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1. Introduction

In [9] Hiramine, Matsumoto and Oyama introduced a construction method
that associates with any translation plane of order ¢* (¢ odd) and kernel K==
GF(q), translation planes of order ¢* and kernel K'=~GF(¢®). In this article
we study the class of semifield planes of order ¢* obtained from this method
and show that with a few exceptions, the members of this class are new semi-
field planes. This class includes some recently constructed classes of planes;
namely the class presented by Boerner-Lantz in [4] and the one by Cordero in

[6].

2. Notation and preliminary results

Let §=(S8, +, +) be a finite semifield which is not a field. We denote by
7(S) the semifield plane coordinatized by & with respect to the points (0), (o),
(0, 0) and (1,1). The dual translation plane of 7z(S) is also a semifield plane and
it is coordinatized by the semifield S*=(S, +, %), where asb=b-a. Let g be
an odd prime power, ¥ =GF(¢®) and x"=%=x" for x&F. Let = be a semifield
plane obtained by the construction method of Hiramine, Matsumoto and Oyama.
Then 7z admits a matrix spread set of the form

M= {M(u,'a) = [:f(z:)) Z] : u,'veﬂ"}

where f: F—F is an additive function. = is coordinatized by the semifield

P=P;=(P, +, ), where P=F X F and

@) we) =] L]

We shall denote this plane by z,. We define the following classes:
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Q(F)={f: F—F: f is an additive function and P is a proper semifield}.

ANEF)={f €Q(F): either f(v)=aD for some acF—GF(q), or f(v)=av® for
some nonsquare e and § € Aut(F), ++}.

(F)={r;: fEQD)}.

S(D)=A{P;: n(P,;)II(F)}.

Notice that TI(<) is the class of semifield planes of order ¢* which are obtained
from the construction method of Hiramine, Matsumoto and Oyama applied to
translation planes of order ¢

Among the known classes of proper finite semifields we have the following:

(i) Cohen and Ganley commutative semifields [5]
(ii) Kantor semifields [13]
(iii) Knuth semifields of characteristic 2 [14]
(iv) Twisted fields [1] and Generalized twisted fields [2]
(v) Sandler semifields [15]
(vi) Knuth four-type semifields [14], these include the Hughes-Kleinfeld
semifields [10]
(vii) Generalized Dickson semifields [8]
(viii) Boerner-Lantz semifields [4]
(ix) p-primitive type IV and type V semifields [6]

The semifield planes coordinatized by the semifields on class (viii) belong
to the class II(F), see [12], Theorem 4.3, and those coordinatized by semifields
on class (ix) belong to II(F) where F=GF(p?) and p is a prime number, see
[6]. The two main results on this paper state that the only known semifields
(from classes (i) to (vii)) which belong to 3() are the Knuth semifields which
are of all four types and the Generalized Dickson semifields.

We now state some properties of P, and 7;.

Lemma 1. Let feQS) and P=P;. The nuclei of P are:
(i) TN(P)=A{(x,0) : xETF},
(il) Tln(L)=T(L)=A(% 0) : flxy)=F(y), for any yEF}

Proof. For a=(x,y), b=(u, v) and c¢=(r,s) in L the condition (a+b)-c=
a-(b+c) is equivalent to the two equations

Y(rf(0)+af(s)) = yf(us+oF) (2.1)
and
ys f(v) = yo f(s) - (2.2)

Clearly, from 2.1 and 2.2, (x, 0)J1,(P) for x&€F and since P is not a
field, (i) follows.
Assume now that (u, v)€J1,(P). If v=#0, then from 2.2 with y=1 we
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have that st—)zsg—v), for any s& <, which implies that c=@EGF(q) and f(s)

=c§. This implies that & is a field, which is not the case. Thus, v=0 and
from 2.1 we get that J1,,(P)={(«, 0): f(us)=1uf(s), for any s&€F}.

Let (r, s5)€J1,(P). Then, as above, s=0 and from 2.1 we get that rf(v)=
f(v7), for any vEeZ. By taking x=7 (so X=r), we have Xf(v)=f(vx), for any
veS. This completes the proof of (ii).

The following lemma is a consequence of the previous one.

Lemma 2. Let f€eQ(S). Then f(v)=ad for some acF—GF(q) if and
only if TP) =T P)=TL(P) =T

3. On the class II(F)

Let feQ(¥) and let zF denote the dual translation plane of =, with
respect to (o). We begin this section by showing that the semifields on classes
(i)-(v) above do not coordinatize planes in II(<F).

