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0. Introduction

In [8], the author introduced an acyclic, free resolution of the ground
ring Z of integers (resp. its localization Z, for a prime p) as the trivial
module over the Landweber-Novikov algebra S (resp. S,=Z®.5S),
which is considerably smaller than the bar resolution.

In this paper, the same method of construction is applied to the
case of the modp Steenrod algebra A. The resulted resolution

X=A®X_'—ZZ/p has inductively defined differential d and contracting
homotopy @, and is naturally embedded in the bar resolution B(A) as a
direct-summand subcomplex.

The apparent feature of this resolution is that it seems to be an
immediate ‘lift’ of the May resolution [5], while the latter is a resolution
over the associated graded algebra E°A for the augmentation filtration
on the Steenrod algebra. In fact, the corresponding filtration on X leads
to an equivalent of the May spectral sequence, of which E'X is isomorphic
to the May resolution and E'-terms are the same as those of the May
spectral sequence for r>2.

In the case p=2, the chain complex X will be given as a polynomial
ring P, and the dual cochain complex P* has a non-associative product,
which induces the wusual associative product in its cohomology
H'(A)=Ext{(Z/2, Z/2), the E,-term of the Adams spectral sequence [1,2].

May [5] studied extensively his spectral sequence and succeeded to
obtain a great deal of information about H*(A) (See also, Tangora [10]
and Novikov [7].).

It is hoped that the present work could be useful for calculating the
differentials in the May spectral sequence and the ring structure of H*(A4).

In this paper we shall restrict ourselves to the case p=2. A parallel
treatment for the odd prime case will be only suggsted in the last section.
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1. Notation and results

Let A, be the dual Hopf algebra ([6],[9]) of the mod 2 Steenrod
algebra A. A, is given as the polynomial algebra Z/2[&,,&,, -] over Z/2
on indeterminates £,(i>1) of degree 2 —1, with comultiplication

k
'ﬁék:‘zoéfii@éi (fo=1)-

Let ¢, =(5* denote the dual element of & with respect to the
monomial basis {£,=¢&k'.--&n1 of A,.

Lemma 1.1. (i) The Steenrod algebra A is multiplicatively generated
by the set {e; yx; i>1,k>0}, (ii) the set {1,e;, suy**-€; 2 (i1,R)) <(i3,k3) <<
(,k,) in the lexicographical order} forms a Z/2-basis of A, of which elements
er=e;, sx,"**€; sk, are called admissible monomials.

Let L denote the Z/2-submodule of A spanned by the set {e; ;s
i>1,k>0}, and sL=2/2{{e; ;x»; i=1,k>0}, the suspension of L, with
bideg {e; ;cp =(1,2%(2'—1)). Denote by P=P(sL) the polynomial algebra
(symmetric tensor algebra) on sL. We use the notation

<e.l>=<ejl,2’11""ejs,2's>=<ej1,2'1>®"'®<e',.2's>
with the index sequence
J Gl =Gl < <0k,
in the lexicographical order and call it a canonical monomial in P.

Theorem 1.2. X=AQ®P, with an inductively defined differential d
gives an acyclic A-free resolution of Z/2.

Proposition 1.3. There exist natural A-linear chain maps f: X— B(A)
and g: B(A)— X, such that gof =id and f(P) c B(A) = Z/2® 4B(A) = B(A).

Proposition 1.4. The chain complex P with the induced differential
d= Z/2® 4d has a comultiplication A:P—PQ®P such that dR1+1RdA=
Ad. This is not coassociative in general, but (A®1)A and (1QA)A are
chain homotopic.

