx>y(s9t) = y

and we consider the G distance of a point (x,y)e K x K t o the diagonal

(2.13) D(x,y) = mϊGXOfXO(x-xo,y-xo).
xoeV

If ε>0, we shall set Dε={(x,y)e VxV, D(x,y)<ε}.

Given 0<ε '<ε one can construct χ such that

(2.14) χeS(lG\ suppχ^Dεi χ=lonZ)£,

We shall call such a function properly supported.

Given ae^(W) and χ properly supported we can define a pseudo-differential

operator by the Weyl quantification

(2.15) fl?4*) = ( 2 π Γ " f ^ ^ ^

This formula can be extended to the case where aeS(m,g\ as an operator sending

Co°°(K) into δ\V) and C°°(F) to 2\V). The symbolic calculus for this class of

operators and the L2 continuity, when m is bounded, have been achieved by

DENCKER [3]. The purpose of this work is to prove that the FEFFERMANN-PHONG

inequality [4], which has been proved by HORMANDER [5] when the metric is

temperate, still holds for locally temperate metrics and properly supported

operators. Thus the main result of this work is the following.

Theorem 2.1. Let ae S(h ~2,g),a>0 on W. Let χ be properly supported. Then

one can find a positive constant C such that

(ay,u)+C\\u\\2

L2>0, forueCf(V).

EXAMPLE 2.2. As we said before, locally temeperate metrics occur in proving

Carleman estimates with singular weights (see [2]). Let V=RxxRy, V = R\xRη.

Let θ(y) be a C00 function on R such that
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0(y) = ey if y<0, 0(y) = 2 iϊ y>\9 O < 0 < 2 .

We set Φ2(x,y;ξ,η)=l+02(y)\ξ\2 + \η\2. For G we take the flat metric on K,

Gxy(s,t) = \s\2 +12. Then the metric

is slowly varying, locally temperate, satisfies the uncertainly principle and (2.3),

but is not temperate in the sense of HORMANDER [5].

3. Proof of Theorem 2.1

The first step is to prove an analogue of Lemma 18.6.10 in [5].

Proposition 3.1. Let G (resp. g) be one positive definite quadratic form on

Rn (resp. R2n). Let us assume

(3.1) G{t)<g{t,τ\ (f,

σ(t τ\
(3.2)

Let 0eC°°(/?2M), α > 0 , be such that for each keN one can find a constant Ck>0

such that for X, Tu-,Tk in R2n

(3.3) \(*kκχχτ» - , τk)\ < ckχ-2 π (ginyi2.
i = 1

Let χeS(l,G), suppχ c Z)ε, χ=l on Dε,, ε'<ε. Then there exists a constant C>0

such that

(3.4) « M + C|M|£2>0 for ueC?(Rn).

fco

Here C is independent of g, G and depends on a only through a finite sum £ Ck,

where k0 is independent of a.

Proof. Let us first assume a e ¥{R2n\ Then we shall have a™ = bw if

where ~ is the Fourier transform with respect to the second variable.

Taking the inverse Fourier transform we obtain
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ί = 0
\η = ξ

By Proposition 2.4 in [3] and Theorem 18.4.11 in [5], the mapping a\->b has a

continuous extension to a weakly continuous linear mapping from S(λ~2,g) to

S(λ~2,g). Moreover the remainder term

1

ΓA β

is weakly continuous with value in S(λN~ι,g) and its semi-norms in this space

depend on N and on the semi-norms of a in S(λ~2

9g) of χ in 5(1,G). Since χ= 1

near the diagonal we get, if N=l:b = a + r with reS(l,g). Therefore a™ = aw + rw.

Now, by Lemma 18.6.10 in [5] we have (awu,u)> — C0||w||£2 with C o independent

of a and g. On the other hand, since reS(\,g) we have by Theorem 18.6.3 in

[5]: |(rwM,w)|<C1||M||^2, where Cί depends on a fixed number of semi-norms of r

in 5(1,g), therefore on a fixed number of semi-norms of a in S{λ~2,g) and of χ

in 5(1, G). It follows that « M , W ) > C | | W | | ^ with C as claimed. O

Now we return to general a, g, G and we localize the problem in the balls

constructed in Lemma 18.4.4 of [5],

Let G, g be metrics on V and W, satisfying (2.1) to (2.8).

Let p > 0 be so small that, with aj9 A} defined in (2.1) to (2.8),

(3.5) P<cL\, 32Alp<a2, %AQP<CL0.

Let us set with ρo<p,

, = {w:g w >>-w v )<p} c U'x

Let φveC?(Bx) be real such that £<pv

2 = l and 0VGCO°°(C/V), ΘV>0, ΘV=\ on Bv, φ v

V

and θγ uniformly bounded in 5(1, g). If we set we get av = θγa we get a = Σφvavφv

V

and the semi-norms of av in S(h~2,g) are uniformly bounded by those of a in S(h~2,g).

