HIGH DEGREE ANTI-INTEGRAL EXTENSIONS OF NOETHERIAN DOMAINS

Susumu ODA, Junro SATO and Ken-ichi YOSHIDA

(Received January 30, 1991)

Introduction. Let R be a Noetherian integral domain and $R[X]$ a polynomial ring. Let α be an element of an algebraic field extension L of the quotient field K of R and let $\pi: R[X] \rightarrow R[\alpha]$ be the R-algebra homomorphism sending X to α. Let $\varphi_{\alpha}(X)$ be the monic minimal polynomial of α over K with $\operatorname{deg} \varphi_{\alpha}(X)=d$ and write $\varphi_{\alpha}(X)=X^{d}+\eta_{1} X^{d-1}+\cdots+\eta_{d}$. Let $I_{[\alpha]}:=\cap_{i=1}^{d}\left(R:_{R} \eta_{i}\right)$. For $f(X) \in R[X]$, let $C(f(X))$ denote the ideal generated by the coefficients of $f(X)$. Let $J_{[\alpha]}:=I_{[\alpha]} C\left(\varphi_{\alpha}(X)\right)$, which is an ideal of R and contains $I_{[\alpha]}$. The element α is called an anti-integral element of degree d over R if Ker $\pi=$ $I_{[\alpha]} \varphi_{\alpha}(X) R[X]$. When α is an anti-integral element over $R, R[\alpha]$ is called an anti-integral extension of R. In the case $K(\alpha)=K$, an anti-integral elemet α is the same as an anti-integral element (i.e., $R=R[\alpha] \cap R[1 / \alpha])$ defied in [5]. The element α is called a super-primitive element of degree d over R if $J_{[\alpha]} \nsubseteq p$ for all primes p of depth one.

For $p \in \operatorname{Spec}(R), k(p)$ denotes the residue field $R_{p} / p R_{p}$ and $\operatorname{rank}_{k(p)} R[\alpha]$ $\otimes_{R} k(p)$ denotes the dimension as a vector space over $k(p)$. We are interested in characterizing the flatness and the integrality of an anti-integral extension $R[\alpha]$ of R. Indeed, among others we obtain the following results:
(i) $R[\alpha]$ is flat over R if and only if $\operatorname{rank}_{k(p)} R[\alpha] \otimes_{R} k(p) \leq d$ for all $p \in \operatorname{Spec}(R)$,
(ii) $R[\alpha]$ is integral over R if and only if $\operatorname{rank}_{k(p)} R[\alpha] \otimes_{R} k(p)=d$ for all $p \in \operatorname{Spec}(R)$.
Thus if an anti-integral extension $R[\alpha]$ is integral over R, then $R[\alpha]$ is flat over R. Concerning a super-primitive element, we obtain that if R is a Krull domain and α is an algebraic element over R, then α is a super-primitive element. We also obtain that a super-primitive element is an anti-integral element. More precisely, α is super-primitive over R if and only if α is anti-integral over R and $R[\alpha]_{p}$ is flat over R_{p} for any prime ideal p of depth one.

Using these results, we obtain the following:
Let $\Delta(S)$ denote the set $\left\{p \in \operatorname{Spec}(R) \mid \operatorname{rank}_{k(p)} S \otimes_{R} k(p)=d\right\}$, where S is an extension of R of degree d and let $D p_{1}(R)$ denote the set of all prime ideals of R of depth one. Assume that $[L: K]=d$, and that $\alpha_{1}, \cdots, \alpha_{n} \in L$ are anti-integral elements of degree d, and let $A=R\left[\alpha_{1}, \cdots, \alpha_{n}\right]$. If $\Delta\left(R\left[\alpha_{i}\right]\right) \supset D p_{1}(R)(1 \leq i \leq n)$
and $\operatorname{Ur}\left(R\left[\alpha_{i}\right]\right) \supset D p_{1}(R)$, where $\operatorname{Ur}(A)$ denotes the set $\left\{p \in \operatorname{Spec}(R) \mid A_{p}\right.$ is unramified over $\left.R_{p}\right\}$, then A is integral over R, and A_{p} is etale over R_{p} for $p \in \Delta(A)$. If $\Delta(A)=\operatorname{Spec}(R)$ in addition to the above assumptions, then A is integral and etale over R.

Notations and Conventions. Throughout this paper, we use the following notations unless otherwise specified.
R : a Noetherian integral domian,
$K:=K(R):$ the quotient field of R,
L : an algebraic field extension of K,
α : a non-zero element of L,
$d=[K(\alpha): K]$,
$\varphi_{\alpha}(X)=X^{d}+\eta_{1} X^{d-1}+\cdots+\eta_{d}$, the minimal polynomial of α over K.
Let $\pi: R[X] \rightarrow R[\alpha]$ be an R-algebra homomorphism defined by $X \rightarrow \alpha$ and let $A_{[\alpha]}:=\operatorname{Ker} \pi$. Then $A_{[\alpha]}$ is a prime ideal of $R[X]$ with $A_{[\alpha]} \cap R=(0)$. By definition, $A_{[\alpha]}=\{\psi(X) \in R[X] \mid \psi(\alpha)=0\}$.
Let $I_{[\alpha]}:=\cap_{i=1}^{d}\left(R:_{R} \eta_{i}\right)$, which is an ideal of R.
For $f(X) \in K[X]$,
$C(f(X)):=$ the ideal generated by all coefficients of $f(X)$,
that is, $C(f(X))$ is the content ideal of $f(X)$.
Let $J_{[\alpha]}:=I_{[\alpha]} C\left(\varphi_{\alpha}(X)\right)$, which is an ideal of R and contains $I_{[\alpha]}$.
We also use the following standard notations:

$$
\begin{aligned}
& k(p):=\text { the residue filed } R_{p} \mid p R_{p} \text { for } p \in \operatorname{Spec}(R) \\
& D p_{1}(R):=\left\{p \in \operatorname{Spec}(R) \mid \operatorname{depth} R_{p}=1\right\} \\
& H t_{1}(R):=\{p \in \operatorname{Spec}(R) \mid \text { ht } p=1\}
\end{aligned}
$$

Throughout this paper, all fields, rings and algebras are assumed to be commutative with unity. Our special notations are indicated above and our general reference for unexplained technical terms is [3].

1. Anti-Integral Elements and Super-Primitive Elements

We start with the following definition.
Definition 1.1. Let I be an ideal of $R[X]$ with $I \cap R=(0)$ and let $f(X)=$ $a_{0} X^{n}+a_{1} X^{n-1}+\cdots+a_{n}$ be a polynomial in $R[X]$. We say that $f(X)$ is a Sharma polynomial in I if there does not exist $t \in R$ with $t \notin a_{0} R$ such that $t a_{i} \in a_{0} R$ for $1 \leq i \leq n$.

We give an equivalent condition for a polynomial to be a Sharma polynomial in the following proposition.

Proposition 1.2. Let $f(X)$ be a polynomial in $R[X]$. Then $f(X)$ is a Sharma polynomial if and only if $C(f(X)) \nsubseteq p$ for any $p \in D p_{1}(R)$.

