Oda, S. Sato, J. and Yoshida, K.
Osaka J. Math.
30 (1993), 119-135

HIGH DEGREE ANTI-INTEGRAL EXTENSIONS
OF NOETHERIAN DOMAINS

Susumu ODA, Junro SATO and Ken-icar YOSHIDA

(Received January 30, 1991)

Introduction. Let R be a Noetherian integral domain and R[X] a poly-
nomial ring. Let « be an element of an algebraic field extension L of the quo-
tient field K of R and let z: R[X]— R[a] be the R-algebra homomorphism
sending X to @. Let @,(X) be the monic minimal polynomial of & over K with
deg po(X)=d and write (X )=X*--p X"t oot 7y, Let Ipai= Nias(Rig 7,).
For f(X)ER[X], let C(f(X)) denote the ideal generated by the coefficients of
f(X). Let Jiz1: =I1,1 C(@4(X)), which is an ideal of R and contains Ir,;. The
element « is called an anti-integral element of degree d over R if Ker z=
It 9(X) R[X]. When « is an anti-integral element over R, R[] is called an
anti-integral extension of R. In the case K(«a)=XK, an anti-integral elemet « is
the same as an anti-integral element (i.e., R=R[a] N R[1/a]) defied in [5]. The
element « is called a super-primitive element of degree d over R if Ji,1d p for
all primes p of depth one.

For pESpec(R), k(p) denotes the residue field R,/pR, and rank,, R[]
®=r k(p) denotes the dimension as a vector space over k(p). We are interested
in characterizing the flatness and the integrality of an anti-integral extension
R[a] of R. Indeed, among others we obtain the following results:

(1) R[a]isflat over Rif and only if rank,,) R[a]®y k(p) <d for all p & Spec(R),
(i) R[a] is integral over R if and only if rank,.) R[a]®gk(p)=d for all

PESpec(R).

Thus if an anti-integral extension R[] is integral over R, then R[] is flat over
R. Concerning a super-primitive element, we obtain that if R is a Krull domain
and « is an algebraic element over R, then « is a super-primitive element. We
also obtain that a super-primitive element is an anti-integral element. More
precisely, « is super-primitive over R if and only if « is anti-integral over R and
R[a], is flat over R, for any prime ideal p of depth one.

Using these results, we obtain the following:

Let A(S) denote the set {p ESpec(R)|rank,,S®z k(p)=d}, where S is an
extension of R of degree d and let Dp,(R) denote the set of all prime ideals of R
of depth one. Assume that [L: K]=d, and that «,, -+, &, €L are anti-integral
elements of degree d, and let A=R[a,, .-+, a,]. If A(R[e;])DDpy(R) (1<i<n)
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and Ur(R[a;])D Dpy(R), where Ur(A) denotes the set {p ESpec(R)|4, is unra-
mified over R}, then 4 is integral over R, and A, is etale over R, for pEA(4).
If A(4)=Spec(R) in addition to the above assumptions, then 4 is integral and
etale over R.

Notations and Conventions. Throughout this paper, we use the follow-
ing notations unless otherwise specified.

R: a Noetherian integral domian,

K: = K(R): the quotient field of R,

L: an algebraic field extension of K,

a: a non-zero element of L,

d = [K(): K],

Po(X) = X4y X414 ... 49, the minimal polynomial of & over K.

Let z: R[X]—R[a] be an R-algebra homomorphism defined by X—a and
let Ar,:=Kerz. Then Ap, is a prime ideal of R[X] with Ar,;NR=(0). By
definition, A= {Y(X)ER[X]|yr(a)=0}.
Let It,3:= N4¢.1(R:z 7;), which is an ideal of R.
For f(X)eK[X],

C(f(X)):=the ideal generated by all coeflicients of f(X),

that is, C(f(X)) is the content ideal of f(X).

Let Jig1: =111 C(@4(X)), which is an ideal of R and contains Ig,).

We also use the following standard notations:

k(p): = the residue filed R,/pR, for p & Spec(R),
Dp\(R): = {pESpec(R)|depth R, = 1},
Ht\(R): = {pESpec(R)|htp = 1}.
Throughout this paper, all fields, rings and algebras are assumed to be com-

mutative with unity. Owur special notations are indicated above and our gen-
eral reference for unexplained technical terms is [3].

1. Anti-Integral Elements and Super-Primitive Elements

We start with the following definition.

DeFINITION 1.1, Let I be an ideal of R[X] with I N R=(0) and let f(X)=
a,X"+a, X*'++.-+4a, be a polynomial in R[X]. We say that f(X) is a Sharma
polynomial in I if there does not exist tER with £&ayR such that ta;Eq,R for
1<i<n.

We give an equivalent condition for a polynomial to be a Sharma polyno-
mial in the following proposition.
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Proposition 1.2. Let f(X) be a polynomial in R[X]. Then f(X) is a Shar-
ma polynomial if and only if C(f(X))E p for any pEDpy(R).

Proof. Let f(X)=a,X"+---+a,(a;ER).

(=) Suppose that C(f(X))Cp for some pEDp,(R). Then aE p, and there
exists £ ayR such that p=(a,R:;t). In this case, @; € p implies that ¢;tEa,R
(1<i{<mn), which asserts that f(X) is not a Sharma polynomial.

(«=) Suppose that f(X) is not a Sharma polynomial. Then there exists tER
such that teEay R, ta;Eay R(1<i<m). Since there exists p&Dp,(R) such that
(% R:z t)C p, we have a;E(aqR:zt)Cp (1<i<m) and obviously g,Ep. So
C(f(X))=(aq, ***, a,)C p, a contradiction. Q.E.D.

