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ON THE K-THEORY OF PE;
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0. Introduction

Let E, be the compact, connected, simply-connected, simple Lie group of
type E; and let PE, be the projective group associated with E,. The purpose of
this paper is to determine the algebras K*(PE;) and KO*(PE,) (Theorems 3.1
and 4.1) where K and KO denote respectively the complex and real K-theories.
K*(PE,) is already computed in [7,9]. We study, however, it here again by
the similar argument used to calculate K*(SO(n)) and KO*(SO(n)) in [11, 12].
Also in the same fashion we calculate KO*(PE;) using certain results obtained
in course of computation of K*(PE,) as well as the results on K*(PE,).

An outline of our method is as follows. Since the centre of E, is isomorphic
to Z,, we regard E, as a Z,-space with the action of the centre as a subgroup.
And we show that there exists a Z,~equivariant map S*°—E,, which is a ho-
momorphism of groups, where S*° is the unit quaternions S* with antipodal
involution. This map yields a homeomorphism

S4'0><22E7 ~ P3><E7

where P is the real projective 3-space. Let 2=K or KO and let k,, denote the
Z,-equivariant h-theory. Then we have a canonical isomorphism A%, (E,)==
h*(PE;) and furthermore 4%,(S*° X E;)=h*(P* X E,) induced by the above home-
omorphism. Moreover we have a Kinneth isomorphism A*(P?x E,)=h*(P?)
Q yx(+) B¥(E) since h*(E,) is a free h*(+)-module as mentioned below (here +
denotes a point). Making use of these isomorphisms and the Thom isomorphism
in equivariant A-theory we carry out the calculation of A*(PE,) by reducing to
that of A*(P?)@® s+ h*(E,) as in [11, 12]. For the algebras A*(P%) and A*(E,)
we refer to [2, 5, 12] and [8, 13] respectively.

We use also the square formulas of [4, 12] (see (1.10) and (1.11) below).
But we leave the 2nd exterior or exteriorlike power of the representation in-
serted into the functor B( ) uncalculated since it is complicated.

§1 is devoted to recalling some basic facts needed for our computation and
also §2 to collecting the results on the K-groups of E, and P" (for small 7 ne-
eded in the sequel). In §3 we compute K*(PE;) and in §§4, 5 we determine
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KO*(PE,).
Throughout this paper we write R, C and H respectively for the real, com-
plex and quaternion number-fields, and denote by F any one of these fields.

1. Preliminaries

a) Let Z(E;) be the centre of E,. Then PE,=E,/Z(E,), the projective
group, and

Z(E,) = Z,.

Let G be the multiplicative group consisting of 4-1. Let R?? denote
R?*1 with non-trivial G-action on the first p coordinates and S?*¢ the unit sphere
in R*?.  We regard E; as a G-space with Z(E;)-action as a subgroup. Moreover,
since Z(Sp(1))=xZ, we can regard Sp(1) as a G-space in the similar manner.
So we identify Sp(1), viewed as a G-space, with S*°. Then we have

Lemma 1.1. There exists a G-map ¢: S*°*—E,, which is, in fact, a mo-
nomorphism of Sp(1) into E, such that (Z(Sp(1)))=Z(E,).

Proof. For the proof it is enough to find a subgroup of E, isomorphic to
Sp(1) containing the generator of Z(E;). We consider the symmetric pair (E;, K)
such that the corresponding compact symmetric space is EVI in Cartan’s nota-
tion. Here K=Spin(12)x . Sp(1) where C is a central subgroup of Spin(12)x
Sp(1) generated by an element of the form (g, —1) with 1 g€ Z(Spin(12)).
It is known that Z(Spin(12))=Z,HZ, which is multiplicatively generated by
—1 and e, e,++e;, in the Clifford algebra (see [10]). So we see that Z(K) is
generated also by —1 and e, ¢,-:+¢;; under the identification Spin (12) X 1=
Spin(12), so that the generator of Z(E,) is one of —1, e, e,:++e;, and —e, €;++¢y,.

Now Spin(4) can be diagonally embedded into Spin(12) as a subgroup such
that e, e, e; e, corresponds to e, e,---e;, and moreover it is known that Spin(4)=
Sp(1)x Sp(1). Identifying these two groups, it therefore suffices to choose the
diagonal subgroup of Sp(1)x Sp(1), Sp(1)x 1 or 1xSp(1) as the required sub-
group of E, according as whether the generator of Z(E;) is —1, e, €;,°++ey, or
€1 630y

ReEMARK. The above map ¢ can be no more extended to S*°. Because, if
¢ can be extended to a G-map ¢: S*°—E,, then in virtue of zy(E;)=0 for
4<k<10 we see that this can be done inductively to a G-map ¢,: S**—E, in
the natural way. We now show that this leads to a contradiction. Let £’ be the
canonical complex line bundle over PE, associated with the principal G-bundle
E,—PE, and let 7,,: P"—PE, be the map covered with ¢,. Then ¢3(£’) is just
the canonical complex line bundle over P*. Now, as stated in §§2, 3 below,
the order of 7%(¢")—1€ K(P") is 32, and also that of £’-1€ K(PE,) is 8, so that
8(t%(&")—1)=0 (here 1’s denote the trivial line bundles). Obviously this is a
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contradiction.

Let P"=S"*°|@G, the real projective n-space. Denote the projections
E,—PE, and S*%—P" by the same letter z. Let ¢: S#*°*—E, be the map as in
Lemma 1.1 and 7: P*—>PE, the map covered with ¢. Then it follows that

TlL=!(T .
The map S*°x E,— P3 X E, defined by
(%, 8) = (m (%), ¢(x) )
yields a homeomorphism
(1.2) S+ . E, ~ PPXE,

where let G act diagonally on the product S*° X E,.
We consider the inclusion S?°C . S%° for p<q. Let B?? be the unit ball in
R#¢, By [1], Lemma 3.11 we then have the G-equivariant homeomorphism

S0 8§20 ~ Int B?%x S1-?0
given by
(215 *+s xq) e (CTRER xp)» (xp+1 Ay ey Xy 7))

where A(a}4 -+ +x5)?=1 and Int A denotes the interior of 4. Let us put
Se=PBr1/S*? with the collapsed S?? as base-point. Then the above ho-
meomorphism induces a G-equivariant homeomorphism

(1.3) S0/ 820 n SO §4P0

where X, =X U {+1}, the disjoint sum of X and a point +, with -+ as base-point.
Let k& denote either K or KO and let A; be the equivariant A-theory as-
sociated with G. Using (1.3) we have a cofibre sequence
SPOXX S S0 X L 3PN STPON X,

for a compact G-space X where 7 is a canonical inclusion and j is the composite
of a canonical projection with the homeomorphism of (1.3). Applying A to this
sequence, we obtain an exact sequence

(1.4)
. 8 .. 7. ¥
o= R (S?POX X)) = he(SPOASTPA X L) = ho(SPX X) = hG(S*OX X) —>---
where 8’ is the coboundary homomorphism and moreover we have
(1.5) &' (xi*(y)) = 8'(x)y
for x€h§(S*°x X) and y EAE(S?° X X).
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Here we note that if X is a free G-space then there is a canonical isomor-
phism A¥(X)=h*(X|G).

b) From [3, 11, 12] we recall the Thom isomorphism theorem in G-
equivariant A-theory. We view 5*° as a union B%°U B™° of two copies of B*°
intersecting on their boundaries, that is, B}° N B%°=S*° and also view the centre
of B™° as base-point of *°. Moreover we regard G as a subgroup of Spin(zn)
consisting of +1 and S™° as a canonical G-invariant subspace of Spin(z) as in
[6].

We first consider the complex case. Let A3,: Spin(2n)—GL(2"-!, C) be the
even half-spin representation of Spin(2n). Let us set L=R"®C and denote
R*QC by kL. Define E to be the quotient of the disjoint union B*x C*"™'U
B20% 2#=1 L by the equivalence relation which identifies (x, v) with (%, AZ,(x) v)
for x&8%° and v&€C?~". Then E becomes a G-vector bundle over 32*°. So
we write 7y, o=[E]—2"*"'[L]EK;(Z**°). Here L denotes the bundle with fibre
L and [F] the isomorphism class of F. Then x> 7,, ;A x defines an isomorphism

bano: Ko(X) S Ro(ZA X)

where X is a compact G-space with base-point.
Let ¢: h;—h be the forgetful functor and j: B»*—Z%?? the projection.
Then we have

(1.6) P(Tano) = p"  (up to sign) and  j¥*(7y, o) = 2*"(1—L)

where u EK(S?)==Z denotes the Bott class and let us view K;(B**°)=R(G), the
complex representation ring of G. (We may assume that ¢(p, o)=p". Because
it suffices to replace 73, ¢ by —L7,, o, if necessary.) In particular, because Ag,
is real, by using H=R"° instead of L in the above we can define a similar ele-

ment 7§, € KbG(Es”'°) satisfying
(1.7 G(T8n0) =75 (up to sign) and j¥*(7§, ) =24 (1—H)

where WBEKNO(Ss)gZ denotes the Bott class and let KOg(B%**)=RO(G), the
real representation ring of G. (We may also assume that ¢ (7§, o)=2»; for the
reason similar to 7,,,). And also multiplication by 7§, , induces an isomorphism

Jon 0t KOG(X) S KOg(35%°A X)

where X is a compact G-space with base-point.

