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0. Introduction

In [8], the author introduced an acyclic, free resolution of the ground
ring Z of integers (resp. its localization Z^ for a prime p) as the trivial
module over the Landweber-Novikov algebra S (resp. S(p) = Z(p)®S)y

which is considerably smaller than the bar resolution.
In this paper, the same method of construction is applied to the

case of the mod/) Steenrod algebra A. The resulted resolution

X=A®X->Z/p has inductively defined differential d and contracting
homotopy σ> and is naturally embedded in the bar resolution B(A) as a
direct-summand subcomplex.

The apparent feature of this resolution is that it seems to be an
immediate 'lift' of the May resolution [5], while the latter is a resolution
over the associated graded algebra E°A for the augmentation filtration
on the Steenrod algebra. In fact, the corresponding filtration on X leads
to an equivalent of the May spectral sequence, of which EγX is isomorphic
to the May resolution and l?r-terms are the same as those of the May
spectral sequence for r>2.

In the case p = 2, the chain complex X will be given as a polynomial
ring P, and the dual cochain complex P* has a non-associative product,
which induces the usual associative product in its cohomology
H*(A) = Ext*2(Z/2, Z/2), the 2?2-term of the Adams spectral sequence [1,2].

May [5] studied extensively his spectral sequence and succeeded to
obtain a great deal of information about H*(A) (See also, Tangora [10]
and Novikov [7].).

It is hoped that the present work could be useful for calculating the
differentials in the May spectral sequence and the ring structure of H*(A).

In this paper we shall restrict ourselves to the case p — 2. A parallel
treatment for the odd prime case will be only suggsted in the last section.
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1. Notation and results

Let At be the dual Hopf algebra ([6],[9]) of the mod 2 Steenrod
algebra A. A+ is given as the polynomial algebra Z/2[ξiyξ2y- ] over Z/2
on indeterminates ξt(i > 1) of degree 21 — 1, with comultiplication

Let £*,& = (£*)* denote the dual element of ζ\ with respect to the
monomial basis {ζω — ζ\i'"ζnn} °f ^*

Lemma 1.1. (i) The Steenrod algebra A is multiplicatively generated
bytheset{ei%2^i>\yk>Q},{;ύ)theset{\,eiu2^
(inkn) in the lexicographical order} forms a Z/2-basis of A, of which elements
ei — eiί,2

kι'"ein,2
kn are called admissible monomials.

Let L denote the Z/2-submodule of A spanned by the set {eit2k\
i>\yk>O}y and sL = Z/2{(ei2k}; ί>l,A>0}, the suspension of L, with
bideg <e ί2k> = (l,2 fc(2 ί-l)). Denote by P = P(sL) the polynomial algebra
(symmetric tensor algebra) on sL. We use the notation

with the index sequence

in the lexicographical order and call it a canonical monomial in P.

Theorem 1.2. X=A®P, with an inductively defined differential d
gives an acyclic A-free resolution of Z/2.

Proposition 1.3. There exist natural A-linear chain maps f X->B(A)
andg: B(A)-+Xy such thatgof=idandf(P)<=B(A) = Z/2®AB(A)czB(A).

Proposition 1.4. The chain complex P with the induced differential
3=Z/2®Ad has a comultiplication A:P-+P®P such that (J®1+ l(x)rf)Δ =
Ad. This is not coassociative in general, but (Δ®1)Δ and (1®Δ)Δ are
chain homotopic.

Corollary 1.5. The dual complex P* of P with diffeential δ = d* has
a non-associative product, therein δ is a derivation. This product induces
the usual product in the cohomology
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2. Preliminary

The lemma 1.1 may be well-known ([6],[4]), but we will recall its
proof, since the resolution (Theorem 1.2) stems from the lemma.