Corollary 1.5. The dual complex P* of P with diffeential 6=d' has
a non-associative product, therein O is a derivation. This product induces
the usual product in the cohomology H*(P*,0)=H"(A).
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2. Preliminary

The lemma 1.1 may be well-known ([6],[4]), but we will recall its
proof, since the resolution (Theorem 1.2) stems from the lemma.
We shall take the dual basis {£,} of 4 (See §1). By definition the

product of basis elements is given by
& & =2 (E@ENWE) &

Define the height of &, to be X k;, the sum of exponents in the
monomial £ ,=¢&!..&  Then we have the equality

(2.1) E(Ey=E+ Y &,

where £, =&kt...En-a F ¢ .En and the second summand in the right
hand sideis a sum of suitable basis elements of height (&) <h(£). In
fact, £, are so chosen that Y, containt &, ®¢&" as a summand, and such
a ¢, must be of the form

2.2) Eo=C1 St & 1S

with Y o;=Fk,, w+2"v,=k, (for 1<i<n—1).

Then

n—1 n—1 n n—1 n
h(&5) = i;l u;+ izZO‘vi = ;Z,Ok,- - 2".';1 ;< i;oki =h({,).

*

Now by induction on height we conclude that any basis element &,
of A can be expressed by a sum of products of ¢;;=(&¥)’. But we can
see easily that ¢;;, with k, not a power of 2, is also decomposable into a
sum of products of e; ,.. This proves (i) of Lemma 1.1.

Note further that

(2.3) (é?)"(d)‘=<k:1>(€{~‘+')‘+Z terms of lower height
and
(2.4) [(f{-‘)',(f;)']=2 terms of lower height for i#j.

It follows then (ii) of Lemma 1.1.
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Here are a few examples of (2.3) and (2.4):

le1,1,61,21=¢€21, [€1,1,€5,1]1=0

les, 162,21 =631 =1[ey 4,65 1],

le1,2,622]=¢€1,17€3,1,

€1,2°€1,2=¢€1,1°€3 1,

€1,4'€1,4=¢€12°€3 3,

€18°€18=¢€14'€ 41 € 1°€5°€3;

leg,1.e1,6al=€1627€2,1F €1 58" €311 €1 50" €s 1T €1 30 €511 €261
e1°€¢1=0 (1>1), etc. (Cf. [4])

It will be another interesting problem to give the explicit formulae
expressing (2.3) and (2.4) by admissible monomials in the sense of §1,
like the Adem relations [3].

3. Resolution

In this section we shall give a detailed proof of Theorem 1.2, since
we had remained in showing only a sketchy proof in [8] for the case of
the Landweber-Novikov algebra. Clearly the set of canonical monomials

(e;) forms a Z/2-basis of P. Then P=zs2 oFs» where the submodule

P, is spanned by {e;> of length |J|=s. We call |J| also the homological
dimension of {e;).
We shall introduce in X=A®P a boundary operator d=(d,):

dg X,;=AQP,—»X,_,
and a contracting homotopy o=(0g,):
Ot Xs—)X.H-l’

so that X becames an acyclic differential A-module (a chain complex)
with augmentation & X—Z/2
First define an A-map d;: X, =A4A®sL->Xy,=A4 by

3.1 dy(ale; py)=a e« (ale; ) means a®<e; 5x)),
and a Z/2-map 64 Xy—X,; by

(3.2) 0o(1)=0

Go(eil,zh . 'ei,..2"n) =€;y,2x1€i, _y 2kn- 1<ei,.,2"n>
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for admissible monomials. Thus we have a direct sum decomposition

(3.3) X1=Im60@Kerd1, Kerd1=1m(1-—0'0d1),
oo1=0, ed; =0 and d,0,+ne=1,

where n: Z/2—> 4 is the unit. Then d, is easily defined by
(3.4) d2<ej1,2'1a ej2,2'2>=(1—"aodl)(ejz,z'z<ej1,2'1>) (G1) <020

On the other hand, it is laborious to find and formulate a proper candidate
of possible contracting homotopy 6;. In order to overcome this difficulty,
we begin with a careful observation of the construction X.

Take the set of elements

(3.5) el<eJ> =€;,,2k1°" "€, 2kn <ej1,2’1)"'ej,,2's>

with the index sequences I=(i,,k;)<---<(ip,k,) and J: (,I;) < <(sly)

in the lexicographical order, and call it canonical basis of X=AQP.
Classify the canonical basis elements (c.b.e.’s) into the following types:

(3.6) Type 1. max I<maxJ (i.e. (i,,k,)<(Jl))

and

Type 2: max I>maxJ.