To explain one more type of the Thom isomorphism in the real case we
make some preparations. Suppose that X is a Real space with trivial Real struc-
ture in the sense of Atiyah [1]. By a Real (resp. quaternionic) vector bundle
over X we mean a complex vector bundle E—X together with a conjugate linear
involution (resp. anti-involution) J;: E—E preserving fibre. Let KR (resp. K.Sp)
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denote the K-functor of Real (resp. quaternionic) vector bundles. Since X is a
trivial Real space, the assignment E+- CQE defines an isomorphism

KO(X) = KR(X)

where C has the standard Real structure by complex conjugation. So we identi-
fy KO(X) with KR(X) via this isomorphism henceforth.

The argument parallel to the above can be done in G-equivariant theories.
Namely we have a similar isomorphism

KO4(X) = KRy(X)

for a G-space X with trivial Real structure. And so we analogously identify
KO4(X) with KRy(X) via this isomorphism.

We assume that the quaternionic structure on H is right multiplication
by j. Define a bundle isomorphism

a: S HS SOx H

by a(v, w)=(v, vw) for v € S**(=the unit quaternions) and wEH. Let H de-
note the trivial bundle over B** with fibre H. Then the triple (H, H, ) defines
an element of KSp(=**) which we denote by o. The construction of this ele-
ment is similar to that of 7,, , as stated below. View = as a union B%*U B%*
of two distinguished balls B**’s intersecting on the boundaries S%*’s, with the
centre of B%* as base-point. And define E to be the quotient of the disjoint
union BY* x HU B%* X H by the equivalence relation which identifies (v, w) with
(v, vw) for vES"* and wEH. Then o is given by o=[E]—[H]E KSp(Z™*).
It is known that o has the following properties.

(1.8) s(e)=p’,oANcH=1n, and ocAco =17,.

Here s denote the complexification functor KSp—K, A, the smash product

induced by the exterior tensor product over C and 75, a generator of I?O(S")%Z.
N\

In general, the exterior tensor product EQ¢F of two quaternionic vector
bundles E—X and F—Y becomes a Real vector bundle over X X Y with Real

structure jEé\)c Jr. Hence we see that the functor A.: I&Z)(X)@K’E}(Y)—)
KO(X A Y) can be defined.

Now we are ready to state another Thom isomorphism in the real case.
Regard S*° as ahe unit quaternions and define a G-equivariant bundle isomor-
phism

ag: SYxHS SYx HQH
by ag(v, w)=(v, vw) for vES*® and wEH. Then the triple (H, HQH, o)
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defines an element of KEZJAE‘"’), denoted by o, analogously to o where H is
the trivial vector bundle over B*° with fibre H. Let

‘Tf,‘; = O'G/\C UEKAég(24'4) .

Then 7§, satisfies
(1.9) P(184) = mgy c(7§0) = T\ p? and ¥, ) = (1—H) 5,

where i: S4C3** is the inclusion, ¢: KO;—K; is the complexification functor
and let KOy (Z**)=RO(G)+n,. And moreover it is known that multiplication
by 744 induces an isomorphism

di4t KOG(X) 5 KOG (3 A X)
for a compact G-space with base-point.

c) We state here the construction of the elements of dgeree —1 and —5
and also recall the square formula for these elements. Let X be a compact space
with € X as base-point, and let f: X—>GL(n, F) be a base-point preserving
map where we regard the unit matrix I, as a base-point of GL(n, F). Let
a: S XXX F'->S8""x XX F" be a bundle isomorphism given by a(1, x, v)=
(1, x, v) and a(—1, x, v)=(—1, «, f(x) v) for ¥€X and vEF". Then the triple
(E*, E*, &) defines an element of 2-(X) in the way mentioned in b) above where
E" is the trivial bundle over B> x X with fibre F" and /=KO, K or KSp ac-
cording as F=R, C or H. We denote this element by

B(HERX).

The construction of this element is similar to that of . But we explain
it simply again for use in the following. Decompose Z**A X as a union
CiXUC_X of two cones C. X=[0, 1]xX X/1 X X U [0, 1]X x, and C_X=[—1, 0]
XX[/(—1)xXU[—1, 0] X%, and define E to be the quotient of the disjoint
union CL XX F"U C_X X F" by the equivalence relation which identifies (0, x, v)
with (0, x, f(x) v) for x€X and vEF". Then B(f)=[E]—[E" €k (A X)=
hY(X).

Also we need a G-equivariant version of this construction.

Now we mention the square formula. In case of F=C, that is, B(f)€E
K-(X), it is well-known that B(f)*=0. In case of F=R, that is, B(f)E

KO-Y(X), by [4] we have

(1.10) B(f) = m(B( f)+nB(f))

where \? f: X—GL((3), R) is the map given by A\ f(x)=f(x)A f(x): R"AR"—
R"AR" for x€ X and 7, denotes a generator of KNé(S‘)zZZ. In case of F=H,
that is, B(f)EKSpY(X), it follows that oA B(f) € KR-(X)=KO-5(X). So
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we write for this element

B(f) = o Ac B()EKO(X) .
Then by [12] we have
(1.11) B(f) = m(BOE)+nB(1AL)

where A% f: X—>GL((%¥), C) and 1A f: X—GL(2n, C) are the maps respec-
tively given by Real maps (A% f) (x)=f(x)A ¢ f(x): H'A¢ H*->H"\ ¢ H" and
(AAcf) (®)=1Acf(x): HN¢c H">HA ¢ H" for x€ X.

Finally we make a remark about K- and KO-theories. As usual K*(X) is
a Z,-graded algebra with the coefficients K%+ )=<Z and K~'(+)=0. However,
when we deal with KO*(PE,), we regard for convenience K*(X) as a Z;-graded
cohomology theory with the coefficient ring

K*(+) = Z[p]/((n*=1)

where u is as above. Of course KO*(X) is a Zg-graded algebra with the coef-
ficient ring

KO*(+) = Z[ny, 7a)/(2m1, 03, m1 70 78 —4)

where 1,, 5, are also as above.

2. The K-groups of E, and P"
By [8] we have

Proposition 2.1. K*(E))=Az(B(py), ***, B(p,)) as an algebra where p,, -+, p,
are the fundamental irreducible representations p;: E,—~GL(d;, C) of E,.

According to [14], using the same notation, we can consider that p,, ps, ps, ps
are real, that is, continuous homomorphisms such that

pi: E;— GL(d;,R) for i=2,4,5,6
and p,, p3, p; are quaternionic, that is, continuous homomorphisms such that
pi: E,— GL(d;/2, H) for i=1,3,7

where d,=56, d,=1539, d;=27664, d,=365750, d;=8645, d;=133 and d,=912.
Therefore, by [13] ,together with (1.10) and (1.11), we have

Proposition 2.2.
KO*(E7) = Agonct(B(p:) 6 =2,4,5,6), B(p,) (1 =1,3,7))

as a KO*(+)-module, where the generators are subject to the relations
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Bp:) = m(B( py)+d; B(p;)) for i=2,4,56 and
B =mBMNLp;) for i=1,3,7.

RemaARrk. It is immediate by definition that
mBp;) = B(r(py)) for i1=1,3,7

where 7 is the realification functor.

By «: we denote the real line bundle over P"
S#+u0%  H — P

and set v,=v,—1 EKNO(P") where 1 denotes the trivial real line bundle over P".
Also if there is no confusion, then by the same symbol ¢; and v, respectively we
denote ¢(7;) and ¢(v,) where ¢ denotes the complexification functor KO—K.

Denote again by A3, the restriction of A3,: Spin(2n)—GL(2*", F) to S?*°
where F=C and F may be taken to be R if =0 mod 4. Let f: P?*'—
GL(2*, F) be a map given by f(z(x))=A3.(x)’ for x&S5?**°. Then B(f)E
K-Y(P**-) or KNé“(Pz"‘l) according as F=C or R. Write v,,_;==8(f). Then
we have

Proposition 2.3. [2]. 1) K°(P**"Y) = Zp-1+7Y,,-,, K '(P" )= Z-v,,-,
where the generators are subject to the relations ¥3,— ;= —2%pp—1, Vag-1="29-1 Van-1=0.