We shall take the dual basis {ξ*ω} of A (See §1). By definition the
product of basis elements is given by

Define the height of ξ*ω to be Σkh the sum of exponents in the
monomial ξω = ^ί lφ -ζnn. Then we have the equality

(2.1) £,' (#T=&

where ξω, = ^ 1 ^M_~1

1, ζω — ζω''ζk

n

n, and the second summand in the right
hand sideis a sum of suitable basis elements of height h(ξ*σ)<h(ξ*ω). In
fact, ζσ are so chosen that φζσ containt ζω'®ζkn as a summand, and such
a ξσ must be of the form

with Σ l = o ^ = ^> «i + 2" ϋ« = Λi (for

Then

i = l i = 0 ί = 0 ί = l i = 0

Now by induction on height we conclude that any basis element ξ*ω

of A can be expressed by a sum of products of eik — {ξ\)*. But we can
see easily that eik with ky not a power of 2, is also decomposable into a
sum of products of ei2t. This proves (i) of Lemma 1.1.

Note further that

(2.3) ({f) -({!r = ( Λ ^ 1 \ f f + l r + Σ terms of lower height

and

(2.4) [(#)*,(<Φ*] = Σ terms of lower height for iφj.

It follows then (ii) of Lemma 1.1.
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Here are a few examples of (2.3) and (2.4):

l>i , i ,e i , 2 ] = *2i> l > i 1 ^ 2 1 ] = 0

^1,8 ' ̂ 1,8 ^ ^1,4*^2,4 + ^2,1 '^2,

!>1,1>*1,64] = ^1,62 '*2.1+*1.58

« ι .Γ«u=0 ( ^ ! ) > e t c ( C f

It will be another interesting problem to give the explicit formulae
expressing (2.3) and (2.4) by admissible monomials in the sense of §1,
like the Adem relations [3].

3. Resolution

In this section we shall give a detailed proof of Theorem 1.2, since
we had remained in showing only a sketchy proof in [8] for the case of
the Landweber-Novikov algebra. Clearly the set of canonical monomials

<£j> forms a Z/2-basis of P. Then P — ΣS>0PSJ where the submodule

Ps is spanned by <βj> of length | J | = s . We call \J\ also the homological
dimension of <βj>.

We shall introduce in X — A®P a boundary operator d=(ds):

J . Y /I/O\ P v V

and a contracting homotopy σ = (σs):

so that X becames an acyclic differential ^J-module (a chain complex)
with augmentation ε: X-+Z/2

First define an ^4-rnap dx: Xγ—A®sL^X0 — A by

(3.1) di(a{ei2ky) = a'ei2k («<^,2

k) means

and a Z/2-map σ0: XO-*XX by

(3.2) σ00) = 0

σQ{eh,2<Ί ' ' <?in,2*») = eiu2*iein- i,2*n- l < e i n
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for admissible monomials. Thus we have a direct sum decomposition

(3.3) Xί = lmσ0®Kerdly Kerd1 = lm(\-σod1),

= 0y εdi=0 and d1

where η: Z/2^A is the unit. Then d2 is easily defined by

(3.4) d2(eh%2ιly ^2f2«2> = (l-σ0rf1)(€i/2>2!2<β i l f2ι1» (0Ί

On the other hand, it is laborious to find and formulate a proper candidate
of possible contracting homotopy σ1. In order to overcome this difficulty,
we begin with a careful observation of the construction X.

Take the set of elements

with the index sequences I=(il9k1)<~- <(inykn) and J: (j\Ji)< ••• <(js,ls)

in the lexicographical order, and call it canonical basis of X—A®P.
Classify the canonical basis elements (c.b.e.'s) into the following types:

(3.6) Type 1: max/<maxJ (i.e. (*„,*„

and

Type 2: max/>maxJ.

Put

(3.7) C1>s = Z/2{cb.e. of Type 1 in Xs}

and

C2 ϊ S = Z/2{cb.e. of Type 2 in Xs}

Then we have

(3.8) * s = C

as a Z/2-module, with obvious isomorphisms

s-lf σ's-l=τs y

defined by

(3.9) τ.(«i<O) = *i + ϋ.Λ><*J-(/..i.)> f o r e /
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We shall introduce here a partial order in the set of index sequences
J of the same length \J\ = s as follows:

(3.10) J'<J if (jlld<(JiJi) for all i, and

J'<J if, moreover, (JUi)<(Jhh) for at least one /.

