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1. Introduction

We are interested in the dynamical property of a diffeomorphism f
having the pseudo-orbit tracing property of a closed manifold M. Let
d be a metric for M. A sequence of points {x;};.z of M is called a
0-pseudo-orbit of f if d(f(x;), ;1) <0 for ie Z. A sequence {x;};.z is said
to be f-e-traced by ye M if d(fi(y), x;)<e for ie Z.

We say that f has the pseudo-orbit tracing property (abbrev. POTP)
if for every £¢>0 there is 6>0 such that every J-pseudo-orbit of f can
be f-e-traced by some point.

In [5] Robinson proved that every Axiom A diffeomorphism satisfying
strong transversality has POTP. Thus it will be natural to ask whether
POTP implies Axiom A and strong transversality. For this problem we
have partial results that are answered in [4] for dim M =2 and in [7]
for dim M =3. However we have no answer for higher dimensions.

Our aim is to prove the following

Theorem. The C! interior of all diffeomorphisms having POTP of
a closed manifold M, P(M), coincides with the set of all Axiom A
diffeomorphisms satisfying strong transversality.

We say that f has the C! uniform pseudo-orbit tracing property (abbrev.
C!-UPOTP) if there is a C! neighborhood %(f) of f with the property
that for ¢>0 there is 6>0 such that every J-pseudo-orbit of ge#(f) is
g-&-traced by some point. Since every Axiom A diffeomorphism satisfying
strong transversality has C!-UPOTP (see [6, Theorem]), if we establish
our theorem, then the following corollary is obtained.

Corollary. The set of all diffeomorphism having C'-UPOTP is
characterized as the set of all Axiom A diffeomorphisms satisfying strong
transversality.
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It was proved in [4] that all periodic points of feZ(M) are
hyperbolic. From this we can prove that each f belonging to 2(M)
satisfies Axiom A with no-cycle. Recently it was shown in general by
Aoki [1]. Therefore, to conclude our theorem it remains only to prove
the following proposition.

Proposition. Every fe P(M) satisfies strong transversality.

Unfortunately this can not be proved by the techinques mentioned
in [4] and [7]. Thus we need a new technique for the proof of the
proposition.

2. Proof of Proposition

Let Diff(M) denote the set of all diffeomorphisms of M endowed
with C! topology, and let p=f"(p) (n>0) be a hyperbolic periodic point
of feDiff (M). Even if p is hyperbolic, when dim M >3, it is not easy
to construct an f"-invariant foliation in a neighborhood of p that is
compatible with the local stable manifold (i.e. the leaf passing through
p is the local stable manifold of p). In this paper, by using Franks’s
lemma we make a new diffeomorphism g (g"(p)=p), arbitrarily near to f
in C' topology, which has a g"-invariant compatible foliation in a
neighborhood of p (see lemmas 1 and 2). This foliation will play an
essential role in the proof of the proposition.

Let fe Diff (M) satisfy Axiom A with no-cycle. The non-wandering
set Q(f) of f is expressed as a finite disjoint union of basic sets {A,(f)},
and for a sufficiently small ¢,>0 and x€Q(f) there are a local stable
manifold W3 (x, f) and a local unstable manifold W} (x, f). Let A(f) be
a basic set of f. Since dim W; (x, f)=dim W3 (y, f) (x,yeA(f)), we
denote by Ind A(f) the dimension of W} (x, f) for xe A(f). If ge Diff (M)
is C! close to f, then the number of basic sets {A;(g)} of g coincides with
that of basic sets {A,(f)} since f is Q-stable.

Put B,(x)={y e M|d(x, y) <&} for £>0 and let p be a usual C' metric of
Diff (M). Then we have the following

Lemma 1. Let ¢,>0 be as above and let A(f) be a basic set such
that 1 <Ind A(f)<dim M —1. Then, for a periodic point p € A(f) (f"(p) =p,
n>0), a neighborhood U(f)<Diff (M) and a number y>Q0 there are
0<e,<éey/2, geU(f) and a basic set A(g) for g such that

() Bao,(Ff0) () Bas(F(0)) = for 0<i#j<n—1,
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exp si+1p) © D i f ° €XP i (%)
(i) g(x)= if xeB, (fi(p)) for O<i<n—1,

n—1
f(x) lf x¢ _UOB451(fi(p))’

(iii) g"(p)=peA(g) and p(WI (p, f), W (b, 8)) <y for a=s, u (i.e. there is
a C! diffeomorphism &°: We (b, /)= Wi (b, &) such that p(¢?, id) <y (o =s, u)).