2) RYP**)=2Zyp-7,,, K~(P*)=0 where 7,, is subject to the relation v3,—

_272n'
From [12, 11] we quote data on the algebra structure of KO*(P") for n=

3,4, 8 needed in §84,5. To describe the results we recall some generators.
The bundle automorphism of S*°x H, given by (u, v)+ (4, u*v) for ueS*°

(=the quaternions) and v € H, defines an element 55 KSp~}(P?). Let us put
e AY D{,EKNCJ)“S(P3). Moreover we denote by u; an element of KO~¢(P?)
satisfying the formula ¢(uz)=p® 73, by w4 an element of KNO‘G(P‘) satisfying the
formula ¢(u,)=24* v; and by 5z an element of K’\O‘Z(Pa) satisfying 7*(pg)=1n, v,
where 7: P7C P? is the inclusion. Then v7e have
Proposition 2.4. 1) I?O°(P3)=Z4-73,

I?O_I(Pa) = Z-n93DZy 1 Vs,

I?O_Z(Ps) = Z, 71 Vs,

KO-(P*) = KO-4(P*) = 0,

KO(P*) = Z-55,

IgO_G(PS) = Zy 735D Zy ps and

RO (P*) = Zyonf 5s®Zyom, s
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where the generators are subject to the relations

Vi=—273, Di=14 ps="3 55=0, 7 B="3 ps and 7} p;=27;.
2) KOPY) = Zv,,
KO (P = Zym .,
KO *P*) = Zy-ni v,,
KO=3(PY) =0,
IE‘O"‘(P“) = Zy* N Ys>»
KO-5(PH) =0,
KO-P*) = Z,-p, and
180-7(1'“) = Z2'771 My

where the generators are subject to the relations

Vi= 29, pi= =Y =0 and ntp,=4v,.
3) KOPY) = Zms,
KO™(P*) = Zy-m %,
KOPY) = Z,-5@ 27} %
KO-3(P?) = Z,-n, s,
I?O“(Ps) = Zg'mYs and
KO-5(P*) = KO-¢(P*) = KO-"(P%) = 0
where the generators are subject to the relations
Vi= —2vyy, v s =05 =0 and 7ivs=8n,,.

In the following sections we use freely the results of Propositions 2.1-2.4
without making reference to these propositions.

To state the main theorems we now provide certain of the generators of
K*(PE,;) and KO*(PE,). Let £’ be the canonical real line bundle over PE, as-
sociated with the principal G-bundle E,—PE, and let us put £=§£'—1 EK"NO(PE7).
We denote ¢(£') and ¢ (§) respectively also by the same letters £’ and £ unless
there is confusion.

Since p,, p; and p, are not trivial on Z(E;) and the greatest common meas-
ure of d,, d; and 4, is 8, we get

(2.5) 8c(£) =0, sothat 16§ =8y E=0.

As the map f in §1, c) we take the maps PE,—~GL(d,, C) (i=1, 3, 7), PE,~
GL(114d,, C), PE,~GL(494d,, C) and PE,—~GL (57d;, C) given by = (g) p:(2)?
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(1=1,3,7), n(g)— 114p,(8) (7p:(£)) ™, 7(8) —>494p:(8) ps(8)™" and z(g)—57p4(g)
(1729p,(g)) ! for g € E, respectively where kp; denotes the k-times direct sum of

pi» Then for B(f)'s we write
B(p) ¢=1,3,7), B(114p—7p;), B(494p,—ps),
B (57p,—1729p,) €K ~Y(PE,)

in the order defined above. Using p; (:=1, 3, 7) viwed as a quaternionic re-
presentation we get

BE) (=137, 8 (4p—Tp), B (*#9p—py),
B’ (57ps—1729p,) € KSp~{PE,)

quite similarly and so multiplying them by & (using multiplication A.) we have
B(p?) ¢=1,3,7), B(114p,—T7p;), B(4%4p—ps),
B(57p:—1729p,) € KO~5(PE,) .
ReMARK. By definition it follows that

B(57ps—1729p;) = 2478(114p,—Tp,)—578 (4% p,—p;) and
B(57ps—1729p;) = 2478 (114p—7p,)— 578 (494 p,— py) .

Because p,, py, ps and pg are trivial on Z(E;), they factor through PE, and so
they can be regarded as complex and real representations of PE,. Hence they
defines

B(p)ER-YPE,) and B(p;)€KOYPE,)
for i=2,4,5, 6.
3. The complex K-groups of PE,
One of the main theorems is the following.

Theorem 3.1 [7,9]. With the notation as in §2

K*(PE;) = Az(B(ps) (0= 2,4, 5, 6), B(114p—T7p,), B(494p,—ps), 7)
®(Z-1DZ;-§)

as an algebra where & and T are subject to the relations
=28 and Er=0
and 7 is defined in (3.19) below. Here (and henceforth) we write xy for xXy.

The proof is divided into some steps. By (1.4) in case of 2=K, p=qg—4=4
and X=E, we have an exact sequence with Thom isomorphism
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8, rk >k
o> KE(SYOX Ey) = R E(ZHA SYOA Byy) L KE(SOX Ey) <> KE(SH X E,) —>++r
=1 ¢y
KH(S“XE,)

Applying (1.2) to this we get an exact sequence

(32) = K¥P*XE,) —8> K*(P*XE,) !> K¥(S* X E,) -{> K*(PPX E;) =+

and also by (1.5) we get
(3.3) d(xI(y)) = 8(x)y

for x€ K*(P® X E,) and yEK¥(S*°* X E,).

Using (3.2), (3.3) we first deduce the structure of K§(S*°XE,) from Pro-
positions 2.1 and 2.3. For this we determine the coboundary homomorphism
8 of (3.2) on each additive generator of K*(P*XE,). Here we notice that
K*(P*x E,) is isomorphic to K*(P*)Q K*(E,) since K*(E,) is torsion-free.

Observe the exact sequence for the pair (B*?, S*°)

Y j* %
ee—> KEI(S“’) — KG(Eq.O) ‘s KG(B4,0) e
I I I
K™(P%) R(G):my, R(G)

where 7: S°C B*® and j: B**—>3*° are the obvious maps and &' the coboundary
homomorphism. By the exactness we then see that §'(vy)=k(14L) ., for
some REZ. So by forgetting the G-action we get k=1. Hence we have

(3.4) S(wsx1) = (754+-2)x1.

Let p,; S*°X E,—~S*° be the first projection and p¥: K*(P")=K¥§(S*)—
K¥(S*°x E,) the homomorphism induced by p,. Write

E = pl(v)) EK(S* X Ey),
then clearly by definition
(3.5 I(§) = v;x1, sothat §(y;x1)=0.

Let p,: S*°X E,—E, be the second projection and p¥: K*(PE,)=K¥(E;)—
K¥(S*° X E,) the induced homomorphism. We write

B(p:) = p¥(B(p:)) EKGY(S* X E;) for i=2,4,5,6.
Let
fi: PPXE,—~GLd,C) (i=2,4,5,6)
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be the map given by f(z (x), g)=p;(¢(x)* g) for x&€S*® and gEE, where ¢ is as
in Lemma 1.1. Then by definition it follows immediately that
;] (p) = B(f2)

and also

B(f)) = 1xB(p)—B(p: 1) x1

where p; ¢ is the composite P? 5 PE, i GL(d;, C).
To determine B(p; ) we view p; as a real representation and observe B(p; ¢)

in K~()"(P3). According to Lemma 1.1, ¢ is a homomorphism and p; ¢(—1)=1,,.
Therefore p; ¢ can be regarded as a real representation of SO(3). Furthermore

the restriction RO(SO(5))—RO(SO(3)) is surjective and P*~SO(3). It there-
fore follows that B (p; ¢) belongs to the image of the composite K’b"(SO(S))—>
I&)“I(P‘)QKNO”(PL‘) of the homomorphisms induced by two canonical inclu-
sions PPC P*cSO(5). So we get owing to I?O‘I(P‘)zzz-n1 Vs

(3.6) B(p; 7) = nyvs or 0in KOY(P*) for i=2,4,56
for p; viewd as a real representation, so that
B(pi7) =0 in R(PY)
for p; viewed as a complex representation. Consequenctly we get
(3.7) I(B(p:)) = 1XB(p;), so that §(1xB(p;)) =0 for i=2,4,5,6.
Since d(=dim¢ p;) (:=1, 3, 7) are divisible by 8, we write
d;=8l, for i=1,3,7

(here note that /, is odd and , [, even).
Define a map

fit S¥*XE, - GL(8l,,C) for 1=1,3,7
by
fi(x 8) = (As(%)®1,,) pi(g) for xES™, gEE,
where we consider S*°C Spin(8) as stated in §1, a) and I, is the unit matrix of
degree I. Then if follows that f;(—x, —g)=fi(x, g) because of p,(—1)=—1I,
where —1€Z(E;). This implies that f; is a G-equivariant map. Analogously

to B(f) as in §1, c) this map therefore defines an element B(f;) of Kz (S*°X E,),
which we denote by

Bo EKF(SOXE,) for i=1,3,7.

