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Let R be an artinian ring. In [10], we have studied R on which the following
condition holds : for R-modules M and N, if M is N-projective, then M’ is always
almost N-projective for every submodule M" of M. If M’ is always N-projective
in the above, then this property characterizes hereditary rings with /?=0 [2] and
[6], where J is the Jacobson radical of R.

We have investigated the above condition in [10], when i); M and N are
local and ii): M is local and N is a direct sum of local modules. In this paper we
give a characterization of R over which the above condition is satisfied for any
R-modules M and N.

1. Preliminaries

In this paper R is always an artinian ring with identity, and every module is
a finitely generated R-module. We shall use the same notations given in [10].

We have studied rings R over which the following condition is satisfied in
[10] :

For any R-modules M and N
#® if M is N-projective, then M’ is always almost N-projective for every

submodule M’ of M.

We denote primitive idempotents in R by e, f, g, and so on. Assume that (#)
holds whenever M and N are local. Then we have shown in [10] that R has the
following structure :

J?=0 and for a primitive idempotent e with e/*+0
(0) eRDe] =3 kD (foR) ™D ZL;DS;,
where the /R is a uniserial and projective module with /:/*=0, £,/ #0
and the S; is simple.
(If necessary, we use the following decomposition :
e,-RDe,-]zqu)@(fikR)("“’)@Em)@Sij~)
We shall use frequently the following theorem : [10], Theorem 1.

Theorem 0. Let R be artinian. Then (#) holds whenever M and N are local
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if and only if i) J°’=0 and (eRD) e] has the decomposition (0), ii) if e1R # e:R,
then f1:R# fo; for any i and j, iii) fR/f] is never isomorphic to any simple
component of Soc(R) and iv) for any simple submodule S in 2x@®(foR)"™,
eReS =3k ®(fr])"™ for some K'CK, where e and f are in (0).

2. Condition(#)

In this section we study (#) where M and N are any finitely generated
R-modules. In this case g/ is almost projective for any primitive idempotent g, and
hence R is a right almost hereditary ring [7], i.e. J is almost projective as a right
R-module.

First we give

Proposition 1. Let R be right almost hereditary. Then the following are
equvalent :

1) (#) holds whenever M and N are local.

2) (#) holds whenever M is local and N is a finite direct sum of local
modules.

Proof. 1)—2). Since R is almost hereditarty, Soc(R) is almost projective by
definition and Theorem 0. If gR/g/ is monomorphic to Soc(R), then gR is
uniserial by [9], Theorem 1 and we have 2) by [10], Theorem 2.

Next we study (#) when M is local and N is any R-module. We use the
decomposition (0) of e/. Put AR=/fR and S=Soc(/R)=/].

Lemma 1. Assume that (#) holds whenever M is local and let eRDfRDS
be as above. Then 1) every element in Homg(S, S) is extensible to an element in
Homz(fR, fR), and 2) S is neither isomorphic to any simple component of
Soc(gR) nor any S; in (0), where gR# eR, gR# fR and g] #0.

Proof. Assume that Soc(gR) contains a simple component isomorphic to S
via @ for some primitive idempotent g. Take fR @ gR and its submodule S=
{s+6(s)|s€S} and put N=(fR ® gR)/S. If gR#eR, eR/S is N-projective by
[1], p. 22, Exercise 4 and [10], Lemma 6. Hence fR/S is almost N-projective by
(#). However fR/S is not N-projective by [1], p. 22, Exercise 4. Therefore N is
decomposable by [3 ], Theorem 1. Let N=N:@ N,. Suppose gR# fR. Then we
can assume N, /J(N) = fR/fT and Nz/J (M)~ gR/g]. Further N= R+ GR, where
FR~fR and GR=~gR. Since [N|=| FR|+|FR|—1, we obtain a) Mi~ fR or b)
Nz~ R via the projections. In a) N= fR@® N, and hence 6" is extensible to
an element in Homz(gR, fR), and in b) N=N,@® GR, and hence 8 is extensible
to an element in Homz(fR, gR). We obtain the similar result even if gR = fR.
Hence from the above observation we obtain 1) and that S is never isomorphic to



ARTINIAN RINGS RELATED TO RELATIVE ALMOST PROJECTIVITY II 579

any simple component of Soc(e’R) and Soc(f'R) form Theorem 0, where ¢’ R %
eR, f'R#/R and €' J?#0, f'J#0. Finally assume S=SiCeR, where S: is a
simple module in (0). Take (fR @ eR/(f1)™)/S. Since eRe(f])(f1)"V, eR/S
is (fR @ eR)/(S D(f])"V)-projective. Similarly to the above we obtain an
extension of §(or 87') in Homz(/R, eR/(f])™") (or in Homgz(eR/(f])™, fR)).
However there are no extensions of 8 by Theorem 0, a contradiction.