Proof. Let $f(X)=a_{0} X^{n}+\cdots+a_{n}\left(a_{i} \in R\right)$.
$(\Rightarrow) \quad$ Suppose that $C(f(X)) \subset p$ for some $p \in D p_{1}(R)$. Then $a_{0} \in p$, and there exists $t \notin a_{0} R$ such that $p=\left(a_{0} R:_{R} t\right)$. In this case, $a_{i} \in p$ implies that $a_{i} t \in a_{0} R$ ($1 \leq i \leq n$), which asserts that $f(X)$ is not a Sharma polynomial.
(\Leftarrow) Suppose that $f(X)$ is not a Sharma polynomial. Then there exists $t \in R$ such that $t \notin a_{0} R, t a_{i} \in a_{0} R(1 \leq i \leq n)$. Since there exists $p \in D p_{1}(R)$ such that $\left(a_{0} R:_{R} t\right) \subset p$, we have $a_{i} \in\left(a_{0} R:_{R} t\right) \subset p(1 \leq i \leq n)$ and obviously $a_{0} \in p$. So $C(f(X))=\left(a_{0}, \cdots, a_{n}\right) \subset p$, a contradiction.
Q.E.D.

Proposition 1.3. The following statements are equivalent:
(i) $A_{[\alpha]}$ is a principal ideal of $R[X]$,
(ii) $I_{[\alpha]}$ is a principal ideal of R,
(iii) there exists a Sharma polynomial in $A_{[\alpha]}$ of degree d.

If one of the above conditions holds, then $A_{[\alpha]}$ is generated by a Sharma polynomial.
Proof. (iii) \Rightarrow (i): Let $f(X)$ be a Sharma polynomial in $A_{[\alpha]}$ of degree d. Since $\operatorname{deg} \varphi_{a}(X)=d$, this Sharma polynomial has the least degrec. So by [6], $A_{[\alpha]}$ is principal.
(i) \Rightarrow (ii): Let $A_{[\alpha]}=f(X) R[X]$. Then $f(X) R[X] \supset I_{[\alpha]} \varphi_{\alpha}(X) R[X]$. Note that $A_{[\alpha]} \otimes_{R} K=f(X) K[X]=\varphi_{a}(X) K[X]$ and hence $\operatorname{deg} f(X)=\operatorname{deg} \varphi_{a}(X)=d$. Take $a \in I_{[a]}$. Then $a \varphi_{a}(X)=b f(X)$. Let $f(X)=a_{0} X^{d}+\cdots+a_{d}$ with $a_{i} \in R$. Then $a=b a_{0}$, so that $I_{[\alpha]} \supset a_{0} R$ for some $b \in R$. Since $b a_{0} \eta_{i}=a \eta_{i}=b a_{i}(1 \leq i \leq d)$, we have $a_{0} \eta_{i}=a_{i} \in R$. Hence $a_{0} \in I_{[\alpha]}$, which implies that $I_{[\alpha]}=a_{0} R$.
(ii) \Rightarrow (iii): Let $I_{[\alpha]}=b R$. Then $I_{[\alpha]} \varphi_{\infty}(X) R[X]=b \varphi_{\alpha}(X) R[X] \subset A_{[\alpha]}$ and $b \eta_{i} \in R(1 \leq i \leq d)$. Suppose that there exists $t \notin b R$ with $t b \eta_{\eta_{i}} \in b R(1 \leq i \leq d)$. Then $t \eta_{i} \in R$ and hence $t \in I_{[\alpha]}=b R$, a contradiction. Thus $b \varphi_{\alpha}(X) \in R[X]$ is a Sharma polynomial of degree d.

For later use, we quote the following.
Lemma 1.4 ([6, Cor. 3]). Let R be an integral domain and I a non-zero ideal of a plynomial ring $R[X]$ such that $I \cap R=(0)$. If there exists a polynowial $f(X) \in I$ such that $f(X)$ is of the least positive degree in I and $C(f(X))=R$, then I is generated by the polynomial $f(X)$.

Definition 1.5. i) $\alpha \in L$ is called an anti-integral element of degree d over R if $A_{[\alpha]}=I_{[\alpha]} \varphi_{\alpha}(X) R[X]$. When α is an anti-integral element, we say that $R[\alpha]$ is an anti-integral extention of R.
ii) $\alpha \in L$ is called a super-primitive element of degree d over R if $J_{[\alpha]} \nsubseteq p$ for all $p \in D p_{1}(R)$. When α is a super-primitive element, we say that $R[\alpha]$ is a super-primitive extention of R.

Remark 1.6. i) In [5], we studied the anti-integrality which is defined as follows: An element $\alpha \in K$ is called anti-integral over R if $R=R[\alpha] \cap$ $R[1 / \alpha](:=R(\alpha))$. We knew that α is anti-integral over R in this sense if and only if $A_{[\alpha]}$ has a linear basis, that is,

$$
A_{[\alpha]}=\sum\left(c_{i} X-d_{i}\right) R[X]
$$

with $d_{i} / c_{i}=\alpha$ [5, Proof of (1.9)]. The last condition is equivalent to $A_{[\alpha]}=I_{[\alpha]}$ $\varphi_{a}(X) R[X]$, where $\varphi_{a}(X)=X-\alpha$. So $\alpha \in K$ is anti-integral over R in this sense if and only if α is an anti-integral element of degree one over R in the sense of Definition 1.5, that is, the anti-integrality defined in [5] is equivalent to the one defined in (1.5) in the case of degree one.
ii) It is immediate that $\alpha \in L$ is a super-primitive element of degree d over R if and only if α is a super-primitive element of degree d over R_{p} for any $p \in$ $\operatorname{Spec}(R)$. Thus $R[\alpha]$ is a super-primitive extension if R of and only if $R[\alpha]_{p}$ is a super-primitive extension of R_{p} for all $p \in \operatorname{Spec}(R)$, where $R[\alpha]_{p}$ denotes the localization $S^{-1} R[\alpha]$ with $S=R \backslash p$.

Lemma 1.7. Let $f(X)$ be an element of a polynomial ring $R[X]$ and let $p \in \operatorname{Spec}(R)$. Then $p \supset C(f(X))$ if and only if $R_{p}[X] / f(X) R_{p}[X]$ is not flat over R_{p}.

Proof. The implication (\Leftarrow) follows from [3, (20.F)].
(\Rightarrow) Since $C(f(X)) \subset p, p R[X]$ contains $f(X)$, and hence $Q=p R[X] / f(X) R[X]$ is a prime ideal of $B:=R[X] / f(X) R[X]$. Suppose that $B_{p}=R_{p}[X] / f(X) R_{p}[X]$ is flat over R_{p}. Then B_{Q} is obtained from B_{p} by localizing at $Q B_{p}$. So depth $B_{Q} \geq$ depth B_{p}, and hence depth $B_{Q} \geq$ depth R_{p}. It is easy to see that depth $B_{p B}$ $=\operatorname{depth} B_{Q}$ and $B_{p B}=R[X]_{p B[X]} / f(X) R[X]_{p R[X]}$. Since R is an integral domian, we have depth $B_{p B}=\operatorname{depth} R[X]_{p R[X]}-1=\operatorname{depth} R_{p}-1$, which is a contradiction.
Q.E.D.