We now consider I(3,,). By definition we see that I(3,,) can be written
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I(8,) = 1xB(p)+B(g)x1 for i=1,3,7
where g;: P>->GL(8;, C) is the map given by
8ilz(%)) = (A3 (%) ®L,) (p: ) (= (%))~

for x€8*°(C.S*°%). So it suffices to determine B(g;). For this consider the ex-
act sequence stated preceding (3.4).
Since Im 8'=Z+(1+L) 7,,, we can write

8'(B (&) = m(14-L) 740 (@)
for some n,€Z. We now determine #;. 'To begin with it follows that
7*(B(8)) = —B(p;i ) (ii).

Because p; in this case is quaternionic, we may assume that p; ¢ factors through
T,,C GL(4l;, H) as follows:

pi 02 Sp(1) (= S**) > T,,CGL(41, H)C GL(8l, C)

where T, is the sympletic maximal torus of GL(4l;, H). Since p; ((—1)=—1,,
by Lemma 1.1 we can put

pi t(x) = (D, oo  x5¢)  for xESp(1)
where ths s(z) are odd integers. Hence we see that B(p, ¢) can be represented
B(p; ) = (2k;+4l) u* for some k,EZ

under the identification K-%(S%)=K(S*). Therefore from (i) and (ii) we get
n;=—(k;+21;) since ¢(7,0)=p* by (1.6). Consequently we have

3'(B (&) = —(ki+2L) (1+L) 74 .
On the other hand
8'(vs) = (14+L) 40
as was verified above. But, since §’ is injective, we get
B(8g:) = —(ki+2L) v,
by comparing with these two equalities. Thus we see that
(3.8) I(B,,) = 1xXB(p;)—(k;+2L;) v3x1 for 1=1,3,7
and so, together with (3.4), we obtain

S(1XB(p) = (ki +28) (vs+2)X 1.
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Because of 2¢,=0, from this it follows that
(3.9) S(IXB(p;) = (k; vs+2k,+4L)x1 for 1=1,3,7.

Using (3.3) it follows from (3.4) that

8((vsx1) 1(8s,)) = (v3+2) By, -
Since v=0, by (3.8) and this we get
3(@sxB(p) = (vs+2) By, -
We need to analyze (v;+2)3,, on the right-hand side. But from (3.8) it is
immediate that
(7s+2) Bo; = (vs+2) X B(p;)—(2k;+41) v3x 1

because of 3 v;=0. Therefore we have
(3.10) 8(¥3xB(p;) = (vs+2)XB(p;)—(2k;4-4L) v;x1 for i=1,3,7.

Furthermore, (3.3) combined with (3.4), (3.5) and (3.7)—(3.10) yields the

following formulas.

(3,11) d(1xx) = 8(vsxx) =10, d(sxXx)= (v:+2)Xx,
3(1xB(p:) B(Pj) x) = (k; vs+2k,+41,) XB(P,') x_(kj ')’3"‘2kj+4lj)xﬁ(f’i) X
¢j=137),
8(vsxB(p) Bp)%)=0 (5j=1,3,7),
8(vsXB(p;) B(P;) x) = —(2k,+41;) V3><:3(Pj) x+(2kj+4lj) v X B(p;) x
+(vs+2)XB(p) Bp)x (j=1,3,7),
8(1x B(p1) B(ps) B(pr) x) = (ky Y3+ 2k +-44) X B(p3) B(ps) %
+ (ks v3+2ks+455) X B(p;) B(pr) x+(Ry ¥s+2k,+4k) X B(p1) B(ps) %,
3(7sXB(p1) B(ps) B(p) ¥) = 0 and
8(vax B(p1) B(ps) B(pr) ) = — (2k;+4l) v3X B(p1) B (ps) ¥—(2ky+4h) v4
X B(ps) B(pr) x—(2ks+415) v3X B (p;) B (p1) *+(7va+2) X B (p1) B (ps) B(pr) *
for x=p(p;,)*B(ps,) (11, *+» 4, =2, 4, 5, 6).

The behaivior of 8 can be completely described by using (3.4), (3.5) and
(3.7)—(3.11). And so from these formulas and Propositions 2.1, 2.3 we get

Lemma 3.12.

Ker 8 = Z,+ (7:X D®A(1x B(p;) (1<i<T)BAL1XB(p) (i = 2,4, 5, 6))
®ALI(Bs) (i=1,3,7))

where 7y, is subject to the relation 3= —2y; and
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Coker 8 = Az, (1XB(p;) (i =2,4,5,6)DZ-(vsx )QAZ(1 X B(p;)
(i = 2,4,5, 0)B(Z- 182 (rsx 1) BAL1XB(p) (i = 1,3,7))
where the generators are subject to the following relations.
v; =0, 4XB(p;)—4(k;+2)v;x1=0 (:=1,3,7),
(4k; 1;—4k; L) vy X 1441, X B(p;)—4; X B(p) = 0 (2,5 =1,3,7),
—4XB(p:) Blp;)—(4k;+-8L;) v X B(p;)+(4k;+8L) vax B(p;) = 0
¢j=137),
(4ks [ —4k; L) v3 X B(p1)+(4k, h—4ky I) v3 X B(ps)
+(4ky ls—4ks 1) v X B(pr)+4h X B(ps) B(pr) +41: X B(ps) B(p1)
+4LXB(p)) B(ps) = 0 and
—4X B(p1) B(ps) Bpr)+(4k;~+8L) vs X B(p1) B(ps)+(4k1+8h) v3 X B(ps) B(ps)
+(4ks+-85) v3 X B(p;) Bps) = 0 .
Clearly the map J: K¥(P*x E;)—>K¥(S*°*XE,) of (3.2) factors through
Coker 8 as follows:
K*(P*x E;) - Coker 8§ = K¥(S*° X E;)

where the first arrow denotes the canonical projection. Again by J we denote
the second arrow Coker 8—K¥§(S*°X E,) which we consider now. Let us put

5 = p¥(v) EKGH(S* X E,) .

Then by observing the exact sequence of (3.2) with a point instead of E, we
can readily check that

(3.13) J(wsx1)=p (up to sign).

(For brevity we assume the sign to be plus in the following.) And moreover
by definition, together with (3.5), (3.7) and (3.8), we easily obtain

(3.14) J(1)= —2¢,
J(AXB(ps)+Blps,)) = —2EB(pi)B(ps,) (iny 57, = 2,4, 5,6),
J@sXBpi)-B(ps,)) = 2E(pi,)+-B(ps,) (i -+, % = 2,4,5,6),
J(AXB(p)) = —2EB, A+ (ki+21) 5 (1=1,3,7),
J@sxB(p;)) =By, (i=1,3,7),
J(XB(p;) B(p;)) = —2EBs, Bo;+(ki+21) 585, —(k;+21) 98, (1,5 = 1,3,7),
JwsXB(p:) Blp;) = 2Bs, Bo; (67 =1,3,7),
f(l XIB(PI) ﬁ(Ps) B(P7)) = —25,8,,1 1893 Bp7+(k1+211) 57:803 ﬁp7+(k3+213) ﬁBm lepl
+(k7+217) Dﬁpl :893 and
J (s X B(p1) B(ps) B(pr)) = 9B, Bey Be, -
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From Lemma 3.12, (3.5), (3.7), (3.8) and (3.14) we get
Lemma 3.15.
KH(S* X E)) = (Z-19Z,- @A) @A5(B(p:) (i = 2,4,5,6), By, (i = 1,3,7))
where § and v are subject to the relations
B=_2EE=0.
Proof of Theorem 3.1. Observe the following exact sequence for the

cofibration S%°x E,—l>Bs'° X E,—LE“/\ E,, with Thom isomorphism
. e 5
o> RE(EPONE) 1> KH(BOXE) > KE(S¥ X Ep) -
=1 ¢'8,o Il
K¥(E,) K*(PE;)
I

K*(PE,)
where i, j are the obvious maps and &’ the coboundary homomorphism. Now
by (1.6) j*(75 0 A 1)=—8E and so by Proposition 2.3, 1) or (2.5) we get j¥(r5 0/ 1)
=0. This implies that the composite j¥*¢; , is zero. Hence the above sequence
becomes a short exact sequence

I 8
(3.16) 0 —> K*(PE,) = K¥(S**X E;) — K*(PE,) — 0,

provided with the formula 8(x1(y))=38(x) y (x€ K&(S*° X E;), y € K*(PE,)) where
I and & denote the homomorphisms induced by ¢* and §'.
Let

B(p}) = pE(B(p}) for i=1,3,7.