Proposition 1.3. The following statements are equivalent:
(1) At is a principal ideal of R[X |,
(it) I, s a principal ideal of R,
(iii) there exists a Sharma polynomial in Ay, of degree d.
If one of the above conditions holds, then A, is generated by a Sharma polynomial.

Proof. (iii)=(i): Let f(X) be a Sharma polynomial in A, of degree d.
Since deg @,(X)=d, this Sharma polynomial has the least degrec. So by [6],
A, is principal.

(i)=(ii): Let Arma=f(X)R[X]. Then f(X)R[X]DI1 @.(X)R[X]. Note
that Ar,,1Qz K=f(X) K[X]=@,(X) K[X] and hence deg f(X)=deg p(X)=d.
Take a€1Ii,;. Then ap,(X)=bf(X). Let f(X)=a,X%+:-+a; with a;ER.
Then a=bay, so that Ir,1Da, R for some bER. Since bayy;=an;=ba;(1<i<d),
we have gy9;=a;€ER. Hence a,€ I3, which implies that Ir,;=a,R.

(if)=>(iii): Let Ir,=bR. Then I @4(X)R[X]=bp,(X)R[X]C A, and
b9, €ER(1<i<d). Suppose that there exists 2&bR with thy, EbR (1<i<d).
Then t7;€R and hence tEI,1=0bR, a contradiction. Thus bp,(X)ER[X] is
a Sharma polynomial of degree d. Q.E.D.

For later use, we quote the following.

Lemma 1.4 ([6, Cor. 3]). Let R be an integral domain and I a non-zero
ideal of a plynomial ring R[X] such that I N R=(0). If there exists a polynowial
f(X)EI such that f(X) is of the least positive degree in I and C(f(X))=R, then
I is generated by the polynomial f(X).

DerFINITION 1.5. i) a €L is called an anti-integral element of degree d
over R if Ary=I, @ (X) R[X]. When « is an anti-integral element, we say
that R[a] is an anti-integral extention of R.

il) a€L is called a super-primitive element of degree d over R if Ji,dEp for
all p€Dp,(R). When « is a super-primitive element, we say that R[a] is a
super-primitive extention of R.
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ReMark 1.6. i) In [5], we studied the anti-integrality which is defined
as follows: An element ¢ €K is called anti-integral over R if R=R[a]N
R[1/a] (:=R(at)). We knew that o is anti-integral over R in this sense if and
only if A,y has a linear basis, that is,

A[,] = 2 (L‘,c X—d,-) R[X]

with d;/c;=a [5, Proof of (1.9)]. The last condition is equivalent to Ar,1=1I,]
@.(X) R[X], where @,(X)=X—a. So a€K is anti-integral over R in this
sense if and only if & is an anti-integral element of degree one over R in the
sense of Definition 1.5, that is, the anti-integrality defined in [5] is equivalent
to the one defined in (1.5) in the case of degree one.

ii) It is immediate that @ €L is a super-primitive element of degree d over R if
and only if @ is a super-primitive element of degree d over R, for any pE
Spec(R). Thus R[a] is a super-primitive extension if R of and only if R[«],
is a super-primitive extension of R, for all p&Spec (R), where R[cr], denotes
the localization S—! R[a] with S=R\p.

Lemma 1.7. Let f(X) be an element of a polynomial ring R[X] and let
pESpec(R). Then pDOC(f(X)) ¢f and only if R,[X]/f(X) R,[X] is not flat over
R,.

Proof. The implication (<) follows from [3, (20.F)].

(=) Since C(f(X))C p, pR[X] contains f(X), and hence Q=pR[X]/f(X) R[X]
is a prime ideal of B:=R[X]/f(X) R[X]. Suppose that B,=R,[X]/f(X) R,[X]
is flat over R,. 'Then By is obtained from B, by localizing at @B,. So depth
By >depth B,, and hence depth Bo>depth R,. It is easy to see that depth B,s
=depth Bg and B,3=R[X],sx1/f(X) R[X],rrx1. Since R is an integral domian,
we have depth B,z=depth R[X],zrx1—1=depth R,—1, which is a contradiction.

Q.E.D.

Our almost all main results are based on the following theorem.

Theorem 1.8. Assume thai a is an anti-integral element of degree d over
R. Then for p ESpec (R), the following are equivalent:
(i) rank,, R[a]@g k(p)<d,
(i) ranky R[Q]®p k(p)< oo,
(i) R[ca]®g k(p) is not isomorphic to a polynomial ring k(p) [T],
(IV) ] [x] en ?s
(v) PRIX]D A,
(vi) R[], is flat over R,.

Proof. Since « is anti-integral, Ar,1=1I1,1 p.(X) R[X].
(iv)=(vi): Since R,=(J1s1),=11)s C(®a(X))s» (Itz1), is a principal ideal bR,
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for some bEI,). So (Ar1),=bep.(X)R,[X]. It follows that R[a],~R,[X]/
(Ara1),=R,[X]/bpu(X) R,[X]. Thus R[], is flat over R, by Lemma 1.7 be-
cause R,=(Ju1)y="C(bps(X)),

(iv)=>(i): By the same argument as above, we have R[a],~R,[X]/(Ar.1),=
R,[X]/bpu(X) R, [X]. Since Ry=(J1.),=C (bp,(X)),, there exists {(0<i<d)
such that by; € pR,[X]. We take £ minimal among such ones. Then bp,(X)=
bX%4byy X4 oo by =by; X+ +by;=0 (mod pR,[X]), which means
that rank,,) R[a]®g k(p) <d—i<d.

(i)=>(ii) is trivial.