Put
(3.7) C,,=Z/2{c.b.e. of Type 1 in X}

and

C,,=2Z/2{c.b.e. of Type 2 in X}

Then we have
(38) Xs=Cl,s®C2,s»

as a Z/2-module, with obvious isomorphisms
Ts

Ciy o C =1t
1,5 2,s—1» Os-1=Ts

defined by

(3.9 T(erer)) = er 4 (joaner—iis1y» for ele;>eCy g,
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o, 1(elepp)=¢f_ (i,,.kn)<eJ+(i,.,k,.)> for e;e;) e Crs-1-

We shall introduce here a partial order in the set of index sequences
J of the same length |J|=s as follows:

(3.10)  J'<J if Gl,I)<(j,l) for all i, and

J'<J if, moreover, (ji,l}) <(;,l;) for at least one i.

Now assume that (d;,0;_,) are defined for 1<i<s—1 and satisfy the
following conditions (for convenience, put dy=¢ and o_,;=n):

3.11) (A) 0;,_,0;,_,=0and Imo;,_ =C
B) X,=Imo;_®Kerd,
(C) dioi_y+0;_,d;_y=1 and d;_,d;=0,
(D;) () There is a Z/2-isomorphism ¢;: C, ;—Ker d;, defined

by @iele))=ep (I—0;_(d)(e;, n{e;)) for ee;7€Cy;
and e;=ep "€ ok

(i) Further, we have ¢ (e,<e;>)=¢;{e;>+Z,e; e; >,
where e; (e, ) are suitable c.b.e.’s with conditions J,>J
and max J,>max I (See (3.10)).

We temporally assume (D,), of which proof is reasonably postponed.
Under this induction hypothesis (3.11),_, we shall define (d,0,_,) as
follows.

First define d;: X,—»X,_,, as an A-map, by

(3.12) dle;)=¢,_ ' 1Le;y=(1—0,_,d;_,) ejs,zls<e.l—(js.ls)>

where |J|=s and (j,,l;) =max J.
It follows immediately, from (C,_,)

ds-‘lds=0‘
Next define
(3.13) 0,-1=0o0on Imo,_,=C, ;_;.

To define o,_, on Kerd,_,, take the set {¢,_(¢e;{e,)); e;{e;» c.b.e.
of Type 2 in X,_,} as a fixed basis of Ker d;_, by virtue of (D,_,), and put

(3.14) 05— 1(@s-1(elep)) =05 1((e){es)) = e1’<e.l+(i,.,k,.)>

where (i,,k,) =max I (See (3.9)). Then o,_; is naturally extended to a
Z/2-map and gives an isomorphism
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o~
(3.15) o,1: Kerd;_y =5 C; ;=Ima,_,.
Thus we have

s

d — {(ps-— lts on Cl,s

0 on Ker d
- 0 onCy
s—=17 -
a;—ltps—ll on Kerds—l

dsos—1+as—2ds—l=1 on Xs—l
X,=Imo,_ ®Kerd,, Kerd,=Im(1—o0,_,d,),

and verify (A,), (B,) and (C,) for (d,,0,_;). From (3.11), (D,_,) and (3.14),
it follows that

(3.16) o, 1(eep)) =er<es s maxt) + Z 0's—1(¢1,,<31,,>)

Jo>J,maxJ,>max I
maxly>max Jo

for e, {e;>eCy 5y,
where the added conditions on the summand come from those of

e; ey >€Cy 1, and as well

(3.17) de;)=e;, ney)+ Z e, ey, -

Jy>J',maxJy > (js,ls) =maxJ

Lemma 3.18.

o, 1(erep))=er<esimax1) + Z e es,> for e{e;»eCys

Jo>J +maxlI

or, we write simply

o,_1(ei{epd)=epes s max1y + 2 higher terms.