For these elements and the ones of K*(PE,) given above we can check easily by
definition that there holds the following formulas.

(3.17) 1(¢) =E I(B(p) = &(p) ((=2,4,5,6),
1(B(114p,—T7p;)) = (E+1) (1148,,—785,) ,
1(B(494p1—ps)) = (E+1) (4948,,—85) »
(B(57ps—1729p,)) = (E+1) (578, —17298,,), 50 that B(57ps—1729p;) =
247B(114p,—7p,)—578(494p,—ps) (cf. Remark in §2 after (2.5)) and
1(B(p?) = B(p?)
= (g‘f‘l) ﬁpi_li b (i= L3, 7) .

Moreover from definition we obtain
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(3.18) 3(B,,) = I(E+1) 1=1,3,7) and 8(»)= E42.
From this it follows that

3((+2) (4985,—38,,)—») = 0.

Therefore we see that

(3.19) there exists an element 7 of K~!(PE;) such that
I(r) = (E+2) (4985,—3Bs,)— .
Note that r satisfies J(&7)=1(7?)=0, so that Er=7*=0.
Denote by R* the algebra on the right-hand side of the equality in Theorem
3.1. Since [ is injective by (3.16), we then see by (3.17), (3.19) and Lemma
3.15 that K*(PE,) contains R* as a subalgebra.
By (3.17) and by using the injectivity of I again we get
4948(p1)—B(p3) = (§+2) B(494p1—ps) »
1148(p})—B(p?) = (£+2) B(114p:—7p,) ,
578(p3)—17298(p7) = (+2) B(57ps—1729p;)

in K*(PE,) and hence also by (3.19) we have

(3.20) B(p}) = 77—3(£+2) B(114p,—T7p;) ,
B(pd) — 34587— 1482(6+2) B(114p,—Tp) —(E-+2) BA%4pi—py)
B(p5) = 1147 —49(£+2) B(114p,—7p,) .

Furthermore, using the formula of (3.16), together with (3.17) and (3.18), yields

(3:21)  8(Bs, Bey) = —7(E+1) B(494p1—p) ,
3(Bp, Bo,) = —(E+1) B(114p,—7p,),
(B, Bs,) = (E+1) (1148 (494p,— p;) —4948 (114p,—7py))
= —2(§+1) B(57p;—1729p,) ,
8(Bs, Bey Bo,) = —(E+1) B(114p,—7p,) B(494p,—ps) ,
S(DBP,‘) = B(Pf) (i = 1,3, 7) ’
3(®B5, Br,) = —B(p) B(494p.—p3) ,
3(Bs, Bs,) = —7B(114p,—7p,) ,
8(9Bs, Be,)= —494B(114p,—p;)+B(p7) B(494p,—p;) and
8(9Bs, Bo, Bo;) = —7B(114p1—7p;) B(494p1—ps) -

Since § of (3.16) is surjective, from (3.17), (3.18), (3.20), (3.21) and Lemma
3.15 we infer that R* fills K*(PE,), so that

K*(PE,)) = R*
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which completes the proof of Theorem 3.1.

4. The real K-group of PE,

In this and the following sections we prove the following theorem.
Theorem 4.1. With the notation as in §2

KO*(PE,) = Agox(B(p:) G = 2,4, 5, 6), B(114p,—7p,), B(49%4p,— ps), B(p2))
2 1P ZEDZ, 0D Z,- k)

as a KO*(+)-module where the generators are subject to the relations

= —28,4pE=0
ﬁ(Pi)z = n(B(\? p))+d; B(p) (= 2,4,5,6)
B(114p,—T7p,)" = n B(NE p1) »
B(494p,—ps)* = 01 B(NE p3) »
B(pl)? = EB(p}) =0, aB(p) = 7i EB(p2)
=npa=ya=0

and a is defined in (4.17) below.

The proof is quite similar to that of the complex case, though it is more
complicated. In this section, using Propositions 2.2 and 2.4, we deduce the
structures of KO¥(S*°X E,) and KO¥(S*°X E%). We begin with the case of
KO¥(S**XE,;). By (1.4)in case of ~=KO, p=q—1=4 and X=E, we have an
exact sequence with Thom isomorphism

S~ s %
o> KO¥(S*0 5 E)) > RO¥(SHOA SYON By, Yos KOK(S™0 X Ey) o KOK(SH0 X Ey)—> -+
=1 m
KO¥(S* X E,)
I
KO*(E,)
Using (1.2) this yields an exact sequence

8 I
(4.2) - KO¥(P*X E;) > KOX(E,) g KO¥%(S59% E,) = KO*(P¥X Ey) — -+

and by (1.5) we have
(4:3) S(xI(y)) = 8(x)y

for k& KO*(P3 X E;) and y € KO¥(S*° X E,).
Similarly to the complex case we first investigate the coboundary homomor-
phism 8 of (4.2). Here we also note that KO*(P3 X E;)= KO*(P?)@ go++) KO*
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(E;) since KO*(E,) is a free KO*(+)-module. Let p,: S*°X E,—~S>° and
D2t S**X E,—~E, be the obvious projections. And let p¥: KO*(P*)=KO¥(S>°)
—K¥&(S**X E,) and p¥: KO*(PE,)=KO¥(E,)—K¥(S*°X E,) denote the homo-
morphisms induced by p, and p,. Define

E = pH(v) EKOL(S** X Ey),

B(p:) = p¥(B(p:) EKOGNS* X Ey) (i=2,4,5,6),

B(P?) = >2k(iel(Pf) (i =13, 7) ’

B(114p,—7p;) = p¥(B(114p,—7p;)), B(494p1— ps) = p¥(B(494p1—p3)) »

B(57p—1729p7)) = pH(B(57p,—1729p,)) EKOF(S X Ey) .
Then

(4.4) I(E) = v;x 1, so that 8(y;x1) =0 and
I(B(ps)) = 1X B(p;)+m vsx 1, so that §(1x B(p,)) = 0
for i=2,4,5,6.

Here the first formula is immediate from definition and the proof of the
second can be found in that of (3.7) (in particular, (3.6) is essential). Also the
argument similar to that of (3.4) shows that

(4.5) S(pyx1) = 2.

Let A;: S>°CSpin(5)—>GL(2, H) be the composite of the canonical inclu-
sion S$*°C Spin(5) with the spin representation A; of Spin(5) [10]. We denote

by
By EKSpsH(S** X E;) for i=1,3,7
the element B(f;) of KSps'(S>° X E,) for the map
f;: S¥°X E, — GL(4l;, H)

given by fi(x, 2)=(As(x)®1Ly;,) pi(g) for x€S>° and g&€E, which is a G-
equivariant map in the sense of f;(—x, —g)=—f;(x,£). And let us put

Bo; = A¢ By, EKOF(S*°XE;) for i=1,3,7.

Then by the argument similar to (3.8) we have

(4.6) 1(8y,) = 1XB(p)—(ki+21) 93 x1 for i=1,3,7
and so, together with (4.5), this shows
4.7) 8(1xB(py)) = (k; Vst 2kt 4)x1 for i=1,3,7.

Consider the exact sequence for the pair (P4, P?)
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N 5
o> KO-S(PY) 5> KO-5(P%) > KO-5(S%) > 0
l Il I
Ly py Zyomy 93D Zy s Ly

where 7 is an inclusion PPC P* and &’ the coboundary homomorphism. Then
using the facts such that c(us)=pud s, c(u)=2u27y, we get i*(u,)=n, y; and
hence 8’(u3)=n, which implies that

(4.8) S(usx1) =19, .

Using (4.3) and the fact such that p§==5, 4;=0, from (4.5), (4.8) and (4.6) it
follows that

(4.9) 3(2s%B(ps)) = 28(p:) and 8(usx B(py)) = m Blps) for i=1,3,7.

Using (4.3)—(4.9), the argument analogous to that of (3.11) proves the
following.