Lemma 3. Let f€Q(S) and let S be a semifield belonging to any one of
the classes (i)-(v) above. Then neither =, nor =¥ is isomorphic to 7(S).

Proof. If &P (P*) is a semifield which coordinatizes 7, (zF}), then P (P¥)
has characteristic2. On the other hand, if S belongs to classes (ii) or (iii),
then the characteristic of S is 2 and therefore S is not isotopic to P(or L*). If
S belongs to class (i), then S is commutative and by using Exercise 8.10 in [11]
we conclude that P(or £*) is not isotopic to S. Thus in these cases 727z (S)
x7F. In[3] it is shown that a generalized twisted field plane of order p”, p an
odd prime, #>>3, admits an autotopism g whose order is a p-primitive divisor of
p"—1,ie. |g| |p"—1but |g| f p'—1for 1<i<n—1. From Propositions 6.3
and 6.4 in [9] it follows that if g is an autotopism of 7, then |g| | 4(¢*—1).
Therefore if S is a generalized twisted field plane then 7z, 27(S)xz}f. (Recall
that every twisted field palne is a generalized twisted field plane, [2].)

Assume now that S belongs to class (v) above. Then the dimension of S
over J1(S) is >4 and J1,(S)=T1(S) ([15], Theorem 1). Since &L is a 2-
dimensional vector space over J1,(%), we have that 7 z(S). If zf=zn(S),
then by Theorem 8.2 in [11] we would have F=J1,(P)=T1,(S)=T1,(S)=
Nw(P)=TN,(P)=T1,(S). From here we conclude that S is a 2-dimensional
vector space over JI,(S) which is a contradiction. Thus zF2x7z(S).

Next we deal with the Knuth four-type semifields. These semifields were
defined in [14]. The semifields of type II, III and IV are characterized by their
nuclei; type II: 31,=3J1,,=F; type II1: J,,=T1,,=F and type IV: J,=T1,=F.
A semifield of type I has multiplication given by:
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(x, y)+ (4, v) = (xu+y" "0°h, xv—l—yu"—l—y"'lv"g) (3.3)

where (x,7), (4, V)€ X T, 1 xo€Aut(F) and k and g are elements in F such
that the polynomial x"*'4-gx—#h is irreducible in &. The next lemma gives
the condition under which a semifield plane coordinatized by a Knuth semifield
plane belongs to the class II(<F).

Lemma 4. Let f€Q(F) and let K be a Knuth four-type semifield. Then
7y or ¥ is isomorphic to n(K) if and only if f(v)=a® for some acF—GF(q).

Proof. Assume that f(v)=a®. Then by Lemma 2 and Corollary 7.4.2 in
[14] we have that P, is of all four types I, I, III, IV where o?=1 and g=0.

Let K be a Knuth four-type semifield. If K is of type II, III, or IV and
if w,=n(K) or nf=n(K) then by ([11], Theorem 8.2) and Lemmas 1 and 2 it
follows that f(v)=a®0. Suppose that K is of type I. If g=0 and o°=1 then
from 3.3 we get that K=, where fj(v)=hv"=ho. Hence, by Lemma 2, F=
IN(K)=TN,(K)=T1(K). Now if z;=n(K) or zf=<n(K), then by ([11], Theo-
rem 8.2) and Lemma 2 we have that f(v)=a?. We now show that the case when
g=0and ¢?>1 and the case when g0 are not possible.

Let =%, and suppose that z;=~z(K). Then F=J,(P)=Tl(K). Let
(%, »)€T1(K). The condition ((x,y)-(0, 1))-(0, s)=(x, ¥)+((0, 1)+(0, s)), for all
s is & is equivalent to

(x—]—y"—lg)"_zs"h = xs"h4-y" " , (3.4)
and

¥ ks (x+yT9)T s = asTg+ysTH 4y g (3.5)

for any sin &. If g=0 and o*> 1=, then 3.5 implies that y=0 and from 3.4
we get that x° *=x. Therefore F=J(K)C {(x,0) x€F and x"*=x} which
implies that ¢*=1, but ¢?>=1. If gx0 then from 3.4 we get that y=0, and
from 3.5 we have that x" 's’g—xs"g. Hence F=J,(K)C{(x,0): x€F and
x"=ux} and therefore =1, which is a contradiction. A similar argument shows
that z¥=z(K) is not possible.