Now assume that (̂ ,0*1 _i) are denned for 1 < / < S — 1 and satisfy the
following conditions (for convenience, put do — ε and σ_1=η):

(3.11) (Aέ) σ i _ 1 σ i _ 2 = 0 and I m σ ί _ 1 = C l ί ,

2rfi_1 = l and d ί_ 1d ί = 0,

(i) There is a Z/2-isomorphism φ f : C2j-+ Kerrf,-, defined
by φi(eIζejy) = eΓ'(l-σi.idi)(eint2hniejy) for
and eI = eΓ-ein92kni

(ii) Further, we have φi(β/<β/>) = β/<
where £ιj\£j^) are suitable c.b.e.'s with conditions Ja>J
and max J α > m a x / (See (3.10)).

We temporally assume (D x ), of which proof is reasonably postponed.
Under this induction hypothesis (3.1 l ) s _ A we shall define (ds>σΛ-{) as

follows.

First define ds: XS-*XS_X, as an ̂ 4-map, by

(3.12) d8<ejy = φa-i'τa(eJy = (l-σa-2da-1) ejB92ι.<ej-UaMy

where | J | = 5 and (;s,/s) = max J .

It follows immediately, from (Cs-χ)
<*,-!<*. = (>.

Next define

(3.13) σ s _ 1 = 0 on Imσ s _2 = C l s _ 1 .

To define σ s_ x on Kerds_ly take the set {φ s-i(^/<^j»i ^ / < O c.b.e.
of Type 2 in X s _!} as a fixed basis of Ker ds _ x, by virtue of (Ds _ x ) , and put

(3.14) σ J- 1(φ J- 1(έ? J<β /») = σ;- 1 ((e J <e J » = β r <β J + ( l n i k n ) >

where ( ί w , y = max/ (See (3.9)). Then a s _ x is naturally extended to a
Z/2-map and gives an isomorphism
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(3.15) σ ^ : K e r r f , ^ - > C l t S = I m σ s _ 1 .

Thus we have

d J9.-Λ onC1(S

(0 onKerrf s

[O onCUs_1

jdκ_ Λ = 1 o n

and verify (A,), (B.) and (C.) for (d,,σ..x). From (3.11), (D s_ x) and (3.14),
it follows that

(3.16)
> J,max Jα > max /
max/α>max J«

for «/<«,>

where the added conditions on the summand come from those of

«/«<«/«> e C 2 , s - i . and as well

(3.17) <*,<*/> = «A.2«.<«Γ>+ Σ e/v<β/r>
J y > J',max / v > UsΛs) = max J

Lemma 3.18.

tf.-i(*j<*j» = «i'<«j+mκi>+ Σ «/.<«/.> for eI<kej

or> we write simply

Proof. In the right hand side of (3.16), using itself again, we have

Jβ > J«,max Jβ > max7α
max//5>maxJ/5

here JΛ>J and maxI a >maxJ α >max/ so that Ja + maxIa>J + max/.
Repeating this process, we obtain Lemma 3.18.
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Now φs: C2ίS-»Ker ds will be defined just as before:

(3.19) ?>1(ίI< ί;» = M l -*S-W s)(e i m 2 f c n<o>)

To prove (Ds), (ii) it is sufficient to consider the special case |/| = 1:

<Ps(ei,2*<eJ» = (i -*.-i<y(«ί.2*<βJ» ((i,k)>maxJ).