Our almost all main results are based on the following theorem.
Theorem 1.8. Assume that α is an anti-integral element of degree d over
R. Then for $p \in \operatorname{Spec}(R)$, the following are equivalent:
(i) $\operatorname{rank}_{k(p)} R[\alpha] \otimes_{R} k(p) \leq d$,
(ii) $\operatorname{rank}_{k(p)} R[\alpha] \otimes_{R} k(p)<\infty$,
(iii) $R[\alpha] \otimes_{R} k(p)$ is not isomorphic to a polynomial ring $k(p)[T]$,
(iv) $J_{[\alpha]} \nsubseteq p$,
(v) $p R[X] D A_{[\alpha]}$,
(vi) $R[\alpha]_{p}$ is flat over R_{p}.

Proof. Since α is anti-integral, $A_{[\alpha]}=I_{[\alpha]} \varphi_{\alpha}(X) R[X]$.
$($ iv $) \Rightarrow(\mathrm{vi})$: Since $R_{p}=\left(J_{[\alpha]}\right)_{p}=\left(I_{[\alpha]}\right)_{p} C\left(\varphi_{\alpha}(X)\right)_{p},\left(I_{[\alpha]}\right)_{p}$ is a principal ideal $b R_{p}$
for some $b \in I_{[\alpha]}$. So $\left(A_{[\alpha]}\right)_{p}=b \varphi_{\alpha}(X) R_{p}[X]$. It follows that $R[\alpha]_{p} \simeq R_{p}[X] /$ $\left(A_{[\alpha]}\right)_{p}=R_{p}[X] / b \varphi_{\alpha}(X) R_{p}[X]$. Thus $R[\alpha]_{p}$ is flat over R_{p} by Lemma 1.7 because $R_{p}=\left(J_{[\alpha]}\right)_{p}=C\left(b \varphi_{\alpha}(X)\right)_{p}$.
(iv) $\Rightarrow(\mathrm{i})$: By the same argument as above, we have $R[\alpha]_{p} \simeq R_{p}[X] /\left(A_{[\alpha]}\right)_{p}=$ $R_{p}[X] / b \varphi_{a}(X) R_{p}[X]$. Since $R_{p}=\left(J_{[\alpha]}\right)_{p}=C\left(b \varphi_{a}(X)\right)_{p}$, there exists $i(0 \leq i \leq d)$ such that $b \eta_{i} \notin p R_{p}[X]$. We take i minimal among such ones. Then $b \varphi_{a}(X)=$ $b X^{d}+b \eta_{1} X^{d-1}+\cdots+b \eta_{d} \equiv b \eta_{i} X^{d-1}+\cdots+b \eta_{d} \equiv 0\left(\bmod p R_{p}[X]\right)$, which means that $\operatorname{rank}_{k(p)} R[\alpha] \otimes_{R} k(p) \leq d-i \leq d$.
(i) \Rightarrow (ii) is trivial.
(ii) \Rightarrow (iv): Note that $R[\alpha]_{p} / p R[\alpha]_{p} \simeq R_{p}[X] /\left(p R[X]+A_{[\alpha]}\right)_{p}$. Since $\operatorname{rank}_{k(p)} R[\alpha]$ $\otimes_{R} k(p)<\infty, \quad\left(p R[X]+A_{[\alpha]}\right)_{p}$ contains an element $f(X) \in R[X]$ such that $C(f(X))_{p}=R_{p}$. Indeed, if not, we conclude that $R[\alpha] \otimes_{R} k(p) \simeq k(p)[T]$, a polynomial ring, a contradiction. We may asume that $f(X) \in A_{[\alpha]}$. So the equality $\left(A_{[\alpha]}\right)_{p}=I_{[\alpha]} \varphi_{\alpha}(X) R_{p}[X]$ yields that $\left(J_{[\alpha]}\right)_{p}=\left(I_{[\alpha]}\right)_{p} C\left(\varphi_{\alpha}(X)\right)_{p}=R_{p}$. (vi) \Rightarrow (iv): Suppose that $J_{[\alpha]} \subset p$. Localizing at p, we may assume that R is a local ring (R, m). Consider the exact sequence:

$$
0 \rightarrow A_{[\alpha]} \rightarrow R[X] \rightarrow R[\alpha] \rightarrow 0
$$

Then $A_{[\alpha]}$ is flat over R because $R[X]$ and $R[\alpha]$ are flat over R. The isomorphism $A_{[\alpha]}=I_{[\alpha]} \varphi_{\alpha}(X) R[X] \simeq I_{[\alpha]} R[X]$ yields that $I_{[\alpha]} R[X]$ is flat over $R[X]$ and hence $I_{[\alpha]}$ is flat over R. Since R is local, $I_{[\alpha]}=b R$ for some $b \in I_{[\alpha]}$. So $J_{[\alpha]}=b C\left(\varphi_{\alpha}(X)\right)$ and $A_{[\alpha]}=b \varphi_{\alpha}(X) R[X]$. So $C\left(b \varphi_{\alpha}(X)\right) \subset m$, and hence $R[\alpha]$ is not flat over R by Lemma 1.7.
(iv) $\Rightarrow($ v $)$: Since $J_{[\alpha]}=I_{[\alpha]} C\left(\varphi_{\alpha}(X)\right) \nsubseteq p$, there exists $a \in I_{[\alpha]}$ such that $a C$ $\left(\varphi_{\alpha}(X)\right)=C\left(a \varphi_{\alpha}(X)\right) \nsubseteq p$. Thus $a \varphi_{\alpha}(X) \notin p R[X]$ and hence $A_{[\alpha]} \nsubseteq p R[X]$.
(v) \Rightarrow (iv): Since $A_{[\alpha]}=I_{[\alpha]} \varphi_{\alpha}(X) R[X]$, there exists $a \in I_{[\alpha]}$ such that $C\left(a \varphi_{\infty}\right.$ $(X)) \nsubseteq p$. So $J_{[\alpha]}=J_{[\alpha]} C\left(\varphi_{\alpha}(X)\right) \nsubseteq p$.
(v) \Rightarrow (iii): There exists $f(X) \in A_{[\alpha]}$ with $f(X) \notin p R[X]$. So $R[\alpha] / p R[\alpha]=$ $(R / p)\left[\alpha^{\prime}\right]$, where α^{\prime} denotes the residue class of α in $R[\alpha] / p R[\alpha]$, and $f\left(\alpha^{\prime}\right)=0$. Thus α^{\prime} is algebraic over R / p.
(iii) $\Rightarrow(\mathrm{v})$: Suppose that $A_{[\alpha]} \subset p R[X]$. Then $\left.\left.R[\alpha] / p R[\alpha]=(R] X\right] / A_{[\alpha]}\right) / p$ $\left(R[X] / A_{[\alpha]}\right)=R[X] / p R(X)=(R / p)[X]$, which is a polynomial ring over R / p.
Q.E.D.

After the definition in [5], we employ the following.
Definition 1.9. Let A be an extension of R and let $p \in \operatorname{Spec}(R)$. We say that A is a blowing-up at p or p is a blowing-up point of A / R if the following two conditions are satisfied:
(i) $p A_{p} \cap R_{p}=p R_{p}$ (equivalently $p A \cap R=p$),
(ii) $A_{p} / p A_{p}$ is isomorphic to a polynomial ring $\left(R_{p} / p R_{p}\right)[T]$.