(410)  3(1xB(p;) B(p;)) = (2ki+-4L;) B(p,)—(2k;+-41,) B(p:) ()= 1,3,7),
3(vsXB(p;) Blp;)) =0 (5j=1,3,7), ,
8(23 X B(p;) E(P,)) = 28(p;) E(Pj) ¢j=137),
8(us X B(p:) B(p;)) = m Bps) Blp;) (5 =1,3,7),
3(1XB(py) B(ps) B(pr)) = (2k,+41) B(ps) B(pr)+(2ks+415) B(pr) Blpr)
+(2k,+41;) B(py) Blps) »
8(vsxB(p1) Bps) B(p)) = 0,
8(53X B(p1) B(ps) B(ps) = 2B(p1) Blps) B(p;) and
(13X B(pr) B(ps) B(pr)) = . Blpy) Blps) Blpr) -

By (4.2) we have a short exact sequence

I
0—> Coker 8 % KO%(S*x E;) = Ker § — 0

where again by J we denote the homomorphism induced by J of (4.2).
Combining (4.3)-(4.10) and Propositions 2.2, 2.4 we get

Lemma 4.11.

Coker 8 = Agorry (B(p;) (6= 2,4,5,6), E(‘o’.) G=1,3,7)/2,n)
as a KO*(-+)-module where the generators are subject to the relations

B(py)* = m(BO p)+d; B(p))) (G=2,4,5,6),

Blp) =mBAEp) ¢=1,3,7),
(2k;+41) Blp;)—(2k;+41) B(p) = 0 (5,j = 1,3,7),
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(2ky+-41) B(Ps) B(Pr)+(2ks+4L) B(p,) B(P1)+(2k,+44) B(py) B(ps) = 0
and

Ker 8 = Axo*(+) (1 Xﬁ(P,) (i = 2’ 4) 5’ 6)’ I(ﬁp;) (j = 1’ 3’ 7))
Q(Z-1DZ,*(m 93X 1)DZ,+ (75X 1))

as a KO*(+)-module where the generators are subject to the relations
(m P X1 =17;39x1=0,

B(p:)* X1 = (BN p;)+d; B(p)) X1 (i = 2,4,5,6),
I(B) = 1Xm BAE p)) (= 1,3,7).

As for the homomorphism [ we have by definition

J(B(pi)B(p:,) Ble)+Bp,)) = —14EB(pir)-B(p1,) Bosyr+Bs,
(% +++3,=2,4,5,6; 4, -+, ;=1,3,7). Moreover let us put
B = p¥(us) EKOFH(S* X E,) .
Then we have
I(R) = m p3x 1

which can be obtained by observing the proof of (4.8). From these formulas,
(4.4), (4.6), Lemma 4.11 and Proposition 2.4 it follows that

Lemma 4.12.
KO¥(S** X Ey) = Agorer (B(py) (1= 2,4,5,6), By; (7 =1,3,7))
®(Z‘ I@Zs'g@zz'/j‘)
as a KO*(—+)-module where the generators are subject to the relations
EZZ —2§)2ﬂ4§: O,ﬁzz'rh/j»:Eﬁ::O, 7]%/224‘.?)
B(p) = m(BO p)+d; B(py)) (1=2,4,5,6),
B:; =M B()‘% p) 6=137).
ReMARK. By definition it follows readily that there holds
Blp) = E+2) 8, (=1,3,7),
B(114p,—T7p;) = (E+1) (1148,,—78,,) »
B(494p,—ps) = (E+1) (49485, —Bs,) »
B(570—1729p)) = (E+1) (578,,—17298,,)
in KOz5(S>° X E,).
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Next we deduce the structure of KO¥(S*°X E,) from information about

KO¥(S**x E,) and KO*(P*xE,). For simplicity, for the generators of KO¥
(S*° X E,) we use the same notation as in KO¥(S>**X E;). Let p;: S*°X E,—~S%°,
pa: S*°X E,—E, be the projections and let p¥: KO*(P?)==KO¥(S*°)—KO¥(S*°
X E;), p¥: KO*(PE,)=KO¥(E,)—KO¥(S*" X E,) be the homomorphisms induc-
ed by p,, p, respectively. Write

& = p¥(7,) EKOY(S*° X E;), , = p¥(ss) EKOFH S X E;) ,

B(p) = pEB(p)) EKOF(SM X E) (i=2,4,5,6),

BleD = PEE(D) (= 1,3,7),

B(114p,—7p;) = pE(B(114p1—7p7)) ,

B(49%4p,—py) — PHBEE4p—py))

B(57p;—1729p,) = p¥(B(57ps—1729p,)) EKOG(S*° X E;) .

Consider the following exact sequence of (1.4) with Thom isomorphism

8 - .
w2 ROE(SHMA SEOA Eyy) Ls KOK(S™ X E;) > KOK(S¥ X Ey) —---
=1y, Il
KO¥(S*°X E;) KO*(P*X E,)
This induces an exact sequence

5 I
o> KOX(S5O% Ey) A KO%(S* X E;) = KO*(P*X E;) —>++-

and by (1.5) we have

S(*I(y)) = 8(x)y
(€ KO*(P*X E,), y= KO¥(S*° X E,)) which is used freely in the following.
From definition the direct computation yields

(4.13) I(§) = 7sx1,
I(B(p:)) = 1XB(p)+&m vsx1 (i=2,4,5,6;=0o0r1),
I(B(p}) = (vs+2) X B(p) —(2ki+-4L) 75X 1 (1= 1,3,7),

I(B(114p,—7py)) = 114X B(p1) =7 X B(p)+(114+ (ky+-25)—7 - (k;+2L)) 5 X 1,
I(§(494P1"‘P3)) = 494X B(p))—1 X B(ps)+(494- (ky+21)— (ks +2L)) 53X 1,
(B(57ps—1729p,)=2478(114p,—7p,)—57B(494p,—p;) by Remark in §2) after

(2.5)).
d(vsx1) =10, 8(sx1)=E+2, d(psx1)=n,
d(I1xB(p)) =0 (1=2,4,5,6),
S(1xB(p:)) = k(E+2)+44(E+1) (1=1,3,7),
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3(vsxBlpy) = —4(E+1) (= 1,3,7),

8(2:xB(p:)) = E+2) By, (1=1,3,7),

(s X B(p;)) = m By, 1=1,3,7),

8(1xB(p:) Blp;)) = (E+1) ((k(E+-2)4-4L) Bo;—(Rj(E+2)+41) Bsy)

¢j=137)),

8(vsX Blp:) Blp;)) = ES(1XB(p;) B(py) (15 =1,3,7),

8(D3><B(Pi) B(P;)) = (E—{—Z) ﬁp; :89,' (i’j =13, 7) ’

S(Iﬁsxﬁ(f’i) E(P,)) =n lep; ﬁPj (4j=13,7),

3(1%X B(p1) Blps) B(pr)) = (E+1) (Ri(E+2)+4L) By, Bp, 4 (Rs(E-+2)+41s) Bo, Bo,
+(k(E+-2)+4L) Bo, Bsy) »

8(vs X Blps) B(ps) Blpr)) = ES(1 % B(ps) Blps) Bler) »

8(2s X Blpy) Blps) Blpr)) = (E+2) Bo, Bo, Bp, and

813X B(p1) B(ps) B(pz)) = m Be, Boy Be, -

From (4.13) and Propositions 2.2, 2.4 it follows that

Lemma 4.14.
Coker 8 = Agoxn(B(p;) (6 =2,4,5,6), Bo;(j = 1,3, 1)) R(Z,+ 1D Z,- r)
as a KO*(+-)-module where [ is subject to the relations
P=ngpB=mip=0
and Ker § is a submodule of KO*(P? X E,) generated by the elements of
Axorco(1XB(p:) (1= 2,4, 5, 6), 1X0, Blp;)—(k;+2L) m 25X 1 (j = 1,3,7),
I(B(114p,—7p,)), 1(B(494p1—p3), 1(B(p}))@M
where M is a submodule of KO*(P?X E,) generated by
1, 75X 1, 293X B(p1), 73X Blps), YsX Blpy), 273X B(p1) Blps) »
273 B(py) B(py)s Y3 X Blps) Blpr)s 2vs% Blpy) Blps) Blpr)s mX Blps) s

m Vs X B(p;), mX B(p;) B(Pj)’ 7 Y3 X B(p;) B(Pj) =137,
X B(p1) B(ps) B(pr) m Vs X B(p1) Blps) Blps) -

Denote by the same letter J the homomorphism Coker §—KO¥(S%°x E,)
induced by J. We now study this J.
By (1.9) we see readily that

(4.15) JO)=—n¢

and by observing the exact sequence preceding (4.13) with a point instead of E,,
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we get
(4.16) JBE=5.