In view of (3.17), we have

(3.20) <Ps(e;,2*<e/» = βj,2*<βj> + σs~ 1(^,2*' ̂ < O »

+ Σ <T»-l(«l,2*"«iy<«
Jy > J' ,max J y > max /

Rewriting ei2^e^slιs and ei2k'eIy in the admissible form:

max/ε>(£,fc)

e^ ely= Σ ^,a
max/v

we have, from Lemma 3.18,

(3.21)

max/ε>(i,fe) Jy> J',maxJy>max J
max/y,<5>(i,fc)

Σ ( β/;<6J' + max/ε> + Σ %Λ^ ί ^ 5 )
max/ε>(£,fc) \ /

+ Σ \er ό<eJy + nULly90y + Σ higher terms)
Ύ+ max/y,<5>J'+(i,fc)>J \ Ύf

Then we have in general

(3.22) φs(ejθj» = */' * <

max Jα>maxJ
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Thus we have proved (3.11), (Ds), (ii).

To show (Ds), (i), first note that <ps(£/<£/)) 6 Ker ds and the set
{ψs(

ei(ej))\ c b.e. £/<£/) eC2>s} are linearly independent in virtue of

(3.22). This means that φs is injective. To show the surjectivity of
φsy we replace each higher term eιjκej^) of Type 2 in (3.22) by φ s(^/α^jα)).
Repeating this process, we should finally obtain

(3.23) φs(ei<ej» = */<*/> + ̂ φs(eIβ<eJβ}) + uItJ,

where uIJeCls and e^e^ -\-uI jE Im φs.
The difference (^—(Ts-1ds)(eJ^ejy) — (eIζejy-\-uIj) belongs to Kerrf snlm
σ s _ 1 =0. Therefore we have

(3.24) (ί-σs_ids)(eIiejy)^eI(ejy Λ-Uj jelmφs.

Since (1 -σs_ids)(CUs) = 0 and (1 -σs_ids)(C2J = (l -σ^^XX^ we have

Im φs = Im (1 — σs_ ^d^) = Ker ds.
This proves (3.11), (Ds), (i).

Now, for the remaining case of n = 1, a proof of (Dj) can be performed
in a literally parallel way as just described, so it will be ommited.
Thus we have completed the induction process and a proof of the theorem
1.2.

Here we shall show some simple examples of boundaries and
contracting homotopies:

(3.25) d(eul,eiΛy = eiΛ(e1Λy

ejaι ej2ι)

d{eiakyeh2ιy = ej2ι(ei2i<y + eiak(ej2ιy + σo[eiakyejaι] for (i,A)<(jj),

where [,] means the commutator.

Φi,2k(ejy) = <*/ + (i,fc)> f θ Γ ί^*) ̂  m a X ^

σ(^2,2*β3,l<βl,4»==β2,2<(^l,4^3,l) + β2,1^3,l>β3,

where the last example shows that σ£#σj in general.
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4. Chain complex P and its dual

The construction P defined in §1 with the induced differential

(4.1) d=Z/2®d: P->P

becomes a chain complex.

Define natural yl-linear chain maps /: X-*B(A) and g: B(A)->X in
the usual way ([2]), using contracting homotopy σ of X resp. S of B(A):

(4.2) / 0 = id. :Xo = A^A

Λ<^> = ̂ Λ-i^<O for 5>1,

and similar for g.

By induction on dimension, we see easily that

(4.3) £°/=id on X and fs(ej}eB(A).

This proves Prop. 1.3.
Similarly define a diagonal ψ: X^X®X by

(4.4) φ0: Xo = A->A®A = (X(g)X)Oy the diagonal of A

(i.e. ιAo(^,fc)=Σ^fc-i®^u)>
j

Ψs<ej> = σψs-id<ej} for s > l ,

where σ = σ®l+ε(x)σ is the induced contracting homotopy of X®X
This φ is a chain map, and there is a natural chain homotopy:

(4.5)

with

where H: X-^>X®X®X is a Z/2-map of degree (1,0).

The following example shows non-coassociativity of ψ.