We also fix ε > 0 so small that

(3.6) 16A%ε<a2, SA*ε<a0

and we take a properly supported χ with suppχ cz Dε, χ= 1 near the diagonal. We

also assume that χ is real and χ(y,x) = χ(x9y). Since av > 0, it follows from Proposition

3.1, that
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(3.7) (α>, M ) + C| | M | | i 2 >0, ueC?,

where C is independent of G, g and v. Applying (3.7) to φ^χu, instead of u, we get

(φ:χa:χφ:χu, u) + C « φ^u, u) > 0

since (φ^χ)*=φ^x, because χ is real and χ(x,y) = %{y,x)

Taking the sum with respect to v we get

(3.8) (Σ<α>^/) + c ( Σ « , u,t) > 0.
" r / \ v N . /

(1) (2)

Lemma 3.2. The operator Σ pΓ̂ Γ̂χ " bounded on L2.
V

Proof. As in the proof of the L2 continuity in [5] we shall use the

Cotlar-Knapp-Stein Lemma. Let us set Av = φ™χ φ™χ. We have to show

(3.9)

The proof of course is completly symmetric for the two terms. Let us consider

the firstt. We have (here the norm is the L2 — L2 operator norm),

Since φ v e 5(1, g) has uniformly bounded semi-norms in this space, φ^χ is bounded

in L2 with uniformly bounded operator norm (see the Remark after Theorem 4.3

in [3]). Therefore the first part of (3.9) will be a consequence of the following

estimate.

For every leNone can find Q > 0 such that for every v

(3.10)
One can find l0 e TV such that

The proof of 3.10 is close to that of Theorem 4.3 in [3] and we give it for sake

of completess and the convenience of the later use in the proof of Lemma 3.3. Let

ψeS(\,G), <A = 1 on {(x,y):3z:χ(x,z)χ(z,y)ϊθ}.
Then by formula (4.22) in [3] we can write

(3.H) « = ^



FEFFERMAN-PHONG INEQUALITY 853

(3.12)

We claim that, denoting by πUv the projection of Uv on V:

(3.13) inf Gt(x-ή>Alε=>sύppFxξ = φ.
teπUυ

Indeed let (z, ί, £ τ) 6 supp /v^. Then JC + z e π (7V, x + f e π C/v, (X, Y) e supp χ, (X, Z)

esuppχ where X=;c + z + i, y = x + z-r, Z=x-z + t. It follows that Z)(jr,y)^β,

D(X9Z)<ε. By Lemma 2.2 in [3], since ε<a0, we get GX(X— Y)<4Aoε,

Gx(X-Z)<4Aoε. It follows that Gx(X-κiΣ) = iGx(X- Y)<Aoε<ao so by (2.1),

Gx+£z)Gx+γ{XZ)^
4 ^ ~ 4

Since t = x + zsπUv this contradicts (3.13).

It follows that, on the support of θvμ we have

inf Gt{x-t)<Alε

(3.14)

inf Gz{x-z)<A%ε.
zeπUυ

We shall show that this implies

(3 15) jV*eπUv Gt(x-ή<2A*

(Vz eπUμ Gz(x—z) <2AQS + 4Aop

Indeed let toeπUv be such that Gto(x-t0)<Afc. Since ί0, t are in πUv we have

Gtυ(t-tv)<gWυ(w-wv)<p, Gtυ(to-tv)<p. Since p<a0 we obtain Gt<A0Gto

<A2

0Gto. Therefore

Gt(x -ή< 2lGt(x -10) + Gt(t0 - /)] < 2[^ί Jε + 2Aop].
O

It follows from [5], formula (18.4.12) that, for every keN one can find Q > 0 ,

independent of v such that

(3.16) \θvμ\

w"eU'μ
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We would like to replace the right hand side of (3.16) by

( l + inf gσ

w(w-w')+ inf gσ

w(w-w")) .
\ w'eUυ w"eUμ )

This will follow from

for some n0 independent of w, w\ w".

If we set w = (x,ξ), w' = (y,η), w" = (z,O, it follows from (3.15) that Gy(x-y) and

Gz(x—z) are bounded by a2. It follows from (2.8) that

gw><A2gw(\+gl,(w-w'))N

which implies

so

It follows that (3.17) will be a consequence of

(3.18) gι{w

ffor some qeN.