Making use of the above definition, we get the following corollary to The-
orem 1.8.
Corollary 1.10. When α is an anti-integral element over R, the blowing-up locus $\{p \in \operatorname{Spec}(R) \mid p$ is not a blowing-up point of $R[\alpha]\}$ is given by $V\left(J_{[\alpha]}\right)$, and is the same as the non-flat locus $\left\{p \in \operatorname{Spec}(R) \mid R[\alpha]_{p}\right.$ is not flat over $\left.R_{p}\right\}$.

Proof. This follows from Theorem 1.8 and Lemma 1.7.
The next proposition gives rise to the relation between Sharma polynomials and the ideal $A_{[\alpha]}$.

Proposition 1.11.

(a) $R[\alpha]$ is not a blowing-up at any point in $D p_{1}(R)$ if and only if $A_{[\alpha]}$ contains a Sharma polynomial.
(b) $R[\alpha]$ is not a blowing-up at any point in $\operatorname{Spec}(R)$ if and only if there exists a polynomial $f(X)$ in $A_{[\alpha]}$ such that $C(f(X))=R$.

Proof. (a) Take $g_{0}(X) \in A_{[\alpha]} \backslash(0)$. If $g_{0}(X)$ is a Sharma polynomial, then we are done. Suppose that $g_{0}(X)$ is not a Sharma polynomial. Let $\left\{p_{1}, \cdots, p_{t}\right\}$ be the set of all elements in $D p_{1}(R)$ satisfying $C\left(g_{0}(X)\right) \subset p_{i}$. Such p_{i} exists by Proposition 1.2. Since $A_{[\alpha]} \nsubseteq p R[X]$ for any $p \in D p_{1}(R)$, there are $g_{i}(X) \in A_{[\alpha]}$ such that $C\left(g_{i}(X)\right) \nsubseteq p_{i}(1 \leq i \leq t)$. Put $N(0):=\operatorname{deg}\left(g_{0}(X)\right)$ and $N(i):=N(i-1)$ $+\operatorname{deg}\left(g_{i}(X)\right)+1$ inductively. Let $f(X):=\sum g_{i}(X) X^{N(i)}$. Then $C(f(X))=$ $C\left(g_{0}(X)\right)+\cdots+C\left(g_{t}(X)\right)$. By the choice of p_{i}, there does not exist $p \in D p_{1}(R)$ such that $C(f(X)) \subset p$. Hence $f(X)$ is a Sharma polynomial. Assume that $A_{[\alpha]}$ contains a Sharma polynomial. Then $A_{[\alpha]} \nsubseteq p R[X]$ for any $p \in D p_{1}(R)$ by Proposition 1.2. So a blowing-up does not occur for $R[\alpha] / R$ on $D p_{1}(R)$.
(b) Let $A_{[\alpha]}=\left(f_{1}(X), \cdots, f_{n}(X)\right) R[X]$. Take $p \in \operatorname{Spec}(R)$. Then $A_{[\alpha]} \nsubseteq p R$ $[X]$. So there exists i such that $C\left(f_{i}(X)\right) \nsubseteq p$. Put $N(0)=0$ and $N(i)=N(i-1)$ $+\operatorname{deg}\left(f_{i}(X)\right)+1$, and let $f(X)=\sum f_{i}(X) X^{N(i)}$. Then $C(f(X))=C\left(f_{1}(X)\right)+\cdots$ $+C\left(f_{n}(X)\right)=R$. The converse is obvious.
Q.E.D.

By the following theorem, we see that a super-primitive element is an antiintegral element.

Theorem 1.12. Under the above notations, the following statements are equivalent:
(i) α is a super-primitive element of degree d,
(ii) α is an anti-integral element of degree d over R and $R_{p}[\alpha]$ is flat over R_{p} for all $p \in D p_{1}(R)$,
(iii) α is an anti-integral element of degree d over R and $p R[X] \perp A_{[\alpha]}$ for all $p \in D p_{1}(R)$,
(iv) α is an anti-integral element of degree d over R and there exists a Sharma polynomial in $A_{[\alpha]}$,
(v) $J_{[\alpha]}{ }^{-1}=R$, where $J_{[\alpha]}{ }^{-1}:=\left(R:_{K} J_{[\alpha]}\right)$.

Proof. (i) \Rightarrow (ii): It is clear that $I_{[\alpha]} \varphi_{\alpha}(X) R[X] \subset A_{[\alpha]}$, and hence $I_{[\alpha]}$ $R[X] \subset \varphi_{\alpha}(X)^{-1} A_{[\alpha]}$. Put $J=\varphi_{\alpha}(X)^{-1} A_{[\alpha]}$. Let $I_{[\alpha]} R[X]=Q_{1} \cap \cdots \cap Q_{n}$ be an irredundant primary decomposition of the ideal $I_{[\alpha]} R[X]$ and let $P_{i}=\sqrt{Q_{i}}$ $1 \leq i \leq n)$. Assume that $Q($ resp. $P)$ represents some $Q_{i}\left(\right.$ resp. $\left.P_{i}\right)$. Since $I_{[\alpha]}$ is a divisorial ideal of $R, I_{[\alpha]} R[X]$ is a divisorial ideal of $R[X]$, and hence depth $R[X]_{P}=1$. Put $p=P \cap R$. As $p \supset I_{[\alpha]}$, we see that $p \neq(0)$. Thus we have $P=$ $p R[X]$ and depth $\left(R_{p}\right)=1$. Since α is a super-primitive elemnt, $J_{[\alpha]} \nsubseteq p$ by definition. Therefore there exists an element $a \in I_{[\alpha]}$ such that $\left(A_{[\alpha]}\right)_{p}=a \varphi_{\alpha}(X)$ $R_{p}[X]$. Hence we have $J_{p}=a R_{p}[X] \subset I_{[\alpha]} R_{p}[X] \subset Q R_{p}[X]$. Thus we get $J \subset$ $R[X] \cap Q R_{p}[X]=Q$, that is, $J \subset I_{[\alpha]} R[X]$ because Q (resp. P, p) is any Q_{i} (resp. $\left.P_{i}, p_{i}:=P_{i} \cap R\right)$ for $1 \leq i \leq n$. This implies that α is an anti-integral element. Hence the assertion follows from Theorem 1.8.
(ii) \Leftrightarrow (iii) \Leftrightarrow (iv): It is immediate from Theorem 1.8 and Proposition 1.11.
(iv) \Rightarrow (i): Since α is an anti-integral element, $A_{[\alpha]}=I_{[\alpha]} \varphi_{\alpha \alpha}(X) R[X]$. By Proposition 1.11(a), $A_{[\alpha]} \nsubseteq p R[X]$ for all $p \in D p_{i}(R)$. Hence there exists an element $a(p) \in I_{[\alpha]}$ such that $f(X)=a(p) \varphi_{\alpha}(X)$ and $C(f(X)) \nsubseteq p$. Thus $J_{[\alpha]} \nsubseteq p$ for any $p \in D p_{1}(R)$. Therefore α is a super-primitive element.
(i) $\Rightarrow(\mathrm{v})$: Assume that $J_{[\alpha]} \nsubseteq p$ for any $p \in D p_{1}(R)$. Then $\left(J_{[\alpha]}{ }^{-1}\right)_{p}=\left(R:_{K} J_{[\alpha]}\right)_{p}$ $=\left(R_{p}:_{K}\left(J_{[\alpha]}\right)_{p}\right)=\left(R_{p}:_{K} R_{p}\right)=R_{p}$ for any $p \in D_{p_{1}}(R)$. Since $J_{[\alpha]}{ }^{-1}$ is a divisorial ideal of R, we have $R=\cap R_{p}=\cap\left(J_{[\alpha]}\right)_{p} \supset J_{[\alpha]}{ }^{-1}$, where p ranges over prime ideals of depth one. Thus $\left.R=J_{[\alpha]}\right]^{-1}$. Conversely, suppose that $R=J_{[\alpha]}{ }^{-1}$ and $J_{[\alpha]} \subset p$ for some $p \in D p_{1}(R)$. Then $J_{[\alpha]}{ }^{-1} \supset p^{-1}$ and hence $R=\left(J_{[\alpha]}\right)^{-1} \subset\left(p^{-1}\right)^{-1}$ $=p$, a contradiction.
Q.E.D.