Proof. Since A(f) is hyperbolic, there is e>0 such that d(f"(x),
")) <e (x, ye A(f) and neZ) implies x=y (see [5]). By Q-stability
theorem, there exists a neighborhood %,(f)c%(f) of f such that for
every g€ y(f) there is a homeomorphism h,;, which maps Q(f) onto the
non-wandering set Q(g) of g, satisfying

gohy=hyof,
d(h,, o) <e,
PWE (B, 1), Wey(hy(D), £))<y for a=s, u.

By Franks’s lemma [2, lemma 1.1], we can find ge%(f) and
0<eg; <égy/2 such that

Buo, (f ) () Bae,(F(0) = (0<i#j<n—1) and

exp i+ 1(p) ° D piyf o €XP pig(%)
g(x)= if xeBal(fi(p)) for 0<i<n—1,

n—1
flx) if x¢ _UOB481(J‘"(P)),

We write A(g) =hg(A(f}) for simplicity. Then hy(p) € A(g) and Ind A(H)=
Ind A(g). Clearly g(f'(p))=exp i+i(p° Dyipfo expf_.'(lp) (Fip)=f*1(p) for
0<i<n—1 and so g(p)=f(p), &) =F*(p),"-.&"®)=f"(p)=p. Since

d(fithg *®)), @) =d(hy ‘(' ®)), f(P))
=d(h; '(f'(®)), f(p)<e (i€ Z),

we have h(p)=p. Therefore p(W; (p, f), We(p, g)<y (6=s, u) and
peA(g).

Since f satisfies Axiom A, by definition there is a Df-invariant
continuous splitting To M =E*@E" and a constant 0<A<1 such that
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I Df gl <A™ and | Dfjge| <A™ for m>0. We denote by E7 a fiber of E”
at x€Q(f) (o6=s, u), and put E{(e)={veE]||v| <&} for ¢>0.

Let g eDiff (M), p=g"(p)eA(g) (n>0) and &, >0 be as in lemma
1. Then it is easily checked that for 0<e<e,, we have exp,(E;(€))=
Wi (p, g) and dim exp,(Ej(e)) =dim W7 (p, g) (0=s, u). Fix.&:2 with
0<e,=¢e,(g, n)<e; such that xeB,(p) implies g'(x)eB,, (g'(p)) for
0<i<n—1, and define

Wi(x, &)= eXp,,(EZ(ﬁz) +exp, 1(x)>

for xeexp,(Ey(€;)). Then, since U (Ey(e2) +v) is a foliation defined
veE“(g2)

in a neighborhood of O,e T ,M and since exp, is a local diffeomorphism,

we have that {I/T/iz(x, g): x€ exp,(Ej(e,))} is a foliation defined in a

neighborhood of p in M such that Vf/iz(p, =W, 8.

Lemma 2.
(1) W'iz(x, g) is a C!' manifold and dim Ifffﬁz(x, g)=dim I/T/iz(p, 2),

(i) (Wi (x, &)= W3, (g"(x), 8) for xeexp,(Ey(e;)) Mg~ "(exp,(Ey(e2))),
(ili) there exists C>0 such that if {x, g'(x),-.g™(x)} = exp,(EuE,))
for some k>0, then d(g"™(x), g™(v)) <CA"™d(x,y) for ye W/iz(x, g),

Proof. Assertion (i) is clear, and (ii) is easily obtained. To show

(iii) put T,(e,)={ve T,M||lv|]|<e,}. Since exp,:T,(¢,)>M and exp,':
B,,(p)—>T,M are into diffeomorphisms there is K>O0 such that

d(exp,(v), exp,(w)) <K|v—w| (v, we T(s,)),

lexp, ! (x) —exp, ' ()| < Kd(x, ) (x, y€B,,(p)).

If {x, g"(x),--.g™(x)} cexp,(EY(e,)) for some k>0, then for ye W (x, g)
there is v, € Ej(¢,) such that y=expp(vy+expp_ l(x)). Thus we have

g (y)=epr<D,f' (vy)+exp, l(g"(x))>
(since Dpf"(expp"1(x))=exp;1(g"(x))), and so

(D,,f"°eXp; ! °g”> () =D,f*"(vy) + D,f"(exp, ' (g"(x))),
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from which
&*"(y) =expp(D,f*"(v,) + D,f(exp, '(g*"(x)))).