(if)=(iv): Note that R[e],/pR[cx],~R,[X]/(pR[X]+ Ar,1),- Since rank,HR[]
Qg k(p)<<oo, (pR[X]+ Ar,1), contains an element f(X)& R[X] such that
C(f(X)),=R,. Indeed, if not, we conclude that R[a]Qj k(p)=k(p)[T], a
polynomial ring, a contradiction. We may asume that f(X)E4[,). So the
equality (Ar,),=1I1.1 Pa(X) R,[X] yields that (Ji,1),=141), C(@u(X)),=R,.
(vi)=>(iv): Suppose that J,jCp. Localizing at p, we may assume that R is a
local ring (R, m). Consider the exact sequence:

0 — Aps— R[X] — R[a] = 0.

Then A, is flat over R because R[X] and R[c] are flat over R. The isomor-
phism Ar,1=1I1,1 @(X) R[X]|=I,1 R[X] yields that Ir,; R[X] is flat over R[X]
and hence I, is flat over R. Since R is local, Ir,;=8R for some bE1I1,;. So
J1a1=bC (@, (X)) and Ar,1=bp(X) R[X]. So C(bp,(X))CTm, and hence R[c]
is not flat over R by Lemma 1.7.
(iv)=>(v): Since Jra=Ir,1 C(@(X))E p, there exists aE I,y such that aC
(Pu(X)=Cl(apu(X))& p. Thus ap,(X)e&pR[X] and hence Apt pRIX].
(v)=>(iv): Since Ar,=Ir,1 @(X) R[X], there exists aEIf,; such that C(ap,
X)NEp. S0 Jia=J1a1 C(@u(X))E p.
(v)=>(iii): There exists f(X)EAry with f(X)&EpR[X]. So R[a]/pR[a]=
(R/p) [e¢'], where o’ denotes the residue class of @ in R[a]/pR[a], and f(a')=0.
Thus &’ is algebraic over R/p.
(iti)=>(v): Suppose that Ar,;CpR[X]. Then R[a]/pR[ca]= (RIX]/Aia)/p
(R[X]/ A1) =R[X]/pR(X)=(R/p) [X|, which is a polynomial ring over R/p.
Q.E.D.

After the definition in [5], we employ the following.

DeriniTION 1.9. Let A4 be an extension of R and let pESpec (R). We
say that A is a blowing-up at p or p is a blowing-up point of AR if the following
two conditions are satisfied:

(i) pA4,NR,=pR, (equivalently p4 N R=p),
(if) A4,/pA, is isomorphic to a polynomial ring (R,/pR,) [T].

Making use of the above definition, we get the following corollary to The-
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orem 1.8.

Corollary 1.10. When a is an anti-integral element over R, the blowing-up
locus {pESpec(R)|p is not a blowing-up point of R[]} is given by V (Jin), and
is the same as the non-flat locus {p ESpec(R)|R[a], is not flat over R,}.

Proof. 'This follows from Theorem 1.8 and Lemma 1.7.

The next proposition gives rise to the relation between Sharma polynomi-
als and the ideal Ar,;.

Proposition 1.11.
(@) R[a] is not a blowing-up at any point in Dp,(R) if and only if Ar, contains
a Sharma polynomial.
(b) R[a] is not a blowing-up at any point in Spec(R) if and only if there exists a
polynomial f(X) in A, such that C(f(X))=R.

Proof. (a) Take go(X)EA,1\(0). If go(X) is a Sharma polynomial, then
we are done. Suppose that go(X) is not a Sharma polynomial. Let {p,, +*-, p;}
be the set of all elements in Dp,(R) satisfying C(go(X))C p;. Such p, exists by
Proposition 1.2.  Since Ar,3¢ pR[X] for any p EDp,(R), there are g,(X)E Ar,3
such that C(g/(X))E p; (1<i<t). Put N(0):=deg(gyo(X)) and N(z):=N(i—1)
+deg(g,(X))+1 inductively. Let f(X):=3g/(X)X"®. Then C(f(X))=
C(go(X))++++C(g:(X)). By the choice of p;, there does not exist p EDp,(R)
such that C(f(X))Cp. Hence f(X)is a Sharma polynomial. Assume that A,
contains a Sharma polynomial. Then 4,14 pR[X] for any p € Dp,(R) by Prop-
osition 1.2. So a blowing-up does not occur for R[a]/R on Dpy(R).
(b) Let Ara=(fi(X), -+, fu(X)) R[X]. Take p&Spec(R). Then Ar,ad pR
[X]. So there exists 7 such that C(f(X))dE p. Put N(0)=0and N(Z)=N(i—1)
+deg(f{X))+1, and let f(X)=3£{(X) X¥®. Then C(f(X))=C(f(X))+-
+C(f(X))=R. The converse is obvious. Q.E.D.

By the following theorem, we see that a super-primitive element is an anti-
integral element. ‘

Theorem 1.12. Under the above notations, the following statements are
equivalent:
(1) «a is a super-primitive element of degree d,
(i) o is an anti-integral element of degree d over R and R,[a] is flat over R, for
all p Dpy(R),
(i) « is an anti-integral element of degree d over R and pR[X]|D At for all
PEDM(R),
(iv) «a is an anti-integral element of degree d over R and there exists a Sharma
polynomial in Ay,,
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(v) Jia ‘=R, where i, :=(R:x Jis1).

Proof. (i)=>(ii): It is clear that Ir,; @,(X) R[X]C AL, and hence I,
R[X]Cp (X)) At Put J=@,(X) ' A4r,1 Let I R[X]=Q,N---NQ, be
an irredundant primary decomposition of the ideal I3 R[X] and let P,=+/Q);,
1<i<m). Assume that @ (resp. P) represents some Q; (resp. P;). Since I, is
a divisorial ideal of R, Ir,; R[X] is a divisorial ideal of R[X], and hence depth
R[X]p=1. Putp=PNR. Asp>DI,, we seethat p3=(0). Thus we have P=
PR[X] and depth(R,)=1. Since a is a super-primitive elemnt, Ji,1E p by de-
finition. Therefore there exists an element a €If,; such that (Ag,1),=a@.(X)
R,[X]. Hence we have J,=aR,[X]C I R,[X]CQR,[X]. Thus we get JC
R[XTNQR,[X]=Q, that is, JC I3 R[X] because @ (resp. P, p) is any @ (resp.
P, p;:=P;NR) for 1<i<n. This implies that & is an anti-integral element.
Hence the assertion follows from Theorem 1.8.