More equivalent conditions will be seen in the section 2.
By the following result, we see that a super-primitive element is not so special.

Theorem 1.13. Assume that R is a Krull domain, then any element α whcih is algebraic over R is a super-primitive element over R.

Proof. Since R is a Krull domian, $D p_{1}(R)=H t_{1}(R)$. Take $p \in H t_{1}(R)$. Then R_{p} is a DVR. Let v denote the valuation corresponding to R_{p}. Let $\varphi_{\alpha}(X)=X^{d}+\eta_{1} X^{d-1}+\cdots+\eta_{d}$ be the minimal polynomial of α. Put $\eta_{0}=1$. Then there exists j such that $v\left(\eta_{j}\right) \leq v\left(\eta_{i}\right)$ for all i. Thus $\eta_{i} / \eta_{j}=a_{i} / b \in R_{p}$, where $b \in R \backslash p, a_{i} \in R$. In particular, $a_{j}=b \notin p$. Hence

$$
\varphi_{a}(X)=\eta_{j}\left(a_{0} / \eta_{j}\right) X^{d}+\cdots+\eta_{j}\left(a_{d} / \eta_{j}\right) \eta_{d}
$$

Hence $f(X):=\left(b / \eta_{j}\right) \varphi_{a}(X)=a_{0} X^{d}+\cdots+a_{d} \in \varphi_{\alpha}(X) K[X]$. Since $a_{j}=b \notin p$, we have $C(f(X)) \nsubseteq p$. Since $\operatorname{deg} f(X)=d$, we conclude that α is a superprimitive element over R by Theorem 1.10.
Q.E.D.

Once we find one super-primitive element, we can get many such elements. Indeed we obtain the following.

Proposition 1.14. Assume that α is a super-primitive element of degree d over R. Then for any unit u of R and any element $b \in R, \beta=u \alpha+b$ is a superprimitive element of degree d over R.

Proof. We may assume that $u=1$. It is clear that $\varphi_{\beta}(X)=\varphi_{\alpha}(X-b)$ because $K(\beta)=K(\alpha), d=\operatorname{deg} \varphi_{\alpha}(X-b)$ and $\varphi_{\alpha}(X-b)$ is monic in $K[X]$. We see that $I_{[\alpha]} \subset I_{[\alpha]}$ and $C\left(\varphi_{\alpha}(X)\right)=C\left(\varphi_{\alpha}(X-b)\right)=C\left(\varphi_{\beta}(X)\right)$. Since $\left(J_{[\alpha]}\right)_{p}=\left(I_{[\alpha]}\right)_{p}$ $C\left(\varphi_{\alpha}(X)\right)_{p}=R_{p}$ for any $p \in D p_{1}(R)$ by Theorem 1.12, $R_{p}=\left(J_{[\alpha]}\right)_{p} \subset\left(J_{[\beta]}\right)_{p}$ and hence $\left(J_{[\beta]}\right)_{p}=R_{p}$ for any $p \in D p_{1}(R)$. Thus β is a super-primitive element of degree d over R by Theorem 1.12.
Q.E.D,

Proposition 1.15. Assume that R is a local ring containing an infinite field k and that $J_{[\alpha]}=R$. Then there exists an element $\lambda \in k$ which satisfies that
(a) $1 /(\alpha-\lambda)$ belongs to $R[\alpha]$,
(b) $1 /(\alpha-\lambda)$ is a super-primitive element of degree d over R,
(c) $1 /(\alpha-\lambda)$ is integral over R.

Proof. Since R is local, there exists an element λ in k such that $I_{[\alpha]} \varphi_{\alpha}(X+\lambda)$ contains a degree d polynomial $g(X)$ in $R[X]$ of which constant term is 1 . Put $\beta=\alpha-\lambda$. Then $g(\beta)=0$. Let $h(X)=X^{d} g(1 / X) \in R[X]$. Then $h(1 / \beta)=(1 / \beta)^{d} g(\beta)=0$. So $1 / \beta$ is integral over R. Since $[K(\alpha): K]=[K(\beta)$: $K]=d$, we conclude that $\varphi_{1 / \beta}(X)=h(X) \in R[X]$. Thus $I_{[1 / \beta]}=R$ and hence $J_{[1 / \beta]}=I_{[1 / \beta]} C\left(\varphi_{1 / \beta}(X)\right)=R$. In particular, $1 / \beta$ is a super-primitive element of degree d over R by Theorem 1.12.
Q.E.D.

2. Integrality and Flatness of Anti-Integral Extensions

The following result asserts that the integrality of an extension of R is determined by localizing at prime ideals in $D p_{1}(R)$.

Proposition 2.1. Let A be an integral domain containing R. Then A is integral over R if and only if $A_{p}\left(:=A \otimes_{R} R_{p}\right)$ is integral over R_{p} for any $p \in D p_{1}(R)$.

Proof. The implication (\Rightarrow) is trivial. Consider the converse and assume that A_{p} is integral over R_{p} for any $p \in D p_{1}(R)$. We have only to show that α is integral over R. Let R^{\prime} be the integral closure of R in K. Then R^{\prime} is a Krull domain [3, p.144]. It suffices to show that α is integral over R^{\prime}. Let $R^{\prime \prime}$ be the integral closure of R in $K(A)$ and let $C=R^{\prime \prime}:_{R^{\prime \prime}} \alpha$, a denominator ideal of $R^{\prime \prime}$. Then $K\left(R^{\prime \prime}\right)=K(A)$ and C is a divisorial ideal of $R^{\prime \prime}$. There exists $P \in D p_{1}\left(R^{\prime \prime}\right)=H t_{1}\left(R^{\prime \prime}\right)$ such that $C \subset F$. Since $R^{\prime \prime} \mid R^{\prime}$ is integral and R^{\prime} is integrally closed in K, the Going-Down Theorem holds for $R^{\prime \prime} \mid R^{\prime}$. Thus $P \cap R^{\prime} \in$
$H t_{1}\left(R^{\prime}\right)=D p_{1}\left(R^{\prime}\right)$. In particular, $P \cap R^{\prime}$ is a divisorial ideal of R^{\prime}. So $R^{\prime \prime}:_{R^{\prime}} \alpha$ $=C \cap R^{\prime} \subset P \cap R^{\prime} \in D p_{1}\left(R^{\prime}\right)$. By [2, (4.6)], $\left(P \cap R^{\prime}\right) \cap R$ is a divisorial ideal of R. Hence $R^{\prime \prime}:_{R} \alpha=\left(C \cap R^{\prime}\right) \cap R \subset\left(P \cap R^{\prime}\right) \cap R \in D p_{1}(R)$. Put $p=\left(P \cap R^{\prime}\right) \cap R$. Then we have $p \in D p_{1}(R)$ and $R^{\prime \prime}:_{R} \alpha \subset p$, which is a contradiction. Q.E.D ${ }_{3}$