(4.6) ^<β1>4> = <^ l ϊ4>®H-^14<^ l j2>®^l,l + <^l,2>®^l,2 + <̂
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The diagonal ψ induces a diagonal Δ: P->P®P,

(4.7) A = (p®p)oφf p = εA®\p\ X-+P, with

465

From (4.5), it follows that Δ is also homotopy coassociative.
We shall show a few examples of Δ<̂ £j)>:

(4.8)

and, in general

£j>= shuffle + Σ

, with

termsy

J ) , is indicatedwhere an extra term ^ j j ) ®
by the underline.

Now the dual cochain complex P*, with differential (5 = <7\ has a
product Δ*: P*®P*->P*, which is 'homotopy associative' and δ is a
derivation there.

The product Δ* of P* induces the usual associative product in the
cohomology i?*(P*) = Ext"(Z/2,Z/2) as stated in Corollary 1.5.

A few examples of boundaries are given by

(4.9) 3<eltl,elA,eiAy = <e2t2>e2.i>
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, , , , , ,2^1,2^1,2>*> e t c -

5. Spectral sequence

We shall define a filtration on X which corresponds to May's filtration
on B(A) ([5]). This leads to a spectral sequence, essentially the same
as the May spectral sequence.

Define a weight function w on X by

n s

(5.1) w(ej(ej})= £ ih+ £ j m , for a c.&.e. *,<*,>,
f i = l m = l

where /={(ίi,*i)<-<(^Λ)} a n d ^ = {0ΊΛ)< - <(/sΛ)}> and put
^(Λ: +y) = max(zϋ(Λ:),z(;(3;)).

Define a filtration FM on X, for w<0, by

(5.2) β^β êF,,, if | J | - ^ / < ^ » < M .

Then we have

X=F0^F_1^ Fu^Fu_ί^

(5.3) and

dFu<=FH.

d

Putting Zr

u = Ker(Fu->Fu-+Fu/Fu_r) for r>0, we get a spectral sequence

(5.4) £ί =

βΓ: F/U-*E/U_r, induced by

It follows that

(5.5) E°X= X
u<0

Here i?0^l is the primitively generated Hopf algebra, isomorphic to the
enveloping algebra V(E°L) of restricted Lie algebra E°L (in [5] and [10],
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E°L is simply denoted by L).
From (5.5), we have

(5.6) EXX=E°X as ^M-module,

CM)

where (/,/) run over the index sequence J without dublication.
Thus we have an isomorphism:

(5.7) (EιPtd
1=

the May complex (being divided polynomial algebra)

as a commutative DGA-coalgebra, in which <(^2I)w==^j,2i>"*>6j,2I)
corresponds to γH(Pj)eΓ(sE°L). Thus we have E1X^E°A®Γ(sE0L)y the
May resolution.

Dualizing the above things, we shall have a filtration 3Fu onX* = A+(g)P*
such that

(5.8) Fu = {X/Ftt_x)\ for «<0,

δr: E»^E»r

+'.

Thus we have

E0X'=E0(At)®E0(P'), δo = 0,

E^^EQX* as a module,

(5.9) jEΊ(.F) = Γ(5£0L) = ft as a DGA-polynomial algebra ([5],[10]),

and ErX* coincide with those of the May spectral sequence for r > 2. Here
{ejyeE^Γ) corresponds to R\\• • RιfseR ([5],[10]).

Returning to the complex P*, we denote <ê  2 ' ) * by ε̂  2i. Then we have
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7 - 1

δεj,2ι= Σ Ej-i,2i + ι'εi,2ι> [ ε i - i ,2 ί + ϊ>εi,2'
i = l

(5.10) and <«/>
t = fi;.f2«."<«r>*. for J =

and (/s,/s)

because ^js^^)®^ejr^ appears, with non-zero coefficient, only in Δ<ejX
and not in Δ<£/> for other J.

P* has no zero-divisor and contains the polynomial ring Z/2[εx 2»; i> 1].

6. Appendix

Consider the case of the mod p Steenrod algebra A for an odd prime
/>. We shall sketch similar argument as in the preceeding sections.