Proof. In the right hand side of (3.16), using itself again, we have

os-1(er,er D) =er ey, +maxr,> + Y 0, 1(er,<es,)

Jg>Ja,maxJg>maxly
maxlg>maxJg

here J,>J and maxI,>maxJ,>max[ so that J,+maxI,>J+max].
Repeating this process, we obtain Lemma 3.18.
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Now ¢ C, ;—»Kerd; will be defined just as before:

(3.19) oyeep)) =ep(1—0,_1d)(e;, 2 {es)).
To prove (D), (ii) it is sufficient to consider the special case |I|=1:
@5 3xCep)) =(1—0,_1d;)(e; 1xCes)) ((i,k) >maxJ).
In view of (3.17), we have
(3.20) Pyle;,e)) =e; pep) + 0,y (€; " diCe;s))
=¢; ey +0,_(e; o€, 21,{e;))

+ Z A CPRIRCIN)

Jy>J' ,maxJ, >maxJ

Rewriting e; ;xe;, 1, and ¢; 5 ey in the admissible form:

€;,2k€j 21, Z ey
max I > (i,k)

&

ei’zk'elv= Z elv,d
max I, s> (i,k)

we have, from Lemma 3.18,
(3.21)
@5(e;,2:ep))
=e; pey) + Z 05 1(er e;D)+ Z 05— 1(317,5<3Jy>)

max I > (i k) Jy>n.‘lt;;(nlme>y(2illsaxJ
v,6 2

=e;, pley+ Y, (e,;(e,, +max1,y + 2 higher terms)

max I > (i,k)

+ Y <e,;’d<ely+max,y,6>+2 higher terms) .

Jy+maxly s>J' +(i,k)y>J

Then we have in general
(3.22) oerle)) =ep pyle, 2xnler))

=el<eJ>+ Z e,a<e1a> for C.b.e. e,(ej>€CZ's.

Jou>J
max Jo > max]



CocHAIN COMPLEX ASSOCIATED TO STEENROD ALGEBRA 463

Thus we have proved (3.11), (D,), (ii).

To show (Dy), (i), first note that ¢y e;{e;>)eKer d; and the set
{o/e{ep)); c.be. ¢{e;»eC,,} are linearly independent in virtue of

(3.22). 'This means that ¢, is injective. To show the surjectivity of
@, we replace each higher term ¢; <{e;_) of Type 2 in (3.22) by ¢ (e; <{e; >).
Repeating this process, we should finally obtain

(3.23) ps(erep) =eey) +Zoyer,{ey,0) +uy g,

where u; ;€C, ; and ¢;{e;» +u; ;€Im o,
The difference (1—o0,_,d,)(e;<e;>)—(e;<e;>+u; ;) belongs to KerdnIm
0,_1=0. Therefore we have

(3.24) ( —O's—lds)(ez<eJ>)=el<eJ>+u1.J€ Im ¢,.

Since (1—0,_,d)(Cy ) =0 and (1 —0,_,d)(C; ) =(1 —0,_,d)(X,), we have
Ime,=Im(1—o0,_,d,)=Kerd,.
This proves (3.11), (D), (i).

Now, for the remaining case of n=1, a proof of (D,) can be performed
in a literally parallel way as just described, so it will be ommited.
Thus we have completed the induction process and a proof of the theorem
1.2.

Here we shall show some simple examples of boundaries and
contracting homotopies:

(3.25) dley 161,10 =e11Ke1,1
d{ey 151,20 =e1,2€e1,1) ey 1<y 20 +<ez,1
d{e; y1.€j,21) =¢; 31e;j 1) + 0o(€j 21" €j 21)
d{e; sx,j 21) = €] 31{€; 21y +€; 1€ 31) + 0p[e; 2x,¢j,21] for (4,k) <(,D),

where [,] means the commutator.

d{eq 5.€1.2,61,2) =61 7€y 2,e1 )+ €1 1€y 2,65,1) +<€3,1,€2,1)
o(e; ey))=<eyiny for (i,k)=maxJ
0(ey5°€3,1€ey 40) =65 21 4,31 +€5,1€€3 1,631

where the last example shows that ¢;#0; in general.
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4. Chain complex P and its dual

The construction P defined in §1 with the induced differential
4.1 d=2Z/2®d: P-»P

becomes a chain complex.