The integrality of anti-integral extensions is characterized as follows:
Theorem 2.2. Assume that α is an anti-integral element of degree d over
R. Then the following are equivalent:
(i) $R[\alpha]$ is integral over R,
(ii) $\varphi_{a}(X) \in R[X]$,
(iii) $I_{[\alpha]}=R$,
(iv) $\operatorname{rank}_{k(q)} R[\alpha] \otimes_{R} k(q)=d$ for any $q \in D p_{1}(R)$,
(v) $\operatorname{rank}_{k(q)} R[\alpha] \otimes_{R} k(q)=d$ for any $q \in \operatorname{Spec}(R)$.

Proof. Since α is anti-integral, $A_{[\alpha]}=I_{[\alpha]} \varphi_{\alpha}(X) R[X]$. So the equivalence of (i), (ii) and (iii) are immediate because $R[X] / A_{[\alpha]} \simeq R[\alpha]$, and implications (ii) \Rightarrow (v) \Rightarrow (iv) are obvious.
(iv) \Rightarrow (ii): Suppose that $I_{[\alpha]} \subset p$ for some $p \in D p_{1}(R)$. Since $J_{[\alpha]}=I_{[\alpha]} C\left(\varphi_{\alpha}(X)\right)$ $\nsubseteq p$ by Theorem 1.8, $\left(I_{[\alpha]}\right)_{p}$ is an invertible ideal of R_{p} and hence $\left(I_{[\alpha]}\right)_{p}$ is a principal ideal $b R_{p}$ of R_{p} for some b. So $\left(A_{[\alpha]}\right)_{p}=\left(I_{[\alpha \beta}\right)_{p} \varphi_{a}(X) R_{p}[X]=\left(b \varphi_{\alpha}(X)\right)$ $R_{p}[X]$. Since $I_{[\alpha]} \subset p, b \varphi_{\alpha}(X) \in R_{p}[X]$ is not monic. Hence either $R[\alpha] \otimes_{R}$ $k(p) \simeq k(p)[T]$, a polynomial ring or $\operatorname{rank}_{k(p)} R[\alpha] \otimes_{R} k(p)<d$, a contradiction.
Q.E.D.

By the above theorem, we see that the obstrutcion of integrality of anti-integral extensions is given by $I_{[\alpha]}$. Namely, we obtain the following.

Corollay 2.3. Assume that α is an anti-integral element over R. Then $V\left(I_{[\alpha]}\right)=\left\{p \in \operatorname{Spec}(R) \mid R[\alpha]_{p}\right.$ is not integral over $\left.R_{p}\right\}$.

Proof. The integrality is a local-global property. So our conclusion follows from Theorem 2.2.
Q.E.D.

Remark 2.4. Let R be a Noetherian normal domain and let α be an element in a field L containing R. If α is integral over R, then it is a superprimitive element over R. Indeed, when $\varphi_{\alpha}(X) \in K[X]$ denotes the minimal polynomial of α over R, it is known that α is integral over R if and only if $\varphi_{\alpha}(X)$ belongs to $R[X]\left([4,(9.2)]\right.$. Since R is normal, $p \in D p_{1}(R) \Rightarrow h t(p)=1 \Rightarrow R_{p}$ is a DVR. As $R[\alpha]$ is a finite R-module, $R[\alpha]_{p}$ is free over R_{p} for any $p \in D p_{1}(R)$. By Theorem 1.10, α is a super-primitive element over R. Moreover $R[\alpha]$ is flat over R by Theorems 1.8 and 3.2 because $R[\alpha] / R$ is super-primitive, integral and flat.

Summing up the results in the preceding argument, we obtain the following:

Assume that α is an anti-integral elmeent of degree d. Let p be a prime ideal of R. Then
(1) $R[\alpha]_{p}$ is flat over R_{p} if and only if $\operatorname{rank}_{k(p)} R[\alpha] \otimes_{R} k(p) \leq d$,
(2) $R[\alpha]_{p}$ is integral over R_{p} if and only if $\operatorname{rank}_{k(p)} R[\alpha] \otimes_{R} k(p)=d$.

In particular, we conclude:
Corollary 2.5. Assume that α is an anti-integral element of degree d. If $R[\alpha]$ is integral over R, then $R[\alpha]$ is flat over R.

In view of Proposition 1.11, we extend Theorem 1.8 to the following.
Proposition 2.6. Assume that α is an anti-integral element of degree d over R. Then the following are equivalent:
(i) $R[\alpha]$ is flat over R,
(ii) $J_{[\alpha]}=R$,
(iii) $\operatorname{rank}_{k(p)} R[\alpha] \otimes_{R} k(p)<\infty$ for any $p \in \operatorname{Spec}(R)$,
(iv) $\operatorname{rank}_{k(p)} R[\alpha] \otimes_{R} k(p) \leq d$ for any $p \in \operatorname{Spec}(R)$,
(v) $R[\alpha]$ is not a blowing-up at any point in $\operatorname{Spec}(R)$,
(vi) $R[\alpha]$ is quasi-finite over R,
(vii) $A_{[\alpha]}$ contains a polynomial $f(X)$ with $C(f(X))=R$.

Proof. The proof follows from Theorem 1.8 and Proposition 1.11 (b).
Remark 2.7. Let A be over-ring of R (i.e., $R \subset A$ and $K(A)=K$). If A is integral and flat over R on $D p_{1}(R)$, then $A=R$. Indeed, it is known that $R=$ $\bigcap_{p \in D_{p_{1}}(R)} R_{p}$. For $p \in D p_{1}(R), A_{p}$ is integral, flat over R_{p} by the assumption. So A_{p} is a free R_{p}-module of rank one. Thus $A_{p}=R_{p}$ and hence $R=\bigcap_{p \in D p_{1}(R)}$ $R_{p} \supset A$.

Relating to this remark, we have the following.
Theorem 2.8. Let α be an algebraic element over R. If $R[\alpha]$ is integral and flat at any point in $D p_{1}(R)$, then $R[\alpha]$ is a free R-module and α is a superprimitive element over R.