The last class to consider is the class of generalized Dickson semifields. Let
7(9D) be a generalized Dickson semifield plane of order ¢* which is coordinatized
by the semifield 9=(9), +, +) where D=SF X F and the product is given by

(cf [8])
(%, ¥)+ (7, §) = (wr+y*sPew, xs+y77) (3.6)

where «, B, o are arbitrary automorphisms of & but not all the identity, and
o is a nonsquare in &F. If (4, v)+((%, y)* (7, 5))=((%, v)+(x, ¥)) (7, 5) then the fol-
lowing two conditions must be satisfied:
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uy*sPo+o*(xs+yr°)Pow = v*yPro+(uy+vs’)*sfw , (3.7
and
Y™ 50" = v*YPse (3.8)
From now on 9 will denote a generalized Dickson semifield plane of order
¢* with multiplication given by (3.6).
Under certain conditions a generalized Dickson semifield is a Knuth four-
type semifield. In the next lemma we give the necessary conditions on the auto-
morphisms @, B, o under which 9 is a Knuth four-type semifield.

Lemma 5. If any of the following conditions are satisfied :
(i) B=aoc and Bo=1, or
(i) a=1and o=p, or
(i) a=1 and cBf=1
then 9 is a Knuth four-type semifield.

Proof. Assume that (i) is true. Then 3.7 and 3.8 become, respectively,

uy®sPo = u*y*sPew , 3.9
and,
vyPse” = v*yPsw (3.10)

From these equations we get that (x, 0)& J1,,(9D) for any x€<F and (r, 0)E
TN(D) for any r&F. Since D is not a field we have that J1,,(D)=TN(D)=F
and 9 is a Knuth semifield of type II. In a similar way if (ii) or (iii) occur
then 9 is a Knuth semifield of type III or IV, respectively.

In the following lemma the nuclei of 9) are given.

Lemma 6. Assume that 9 is not a Knuth four-type semifield. Then the
nuclet of 9 are:
(i) IUD)={w, 0)ED: u—u},
(i) I(D)=A{(x,0)ED: xP=x""}, and
(i) T(D)={(r, 0)ED: r"P=r}.

Proof. Let (u, v)EJ1,(9) and suppose that 0. Then from 3.8 we get
that v’ =v%w», y*"=)# and s#”=s, for all y,s&€F. Hence, ac=p and Bo=1,
which is a contradiction by Lemma 5 (i). Thus, v=0 and from 3.8 we have that
uy*sPo=u*y*sPo for all y, s€F; from this (i) follows. (ii) and (iii) are proved
similarly.

In the next two lemmas the question of when a generalized Dickson semi-
field plane belongs to the class II(<f) is answered.

Lemma 7. Let feQ(F) and P=P,. Assume that U is a non-
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desarguesian semifield plane that admits a matrix spread set of the form
— —(* Y).
M= {0 = (., %) mre)

where 0, @ are automorphisms of F and k is a nonsquare in F. Then, if x;~=U,
one of the following must be true :

(1) O=@=r, where x"=%, and f(v)=c0 for some c€F —GF(q).

(ii) f(v)=cv", for some & Aut(F) and some nonsquare c in F.

Proof. Let X=9FxZF. Then M*={X, XM(u, v)): M(u, v)E M} U
{(0, X)} is a spread for z; in XDX. Let MF be the spread for U in XPX
associated with ;. Since 7,7, there is a semilinear transformation T from
the F-vector space XPX into itself that maps H* onto H¥. We may assume
that (X, 0)"=(X, 0) and (0, X)"=(0, X), so the linear part of T has the form
(‘61 g), for some A, BEGL(2, ¢°). Let & be the automorphism of & associated
with T. Since T maps (X, XM(u, v))E H* onto (X, XA 'M(u, v)*B)= MY,
where (a;;)°=(a};), we have that for each M(u,v)E M there is a unique
O(x, y) €M, such that

A-"M(u, v)*B = Q(x, y) . (3.11)

Let QO(a, b)=A"'M(1,0)’B=A"'B, ucGF(q)—{0} and u'=u®. Then
A~*M(u, 0 B=u'A"'B=u'Q(a, b)E M,, for all '€ GF(q)— {0}. Thus, if a0,
then #'=(u")*, which implies that @< {1, 7}. Similarly, if b1, then 0 {1, 7}.
Since A-'=Q(a, b)B~?, 3.11 becomes

B~*M(u, v)*B = Q(a, b)7*Q(x, y) . (3.12)

Let A=det Q(a, b)~* and tr(N)=trace of a matrix N. Since tr(B-*M(u, v)*B)=
(u+2)*=GF(q), from 3.12 we have that tr(Q(a, b)'Q(x, 0))=A(a’x+ax*)E
GF(q), for all x&<F. If @=1, then we have that 2axA=GF(q), for any x€%F,
which implies that a=0. Therefore if a#=0 then @=7. Likewise, considering
0(0, y) we get that if 620 then 0=r.