If R is left QF-2 in the above, then any element in Home(S, S) is extensible
to an element in Home(eR, eR) by [10], Lemma 13, however this fact is not true
in lemma 1 (see Proposition 3 and Example 2 below). Under the assumption (#)
we can state the content of Lemma 1 as follows :

let S’ be a simple submodule in gR, then any element in Homg(S, S’) is
extensible to an element in Homr(fR, gR), where g is any primitive idempotent.

Finally we study (#) for any R-modules M and N. We start with studying a
structure of N. Let eRDeJ =3 ®(f:R)™ @ -+ be as in (0). We consider the
condition :

(%) the properties in Lemma 1 and Theorem 0 hold.

We fix primitive idempotents e and f=f; above. Take a projective module 7"

and put T=(eR)PD(fR)PD X g;,R, where g;R# eR and g;R% /R for all ;.

Lemma 2. Assume (%). Let T, e and f be as above. If T/C is indecomsa-
ble, then T=/fR or q=0.

Proof. Assume g=1. Consider the decomposition 7 =(fR)® T, where T’
=(eR)P®D(fR)" VP 3 P g;R, and use the same notations as in [10], Lemma 10
for this decomposition. We may assume CCJ(T) (note that 7 is a lifting
module). Suppose Ci=0 and C'=f/. Put C'=xR; xk=x for a primitive
idempotent % and let 8:C'=C'/Ci= C*/C.CJ(T’)/C: be the ismorphism. Then
O(x)=x1+x2+x3+ Cz, where x1E(e])?, x:E(f)Y, x:€2 D g,/ and xik=x1
for all 7. Since %1/ =0 for all ¢ form iii) in Theorem 0, 8§ : xR=(x1+x2+x3)R
CT,ie., (x1+x2+23) RO Co=C? Therefore 0 is extensible to an element 6’ in
Homgz(fR, T’) by the properties in Lemma 1 (note (x1+x2+x3)RCx1R @
x2RxsR). As a consequence =T @ fR()DC=CNT @ CNfR(E), pro-
vided C:=0. If C:*+0, C;=C", and hence T =/R, since T/C is indecomposable.
Accordingly we know that if 7/C is indecomposable, 7'=fR or ¢=0.

We consider following modules : Z=(fR)™ @ fJ and U=V @ fJ, where V
is a submodule of (fR)™. Similarly to Lemma 2 we have

Lemma 3. Assume iii) in Theorem 0. Let U be as above and X a
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submodule of U. Then XCV or U=V @ fJ(0) and XDfJ(0), where 0
EHomz(f, V).

More generally we consider Z*=(fR)* @ (/) and U*=V*® (),
where V* is a submodule of (fR)®.

Corollary. Assume iii) in Theorem 0. Let U* be as above and X* a
submodule of U*. Then we obtain the following decomposition of U*: U*
=V*OUN"O Y@ @ Yoo, and X*DY1 D - @ Yoo, where Yixf]
forall i, X*CV*OQ YD @ Yoo, Z*=(R)P DN D V1D D Voo
and U*=V* (‘B (f])(q,) (‘D Ve @ (‘B Yq—q’-

This corollary means that there exists an automorphism ¢ of Z* such that

Z*=(R)" @ (N S (N "Da(U")=V*® (1) D (f) " Da(X*)
@ ().

We shall denote the above situation by the diagram :

b a—q qa
Z* R , bl , bil ,
(1) Y
U* V* . /] , il ,
U
X* X’ f . 0 .

Next we study a structure of a submodule M’ of an R-module M under (*).
Let P be a projective cover of M, i.e.,

)] M=P/Q and M'= P’/Q for some submodule P’ of P.

Then we have a decomposition of P such that P=P, D P,, PP=P @ PN P’ and
Pi=P.NP CJ(P).
Let

(2’) P,=(e1R)“ @ (e2:R)“? @ - @ (/uR)*"" @ - ® (/is,R) @
(fuR)*? @ -+ @ (f25,R)*? @ --- D 2 @D gR, where the e;, the fi are given in
(0) and g/?=0 (esR# e;R, fuR % f;sR if i+ and gR % fuR for all i).