Since g"(x)e B,,(p), we have (exppole'oexpp_l) "(x)) =g™(x); i.e.
D,f"(exp™'(g"(x))) =exp, (g*"(x)). Thus g*'(y)=exp,(D,f*"(v,)+
exp, 1(gz"(x))). By repetition we have

g™ () =exp,(D,f"™(v,) +exp, ' (g"(x))).

from which

d(g™(x), g™(»)) <K |lexp, '(g"(x)) —exp, (™ »))
=K | D, (vl
<KI™¥|v,|.
Clearly, |v,ll= Hexpp_l(x)—expp“l(y)ll <Kd(x, y) since exp, 1(y)=‘vy+

exp, Y(x). Therefore, d(g™(x), g™(v)) < K2*A™d(x, y). Assertion (iii) was
proved.

Let f be as before, and denote by W*(x, f) the stable manifold and
by W¥(x, f) the unstable manifold for xeQ(f) respectively.

Lemma 3. Let A,(f) and A,(f) be two distinct basic sets for
f. Suppose that there are p=f'(p)eA,(f) (n>0), g€ A,(f) and x€ M\ Q(f)
such that xe W*(p, f)ﬂ W*(q, f). Then, for neighborhood %(f)< Diff (M)
there are 0<¢,<gy/2, g€U(f) and two distinct basic sets A,(g) and A,(g)
for g such that

(D) Bay(F@)VBaes F(0)) = for 0<i#j<n—1,

eXP i+ 1p) © D pipyf © €XP rig)(2)
(I g(x)= if z€B, (f(p)) for 0<i<n—1,

n—1
f(Z) lf Z¢ ‘UOB“'El(fi(p))’
p=g"P)eA(g), e A, (g),

(IIT) { xeW*(p, &) n W'(q, 8),
T, W, g)=T. W, f) and T.W*(q, &) =T W"(g, f).

Proof. Fix #%(f)c Diff (M). By lemma 1, for any y>0 there are
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O<e <ey/2, ge(f) and a basic set A (g) satisfying properties (i), (ii) and
(ii1) of lemma 1. Put A,(g)=A,(f). Then geA,(g). Sincey is arbitrarily
small, by (iii) there are a new diffeomorphism ge%(f) and a small
neighborhood U(x) of x such that g(y)=g(y) for all y¢ U(x) and such
that

([ xe W, D Wa, D),

T.W(p, &)=T. W@, f),
T \W(q, 8)=T,W*(q, f),

For simplicity we identify § with g. Thus (I), (II) and (I1I) are concluded.

Let ge(f), p=g"(p)€ A,(g) and &, >0 be as in lemma 3 and suppose
that dim M —1Ind A,(f)=>2. Take 0<g,<¢; be as in lemma 2, and fix
>0 such that Dpfle";(E;(oc))cE';,(az). Put D*(p) =exp,(E,(2)). Then we

have
dW,(g*"(F'(p, 8)), &), W5, (F'(p, &), 8)>0,
AW, (F'(p, 8), &), Wi,(g™>"(D"(p)), £))>0
where
(1) F(p, g)=D"(p) \ g "(D"(»))

is a fundamental domain of Wi, (p, g) (recall that exp,(Ey(¢))=W;(p, g)
for 0<e<e,).

Wi, (g~ "(D"(®)), &)

W5, (0, 8)
W3, (K, &), &)

Fp, &)

Wi (p, 8)
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Let G be a linear subspace of Ej such that 1<dim G<dim Ej}
and write Bj(E)= B,(E) nexp,(E,(&,)) for a subset E of M. Then we can
find 0<7,<¢, such that

(2) FU(p, g)\ Bi(exp,(G(\Eue)) N F'(p, 8))# ¢
for every G. Since

ro=d(W3,(e*"(F'(p, 8)), 8), W3,(F'(p, g), )>0,
ro=d(W3,(F'(p, 2), 8), W5, (g~ *"(D"(p)), £))>0,

we define a positive number r; =} min{r,, 7o, 75}.
Put

)= U W0, 9.

yeexpp(E}(€2))

Then, for any zeI'(p), we can find only one point y€exp,(E,(€;)) such
that ze W'iz(y, g), and so we write
(3) n(z)=y.