Lemma 6.1. (i) A is multiplicatively generated by {eipk, ff, i>\yk>0
and y>0}, eiipk = (ξfy (resp. fj = τ)) the dual element ξf (resp. T,) with
respect to the Milnor monomial basis of the dual Hopf algebra A* of
A. (ii) The set {ld'fj = e\ι

up^ ''eι^phnx fh- 'fjr;, with index sequences I:
(i1,ki)<"'<(imykm)) L = (/1, ,/m) with \<k<py and J: j\< <jn} forms
a basis of A.

Put L+=Z/p{ei^; (i,k)>(1,0)}, L-=Z/p{fj}. Let sL+= H^}
sL = Z/p{(jy}\ be the suspensions with bideg <βIjPk) = (l,2pk(pι— 1)), bideg
<//) = (l,2/>J —1) respectively. And let s2πL+ denote a vector space
Z/p{yi P

k'y (iyk)>(ίy0)} spanned by indeterminates yipk of bidegree
(2,2pkU(p'-ί)).

Define

E(sL + )= the exterior algebra on sL + ,

P(sL~)= the polynomial algebra on sL~,

and

P(s2πL + )= the polynomial algebra on s2πL +.

Theorem 6.2. 77*e A-module X=
with an inductively defined differential d gives an acyclic, A-free resolution

of Z/p: X-^Z/p.

Corollary 6.3. A suitable filtration on X induces a spectral sequence
in which E1X^E(sE°L + )®Γ(sE0L~)®Γ(s2πE0L + )) the May's construction.
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as a cocommutative DGA-coalgebra ([5]) and the Έ7-terms are the same as
those of May S.S. (r>2).

We can prove this theorem quite similarly as in the mod 2 case,
although we need here a more fine classification of the canonical basis
elements eϊ'fj'(eGy yM-ζfκy as follows.

Introduce first the following notation on the index sequences:

(6.4) α1(/) = max/=(/m,ΛJ for I=(iuk1)<"'<(im9kJ9

and α1(φ) = (0,0),φ being the empty set.

b(G) = maxG for G = (gl9h1)<"'<(gΛ\

and &(<£) = (0,0),

c(M) = max M for M = (mi ,qi) < < (muyqu),

and c(φ) = (0fi)y

and

a2(J) = maxJ for J = (j\ < ••• <jn)y

and a2(φ)=— 1,

ύPO = max£: for /C=(/ί1 < • <Λt;),

and d ( 0 ) = - l .

A c.&.£. ^'fj'^Gy-yM'(fκy belongs to one of the following types:

Provided that J = K=φ the empty set,

: #!<&>£ and, II1:b<a1>c,

[if α ^ & ^ ^ - l ,

(6.5) I2:ai<c>b> II2: a1=b>c, and lm=p — 1,

Otherwise, if / or KΦφy put

I3:a2<d, II3: a2>d.

Thus we have a direct sum decomposition

(6.6) X=Cj®CIIy C^Cj&C^φCj,, Cπ = CΠι®CΠ2®CΠ3,

where

Cj. = Z/p{c.b.e. of type Jf} and Cπ. = Z/p{c.b.e. of type //J

for ι = 1,2,3,

with linear isomorphisms
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defined

(6.7)

by

τ.0ei'/\eGyyM)=(~

on

ή<eGyyM) = eϊ-e

on

c.b.e. of

c.b.e, of

type

type

h

βu))

h

ί-ta

( ( «

Λ)=

-(m u > 9 ,

«.?«) =

on c.6.£. of type 73 (Λl7 =

where \G\ denotes the length of the index sequence G and similarly for
others, and s = |G| + 2|M| + |/C| the homology dimension.
The inverse G'S-I of τs will be defined obviously.

Then, starting from

, with (im,ftw) = max/ and

4'fr<fjn> with yw = maxJ and J' = J-{y n },

we could define differential d and contracting homotopy σ inductively in
X as before, and as well carry out all the parallel discussion.
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