Here we construct some new elements of KO¥(S*°XE;). Define a G-
equivariant bundle isomorphism

E,XH"1 =~ E,x H"'\QH

by (g, v)H(%(g) v) for g€ E, and v H*. This isomorphism defines an ele-
ment &' EKSps(S"*AE,;) in the way similar to that of o in §1, b) and so
ocAca'€KOGHZ"AE,). Since we have canonical isomorphisms KOg¥Z"! A
E,)=KO3% (" A\ E,)== KO3%PE,), we can consider 7, o A ¢ a’ € KO-(PE;). We
write
(4.17) & = n o A¢ o' €KO-S(PE,)
and also
a = pF(a)EKOG%(S*° X E,) .
Let us view p; (1=1, 3,7) and A, respectively as a quaternionic represen-

tation p;: E,—~GL(4l;, H) (=1, 3,7) and a real representation A,: Spin(9)—
GL(16, R) [10]. Then we define a G-equivariant bundle isomorphism

SYOXEXHY Q¢ H = S*"XE,xH" Q¢ H
by (%, g, v)(x, &, (Ad(¥)R1}) (pi(8)R1) (v)) for x€S*°, g E; and vEH* Qc H

where S%° is regarded as a canonical subspace of Spin(9) also as stated in §1.
In the way similar to that of 3; this defines an element of KOg(S*° X E;) which
we denote by
Bo,EKOGH(S*XE;) for i=1,3,7.
And we write
Bu = J(#B,,) EKOG'(S*° X E;) .

Then a short computation proves that

(4.18) nB(p}) = (E+2) By, (1= 1,3,7)
s B(494p,—py) = (E+1) (4948,,—Bs,) ,
N4 ié(114'P1—7P7) = (E“" 1) (1 14:3::1_7:3;»7) ’
14 B(57ps—p;) = E+1) (578,,—17298,,) ,
49488(0%)—B(p%) = (E+2) BA%p,—ps) ,
11483(p})—78(p%) = (E+2) B(114p,—7p;) ,
578(p3)—17298(p%) = (E-+2) B(57ps—1729p,) ,
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so that

B(p3) = 494B(p1)—(E+2) B494pi—py),
B(pF) = (2E+4) 74 Bo,—114B(p%)+(E+2) B(114p,—7p;) .

And moreover, further computation shows that

(4.19) I(@) = 1xXm B(p),
I1(Bs) = 1 X Bps)—(ki+20;) pa 95X 1 (1= 1,3,7)

and

j(ﬁa.‘) = ’_EBP.- (= L3, 7) ’
T (Bs, Bo)) = —EBy, B#%p1—ps),
j(ﬁpl 1897) = “7":‘:13;», §(114P1_7P7) ’
J(Boy Bo,) = 14] (8o, Bo,)— 14T (8Be, Be,)
— T4 EB(49%p1—pg) B(114p1—T7p;)—8EBy, B(e%) ,
j(ﬁpl ﬁpa 697) = g:@pl Bw §(494'P1_P3) ’
J(#8,,) = 58(494p—ps),
J(&B,,) = 5&(114}71—-7177) ’
T (s, Boy) = Bu B(4%p1—ps) ,
j(ﬁ'ﬁp, :397) = Bu é(114P1_7P7) ’
](/7',8::3 397) = 5§(49491—P3) 3(114‘P1-7P7) ’
T (5, Boy Boy) = Bu B(4%%pi—ps) B(114p—T7p;) .
By applying Lemma 4.14, (4.13), (4.15), (4.16) and (4.19) to the exact se-
quence

I
0 — Coker & —'l) KO¥(S*°XE,)—> Ker § — 0

we obtain

Lemma 4.20. KO¥(S*°X E,) is a factor module of

Agox) (I§(P.) (i =2,4,5, 6); ﬁp,, Bp-,’ ,§(P§)s é(114P1_7P7)» é(494'P1_P3))

RZ1DZ,-BL)R(Z- 1D Z, @)Q(Z- 1D Z,-5)R(Z- 1D Zys- )
where there hold at least the following relations.

8= —2E 49 E=0, I§(Pi)2 = WI(B()“zpi)_f—d:‘ B(P.)) (1=2,4,5,6),

P==pb=qis=0=2a=ngia=na=0,

773 BF- = Sgﬁpl) EB“ =M Bll- = I§12~ =0, dﬁ(pf) = 77§ EB(Pz) ’

1148,,~7B,, = m(E+1) B(114p,—7p,), 7. B(p}) = E+1) By,
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€(114‘P1_ZP7)2 =mn I§(7\Zc P7), §(4'94‘P1_P3) =mn é(xzc P3)>»
B(p) = EB(p}) = 0, 85, = m B(N'(rpy)), B2, = mB(N(rpy)
(here r denotes the realification functor).

In particular, B(p;) (i=2,4,5,6), B(114p,—7p;), B(494p,—ps), B(p3), @
and £ are subject to the relations above.

In the next section we give some additional relations.

The greater part of the relations above is already mentioned, or can be
readily shown by the facts mentioned preceding Lemma 4.20. We explain how
to get the remains. We begin with showing that B(114p,—7p,)’=x B(A\% py),
B(49%4p,— ps)’=n B(\% ps) and B(pi)’=0. Applying p¥ to these we get im-
mediately the required formulas above.

Let f, g: E,—~GL(n, H) be G-maps in the sense of f(—x)=—f(x), g(—x)=
—g(x) (x€E,;) and fg: E,—~GL(n, H) the map given by (fg) (x)=f(*) g(x) for
x<E, Then it follows that

B(fgNcfg) = B(f Acf)+B(EAcg) in KOXE;).

Using this we have B(piAc p})=2B(\% p1) and by (1.11) we get B(pi)’=n, B
(piAc pl). Hence we have B(pi)’=0. To consider B(494p,—ps)* we take f, g to
be f()=494p,(x), &(x)—ps(®)"* for ¥, Then B(#%4p,—psf—m B(feAc fe)
=n, B(g A ¢g)and so B(494p,—p;)’=n, B(AZ ps). Similarly another one follows.
The last two formulas are immediate from (1.10).
To prove that @*=0 we observe the following exact sequence associated with

1
the cofibration S"°><E7—->B1'°><E,l>21'°/\ E,, where i, j are the obvious maps.

8’ ~ x 7[*
(4..21) cee—> 0’5(21'0/\ E7+) = KO*(PE,) — KO*(E-,) —> e

where 8’ is the coboundary homomorphism and X the map induced by j. In
particular, if we take a point instead of E; in (4.21), then we see that there exists

an element ¥, of K’bc(E"") such that X(7f)=1—H and then it follows that
KO¥(sM) = KO*(+)-7f,
with relations H7f o=—7{ 0, (tf0)?=27{o. Moreover, as is seen below (see (5.6))

any element of Kb§(21'°A E,,) takes the form of 7, ;A x where xEK’b’G"(EH):
KO*(PE,).

"~ So by definition z*(a*)=0, so that a?Im X. Hence we see that o is di-
visible by & because of X(7foA1)=E. Next consider the complexification of «,
then by definition we see that ¢(a)=nu’c(&) for some nEZ. But, since the
orders of & and c(&) are respectively 2 and 8, » must be divisible by 4. This
implies ¢(a?)=0. Therefore, from Atiyah’s exact sequence ([1], Proposition 3.2)
it follows that a? is divisible by »,. Consequently we conclude that & is divisible
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by £ and 7. On the other hand, by definition we have I(a?)=0, so that
a*cImJ. According to (4.15), (4,16) and (4.19), however, there is no such
element in Im J except for zero. Namely @*=0.

We show that £8(pi)=0. From (3.20), (3.19) it follows that ¢(£8(p?))=0.
So £B(p}) is divisible by »,. Hence by the same reason as above we see that
£B(p?)=0, so that £5(p?)=0.

Here we note that @3(p?)+0. By dimension reason Ap,=p,+1 as complex

representations and p, is real.  So by (4.13) and (4.19) it follows that I(aB(p}))=
7% ¥3X B(p,)+0 which shows the above inequality.

5. Proof of Theorem 4.1.

We study the following exact sequence with Thom isomorphism

S ~ % =
2> KON Eyy) > KOK(B X E;) = KOK(S* X E) >+

=1 Ps,0 Il
KO%(S"°AE,.) KO*(PE,)

; .
associated with the cofibration S%°x E,— B%?x E,L SSOAE,, where i, j are the
obvious maps and 8’ the coboundary homomorphism.

For any x»€ KOS AE,,)
T g o(x) = ]'*(foz,o Ax)
— _8ex(x) by (L.7)

where X is as in (4.21). We first prove that 8£X(x)=0, equivalently j* 5 ,=0.
Consider the complex version of (4.21)

*
oo RESONE,) 5 KH(PE) > KX(E) -

and investigate the images of the multiplicative generators of K*(PE,) (given
in Theorem 3.1) by z*. Then by definition we have

w*(7) = 988(p,)—68(p7) »
z*(B(p:)) = Blp:) (¢ =2,4,5,6),
z*(B(114p,—7p;)) = 1148(p,) —78(p:) »
w*(B(494p,— ps)) = 4948(p1)—B(ps) and
n*(c(£))=0.
From this we see that any element of Im X takes the form of ¢(£)y where
yEK*(PE,). So we have
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X(c(x)) = c(§)y for some yEK*(PE;),
so that by operating » we get
2X(x) = &r(y) -
Hence multiplying by 4£ gives
8EX(x) = —8Er(y) for some yEK*(PE),.