Consider J(P:) and rearrange it as follows :

J(P) =D @ (fu])*?) @ (D @ (1)) ) @ -+ @ (D15, @ (f16.])*")
@ (Da*? @ (fu))**) D =+ D Z @ gJ, where Dy=(fR)™.

Put E;=Dy'* @ (f;)'6*” and F=X @ g/. Then from (%) we know that any
simple sub-factor modules of E; are not isomorphic to any ones of Es: and F for
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{7, /Y+{s, t}. Hence we obtain

P2,=2@P2/ij@P0
3) Q=3 D Q% @ @ and
Q=3 D :;; ® Q2 (see [10], Lemma 10 for @ and Q?),

where E5D P, 0 Q%D Qs and FO PyD Q5D Q2. We may observe E11 D Psii D Qf
D Q511 for the fixed (1,1) without loss of generality. From Corollary to Lemma 3
we have

a d C1 b Qo
Ey Du o A A Al
U
@) Eaxn’ Pszu LA A A 0
Q% Q1 A A 0 0
U
Q211 Qa1 fuJ 0 0 0o

where bu=ao+ b1+ c1+dh.
Next we observe Di1D Poii D Q41D Qe11. We put fii=#. Then from [4], Lemma 5

€1 €2 (%]

P /R , bk .0

where e1+e:+es=ainn.
Further from Corollary to Lemma 3 we have

el hl (91 e’
P R A e
) J
Fn H g g0
U
Qo1 I . Vil ) 0 ) 0 s

where e2=/n1+ g1+ es.
We observe the left side of the above diagram : (fR)*’DH DI. From (%) and [4],
Lemma 5 we have

i1 iz @1/

(/R)’ (=E) R . /R , fR

H fR L f] L O J s

where ex=1+ 2+ ei. . .
We apply Lemma 3 to I and H=H; @ fJ, where Hi=(/R)"™ @ (/7)* V. Then
ICH, of IDfJ(h) for some hEHomg(fJ, Hi)CHome(fJ, E1), where E1=
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((fR) @ (fR)=1) (:_B fRCE. From (%)  is extensible to # €Homz(/R, E).
Hence E=E; @ fR(%)DH, @ fJ(h) and IDfJ(h). Repeating this argument we

may assume

i1 ]'2, iz’ 81/
E fR . /R | /R |, fR |
© g R . F 0
U
I r g 0 o .

where 2=171+ 1.
Applying again [4], Lemma 5 to the left corner of the above diagram we have
finally

4

ke ko W jl 12 e h [
P’ fR . /R 7

(M @2 /R R g . A 0 7 . A,

Qe R g , 0 g 0 0 7 , 0,

€2 dh Ci1 b
g A 7 /&
)
0o g A . 0 &%
U
o . 7 . 0 0 Q20

where i1=Fk1+ 2+ and f rums over all the idempotents in (0). From the above
we have

ki ks u jl 12 e’ h (%t
P/ Q. 0 R/, R R/If, /R _ fR 0  f |
8
® Q*/ Q. o R/J, R 0  HF 0 0 g
ey d C1 b
g 0 A A Po/ Qo

U
o ., 0o g . 0 Q%/ Qo
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Now we come back to (2). M'=P/Q and P Q=(P/Q: D P;/Q.)/
(Q/Q: @ @) and Q/(Q1 D Q)= Q?*/Qx(0) for some H=Homz(Q?/Q:Q'/Q)).
Since P, is semisimple, Q5/Qz is a direct summand of Po/Q:. Now P/Q.=
ZAURIT)*D D - D (fR)#) D --)D Po/Q20D Q*/Q:=X4((/RI)* D -+ B
N @ -++) @ Q§/Q2. We compare direct summands of P%/Qz and Q?/Q.. Then
we know that only one summand (/) of Q*/Q: is a proper submodule of
(/R)™”, which is a direct summand of P5/Q: for each f. Consider 8|(f7)"?.
Since QCJ(P), we know from a similar argument in the proof of Lemma 2 that
B1(f7)** is induced from an 8’€Homg(fJ*?, P;), and hence 8|(f7)"=” is extensi-
ble to ®=Homz((fR)“*”, P./Q:). Therefore

Lemma 4. Let M’ be as above and assume (*). Then

M'=P'[Q~ P /O, D(R)DURIA) W 29@(f]) 4+ 9D S,

where S is a direct sum of simple components of Soc(R).

Theorem. Let R be artinian. Then the following are equivalent :
1) (#) holds whenever M is local

2) (#) holds for any finitely generated R-modules.