Define natural A-linear chain maps f: X—B(A4) and g: B(4)— X in
the usual way ([2]), using contracting homotopy ¢ of X resp. S of B(4):

(4.2) fo=id. :X,=A—A=B(A),,
fiCey)=Sf;,_1d{e;> for s2>1,
fiekep)) = fey)

and similar for g.
By induction on dimension, we see easily that
4.3) gof=id on X and f<e;)eB(A).

This proves Prop. 1.3.
Similarly define a diagonal ¥: X—»>X®X by

(4.4) Vo: Xo=A-ARA=(X®X),, the diagonal of A
(i.e. Wo(ei,k) = Z €ik —j®ei.j))
J

l//s<e.l> = &'l/s— 1d<eJ> fOI‘ s= 1 )

where 6=0®1+¢e®o0 is the induced contracting homotopy of X®X.
This ¥ is a chain map, and there is a natural chain homotopy:

(4.5) YN — (@YW =d*H+Hd,
with d¥=d®1®1+1®d®1+1®1®d,

where H: X->X®X®X is a Z/2-map of degree (1,0).

The following example shows non-coassociativity of .

(4.6) Y<ley 4>=Ce14)@1+e;y {e; )R, 1+<e1,)Re; ;,+e;,1>RPey 3
+1®<ey,4)
(Y1) - ®¢)‘/’)<31.4> =e1,1®<el,2>®el.l'
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The diagonal § induces a diagonal A: P-»P®P,

4.7) A=(p®Rp)oy, p=e,81p: X—P, with
dPA=Ad.
From (4.5), it follows that A is also homotopy coassociative.
We shall show a few examples of A{e;):

Ale; ) =<; 30@1 +1®@<e; 2)

Aley z.e1,2)=Xe1,2,61,20 @1 +<e1 ,)®<ey,2) +1R<ey 5,61 5

Aley 1,e1,4)=Xe1 1,61,4)@1+ ey 1 DRy 4D +<e1.40Rey 1)

(4.8) +1®<ey 1,€1.4)+<e1,2)®<ez 1)

A<91,4,ez,2’€3,1> = <€1.4,92,2»33,1>®1 + <6’1,4>®<€2,2y33,1>
+<e3,27®<ey 403,1)
+<e3,1>®<e1,4,e2,2>+<e2|2,e3,1>®(e1,4)+<e1,4,e3‘1>®(e2_2)
+<ey 4,62,2)R<e31) +1Q< ey 4,65 2,631 +<ez,1,63,1)R<e3 1)

and, in general

Aley) =shuffle+ X extra terms,

where an extra term {e; >®<e;,>, with {e; )>-{e;,> #<e;», is indicated
by the underline.

Now the dual cochain complex P*, with differential §=d", has a
product A*: P*®P*—P*, which is ‘homotopy associative’ and J is a
derivation there.

The product A* of P* induces the usual associative product in the
cohomology H*(P*)=Ext%(Z/2,Z/2) as stated in Corollary 1.5.

A few examples of boundaries are given by

4.9 ‘7(91,1»91.4’31.4) = <32,2’6’2’1>
d{ey 3,€1,4:€2,1) =e3,1,€1,2) +<€2,2,€2,1)
d{ey 1,e1,2,€2,2) =<e3,1,€1,2) +<€3,2,€2,1)
0<ez,2,€2,10" =<e1,1,€1,4:€1,4)" +<e1,2,€1 4,€2,1)" + ey 1,€1,2,€2,2)"
0<es,1,e1,20" =<e1,2:€1,4,€2,1)" +Ke1,1,€1,2,€2.2)°
0(<ez,2,€2,1)" +<e3,1,e1,20") =€y 1,€1,4.€1,4)"

J<e1,1)el,1 ,6’1,4> = <ez,1,€2,1>
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‘7<31,2,6’1,2,91,2> = <ez,1 »32,1>
‘7<6’1,1:€1,2,ez,1>=0

5(‘32,1’32,1)':<e1,1,61,1»6’1,4>*+<€1,z,6’1,2€1,z>', etc.
5. Spectral sequence

We shall define a filtration on X which corresponds to May’s filtration
on B(A) ([5]). This leads to a spectral sequence, essentially the same
as the May spectral sequence.