(i) e (i) & (iv): It is immediate from Theorem 1.8 and Proposition 1.11.
(iv)=>(i): Since « is an anti-integral element, A,3=1I1,1 @.(X) R[X]. By Pro-
position 1.11(a), A4 pR[X] for all pEDp,(R). Hence there exists an element
a(p) €I, such that f(X)=a(p) @,(X) and C(f(X))E p. Thus Ji,1E p for any
pPEDp(R). Therefore o is a super-primitive element.

(i)=(v): Assume that Ji,1¢ p for any pEDp(R). Then (Jra™),=R:x Jta1)s
=(R, :x (Jra1)p)=(R, :x R})=R, for any p€Dp,(R). Since Ji,1~* is a divisorial
ideal of R, we have R=NR,= N(Jta1™"),D Jrs1"}, where p ranges over prime
ideals of depth one. Thus R=]i,17!. Conversely, suppose that R=],;~! and
Jt1C p for some pEDpy(R). Then Jr,g7'D p~* and hence R=(Jra ™) 'C(p™)™
=p, a contradiction. Q.E.D.

More equivalent conditions will be seen in the section 2.
By the following result, we see that a super-primitive element is not so
special.

Theorem 1.13. Assume that R is a Krull domain, then any element ot whcih
is algebraic over R is a super-primitive element over R.

Proof. Since R is a Krull domian, Dp,(R)=Ht(R). Take pEHt(R).
Then R, is a DVR. Let v denote the valuation corresponding to R,. Let
Pu(X)=X%+n X% '+---+5; be the minimal polynomial of @. Put n=1.
Then there exists j such that o(y;) <o(z;) for all . Thus ;/n,=a;/bER,, where
bER\p,a;ER. In particular, a,=bep. Hence

Pu(X) = n;(a0/n;) X+ +1,(@aln;) 74 -

Hence f(X):=(b/n,) @a(X) =t X+ +a,E,(X) K[X]. Since a,—be p,
we have C(f(X))d p. Since deg f(X)=d, we conclude that @ is a super-
primitive element over R by Theorem 1.10. Q.E.D.
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Once we find one super-primitive element, we can get many such elements.
Indeed we obtain the following.

Proposition 1.14. Assume that o is a super-primitive element of degree d
over R. Then for any unit u of R and any element bER, B=ua-+b is a super-
primitive element of degree d over R.

Proof. We may assume that u=1. It is clear that gg(X)=e@.(X—b) be-
cause K(B)=K(a), d=deg @,(X—b) and ¢,(X—b) is monic in K[X]. We see
that J;,1C I, and C(@u(X))=C(p(X—b))=C(ps(X)). Since (Jia1),=rx1)5
C(p(X)),=R, for any pEDp,(R) by Theorem 1.12, R,=(J1,1),<(Jte1), and
hence (Jip1),=R, for any pEDp,(R). Thus B is a super-primitive element of
degree d over R by Theorem 1.12. Q.E.D,

Proposition 1.15. Assume that R is a local ring containing an infinite field
k and that Ji,;=R. Then there exists an element N Ek which satisfies that
(a) 1/(a—2n) belongs to R[et],
(b) 1)(a—N\) is a super-primitive element of degree d over R,
(¢) 1/(a—N) is integral over R.

Proof. Since R is local, there exists an element A in & such that
It,1 p(X+2) contains a degree d polynomial g(X) in R[X] of which constant
termis 1. Put B=a—x\. Theng(B8)=0. Let2(X)=X?g(1/X)ER[X]. Then
h(1/8)=(1/B)*g(B)=0. So 1/B is integral over R. Since [K(a): K]=[K(B):
K]=d, we conclude that @, 3(X)=h(X)ER[X]. Thus Im=R and hence
Jwer=1Iye1 C(@ys(X))=R. In particular, 1/8 is a super-primitive element of
degree d over R by Theorem 1.12. Q.E.D.

2. Integrality and Flatness of Anti-Integral Extensions

The following result asserts that the integrality of an extension of R is de-
termined by localizing at prime ideals in Dp,(R).

Proposition 2.1. Let A be an integral domain containing R. Then A is in-
tegral over R if and only if A, (:=AQz R,) is integral over R, for any p € Dp,(R).

Proof. The implication (=) is trivial. Consider the converse and assume
that A4, is integral over R, for any p&Dp,(R). We have only to show that & is
integral over R. Let R’ be the integral closure of R in K. Then R’ is a Krull
domain [3, p.144]. It suffices to show that « is integral over R’. Let R” be
the integral closure of R in K(4) and let C=R" :z» a, a denominator ideal
of R”. Then K(R")=K(A) and C is a divisorial ideal of R”. There exists
PEDp,(R”)=Ht,(R") such that CCF. Since R”|R’ is integral and R’ is inte-
grally closed in K, the Going-Down Theorem holds for R”/R’. Thus PNR'E
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Ht)(R')=Dp,(R"). In particular, PN R’ is a divisorial ideal of R". So R"” :pr &
=CNR'CPNR'E€Dpy(R’). By [2,(4.6)], (PNR')NR is a divisorial ideal of
R. Hence R” : a=(CNR)NRC(PNR')NREDp(R). Putp=(PNR)NR.
Then we have p&Dp,(R) and R” :z aC p, which is a contradiction. Q.E.D,

The integrality of anti-integral extensions is characterized as follows:

Theorem 2.2. Assume that o is an anti-integral element of degree d over
R. Then the following are equivalent:
(1) R[] is integral over R,
(i) Pu(X)ER[X],
(iii) Jraa=R,
(iv) ranky) R[x]®g k(q)=d for any ¢ Dp,(R),
(v) rank,) R[a]Q®g k(q)=d for any q < Spec(R).