3) R is a right almost hereditary ring with (*).

Proof. 1)—3) This is given by Lemma 1 and Theorem O.

3)—>2). Assume that M is N-projective. Put M = P/Q, where P is a projective
cover of M. For any submodule M’ of M we can suppose M'=P’/Q for some P’
CP. From Lemma 4, M’ is a direct sum of the following modules :

1) Pi/@, 2) projective module, 3) simple component of Soc(R) and 4) fR//],
where fR is given in (0).
From the proof of Theorem 1 in [6], p.813 we know that P,/Q: is N-projective in
cases 2) and 3) from (% ). We assume 4), i.e. M'=fR/f]. First we suppose that N
is indecomposable. For the fixed f above (and hence €) we apply Lemma 2. Let
N=T/C; T is a projective cover of N. We use the same notations as in Lemma
2. If T=/R, then M’ is trivially almost N-projective (cf. Theorem 0). Hence we
assume ¢=0 from Lemma 2. Take any element ¢ in Homg(fR, T). Then 6
=0,+ 6, where icHomz(/R, (eR)®), and G.EHomz(fR,2@g;R). Here we
recall the proof of Lemma 4. First we consider the decomposition: e.RDe;J =

S ® (fuR)™ @D 2@ Sy as in (0). Let
th: e = (fuR)™

be the projection of e,/ onto the kth component (fxR)"*. Next we take the
decompositon of P in (2°). Let

&8 J(P)—en]

be the projection of J(P,) onto the radical e,/ of the qth component of (epR)*”
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in (2’). we recall the situation where the case 4) occurs. If we carefully observe it,
then we know that it comes from P and (6), i.e., fix=f, e=¢; and ¢;RDe;J =
(firR)" @ «+-, and 0% L Q*) C(fiR)™™ for some x(note Q*CJ(P:)). Since
Q*CJ(P,), there exists a simple submodule S in @? such that &i(S)=+0 from
Theorem 0 and [10], Corollary to Lemma 2. Further since S is simple, £{S)C
20D (f;eR)™ D X @ S;i) from (*). To the above e and f we consider a
homorphism

T A g
©)] 0. PoP—eR—eRCT,

where 7 is the projection, A is the projection onto eR such that A|/(P)=&, 0 is
any homorphism and the last eR is the any direct component of (eR)® in T.
Since P/Q is N= T/C-projective, @(Q)C C. Further since £(S) in non-zero and
simple and (iEL(S)#+0, eRefiS)D(fix])™™ by Theorem 0. Moreover £4S)=
An(S), and hence (fi])*"" C L oe(erere 06K S) =2 60A7(S)=260(S)C 26 O(Q)
CC. As aconsequence 6i(f])C(fir])*™™ C C, and clearly 6:(f])=0. Accordingly
M’ is T/C-projective. Finally let N=231 @ N ; the N; are indecomposable. Then
M’ is almost N;-projective as above. If M’=fR/f] is not N;-projective, N;=fR/A
from [3], Theorem 1. Hence M’ is almost N-projective by [5], Theorem. Thus we
have shown the implicartion.
2)—1). This is trivial.

Here we apply Theorem to special hereditary algebras. Let R be a hereditary
algebra over a field K. Assume

(10) eRe=eK for any primitive idempotent e.

Corollary. Let R be a basic hereditary algebra as above. Then the
following are equivalent :

1) &) holds when M and N are local.

2) (#) holds when M is local and N is a direct sum of local modules.

3) i) J?=0,ii) J is a direct sum of uniserial modules, and iii) R/Soc(R) is
left serial.
Furthermore the following are equivalent :

4) (#) holds for any R-modules.

5) 1) 3) holds, ii) J*? is square-free and iii) any simple component (= f]) of
J? is never isoomorphic to any simple ones which are not contained in J?, except
fJ in fR, where f is a primitive idempotent given in (0).
In this case (H) in (6] holds.

Proof. 1)«—2) Since Soc(R) is projective, this is clear from [10],
Theorem 2.
1)<—3) Since R is hereditary, iii) in Theorem 0 always holds and 1), ii) in the
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proposition are equivalent to i) in Theorem 0. Further iii) in the proposition is
equivalent to ii), iv) in Theorem 0.
4)<—5) This is clear from the assumption (10), Lemma 1 and Theorem O.
The last statement is clear from [6], Theorem 2.

3. QF-2 rings

In this section we study a left QF-2 ring with (#) as right R-modules (cf. [10],
Proposition 3).