Then n: I'(p)—exp,(E,(¢,)) is differentiable and which plays an essential
role in the proof of the proposition. For zel'(p)\ Wi, (p, g), there is an
integer N,>0 such that g"(n(2))eD"(p) for 0<i<N, (especially
2" :(n(2)) e F'(p, g)) and g" V=" Y(n())¢D"(p).

Lemma 4. Under the above notations, there is 0 <&y <r, such that

diam n(B,,(g"V*(2))) <7, for every zE(y U w0, g))\ W2, &)

eW:_.‘s(p.g)

Proof. 1If this is false, for k>0 there are

zk€< U w0, g))\Wi(p, 2)
yeWi{(p.9) k k
13

and N, =N, >0 such that diam n(Bl(g"N"(zk)))Zrl. Since z € Wi(n(zk),
3 3

g), we have N,—o0 as k—o0 (because of =n(z)e Wij(p, g)). From
g”i(n(zk))eD“(p)Cexpp(E;(ez)) for 0<i<N,, we have

d(g"" (n(z))), £™ (%)) < CA"Ned(n(z), 2)—0 as k—o0
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by lemma 2 (iii).

For k>0 there are w,, wi€exp,(Ey(e,)), v, € W3 (wy, & N By(g"™ (=)
and v, e W¢ (w}, g N By(g™*(z,)) such that d(w,, w)>r,. If w’i—»w and
w,—w (k—0), then w’: w' € exp,(Ey(e;)) and d(w, w')>r;. When y,—v
and v,—v' as k—00, we have v=1v'€ exp,(E},(¢;)) by the properties

g™V (n(2) € exp (Ey(e,)),
d(g"" (n(z)), £"™V(2,))—0 as k— oo,
d(vi, g"™(2)) <i and d(v;, £"(2)) <i-

Since Wiz(y, g) (veexp,(E}(¢y))) is continuous with respect to y, we have
VE W'f:z(w, g). Thus v=w since sz(w, g) Nexp,(Ej(g;)) is a single point
and v, weexp,(Ey(e;)). In this way we get w=v=v=w', thus
contradicting.

We are in a position to prove the proposition. Hereafter let dim M >4
and fe Z(M). Notice that f satisfies Axiom A with no-cycle.

Fix xe M\ Q(f). Then there are distinct basic sets A, (f) (=1, 2)
such that xe W*(A,(f), f)nW*A,(f), f). If IndA,(f)=dim M or
dim M —1, then by the proof of {4, Theorem 2] we have T.M =T, W*(x, f)
+ T ,W¥x, f). Thus it is enough to prove the above equality for the
case when 1<Ind A;(f)<dim M-2.

Since Q(f)=P(f), there is f'e (M) arbitrarily near to f in a C!
topology satisfying

(a) f(y)=f'(y) for all ¥y outside of a small neighborhood of x,

(b) there are p=f"(p)e A (f) for some n>0 and g€ A,(f) such that
xe W, f)nW'q, f), TW®, f)=T.Wx, f) and T,Wq, f)=
T W¥(x, f).

By (a) there are basic sets A,(f') (i=1, 2) for f' such that A(f)=A,(f)
(i=1, 2) since f is Q-stable. We shall prove that T .M=T W, f)
+ T, W¥(q, f') for the case when 1 <Ind A,(f)<dim M —2. For simplicity
we identify f' with f.

Let %(f) be a small neighborhood of f such that %(f) =« ?(M). Then,
by lemma 3 there are ge(f) and basic sets A;(g) (=1, 2) satisfying
lemma 3 (I), (II) and (II1). Thus T . W*(p, g)=T . W*(x, f) and T, W"(q, g)
=T W*x, f). Let €¢5>0 be as in lemma 4 and define

Vi(p)= U Wﬁa(y, g) for k>0

yeg ~ "k(F“(p,g))
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where F¥(p, g) is the fundamental domain of Wy, (p, g) (see (1)). Notice
that V,(p)<T'(p) for k>0 and that Vi (p)— W3 (p, 8) =W, (p, g) as k>0
since g~ "(F¥(p, g))—{p} as k—»oo. Thus there is ky>0 such that