Proof. Since « is anti-integral, Ar,1=1I1,1 @.(X)R[X]. So the equiva-
lence of (i), (ii) and (iii) are immediate because R[X]/A4r,=R[a], and impli-
cations (ii)=>(v)=>(iv) are obvious.

(iv)=>(ii): Suppose that I;,1C p for some p& Dp,(R). Since Jr,1=1I1,1 C(p(X))
& p by Theorem 1.8, (Ii,1), is an invertible ideal of R, and hence (Ir,), is a
principal ideal bR, of R, for some b. S0 (Ar.1),=I121); Pa(X) R[X]=(bpu(X))
R,[X]. Since It,1C p, bp(X)ER,[X] is not monic. Hence either R[a]Q
k(p)=k(p) [T], a polynomial ring or rank,,) R[@]®r k(p)<d, a contradiction.
Q.E.D.

By the above theorem, we see that the obstrutcion of integrality of anti-inte-
gral extensions is given by Ir,;. Namely, we obtain the following.

Corollay 2.3. Assume that a is an anti-integral element over R. Then
V (Its)={p ESpec(R) | R[a], is not integral over R,}.

Proof. The integrality is a local-global property. So our conclusion follows
from Theorem 2.2. Q.E.D.

ReMARK 2.4. Let R be a Noetherian normal domain and let o be an
element in a field L containing R. If « is integral over R, then it is a super-
primitive element over R. Indeed, when ¢,(X)EK[X] denotes the minimal
polynomial of & over R, it is known that « is integral over R if and only if @,(X)
belongs to R[X] ([4,(9.2)]. Since R is normal, p & Dp,(R)=>ht(p)=1=R, is a
DVR. As R[a] is a finite R-module, R[], is free over R, for any p € Dp,(R).
By Theorem 1.10, ¢ is a super-primitive element over R. Moreover R[] is flat
over R by Theorems 1.8 and 3.2 because R[a]/R is super-primitive, integral
and flat.

Summing up the results in the preceding argument, we obtain the following:
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Assume that « is an anti-integral elmeent of degree d. Let p be a prime ideal of
R. Then

(1) Rla], is flat over R, if and only if rank,(,) R[a]®; k(p)<d,

(2) Rla], is integral over R, if and only if rank) R[a]Qz k(p)=d.

In particular, we conclude:

Corollary 2.5. Assume that o is an anti-integral element of degree d. If
R[] is integral over R, then R[] is flat over R.

In view of Proposition 1.11, we extend Theorem 1.8 to the following.

Proposition 2.6. Assume that o is an anti-integral element of degree d
over R. Then the following are equivalent:
(1) R[] is flat over R,
(i) Ju=R,
(i) rank,q) R[a]@pg k(p)<oo for any p ESpec(R),
(iv) rank,, R[a]®g k(p)<d for any pESpec(R),
(v) R[a] is not a blowing-up at any point in Spec(R),
(vi) R[] is quasi-finite over R,
(vii) Ar contains a polynomial f(X) with C(f(X))=R.

Proof. The proof follows from Theorem 1.8 and Proposition 1.11 (b).

ReEMARK 2.7. Let A4 be over-ring of R (i.e., RCA4 and K(4)=K). If Ais
integral and flat over R on Dp,(R), then A=R. Indeed, it is known that R=
N yepp,@) Ry For pEDp(R), A, is integral, flat over R, by the assumption. So
A4, is a free R,-module of rank one. Thus 4,=R, and hence R= N yepy k)
R,DA.

Relating to this remark, we have the following.

Theorem 2.8. Let a be an algebraic element over R. If R[a)] is integral
and flat at any point in Dp,(R), then R[ct] is a free R-module and « is a super-
primitive element over R.

Proof. First, we shall show that If,;7=R. Suppose that Ij,;3=R. Since
Ity is a divisorial ideal of R, there exists p& Dp,(R) such that I;,;C p. Since
R[a], is integral over R, by assumption, R[a], is a flat extension of R,. As
R[], is flat over R,, R[], is a free R,-module of rank d. We want to show
that R[a],=R,+R,+++R,a’"!. For this purpose, we have only to show
that 1’, a’, -+, a’*-'€R[a],/pR[a], are linearly independent over k(p), where
o’ denotes its residue class in R[a],/pR[a],. Suppose the contrary. Then
Rlal,/pR[al,=k(p) [@']=k(p)+k(p) &'+ - +k(p) @’ for some s<d. But
R[a], is a free R,-module of rank 4, which asserts that ranky, R[a],/pR[a]=d,
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a contradiction. Thus we have shown that R[a],=R,+R, a+-+R,a’".
So we have a relation: a’=xg+A; @+ - 4Ny @?~ (M;ER,).  Since the mini-
mal polynomial @,(X) of & is unique, we have @ (X)=X%—N;-; X4 1— e —N,.
So It,a4d p, a contradiction. Thus @,(X)ER[X], which implies that Ar,=
@4(X) R[X] and R[] is a free R-module. Since C(@,(X))=R, we conclude
that Jr,;=R. By Theorem 1.12, @ is a super-primitive element over R. Q.E.D.

Now we consider a certain over-ring of R which is seen in [5].

DerINITION 2.9. Let J be a fractional ideal of R. Let R(J):=]J ],
which is an over-ring of R.