Lemma 5. Let R be left QF-2. Further assume that (#) holds as right
R-modules when M is local and N is a direct sum of local modules. Then
Soc(R) is almost projective, and hence R is right almost hereditary, (cf. Example
4 below).

Proof. Let eRDeJ be as (0). Then for any submodule X of ¢/ we have X
=21, @ X; @ X’ by Theorem 0 and [10], Lemma 13, where X;=X N(f;R)™ and
X'=XN(X @D S;). Further X;=(£:R)™ @ (fJ)™? by [4], Lemma 5, where n:
2m;+m';. Let Y be a submodule of X;. Then after changing direct decomposi-
tion of (iR)™ @ (fJ)™9, we can assume Y=2: D ARNY DI, B fJ/NY
again by [4], Lemma 5. Now we prove the lemms. Let gR/g/ be monomorphic
to Soc(R) for a primitive idempotent g. Then gR is uniserial by [10], Lemma 9.
First we shall show that gR is injective if g/ #0. Let % be any primitive idempotent
and take any diagram

0— K —kR
lo
gR

In order to show that gR is injective, we may assume by [8], Lemma 1* that o(K)
is simple and K C&/.

a) kJ*=+0.

Then kR DFkJ have the structure (0). Then from the initial observation and ([4],
Lemma 5), K/o~'(0) is isomorphic to one of S;, fiJ and f:R/f:J for some 7 and j
in (0). However the last case does not occur by assumption. Hence gR & kR or gR
~ kR by [10], Corollary to Lemma 13, provided 0+0. In the former case gR =
f;R in (0) for some j. On the other hand f:R=~gR/g] is not isomorphic to any
simple component of Soc(R), a contradiction. Therefore 0=0 in this case.
Assume gR=~FkR. Then kR is uniserial, and hence o is a monomorphism by
assumption and K is simple. Accordingly o is extensible to an element in
Homz(kR, gR) by [10], Lemma 13.

b) k/*=0.
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Then kRS gR or kR~ gR by [10], Corollary to Lemma 13, provided o+0, and
hence kR is uniserial. Then p is extensible to an element in Homz(kR,gR) by
[10], Lemma 13.

Thus we have shown that gR is injective. Finally we shall show that gR/g/J is
injective if g/?#0. In the above diagram we replace gR with gR/gJ>.

a’) RJI*+0.

Then since K/o Y (0)={S;, fuJ, fuR/f+J} as the initial observation and gJ is
projective, fiR/f:J=gJlg]? for some i by Theorem 0. Hence gR=kER by
Theorem 0. As a consequence we may assume g =kR. Since g/ is projective, o
is given by an element &’ in Homz(g/, g/) (which induces Homzr(g/? g/?)). Then
0’=Homgz(gJ?, gJ?) is extensible to 8 in Homz(gR, gR) by [10], Lemma 13. Now
consider (8—0)|gJ. Since (8—0")(g/*)=0, (§—8)|gJ=0 by Theorem 0. Hence
o is extensible to v : gR—gR/g]?, where v: gR—gR/g]? is the natural epimor-
phism.

b) kJ*=0.

Then p=0 by assumption. Therefore gR/g/ is almost projective by [9],
Theorem 1.
Thus J is almost projective from (*), and hence R is right almost hereditary.

Proposition 2. Let R be a left QF-2 ring. Then the following are equiva-
lent :

1) R is a right almost herditary ring such that J*=0 and if eJ*+0 for a
primitive idempotent e, then e has the decomposition (0).

2) R is right almost hereditary and (#) holds when M and N are local.

3) (#) holds when M is local and N is a direct sum of local modules.

4) (#) holds for any R-modules M and N, (cf. Example 4 below).

Proof. 1)«—2). This is given in [10], Proposition 3.

2)—3). This is clear from Proposition 1.

3)—4). Since R is right almost hereditary by Lemma 5, we obtain 4) by
Theorem and [10], Lemma 13.

4)—2). This is clear from Theorem.

We shall add one more property when R is left QF-2. Let eRDeJ = (fR)™
@ --- as in (0), and put e/ DXi<n @ u/R=fR™, where u:;fR=fR. We identify
(/R)™ with 2 Du./R.

Lemma 6. Assume 1) and 2) in [10], Lemma 13 and (0). Let Ni and N> be
submodules in (fR)\™, which are isomorphic to fR and hence 0 : Nr— N, be an
isomorphism. Then 0 is given by an element z in eRe.
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Proof. Let eRDfRDS=Soc(fR). Then from 1), 2) and [10], Lemma 6 we
obtain

a) every automorphism of S is extensible uniquely to an automorphism of
/R (cf. @) in the proof of Lemma 5).