Define a weight function w on X by

(5.1) w(e;{e;))= i i+ i Jm, for a c.b.e. ¢,{e;),
1

h=1 m=

where I={(i,k)) < <(ink,)} and J={(G,l))<--<(,l)}, and put
w(x +y) =max(w(x),w(y)).
Define a filtration F, on X, for u<0, by

(5.2) ele,yeF,, if |J|—w(ele,))<u.
Then we have
X=F,oF_,>--F,oF, ;>
(5.3) and
dF,cF,.
Putting Z,',=Ker(Fu—d»Fu—>Fu/F,,_,) for >0, we get a spectral sequence
{Eu:
(5.4) E,=Z,+F, /dZ; +F,_,,
d: E,—E,_,, induced by d.

It follows that

(5.5) E°X=Y F,/F,_ ,~E°AQE°P,

u<0

d’=0.

Here E°A4 is the primitively generated Hopf algebra, isomorphic to the
enveloping algebra V(E°L) of restricted Lie algebra E°L (in [5] and [10],
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E°L is simply denoted by L).
From (5.5), we have

(5.6) E'X=E°X as E°A-module,
dl<eJ>= z ej,2'<eJ—(j,z)>,
G,

where (j,]) run over the index sequence J without dublication.
Thus we have an isomorphism:

(5.7) (E'P,d' =E'(d))=(T (sE°L),d),
the May complex (being divided polynomial algebra)

as a commutative DGA-coalgebra, in which {e;,i)"=<e; 1, "€} 1)
corresponds to y,,(Pj-)e I'(sE°L). Thus we have E' X~ E°A®TI(sE°L), the
May resolution.

Dualizing the above things, we shall have a filtration # ,on X*=4,Q P*
such that

(5.8) F,=X/F,_)), for ux<0,
0=F cFocF _ccF,cF, ccF_,=X,
0F < F ,,
Z'=Kert (F o> F o F JF ),
E:=Zl:+'g;u+1/6z;“:i+l+’g7u+l)
6,: E*>E'*".
Thus we have
EyX'=Ey(A,)RE((P), 6,=0,
E  X*=E X" as a module,
(5.9) E,(P)=T(sE°L)'=R as a DGA-polynomial algebra ([5],[10]),
E,X*=H'(E°A),

and E, X" coincide with those of the May spectral sequence for r>2. Here
{e;>*€ E{(P") corresponds to R'\---R:ze& ([5],[10]).
Returning to the complex P*, we denote {¢; ,:)" by ¢; ,i. Then we have
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j-1
581"21 = 8j—i,2“" '8,‘.21, [8_,-._,-,2“1,8,',21] =0,
1

i=

(5.10) and {e;)"=¢j, 2, {e;)", for J=J'+(l)
and (J,,/)=maxJ,

because {e; ,1,>®<{e;) appears, with non-zero coefficient, only in Ale;),
and not in A{e;) for other J.
P has no zero-divisor and contains the polynomial ring Z/2[g, ,;i>1].

6. Appendix

Consider the case of the mod p Steenrod algebra A for an odd prime
p. We shall sketch similar argument as in the preceeding sections.

Lemma6.1. (i) A4 is multiplicatively generated by {e; ,x, fj; 1=1,k>0
and j=0}, ¢ u=(E") (resp. f;=1}) the dual element EF* (resp. t;) with
respect to the Milnor monomial basis of the dual Hopf algebra A, of
A. (i) The set {1,ef-f,=ef},pk,---ezz,pkm-fh---fjn; with index sequences I
11,k <" <(pskm), L=y, 1) with 1<;<p, and J: j, <---<j,} forms
a basis of A.