Lemma 2.10. Let | be a divisorial ideal of R. Then R(J)=R if and
only if R(J™)=R.

Proof. Since J is divisorial, (J~!)~'=]. So we have only to prove one of
the implications. Assm Assume that R(J)=R. The implication R(J)DR
is obvious. Take AER(J™!). Then A J'cCJ* Thus R: AJ'DR: J =
(J7H'=J. On the other hand, we have R: A J'=\"1R: J7I=\"YR: J )=
AN t=r"1J. Thus A JDJ, which shows that JOMJ, and hence A E
R(J)=R. Q.E.D.

By these arguments, we extend Theorem 1.12 to the following.

Theorem 2.11. The following conditions are equivalent:
(1) «a is a super-primitive element over R,
(i) for each p EDpy(R), there exists f(X)E Ay with (Ara),=f(X) R,[X],
(iii) for each p EDp,(R), there exists a < Ity with (Ir,),=aR,,
() R()=R.

Proof. Denote the degree of & by d.
(i)=>(ii): Since Jr,a=1I1,1 C(@(X))&E p for any pE Dp,(R), there exists aE I,
with f(X):=a@(X)EpR[X]. Note that (A,1)x N R[X]=(4r.1), and f(X)E
(Ary1)p. By Proposition 1.2, f(X) is a Sharma polynomial of degree d in R,[X].
So (Ara)y=f(X) R,[X].
(ii)=>(iii): Suppose that (Ar,1),=f(X) R,[X]. Then deg f(X)=d. Let a be
the leading coefficient of f(X). Then @ (X)=(1/a) f(X) by the uniqueness of
the minimal polynomial of a. So f(X)=ap,(X)R[X], and hence aEI,;.
Since (Ara1),=f(X) R,[X], (Ita1)y=0R,.
(i) (iv): We know that R([f,3)=R if and only if R(I,;7')=R by Lemma
2.10. So apply a result of [5, (3.2)] and we conclude that (iii) and (iv) are equiva-
lent.
(iii)=>(i): Since (Ir1), is a principal ideal of R, for any p €Dp,(R), there exists
f(X)EAp,7 such that deg f(X)=d and (Ap1),=f(X) R,[X]. Since f(X) is a
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Sharma polynomial in R,[X] by Proposition 1.2 and depth R,=1, C(f(X))d p.
Thus Jiad p for any pEDp,(R) and hence & is a super-primitive element over
R by definition. Q.E.D.

3. Vanishing Points and Blowing-Up Points

Assume that ¢ is an anti-integral element over R. For p € Spec(R), ranky,)
R[a]®g k(p)<oo if and only if R[e], is flat over R, by Theorem 2.2. So it
may be natural to ask when rank,,) R[a]® k() is infinite or zero.

Let a be an element which is algebraic over R. Recall that @ (X)=X*+
7 X% 14+--+ 5, is the minimal polynomial of @ over K, where d=[K(a): K]
and Ji:=1Ita C(@u(X))=Ita+Ita m~+-+It,1ns. Define Bra:=Ita+Isam
-+ ++++41I1,1 n4-1, which is an ideal of R.

We use this notation throughout §3.

Lemma 3.1. Assume that « is an anti-integral element over R and let A=
R[a]. For gESpec(R), the following are equivalent:
) gd.=A,
ii) gANRdyg,
iii) ¢D B, and ¢ DI, 7,

Proof. (i)=>(ii): Since ¢A4,=A4,, there exist a;Eq, B;€EA and s5;ER\q
such that 1=33q; B;/s;. Put s=IIs;. Thens=>}q;B;b;E9q4 NR with s&g,
where sB3;/s;=b;€A. Thus gANRdq.

(if)=>(i): Take s€¢ANR with s¢cq. Then s€qd, and s is invertible in A4,.
Thus ¢4,=4,.

(ii)=>(ii): Take aE€ I, with an,eq. Put f(X)=ap,(X) and ap;=b;, a=b,,
so that f(X)=b, X*+b, X'+ -.-+b,. Since f(a)=0, by a®+b, a®~ 4+ +b;=
0. Noting that b, q, b, is a unit in A,. Since by, *:, b;-, Eq, biEqACqA,.
Thus ¢g4,=4,.

(i))=>(iii): Sinse ¢4,=A4,, 1=by+b, a+--++b, a" for some b;EqR,. Put f(x)
=b, X"+++b X+b—1. Then f(a)=0 and b,—1 is a unit in R,. The ker-
nel of R [X]—=R[al, is (Itg)q Pu(X) R[X]. So f(X) E([1a)q Pu(X) R[X] and
C(f(X))e=R,. Thus it follows that (Jr,1);=1.1); C(@a(X));=R,, which means
that R[], is flat over R, by Theorem 1.8. So (I,1), @a(X) R [X] is an invert-
ible ideal of R,[X]. Hence (I,), is a principal ideal of R,. Let (Ir),=aR,.
We shall show that all of a, ax,, -**, ans-, belong to qR,. Note that f(X)E
a@(X) R,[X] because f(a)=0. So there exists 2(X)ER,[X] such that f(X)=
a@(X) h(X). We have —1=a@p,(X) h(X) (mod gR,[X]). Thus ay;, aEqR,,
for 1<i<d—1 and an,¢qR,. Therefore It Itz1my, 5 Ital 74-1<¢ and I, m4
dgq. Q.E.D.

DeriNiTION 3.2. Let 4 be an extension of R and let p&Spec(R). We say
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that p is a vanishing point of A/R if pA,=A,.

Recall that 4 is a blowing-up at p or p is a blowing-up point of A/R if the
following two conditions are satisfied:
i) p4,NR,=pR, (equivalently pA N R=p, cf. Lemma 3.1),
ii) A,/pA, is isomorphic to a polynomial ring (R,/pR,) [T].