Proof. First, we shall show that $I_{[\alpha]}=R$. Suppose that $I_{[\alpha]} \neq R$. Since $I_{[\alpha]}$ is a divisorial ideal of R, there exists $p \in D p_{1}(R)$ such that $I_{[\alpha]} \subset p$. Since $R[\alpha]_{p}$ is integral over R_{p} by assumption, $R[\alpha]_{p}$ is a flat extension of R_{p}. As $R[\alpha]_{p}$ is flat over $R_{p}, R[\alpha]_{p}$ is a free R_{p}-module of rank d. We want to show that $R[\alpha]_{p}=R_{p}+R_{p} \alpha+\cdots+R_{p} \alpha^{d-1}$. For this purpose, we have only to show that $1^{\prime}, \alpha^{\prime}, \cdots, \alpha^{\prime d-1} \in R[\alpha]_{p} / p R[\alpha]_{p}$ are linearly independent over $k(p)$, where α^{\prime} denotes its residue class in $R[\alpha]_{p} / p R[\alpha]_{p}$. Suppose the contrary. Then $R[\alpha]_{p} / p R[\alpha]_{p}=k(p)\left[\alpha^{\prime}\right]=k(p)+k(p) \alpha^{\prime}+\cdots+k(p) \alpha^{\prime s}$ for some $s<d$. But $R[\alpha]_{p}$ is a free R_{p}-module of rank d, which asserts that $\operatorname{rank}_{k(p)} R[\alpha]_{p} / p R[\alpha]=d$,
a contradiction. Thus we have shown that $R[\alpha]_{p}=R_{p}+R_{p} \alpha+\cdots+R_{p} \alpha^{d-1}$. So we have a relation: $\alpha^{d}=\lambda_{0}+\lambda_{1} \alpha+\cdots+\lambda_{d-1} \alpha^{d-1}\left(\lambda_{i} \in R_{p}\right)$. Since the minimal polynomial $\varphi_{\alpha}(X)$ of α is unique, we have $\varphi_{\alpha}(X)=X^{d}-\lambda_{d-1} X^{d-1}-\cdots-\lambda_{0}$. So $I_{[\alpha]} \nsubseteq p$, a contradiction. Thus $\varphi_{\alpha}(X) \in R[X]$, which implies that $A_{[\alpha]}=$ $\varphi_{\alpha}(X) R[X]$ and $R[\alpha]$ is a free R-module. Since $C\left(\varphi_{a}(X)\right)=R$, we conclude that $J_{[\alpha]}=R$. By Theorem 1.12, α is a super-primitive element over R. Q.E.D.

Now we consider a certain over-ring of R which is seen in [5].
Definition 2.9. Let J be a fractional ideal of R. Let $\mathcal{R}(J):=J:_{K} J$, which is an over-ring of R.

Lemma 2.10. Let J be a divisorial ideal of R. Then $\mathcal{R}(J)=R$ if and only if $R\left(J^{-1}\right)=R$.

Proof. Since J is divisorial, $\left(J^{-1}\right)^{-1}=J$. So we have only to prove one of the implications. Assm Assume that $\mathcal{R}(J)=R$. The implication $\mathcal{R}\left(J^{-1}\right) \supset R$ is obvious. Take $\lambda \in \mathscr{R}\left(J^{-1}\right)$. Then $\lambda J^{-1} \subset J^{-1}$. Thus $R: \lambda J^{-1} \supset R: J^{-1}=$ $\left(J^{-1}\right)^{-1}=J$. On the other hand, we have $R: \lambda J^{-1}=\lambda^{-1} R: J^{-1}=\lambda^{-1}\left(R: J^{-1}\right)=$ $\lambda^{-1}\left(J^{-1}\right)^{-1}=\lambda^{-1} J$. Thus $\lambda^{-1} J \supset J$, which shows that $J \supset \lambda J$, and hence $\lambda \in$ $\mathcal{R}(J)=R$.
Q.E.D.

By these arguments, we extend Theorem 1.12 to the following.
Theorem 2.11. The following conditions are equivalent:
(i) α is a super-primitive element over R,
(ii) for each $p \in D_{p_{1}}(R)$, there exists $f(X) \in A_{[\alpha]}$ with $\left(A_{[\alpha]}\right)_{p}=f(X) R_{p}[X]$,
(iii) for each $p \in D p_{1}(R)$, there exists $a \in I_{[\alpha]}$ with $\left(I_{[\alpha]}\right)_{p}=a R_{p}$,
(iv) $\mathcal{R}\left(I_{[\alpha]}\right)=R$.

Proof. Denote the degree of α by d.
(i) \Rightarrow (ii): Since $J_{[\alpha]}=I_{[\alpha]} C\left(\varphi_{\alpha}(X)\right) \nsubseteq p$ for any $p \in D p_{1}(R)$, there exists $a \in I_{[\alpha]}$ with $f(X):=a \varphi_{\alpha}(X) \in p R[X]$. Note that $\left(A_{[\alpha]}\right)_{K} \cap R_{p}[X]=\left(A_{[\alpha]}\right)_{p}$ and $f(X) \in$ $\left(A_{[\alpha]}\right)_{p}$. By Proposition 1.2, $f(X)$ is a Sharma polynomial of degree d in $R_{p}[X]$. So $\left(A_{[\alpha]}\right)_{p}=f(X) R_{p}[X]$.
(ii) \Rightarrow (iii): Suppose that $\left(A_{[\alpha]}\right)_{p}=f(X) R_{p}[X]$. Then $\operatorname{deg} f(X)=d$. Let a be the leading coefficient of $f(X)$. Then $\varphi_{\alpha}(X)=(1 / a) f(X)$ by the uniqueness of the minimal polynomial of α. So $f(X)=a \varphi_{\alpha}(X) R[X]$, and hence $a \in I_{[\alpha]}$. Since $\left(A_{[\alpha]}\right)_{p}=f(X) R_{p}[X],\left(I_{[\alpha]}\right)_{p}=a R_{p}$.
(iii) \Leftrightarrow (iv): We know that $\mathcal{R}\left(I_{[\alpha]}\right)=R$ if and only if $\mathcal{R}\left(I_{[\alpha]}{ }^{-1}\right)=R$ by Lemma 2.10. So apply a result of $[5,(3.2)]$ and we conclude that (iii) and (iv) are equivalent.
(iii) \Rightarrow (i): Since $\left(I_{[\alpha]}\right)_{p}$ is a principal ideal of R_{p} for any $p \in D p_{1}(R)$, there exists $f(X) \in A_{[\alpha]}$ such that $\operatorname{deg} f(X)=d$ and $\left(A_{[\alpha]}\right)_{p}=f(X) R_{p}[X]$. Since $f(X)$ is a

Sharma polynomial in $R_{p}[X]$ by Proposition 1.2 and depth $R_{p}=1, C(f(X)) \nsubseteq p$. Thus $J_{[\alpha]} \nsubseteq p$ for any $p \in D p_{1}(R)$ and hence α is a super-primitive element over R by definition.
Q.E.D.

3. Vanishing Points and Blowing-Up Points

Assume that α is an anti-integral element over R. For $p \in \operatorname{Spec}(R), \operatorname{rank}_{k(p)}$ $R[\alpha] \otimes_{R} k(p)<\infty$ if and only if $R[\alpha]_{p}$ is flat over R_{p} by Theorem 2.2. So it may be natural to ask when $\operatorname{rank}_{k(p)} R[\alpha] \otimes_{R} k(p)$ is infinite or zero.

Let α be an element which is algebraic over R. Recall that $\varphi_{\alpha}(X)=X^{d}+$ $\eta_{1} X^{d-1}+\cdots+\eta_{d}$ is the minimal polynomial of α over K, where $d=[K(\alpha): K]$ and $J_{[\alpha]}:=I_{[\alpha]} C\left(\phi_{\alpha}(X)\right)=I_{[\alpha]}+I_{[\alpha]} \eta_{1}+\cdots+I_{[\alpha]} \eta_{d}$. Define $B_{[\alpha]}:=I_{[\alpha]}+I_{[\alpha]} \eta_{1}$ $+\cdots+I_{[a]} \eta_{d-1}$, which is an ideal of R.