Let us set wί = w' + w" — w. Since w' = (γ,η)eUx, w" = (z,ζ)eUμ (3.13) implies

that Gy{x-y)<a0, Gz(x-z)<a0. We deduce from (2.1) that Gy{x-z)<A2

0Gz{x-z)

%ε + 4Alρ<a2. Since wγ-W = w / /-w = (z-x, ζ-ξ) and w' = (y,η% (2.8) implies

This implies

(3.19)

By symmetry one gets
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(3.20) ^

It follows from (3.19) and (3.20) that

for some q. This is (3.18). Therefore (3.17) is proved and by (3.16) we get

(3.21) \ΘJx,ξ)\<Cι[l+ Mg°Jw-w')+ inf gl{w-w")
V w'el/υ w"eί/μ

Let w'o G Uv and W'Q e Uμ be such that

(3.22) gjw - w'o) = inf gjw - w'\ gjyv - w'ό) = inf gw(w - n>")

Since w'oeUv it follows from (3.15) that GX'o{x-x'0)<a2. Then (2.8) implies
gw'0^A2gn(l +gσ

w{w — w'o))N. By the slow variation of g in Uv we get

w(w'o -
 WSX1 + Λ ( w - w'o))N

w ( w - w y f

It follows from (3.21) and (3.22) that if we set

(3.23) dyμ= m(gWo(w'-w")
w'eUυ

w"eUμ

we have for every leN,

(3.24) WJx^^Qil +dyι

The same estimate is true for every semi-norm of θVμ in 5(1, g). It follows from [3]
(Remark after Theorem 4.3) that first part of (3.10) is valid. Let us now show
the second part. We fix so we may assume that gWυ(ή = \t\2. We have

Σ O + ^ Γ ' 0 ^ Σ Σ a+<U''°< Σfc-'°cardMfe
μ=l fc=l k-ί<dvμ<k k=ί

where Mk = {μ\dxμ<k). We shall show that card Mk<Ckq for some q, which will
prove (3.10).

Now if μeMk there exists w'veUv,w'μeUμ such that gσ

wj(wf

x — w"μ)<k. It follows
from (2.3) that
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(3.25) g^W-

Now, by (3.15), if wesuppθvμ, w = (x,ξ) we have G%o(x—x'v)<a0 and Gx{x—xμ)
<a0. It follows that Gx(x-x'v) + Gx{x-xμ)<4Alε + SAlp so Gx(x"μ-x\)<%A5

Qε
+ \6Alp. Therefore Gκ(x'v-xμ)<SA%ε + l6Alp<a2 by (3.5), (3.6). We deduce
from (2.8) that gl^)<Cgl.β\\+g°w.o{w'v-w"μ)f. It follows from (2.6) and (3.25)
that gl-iή^CiΛjftfk". Therefore \t\<δk~NI2 imlies gκ{t)<C(Ax)δ2 so:

Now g^2(z-wμ)<gίJ2(z-w'μ)+g1J2(Wμ-w;)<C'(Aι)δ+p<aι if δ is small enough.
Therefore

(3.26) \z-w;\<δk-N'2^>zeUμ.

Now, \z-w',\<\z-w"μ\ + \w"μ-w'Ji<δk-NI2^g1J2{W"μ-w'v)<δk-NI2+kϊl2, by (2.6).
Then,

(3.27) \z-w'μ\<δk-"12 =>\z-w'v\<2k112.

Let us set Vμ = {z:\z-w;\<δk-N/2}. We deduce from (3.27)

(3.28) \JVμ<z{z:\z^

Now there is a bound for the number of Vμ which can intersect (since it is true
for U'μ and Vμ a Uμ. Therefore (3.28) implies

Ci Σ m{Vμ)<m( U vA<C0k
n/2.

μeMk \μeMk /

It follows that card Mk. (δk ~ N/2)n < Ckn'2. This completes the proof of Lemma 3.2.
O

We consider now the term (1) in (3.8). Using Theorem 3.3 in [3] we get

(3.29) ψ™χ&™χψ™χ = (ψv&v)ψ ~t~ **v̂  ί

where ^ = 1 on the support of χ, rveS(l,g) and

(3.30) \r

Since (X^v^v) = ̂  w e g e t
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( \ (( Y \
\ v / \\v /ψ /

Lemma 3.3. The operator (Σrv)J; is bounded on L2.

If we prove this Lemma, it will follow from (3.8) and Lemma 3.2, that

« M , W ) > - C | | W | | £ 2 . Since, by Corollary 2.5 in [3], we have άf-a^r? with

reS(\,g), we shall have (a™u,u)>—C\\u\\l2 for every properly supported χ, which

proves Theorem 2.1.

Proof of Lemma 3.3. We shall estimate the semi-norms in S(\,g) of the symbol

of r™ψ more precisely than (3.30). We split the proof into two cases. Let

w = (x,ξ)eWbe fixed.

Case 1: gWυ(w-Uv)= inf gWo(w-w')< p.
w'eUv

We know by the construction of the balls Uv (see [5] Lemma 18.4.4) that

there is at most No (independent of w) such v. By (3.30) we get

v > l ι = l

Case 2: gWυ(w — Uv) > p.