Vo= U WL, o).

yeW:3(p.g)

Obviously U Vi (p) is a neighborhood of p in M.

k=ko

W30, 8)=W:,(, 8)

C'(g'(x))

W, (b, &)

W g~ '(q), &)

Pick I>0 such that g'(x) e int ( U Vk(p)> and g " '(x)e W;‘olz(g"'(q), 2),

k>ko
and denote by C¥(g'(x)) the connected component of g'(x) in W*(g'(q), g)

ﬁ( U Vk(p)>. Clearly, exp;I(C"(g’(x)))c T,M.

k>ko
For a linear subspace E of T ,M and v>0 we write

E(¢'(x))={v+exp, '(g'(x)) |veE with |v|| <v}.

Then there are a linear subspace E' of T,M and a number 0<v,<¢;
such that

4) T 1 exP (' (8" (%)) = T 41 C*(g'(x))
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and expp(E'v(g'(x)))c: U Vi(p) for O0<v<v,.

k>ko

. Since g'(x)¢Q(g), there exists 0<v,<v, such that Bvl(g'(x)) N
g'(BVl(g’(x)))=d> forie Z\ {0}. Let %(g) be a neighborhood of g such that
Ug)<U(f). By (4) there are 0<v,<v, and @€ Diff (M) such that

Pip. @ipe=1d,

P(g(x)) =g'(x),

p(exp,(E,,(g(x)))) = C*(g'(x)),

dim @(exp,(E,,(g'(x)))) =dim C*(g'(x)),

g €U(g) where g =¢ log.

We denote exp,(E,,(g'(x))) by exp,(E,(g"(x))) because of g'(x)=g'(x).
It is clear that there are two distinct basic sets A/(g") (=1, 2) such that
A(g)=Ag) (=1, 2) since g is Q-stable, and that
W2, &)=W; (b, 2),
We(a, &)=W:(a &),
T, W(x, g)=T,W'(x, g) (6=s, u),
exp,(E,,(¢"(x))) = W*(g"(g), &) N T(p),
dim expp(E(,Z(g"(x))) =dim W¥(q, g)=dim C“(g'(x)).

Lemma 5. Under the above notations, expp(E’vz(g”(x))) meels
transversely Wi, (p, g') at gl (x).

Proof. Let £,>0 be as in lemma 2. Since W} (p, g') cexp,(E}(e3))
and W, (p, g') = exp(Ey(¢,)), to get the conclusion it is enough to prove

dim n(expp(E’VZ(g"(x))))Zdim Wi, &).

Here n:I'(p)—>exp,(E,(e;)) is the map defined as in (3).
Assume that dim n(expp(E'VZ(g"(x))))<dim W, (p, &) and put

C'(g''(x)) = B,(g"(x)) N g’z'(W's‘o(g'_'(q), g)) for e>0. Take 0<e<v, such

that C%g'(x)) is the connected component of g'(x) in Bj(g'(x)) N
g'*(We(g ~(q), £)) for 0 <e<E, and such that By(g"(x))ng'*(W;, (g ~'(9),£))

< exp(E,, (¢'(x))).



POTP AND STRONG TRANSVERSALITY 383

Claim 1. Let 0<e<? If d(g (g (%)), g (w))<e for i>0, then
we CU(g'(x)).

It is clear that d(g’ ' ~i(x), g 2" {(w))<e<eg,/2 for all i>0. On the
other hand, since d(g’ "' “i(x), & "' "i(g)) <&o/2 (1>0),

dig ™2 H(w), &g <
g~ ), g1 0) +dg ), ¢ ) <o

for all >0, and so g *(w)e W:o(g'_’(q), g). Thus weCg'(x))=
B,(g"'(x)) n g (Wi (g' " (g), &)) since d(g"(x), w)<e.