First we assume that >0 and =0. Then §=@=7 and U=#(P,), where
g(y)=ky. By Lemma 2 the three nuclei of &, are equal and isomorphic to
&F. Now (i) follows from Lemma 2. Assume that a=0 and bx0. Then
6= and we may assume that @>7. Letting r—=(yb~1), s=a®(kb"), g(s)=ds*""

where d=(kb)*"'b~! is a nonsquare in F and Qi(r, s)=( r.s

) 7) we have that
g(s

0(0, b)'Q(x, y)=0(r, s). Now 3.12 becomes
M(u, v)® = BQ\(r, s)B~*. (3.13)
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Let B==<Z‘ Zz) and e—=detB. Then w—e-(b,brtbibyg(s)—biby—bby¥) and
3 Y4

P =e"Y(—bybyr—byb,g(s)+bybys+b,b,7). Since ub=n?, with s=0 we get bbe™ =
bibe! and bbe ' =bbe~!. Thus bbe! and bybe~! are in GF(g). Taking r=0
we get byb,eds? " —(bbe )5 =bibe ls—bbe ds* . If p7lx1 (also @lx7),
then 5,6;=0 and 5,,=0. If @~'=1 then bb;=bbd and (bbe~*)*=2d where
r=bb,bsbe?. Since 2&GF(q), 2 is a square in GF(¢?), then since d is a non-
square in GF(¢®) we must have 4,,=0 and b;5,=0. So for any @7 we con-
clude that ,6;—=0 and b,,=0. Since ex0, then b,=b,=0 or b=5,=0. If
b,=b3=0, then from 3.13 we have v®*=b,b;'s abd f(v)®=e"'big(s). From these
equations it follows that f(v)=cv®~" where c is a nonsquare in &F. If b=>b,=0,
then a similar argument shows that f(v)=cv® where again ¢ is a nonsquare in &.
Thus in either case (ii) follows. The case when a0 and =0 is handled
similarly.

Lemma 8. Let f €Q(F) and assume that 9 is not a Knuth four-type semi-
field.  If either n; or =¥ is isomorphic to =(9D), then f(v)=cv" for some nonsquare
cin F and e Aut(F), Y=

Proof. Assume that z;=~z(9). Then from Lemmas 1 (i) and 6 (i) we
have that F=Jl(P,)=T,(D); this implies that u*=u for all ucF. Hence
r s r s
o r")' Let O(r, s)=(s”a) r")'
Then {Q(r,s): r,s&€<} is a matrix spread set for z(9). Suppose now that
wf=n(D). Then n,=nx(D*) and F=T,(P;)=T(D*), so D* is a 2-dimen-
sional vector space over J1,(9D*). Since J1,(D*)=7T1,(9D), from Lemma 6 (iii) we
get that oB=1. Let z€9* and let (u,v)’ be the coordinates of z with re-
spect to the basis (0, 1), (1, 0) of D* over JI,(D*), i.e. (v, v)'=(u, 0)x(1, 0)+
(v, 0)%(0, 1) where * is the product in @*. Then (4, v)'=(u,v°). Now (r, s)"*

(% ¥) =(r, s")x(2, y")=(x, y°) + (7, s7)=(2r+ " s Pw, xs"+y"r")=(xr+y""s0, % s

+yr)". Letting O'(x, y)=( & f_,) we have that (7, $)'#(z, y)' =(r, )0’ (%, ¥).
Yo x

Hence, {Q'(x,y): x, yEZ} is a matrix spread set for z(9*). Therefore in

either case ((z;=z(9D) or zf=n(D*) we may apply Lemma 7. Since 9 (and

therefore 9*) is not a Knuth four-type semifield, by Lemmas 2 and 4, case (i)
of Lemma 7 does not occur; therefore the proof is complete.

a=1 and 3.6 becomes (x,y):(r,s)=(x,y) (

We can now state our main results; their proofs follow from the lemmas.

Theorem 3.1. Let feQ(F)—A(F). Then neither r; nor =¥ is isomor-
phic to a semifield plane coordinatized by a semifield belonging to any one of the
classes (i)-(vii).
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Theorem 3.2. Let fe A(F). Then

(i) f(v)=a0 for some acF—GF(q) if and only if =; or z¥ is isomorphic
to a semifield plane coordinatized by a Knuth four-type semifield.

(i) flv)=av® for some nonsquare acF and 6= Aut(F), 0= if and only
if m; or &¥ is isomorphic to a semifield plane coordinatized by a gener-
alized Dickson semifield.
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