By Lemma 3.1, we obtain the following theorem.

Theorem 3.3. Assume that o is an anti-integral element over R and let
A=R[a]. Then the set of vanishing points (i.e., {g<Spec(R)|qd,=A,}) is given
by N9z V(Ira m)\V (I 74), where my=1.

Proposition 3.4. Assume that o is an anti-integral element of degree d over
R and let A=R[ca]. Consider the following conditions:
(1) A is flat over R,
(ll) ] [a]=R;
(ii) If pA,=A, for pESpec(R), then pA=A.
Then we have implications (i)« (ii)=>(iii). If moreover R is a local ring and /By
P It,1m4, then (i), (i) and (iii) are equivalent to each other.

Proof. (i)« (ii) was proved in Proposition 2.6. (ii)=>(iii)): 'Take p & Spec(R)
and assume that pA,=A, Then pDBra=Ia+Iim~+ " +Ii7-1 and
pDI,37m. by Lemma 3.1, Take aE 11,3 and put f(X)=ap,(X)=aX*+an X4
+-+s4an,. Since f(a)=0, we get ap,EpA and hence I3 9, SpA. So Ji,1=
Bra+-Ir,17aC pA.  Since Jr,1=R, we conclude that pA=A4. We will show the
last part. Since \/ B, Plrs174, there exists ¢ & Spes(R) such that ¢ B, but
gD It,ams. Thus g4,=A, and so g4=A. Let m denote the maximal ideal of
R. Suppose that mD Ji,3. Then we have A/mA==(R/m) [T], a polynomial ring
(cf. Theorem 1.8). Hence mA=+A4. But ¢Cm implies that mA=A4, a contra-
diction. Thus Ji,1=R. Q.E.D.

ReMARK 3.5. Let the notation be the same as in Proposition 3.4.
(i) When d=1 (i.e., @ is an element of K), then (i), (ii) and (iii) of Proposition
3.4 are equivalent.

(2) pANR=p if and only if there exists P& Spec(A4) such that P N R=p.

REMARK 3.6. Let the notation be the same as in Lemma 3.1. If B,1Cg,
then ¢ is either a vanishing point (i.e., Ir,37,F¢) or a blowing-up point (i.e.,
Iiam4Cq). Soif \/Jp,; contains \/By,; properly, there exists a vanishing point.
Thus Spec(4)—Spec(R) is not surjective.

Proposition 3.7. Assume that o is an anti-integral element of degree d over
R and let A=R[a]. Then Spec(A)—>Spec(R) is surjective if and only if \/ J
= VB,
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Proof. (=): Since JistDBral vV J1,12 VBrr  If Bra1C g for some ¢ & Spec(R),
there exists @ €Spec(A4) such that @ N R=g because Spec(A)—>Spec(R) is sur-
jective. So gA4,#+A4,, which means that ¢ is not a vanishing point. Thus by
Remark 3.6, ¢ is a blowing-up point, that is, ¢D Jt,3. Therefore \/ Ji 1=/B,1-
(«=): Suppose that Spec(A4)—>Spec(R) is not surjective. There exists ¢g&E
Spec(R) such that ¢g4,=4,. So ¢DV/Br,1=V J,12Jtu121tu1n4, 2 contra-
diction. Q.E.D.

Proposition 3.8. Let the notation be the same as in Proposition 3.7 and
let p & Spec(R) satisfy pA,=A,. If gOpANR, then g is a blowing-up point.

Proof. Since p & Spec(R) satisfies p4,=A,, we have pDBy,1. Thus 5, I,
ca’ It - +nu- )T By ACpd. So ¢DpAN RO Bra+Ii 7= Jtad,
which means that ¢ is a blowing-up point. Q.E.D.

REMARK 3.9. Let k be a field, a, b indeterminates and R=k[a, b]. Let o
be a root of an equation aX?+bX+a=0 and put A=R[a]. Then Ji,1=(a, b) R
and grade((a, b) R)=2 so that « is a super-primitive element by Theorem 1.12.
In this case, Ji,3=Bi,1=(a, ) R. Thus Spec(A)—>Spec(R) is surjective, but
not flat. Hence the implication (iii)=>(i) in Proposition 3.4 does not necessarily

hold.

Theorem 3.10. Assume that o is an anti-integral element over R and let
pESpec(R). If Rla] is not a blowing-up at g, then depth R[a]o=depth R,
for QESpec(R[a]) with @ N R=q.

Proof. Since « is an anti-integral element over R and ¢ is not a blowing-up
point, R[ca], is flat over R, by Theorem 1.8. Since R[a]q is obtained from
R[a], by localizing at QR[a],, R[e]q is flat over Rg. So we have depth R, <
depth R[a]q. As ¢ is not a blowing-up point, there exists a €I,y such that
a@y(X) R [X]=(A141), Put f(X):=uap,(X). Since Q& Spec(R[a]), there
exists P& Spec(R[X]) such that PD 4,3 and @=P/A,1. Then Q,=P ,/(4r),
=P,[f(X)R,[X]. So QR[a]e=PR[X],/f(X)R[X], implies that depth R[a]q
=depth R[X]p—1. Now since P N.R=gq, we have PO pR[X]. Suppose that
P=qR[X]. Then gR[X]=P D Ay,1, which asserts that g is a blowing-up point.
So we have P=#+¢R[X]. Since PR,[X]/qR,[X] (Ck(P)[X])=+0, we have
PR, [X]=qR,[X]+g(X) R,[X] for some g(X)ER[X]\gR[X]. Hence depth
R[X]p<depth R[X], R[X]+1. We obtain that depth R[a]q<depth R, be-
cause depth R[X], R[X]=depth R,. Thus depth R,=depth R[ar]q. = Q.E.D.