To consider 7(y) we here view K*(PE,) as a Zg-graded module over K*(+)
=Z[u]/(u*—1). Using the relations of  with ¢ and the values of r (resp. c)
on K*(+) (resp. on KO*(+)) (see e.g. [13]) we can easily verify that the value
of 7 on each (additive) generator of KO*(PE,), which does not contains 7 as
a multiplicative component, is 0, or divisible by 2, { or %, So if y is such a
generator, then 8£7(y)=0 because 16§=38x, £=0 by (2.5).

Since ¢(£) 7=0 by Theorem 3.1 it follows that &r(u‘r)=0 for =0, 1, 2, 3.
So if y is divisible by 7, then also by using this fact we can check that £r(y)=0.
Consequently we see that 8&£r(y)=0 for any ye K*(PE,), namely j* 5 ,=0.
Hence we have a short exact sequence

I & ~
(5.1) 0 — KO*(PE,) > KO%(S*° X E,) — KO%(S"AE;) = 0

(here also there holds the equality §(xI(y))=8(x)y for x&KO¥(S*°XE,)
and ye KO*(PE,)).

By R* we denote the KO*(4-)-module, with the relations, on the right-hand
side of the equality in Theorem 4.1. Then by virtue of the injectivity of I
of (5.6) and Lemma 4.20 it follows that KO*(PE,) contains R* as a submodule.
Because I sends any multiplicative generator of R* to the element of the same
symbol with tilde as in KO¥(S*° X E,).

Next we show that R* fills KO*(PE,). For this we study the image of 8.
By

7'51)?' 0 E Kbc(zg'o)
we denote the element of I?OG(E*’”) which Ay: Spin(9)—>GL(16, R) defines in

the manner similar to r§,. Then we have
80 = Ro ATReEKO4(3) = KOG(ZHOA M) .
By using this fact and observing the definition we get
(52) 8(By)=—LitfoAl for j=1,3,7 and &(5) = 7FeAl.
Consider the homomorphism

(1Aj)*: KOS X E;) = KOG*(S%° ASE,,) — KOGH(S3° ASE,)
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where ZE, denote the unreduced suspension of E, and j the projection

SE,~>3E,.. Here we can view KOg(S%°A SE,) as a direct summand of
KOG (S**X SE,) via a canonical map and so Z(cA¢a’)EKO0F(S*° X ZE,) as
an element of KOG SY°ASE,). Hence by definition we see that

(AA)*(BEB,) = BloAca') H .
Since KOG(22)=KOG/(2*)=0, (1A j)*: KOg(* A 2E;) > KO(* A 3E))
is an isomorphism, we observe the commutative diagram with this isomorphism
@55(29"’ ASE,,) —> @55(29,0 ASE,)

I I
KOG{(s** NS*°N3E,,) > ROG(S* A S ASE)

ot 15,
KOF(* NSy ASE,,) - KOF(S4 A SY° ASE,)
Diat Y Do

KOZ(S%° ASE,,) ~ KOS ASE,)

where all the unlabelled arrows denote (1A j)*'s and §8,’s the coboundary
homomorphisms associated with the cofibration S3°—>B%°—>3%°. Then also by
definition we see that the equality above gives

(5.3) S(Bﬂ-) = ’Tﬁo/\a

together with the second formula of (5.2) and the facts such that (H+1) 7f,=
2a=0.

Since I(n(E+1) B(494p,— Bps))=4943,,—Bs, by (4.18) and B3, is divisible
by 7,, we have

Bpl I(")4(£+1) B(494pl—P3)) = _691 ﬂ"s

by multiplying by B,,. So applying & and using the equality of (5.1) and (5.2)
we have

(54) 8(Bo, Br,) = —h o Ay B(494p1—p3) .
Similarly we get
(5.5) 8(Bs, Bs,) = b 7oA (32- 1149, B(p})+99, B(114p,—7p,))

8(:8;’3 lep-,) = 4943 (:891 :897)+l7 Tf,ﬂ/\ 4 8(494PI_P3) ’
8(Bs, Bog Bo,) = 8(Bs, Bo,) m(E+1) B(494p,—p3) -

Now we prepare certain relations in KO§(S*°X E,). Consider the homo-
morphisms mentioned preceding (4.13)
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KO%(S** X E, )‘b—‘fKo*(y °/\(S5"><E,)+) L KO*(S9°><E)

Because the restriction of Agto Spin(5) is the 4-times direct sum of A; as a com-
plex representation, we then see by definition that

J 2ny BBy;) = 5B85;
where J=j* ¢, , and so
5Bp; =0 for 1=1,3,7
since 2u,=0. Analogously we get
Bus =0 and BuB, =0 for i=1,3,7

using the relation v, u,=0.

From these formulas and (5.2)-(5.5) we can determine by using the formula
of (5.1) the values of § on all additive generators of KO¥(S*°x E;) and conse-
quently we obtain

(5.6) KNO}';‘(EM/\ E,.) is a KO*(4)-module generated by the elements in the
form 7f oA x for xER*.

We observe (4.21). From (5.6) it follows immediately that
(5.7) Im X = ER*
as a KO*(+4)-module. Next we study Im z*. According to Proposition 2.2
KO*(E)) = Agorco(B(p) ¢ = 2,4,5,6), Blpy) j=1,3,7))
as a KO*(+)-module. We can easily check that
(5.8) z*(B(p) = Blps) (1 =2,4,5,6),
z*(B(p?)) = 2B(p)) =1,3,7),

z*(B(114p,—7p;)) = 114B(p1)—78(p7) »
w*(B(494p,— p3)) = 494B(p,)—B(ps) »
(so that z*(2478(p1)—B(494p,— ps)) =B(ps),
7*(578(pt)—B(114p,—7p;)—3B(p7)) = Blp;) and
z*(a) = m Blpy) -
Using Theorem 3.1 and Proposition 2.1 we see that B(p,)&Im {z*:
K*(PE)—>K*(E,)}. Becasue, z*(8(p;))=8(p;) (i=2, 4, 5, 6), z*(8(p?)) =20(p:)

(1=1,3,7), z*(B(114p,—7p,))=1148(p1)— 78 (p,), =*(B(494p,— p3))=4948(p1)
—B(ps), (so that z*(2478(p1)— B(494p,— ps))=B(ps), *(578(p})—B(114p,—7p;)
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—3B(p3)=B(p;)), and z*(r)=2B(p;)—68(p;). So if we suppose that B(p,)E
Im z* then it follows that p?B(p,)€Im z*, that is, B(p,)EImz*. This is a
contradiction to the above. Hence we have

(5.9 Bp)) EIm z* .
In the similar manner we can prove that
(5.10) Blp1) Blps), Blpr) Blpr), Blpr) Blps) Blpy) & Im z* .

Consider the commutative diagram

KOK(S™x B)) 5 KOXS*X )
U U

*

KOX(PE,) => KO*(E,)

where ¢ denotes the forgetful homomorphism and the unlabelled inclusions
are induced by the second projections. Then by definition we have

(&) =0, $(Bp,) = 1xn Blp;) (=1,3,7)
and moreover
¢(5) = ¢(Bu) = 0

because of 7z*(u,)=0 fro z*: KO-%(P*)—KO-5S*). Suppose that 7,8(p;)E
Im #*, that is, there exists an element a& KO*(PE,) such that z*(a)=—7,8(p,).
Then we see by these formulas and (5.8) that 4 takes the form of

a = B,,+Ex+5y+Bu 2 KOX(PE,)
where x, v, 2 KO¥(S*°XE,). So
0 = 28(a) = —2-7rF A 1+2E8(x) .

From (5.6) it follows that §(x) takes the form of 8(x)=7FAx'(x'€ KO*(PE,)).
Hence operating j* ¢ to this equality we obtain

2.7¢(E)-+4e(E) (x') = 0
where j*: K§(S"° A E,)—>K¥(B"* X E;)=K*(PE,) and so we have
4e() = 0

because of 8c(£)=0. This is a contradiction to the fact that the order of ¢()
is 8. Consequently we have

(5.11) 7 Bpy) & Im 7* .
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Analogously we have

(5.12) =, B(Pl)» 74 B(p1) Blps)s M l@(Pl) B(ps)s 14 B(p1) B(ps) B(P7) e Im z*.

Combining (5.7)-(5.12) we see that R* fills KO*(PE,), that is,
KO*(PE,) = R*

which complets the proof of Theorem 4.1.
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