Then wφUv and φ*av(w) = 0. Let us set φ^χφ^χ = d^φ; then by (3.18) in [3]

and (3.29) it is easy to see that rv(w) = dv(w). We want to show that for every k, I in TV,

(3.31) I^VXπ'iΓ s H ϋ l ^ C ^
i = l

where Ckl are independent of n>, w, and v.

This will follow essentially from the proof of Theorem 2.2.1 in [1]. Indeed,

according to Bony-Lerner, a symbol c is said to be confined in Uv if for every

integers A:, / one can find constants Ckι such that for every X in Uv and every wf

in W we have

|c<*>(X)(HΊ, ,wk)\ < Cklm{X) Π s i ί V i X 1 + Λ O ( * - Uv)Γι/2.
ί = l

We shall show that since av is supported in Uv and φv is confined in Uv then

ayχφyχ = by, with bv confined in Ux. Then since φv is supported in Uv9 the same

argument will show that dv is confined in Uv, which proves (3.31).

Accorting to (3.8) in [3] we have
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(3.32) bv(X) = π-

-z)dZdT,

where X=(x,ξ), Γ=(/,τ), Z=(z,Q.

Let X0=(x0,ξ0) be such that gWΌ(X0)=U ig"Wo{X)Yl2 = σ{X,Xo), Then

Uxo,Dzy(2iσ(T- X,Z-X)) = σ(T- X, Xo) = [glJJ- X)V'2.
2

It follows that

< J T 0 , i ) z > Y e 2 " < Γ - * ' z ^ ^

Therefore

ίav(Z)χ(x + z-t,t + z- x)χ{t + z-x,x + t- z)\dZ dT.

Now since φv and av are confined in C/v and χ e 5(1, G), the Leibniz formula will give

(3.33) \bv(X)\

i.e, fΐ(l

Now in the integral defining bv, since av is supported in Uv, we get exactly as in (3.15)

(3.34) VseπUv GS(X—S)<2AQS + 4AOP (<min(αo,α2))

It follows that on the support of the function inside the integral in (3.32) we have

Gx+z_t<Λ0Gz

Gt+Z_X<AOGZ

Gx+t_z<A0Gz.

Since zeπUv (because Z e s u p p α v c : Uv) we get GZ<A%GXΌ\ by (2.3), GXυ<gWυ,

therefore

We deduce from (3.33),
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(3.35) \bv(X)\

< C | | φ v | | 0 > v | U | χ | | J ( 1 > g ) JJ(1 + glJJ-*)Γ*/2(1 +Λ β (Γ- UJΓ1'2

•(l+g°wSZ-Uv)ΓNdZdT.

Now

i +g ; „ ( * - uv) < C(i +gisx- τ)+g'WΌ(τ- uv)).

(3.36) l +gisx- uv) < C(i +g«wsx- ΌXi +gl£Γ- uv)).

On the other hand for every W in C/v

because g<g" and the radius of Uv is smaller than one. It follows that

(3-37) (1 +gίSZ- UV)Γ * < C(l +gWJLZ- wv)Γ».

Taking in (3.35) N=2n + \, k = l+2n + ί, we deduce from (3.36) and (3.37)

• ίί(i +grwjiχ- τ)r s

Since the product of the determinant of gWv and gσ

Wti is equal to one and

, | | α v | | 2 n + 1 + l , 2 π + 1 < C ( , B s u p / i - 2 ( n
XeVυ

we get our claim. We estimate the derivatives by the same method. This proves
(3.31).

Now, from the definition (2.7) of h we have for every w' in Uv,

Λ > - W) ̂  A " 2(wv)Sw> - w').

Since we are in case 2 it follows that

(3.38) glSw-Uv)>ph-\wv).

Now, let w'0 = (x'0,ξ'0)eUv be such that

(3.39) g i > - ^ ) = Λ > - W 0 ) .

It follows from (3.34) that Gxi)(x-xO)<«2 and from (2.8)
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By the slow variation of of g in Uv we deduce

gWυ < A iAtfJl + A ^(w - w'0))N.

From (3.31), (3.38) and (3.39) we get

k

(3.40) \rih\w)(wU"^

Assume w e Uλ. Using the slow variation of g in Uλ and (3.34) we get

and therefore

(3.41) 1 + inf glλ{w'-w"

Recall that we defined in (3.23) dλv by

dλv = inf gl>{W-w").
w'eVυ

By (3.40), (3.41) and the slow variation of g on Uλ we get for every k9qeN

k

Using the second part of (3.10) we obtain that the semi-norms of Σr v are uniformly

bounded in 5(1, g); it follows that the operator (Σry)ψ is bounded on L2, by Theorem

4.3 in [3]. The proof is complete. O
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