Put S:=Soc(H;) for i=1, 2.

b) Assume Ni=u1fR and S1=S:.. Let Si=xR and N:=yR; y=eyf
E(fR)™. Then y=wuiw1+ "+ unwn ; the w; are units or zero in fRf by 2). Then
X=y¥ =urur+ Unwnpr for some & R. On the other hand x=wu17" for some 7’
€fR. Hence w:="+=w»=0 (cf. the proof of [10], Lemma 13), and N;=MNs.

c) Assume NMi=wuifR and 6': N> N.. Then &’|S: is extensible to zE
Homgz(eR, eR), the left-sided multiplication of z, by 1).

Further zN,=N; from b), and z is a unit by [10], Lemma 6. Consider z,0"}|S:
=15,(20""': N> N1). Then from a) 20" '=1x,, and z|No.=8".

Since u1fR =~ N1~ N, we obtain a unit 2; in eRe such that z1,: Ni—ufR and 2 :
Ny—u:fR from c). Hence again by c) 22:0z1," =2z, for some z, and §=(25"221),.

Concerningly Proposition 2, we have

Proposition 3. Let R be artinian. Assume that J*=0 and (eRD)e] has the
demomposition (0). Then the following are equivalent :

1) 1) Let S: be a simple submodule of h:R for i=1,2. If 0: S—S: is
isomorphic, then 0 is extensible to an element in Homgz(lmR, h:R) or in
Homg(%#2R, hR), where hi, h» are primitive idempotents, ii) fR/f] is never
monomorphic to Soc(R), where f appears in (0).

2) R is left QF-2. (cf. Example 3.)

Proof. 2)—1). This is clear from [10], Lemma 13.

1)—2). Let Si and S be simple left R-modules of RA(Jh#0) for a primitive
idempotent 4. Suppose Six~RFk; for i=1. 2, where the k; are primitive
idempotents. Put S;=Rx; with kx:h=x:E€]. Then k:RDx;R and there exists a
homomorphism ¢::ZR—x:F.

a) kJ*=0for i=1, 2. Then x:iR= AR since x:< k;J and the x;R are local.
Hence there exists z in k2Rk (or in kiRks) such that zxi=x: (or 2x2=x1) by
assumption. As a consequence S2=Si.

b) k1J?#0 and k2J?=0. Then x2R~ IR as above. If xiR~ hR, then S;=S,
as in a). Suppose that x1R is not simple. Since x1RC#kiJ and x: R is local, x1R
is projective by (0), and hence x1R=~hR, which is a contradiction to iii) in
Theorem O for xR~ hR.

c) kJ?#0. Since x:R is local, x:R is simple or projective by iii) in
Theorem 0. Hence again from iii) in Theorem 0 we obtain two cases a)xaR=
x2RAR and B)xiR~x:R~hR (and kiRxk.R). Then from Lemma 6 and the
arguemt in a) we obtain S1=3S; in both cases. Hence R is left QF-2.
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We note the following fact :
the class of rings with (#) for local modules M and N =2 the class of rings
with (#) for local module M and any direct sum of local modules N
=2 the class of rings with (#) for any finitely generated R-modules. See the
following examples.

4. Examples

Let LDOK be fields.
1.

K K K K
0 K K 0

Ri= 0o 0 K PJ where P=L, K or O and eizesuP=0=eesP.
0 0 0 R

If P=L, then R, satisfies the conditions in Theorem 0, but the conditions in [10],
Theorem 2. If P=K, R, satisfies the conditions in [10], Theorem 2, but R; is not
almost hereditary. If P=0, then R, satisfies the conditions in Theorem.

2.
K L L
R2:< 0 L L>.
0 0 L

R, satisfies the condition in Theorem, but not left QF-2.

3. Ri=eK®D KD aK D bK ® cK @ caK, where {e, f} is the set of
mutually orthogonal primitive idempotents with 1=e+f, a=eaf, b=ebf, c=
fce, and ca=ch. Then R(=R;) is a left QF-2 ring with /?=0, but 1) in
Proposition 3 does not hold as right R-modules. However R satisfies 1) in
Proposition 3 as left R-modules, but not right QF-2.

4. As above Ri=eK @ fK @ gK @ aK @ abK @ bK @® cK, where a=
eaf, b=fbe and c=ecg. Then R(=R,) is left serial and (#) holds for local
modules M and N, however R is not right almost hereditary.
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