Put L* = Z/pe; s (0= (1,00}, L™ =Z/p{f}. Let sL* = Z/p{<e; p},
sL™ =Z/p{{f;>} be the suspensions with bideg <e; x> =(1,2p*(p' — 1)), bideg
{f;ip=(1,2p'—1) respectively. And let s?zL* denote a vector space
Z/p{y; »; (i,k)>(1,0)} spanned by indeterminates y;, of bidegree

(2,20* 1 (p' - 1)).
Define

E(L*)= the exterior algebra on sL*,
P(sL™)= the polynomial algebra on sL~,

and
P(s*nL*)= the polynomial algebra on s’nL*.

Theorem 6.2. The A-module X=AQE(GL")QP(s*nLY)QP(sL™)
with an inductively defined differential d gives an acyclic, A-free resolution

of Z/p: X Z/p.

Corollary 6.3. A suitable filtration on X induces a spectral sequence
in which E' X ~E(sE°L*)QT (sE°L " )QT (s*nE°L™), the May’s construction,
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as a cocommutative DG A-coalgebra ([5]) and the E’-terms are the same as
those of May S.S. (r>2).

We can prove this theorem quite similarly as in the mod 2 case,
although we need here a more fine classification of the canonical basis

elements e f; {eg) yu {fx> as follows.
Introduce first the following notation on the index sequences:

(6.4) a(l)=max I=(i,,k,) for I=(i;,kR))< " <(@pmRpm)>
and a,(¢)=(0,0),¢ being the empty set.
b((G)=maxG for G=(g,h)<--<(g,h,),
and b(¢)=(0,0),
((M)=max M for M=(my,q,)<-<(muq,),
and c¢(¢)=(0,0),

and

a,(J)y=maxJ for J=(,<--<j,),

and 02(¢)='—1’
dK)=maxK for K=(k,<---<k),
and d(¢)=-—1.

A cbe. el f;-{ec) vy {fxD belongs to one of the following types:
Provided that J=K=¢ the empty set,
I;:a;<b>cand, Il :b<a;>c,
{if a,=bl,<p—1,

(6.5) I,;a,<c>b, II,: a,=b>c, and l,,=p—1,
Otherwise, if J or K#¢, put
I,: a,<d, 115: a,>d.

Thus we have a direct sum decomposition

(6.6) X=C®Cyy, C;=C;,®C,®Cy,, CII=C111®C112®CII3’
where
C,,=Z/p{c.b.e. of type I;} and C;;,=Z/p{c.b.e. of type II;}
for 1=1,2,3,

with linear isomorphisms
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Ts
—}
Cli,s “«— CIIi,s— 1
a's-1

defined by
(6.7) ‘L's(ef‘<eG>yM) =(—1 )IGl - lef : eg,,phz<eG - (g,,h¢)>yM
on c.b.e. of type I, ((g,,h,) =maxG)
ts(ef‘ {egoym) = 6’% ’ 8,’;.:,,1,4.4 {eg+ (mu,qu)>yM = (Mu,qu)
on c.b.e. of type I, ((m,,q,) =max M)

Ts(e%fJ<eG>yM<fK>) =(— 1)IG| K-t ef‘ frf {egy 'yM<fx—(k.,)>
on c.b.e. of type I; (k,=max K)

where |G| denotes the length of the index sequence G and similarly for
others, and s=|G|+ 2|M|+|K]| the homology dimension.
The inverse o,_,; of 7, will be defined obviously.

Then, starting from

dile; > =¢;,, di{fp=Ff;
oolel)=(ef) <e;,,. i >, with (i,,k,)=max I and

Iy e Im—1 1
(er) = {eil,pkl €im.pkm if 1,>1
1 Im—1 :
ei:,pkl-..ei:—l.pkm'l lflm=1

ooler fr)=er frlf;,> with j,=maxJ and J'=J— {nt>

we could define differential d and contracting homotopy ¢ inductively in
X as before, and as well carry out all the parallel discussion.
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