4. Unramifiedness and Etaleness of Super-Primitive Extensions

The following result can be proved by using [1, VI (6.8)] but we give a di-
rect proof. If a is super-primitive and integral over R, R[] is finite, flat over
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R (cf. Proposition 1.11).

Proposition 4.1. Assume that o is an anti-integral element which is inte-
gral over R. Then R[c] is unramified over R if and only if R[c], is unramified
over R, for any p EDp,(R).

Proof. Since A:=R[c] is integral over R, @,(X)=R[X] by Theorem 2.2.
For a polynomial f, we denote the derivative of f by f'. Then @i(a)=da’*+
(d—1) g a®~2+---+n4-, and let peSpec(R). Then @j(a) AEP for any P
Spec(A4) with P N R=p if and only if 4, is unramified over R, (cf. [1, VI (6.12)]).
Suppose that @i(a) A=+A. Then there exists P Ht,(A4) such that p}(a)EP.
Put p=PNR. Then depth 4,=1 implies depth R,=1 because 4, is flat over
R,. Thus A4, is unramified over R, by the assumption. Hence 4, is unramifi-
ed over R,, which is a contradiction. So @g(a) A=A, which means that 4 is
unramified over R. Q.E.D.

ReEMARK 4.2. Let the notation be the same as in Proposition 4.1 and its
proof. Let B=A[l/a]. Then for P &Spec(B), Bp is unramified over Rgqp if
and only if PD@i(a) B. Indeed, let PC B be a prime ideal and put Q=P NA4
and p=PNR. When B;/R, is ramified, A¢/R, is ramified. So @/(a)sQCP.
Conversely, if @pi(a)EP, then Q=PNAD@,(c). So Bp=A, is ramified over
R,.

It is known that the purity of branch locus holds for a finite flat extension
[1]. The following is a result similar to this fact.

Proposition 4.3. Assume that a is a super-primitive element which is flat
over R and that R contains an infinite field k. Then R[a] is unramified over R if
and only if R[a], 1s unramified over R, for any p < Dp,(R).

Proof. We have only to consider the case that R is a local ring. So we
may assume that (R, m) is a local ring. If A:=RJe] is integral over R, we have
shown this in Proposition 4.1. Assume that 4 is not integral over R. Since
Jis1=R by Theorem 2.2, replacing & by @a—x for some AEk, we may assume
by Proposition 1.14, that o satisfies that
(a) ljaeR[a],

(b) 1/a is a super-primitive element of degree d over R,
(¢) 1/t is integral over R.
Hence we have

RCR[1/a]CR[a, l/a] = R[a] = 4.

Apply Remark 4.2 to B=R[l/a][(l/a)*]=A4. We conclude that for P&
Spec(4), Ap is unramified over Rpnp if and only if PDepl,u(1/a) A. In the
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same way as in the proof of Proposition 4.1, the assumption that 4, is unramifi-
ed over R, for any p& Dp,(R) yields that R[] is unramified over R.  Q.E.D.

As a consequence of Propositions 4.1 and 4.3, we obtain the following
theorem.

Theorem 4.4. Assume that o is a super-primitive element over R and that
R contains an infinite field k. Then there exist p,, -+, p,EDp,(R) (¢t may be 0) such
that the non-etale locus of R[] is given by V( Ji,1)U U tor V(9)).

ExampLE 4.5. Let &k be a field, a, b indeterminates and R=Fk[a, b]. Let
a be a root of an equation aX?+4b6X+a=0 and put A=R[a]. Then Ji1=
(a,b) R. Assume that p&Spec(R) and pD Ji,;. When a&p, (2a+b/c) 4, is
the ramification locus. When a€p and bep, (1) 4, is the ramification
locus.

DEFINITION 4.6. Let 4 be an extension of R with [K(A4): K]=d. Define
A(A): = {g=Sepc(R) |ranky ) AQg k() = d} .

It is easy to see that when « is a super-primitive element of degree d over
R, we have:

A(R[a]) > Dpy(R)
@ R[] is integral over R
=>R[a] is flat over R.

When 4 is a finitely generated extension of R, define:
Ur(A): = {pESpec(R)| 4, is unramified over R,} ,

which is an open set of Spec(R).
Under these preparations, we finally obtain the following.

Theorem 4.7. Assume that [L: k|=d, and that o, -+, a,EL are super-
primitive elements of degree d, and let A=R[a,, -+, a,]. If A(R[et;])D Dpy(R)
(1<i<n) and Ur(R[a;])D Dp\(R) for some j, then A is integral over R, and A, is
etale over R, for any pEA(A). If A(A)=Spec(R) in addition to the preceding

assumptions, then A is integral and etale over R.

Proof. The assumption Dp,(R)C A(R[e;]) implies that «; is integral over
R and A(R[e;])=Spec(R) by Theorem 2.2, and hence A is integral gver R.
Take pEA(A). Then pEA(R[e;]) and R[a,] is finite, flat over R as was shown
in Theorem 1.8. Thus R[a ], is an R,-free module of rank d. Since Ur(R[a;])
DDpy(R), R[a;] is unramified over R by Proposition 4.1. Hence pR[a], is a
radical ideal. Noting that A is integral over R[a;], we have p4,NR[a;],=
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pR[a;],, Thus Rer;],/pR[a;],CA,[pA, As both of those sides have the same
dimension d as vector spaces over k(p), we have R[a;],/pR[e;],=A,[pA,, which
means that 4,=R[e;],+p4, By Nakayama’s lemma, we get 4,=R[a ],
Therefore 4, is unramified and flat (i.e., etale) over R, for any p € A(4).
Q.E.D.
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