We divide the proof of this lemma into two cases:
Case 1' Cg(g,l(x))c ng(l’, gl)’

Case 2. Cig'(x))Z WE,(p, &),

For case 1, put ¢=%/2 and let 0<d=04(¢, g') <& be the number in
the definition of POTP of g’. Recall that F“p, g)=F"(p, g) and fix
ye | &7"F @, 2))\{p} such that W,(v, &) Byg"(x))#¢. For ze

k>ko

W3, &) N By(g(%)),

{”') g’—l(x)) X, g’(X),"‘,
g,l_l(x)’ 2, g'(z)) g'z(z))"'}

is a d-pseudo-orbit of g’. Thus there exists we M such that d(g"(w),
gi(2))<e (1>0) and d(g’' ~(w), & ‘(g (x)))<e (i>1). Since d(w, 2)<e and
d(z, g'(x))<6<%&?2, we have d(g'(x), w)<& Therefore d(g' ‘(w),
g (g (%)) <% for all >0, and so we C¥g"'(x)) by claim 1.

Obviously, there is k=FE(2)>0 such that g’”’:(z)e Vo(p)= U

yeF“(p.g’)

W’is (v, £). By the choice of ¢ and by the definition of F¥(p, g) we have
Bs(g""?(z)) NWE(p, &)=¢. However, weC¥g"'(x))c Wi, (p, g) implies
(" (w) € W,(p, g). Thus g"(w)e B,(g"™(2)) n Wi(p, g)#¢ (since
d(g"™(z), g”";(w))<£). This is a contradiction and so the lemma is proved

for case 1.
For case 2, take k;k, such that k>k, implies C%g"'(x)) N Vi(p) # .
By the choice of g,
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7t(Bz(g’”'?(C?(,f,"'(o«f)) n Vk(P)))> AF(p, &)

for all k> k, since dim n(C¥(g"(x))) <dim W% (p, g') (see (2)). To simplify

we write

Wk(p)__‘ U Wi;(y) g,):

yeg’' ~ "k (n(Bx(g' " (Cx(g" ' (x)) "V i(p)))

Wp)=( v WD) W, &)

k>ky
Then W(p)<T'(p) and

(W) =( ) n(W(p))) v {p}

k>ky

=( | &7™Mr(Beg™(Cig"(x)) N Vi®))) L {p}

k>ky

is not a neighborhood of p in W}, (p, £).

CHe"(x))

(W(p))
n(Cig"(x)))

Claim 2. Put ¢=%/2 and let 6=0(¢, g')<e be the number in the
definition of POTP of g'. Then we have By(g'"'(x)) = W(p).
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For every z€ B,(g''(x)) \ W3 (b, 8), there exists we M such that d(g'(w),
gi(2))<e and d(g' ' Y(w), g Hg"(x))) <e for all i>0 since

{7 '), x, gx), -,
g,l_l(x)r 2, g,(Z), gIZ(z)’ }
is a O-pseudo-orbit of g’. Thus d(g’ ~(w), g '(g’(x))) <& for all i>0
(since d(g"(x), w)<d(g"(x), 2)+d(z, w)y<e+6<i), and so we C“(g’l(x)) by
claim 1. Fix k=k(w) >k, such that we Vi(p) N C4g"*(x)). Then g™ (z)e

B.(Vo(p) ﬁg’”"(C“(g"(x)))) since d(g'"k(u)), '"k(z))<€ Thus we have
z€ Wi(p) < W(p).

By claim 2 we have n(B,(g’'(x))) « n(W(p)). If we establish that
n(Bs(g"(x))) is a neighborhood of p in W¥ (p, g), then we get a contradiction

and therefore the proof of this lemma is completed.-
If n(B,(g'"'(x))) is not a neighborhood of p in W, (p, g), then for every

>0 there is y;€ W7, (p, &) such that y; ¢ n(Bs(g"(x))) and d(v;, p) <i. Since
Wi &) Wi, &) as im0,

W, &) N Byg'(x) # ¢

for sufficiently large ¢ and thus y;en(B,(g"(x))). This is a contradiction
and so n(W(p)) is a neighborhood of p in Wi (p, g'). For any case lemma

5 was proved.

The proof of the transversality at x for case 1 <Ind A;(f)<dim M —2
follows from lemma 5. Indeed, since expp(E’VZ(g',(x))) meets transversely

W, (0, &) at g'(x), we have
TyM = Tg"(x)expp(E’vz(g,l(x))) + Ty Wi, (0, &)
= Tg”(x)Wu(g,l(q)y &)+ TyyWe, (b, &)
by (4). Thus

TM=TWp, g)+T,Wq, &)
=T W¥x, g)+ T, W¥(x, g)
=T W¥(x, f)+ T, W"(x, f).

Therefore the proof of the proposition is completed.
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