We use this notation throughout §3.
Lemma 3.1. Assume that α is an anti-integral element over R and let $A=$ $R[\alpha]$. For $q \in \operatorname{Spec}(R)$, the following are equivalent:
i) $q A_{q}=A_{q}$,
ii) $q A \cap R \nsubseteq q$,
iii) $q \supset B_{[\alpha]}$ and $q D I_{[\alpha]} \eta_{d}$.

Proof. (i) \Rightarrow (ii): Since $q A_{q}=A_{q}$, there exist $a_{i} \in q, \beta_{i} \in A$ and $s_{i} \in R \backslash q$ such that $1=\sum a_{i} \beta_{i} / s_{i}$. Put $s=\Pi s_{i}$. Then $s=\sum a_{i} \beta_{i} b_{i} \in q A \cap R$ with $s \notin q$, where $s \beta_{i} / s_{i}=b_{i} \in A$. Thus $q A \cap R \nsubseteq q$.
(ii) \Rightarrow (i): Take $s \in q A \cap R$ with $s \notin q$. Then $s \in q A_{q}$ and s is invertible in A_{q}. Thus $q A_{q}=A_{q}$.
(iii) \Rightarrow (ii): Take $a \in I_{[\alpha]}$ with $a_{\eta_{d}} \notin q$. Put $f(X)=a \varphi_{a}(X)$ and $a \eta_{i}=b_{i}, a=b_{j}$, so that $f(X)=b_{0} X^{d}+b_{1} X^{d-1}+\cdots+b_{d}$. Since $f(\alpha)=0, b_{0} \alpha^{d}+b_{1} \alpha^{d-1}+\cdots+b_{d}=$ 0 . Noting that $b_{d} \notin q, b_{d}$ is a unit in A_{q}. Since $b_{0}, \cdots, b_{d-1} \in q, b_{d} \in q A \subset q A_{q}$. Thus $q A_{q}=A_{q}$.
(ii) \Rightarrow (iii): Sinse $q A_{q}=A_{q}, 1=b_{0}+b_{1} \alpha+\cdots+b_{n} \alpha^{n}$ for some $b_{i} \in q R_{q}$. Put $f(x)$ $=b_{n} X^{n}+\cdots+b_{1} X+b_{0}-1$. Then $f(\alpha)=0$ and $b_{0}-1$ is a unit in R_{q}. The kernel of $R_{q}[X] \rightarrow R[\alpha]_{q}$ is $\left(I_{[\alpha]}\right)_{q} \varphi_{\alpha}(X) R_{q}[X]$. So $f(X) \in\left(I_{[\alpha]}\right)_{q} \varphi_{\alpha}(X) R_{q}[X]$ and $C(f(X))_{q}=R_{q}$. Thus it follows that $\left(J_{[\alpha]}\right)_{q}=\left(I_{[\alpha]}\right)_{q} C\left(\varphi_{\alpha}(X)\right)_{q}=R_{q}$, which means that $R[\alpha]_{q}$ is flat over R_{q} by Theorem 1.8. So $\left(I_{[\alpha]}\right)_{q} \varphi_{\alpha}(X) R_{q}[X]$ is an invertible ideal of $R_{q}[X]$. Hence $\left(I_{[\alpha]}\right)_{q}$ is a principal ideal of R_{q}. Let $\left(I_{[\alpha]}\right)_{q}=a R_{q}$. We shall show that all of $a, a_{\eta_{1}}, \cdots, a_{\eta_{d-1}}$ belong to $q R_{q}$. Note that $f(X) \in$ $a \varphi_{a}(X) R_{q}[X]$ because $f(\alpha)=0$. So there exists $h(X) \in R_{q}[X]$ such that $f(X)=$ $a \boldsymbol{\varphi}_{\alpha}(X) h(X)$. We have $-1 \equiv a \varphi_{a}(X) h(X)\left(\bmod q R_{q}[X]\right)$. Thus $a_{\eta_{i}}, a \in q R_{q}$, for $1 \leq i \leq d-1$ and $a_{\eta_{d}} \notin q R_{q}$. Therefore $I_{[\alpha]}, I_{[\alpha]} \eta_{1}, \cdots, I_{[\alpha]} \eta_{d-1} \subset q$ and $I_{[\alpha]} \eta_{d}$ $\nsubseteq q$.
Q.E.D.

Definition 3.2. Let A be an extension of R and let $p \in \operatorname{Spec}(R)$. We say
that p is a vanishing point of A / R if $p A_{p}=A_{p}$.
Recall that A is a blowing-up at p or p is a blowing-up point of A / R if the following two conditions are satisfied:
i) $p A_{p} \cap R_{p}=p R_{p}$ (equivalently $p A \cap R=p$, cf. Lemma 3.1),
ii) $A_{p} / p A_{p}$ is isomorphic to a polynomial ring $\left(R_{p} / p R_{p}\right)[T]$.

By Lemma 3.1, we obtain the following theorem.
Theorem 3.3. Assume that α is an anti-integral element over R and let $A=R[\alpha]$. Then the set of vanishing points (i.e., $\left.\left\{q \in \operatorname{Spec}(R) \mid q A_{q}=A_{q}\right\}\right)$ is given by $\cap_{i=0}^{d-1} V\left(I_{[\alpha]} \eta_{i}\right) \backslash V\left(I_{[\alpha]} \eta_{d}\right)$, where $\eta_{0}=1$.

Proposition 3.4. Assume that α is an anti-integral element of degree d over R and let $A=R[\alpha]$. Consider the following conditions:
(i) A is flat over R,
(ii) $J_{[a]}=R$,
(iii) If $p A_{p}=A_{p}$ for $p \in \operatorname{Spec}(R)$, then $p A=A$.

Then we have implications (i) \Leftrightarrow (ii) \Rightarrow (iii). If moreover R is a local ring and $\sqrt{\overline{B_{[\alpha]}}}$ $\perp I_{[\alpha]} \eta_{d}$, then (i), (ii) and (iii) are equivalent to each other.

Proof. (i) \Leftrightarrow (ii) was proved in Proposition 2.6. (ii) \Rightarrow (iii): Take $p \in \operatorname{Spec}(R)$ and assume that $p A_{p}=A_{p}$. Then $p \supset B_{[\alpha]}=I_{[\alpha]}+I_{[\alpha]} \eta_{1}+\cdots+I_{[\alpha]} \eta_{d-1}$ and $p \not I_{[\alpha]} \eta_{d}$ by Lemma 3.1. Take $a \in I_{[\alpha]}$ and put $f(X)=a \varphi_{\alpha}(X)=a X^{d}+a \eta_{1} X^{d-1}$ $+\cdots+a_{\eta_{d}}$. Since $f(\alpha)=0$, we get $a_{\eta_{d}} \in p A$ and hence $I_{[\alpha]} \eta_{d} \subset p A$. So $J_{[\alpha]}=$ $B_{[\alpha]}+I_{[\alpha]} \eta_{d} \subset p A$. Since $J_{[\alpha]}=R$, we conclude that $p A=A$. We will show the last part. Since $\sqrt{B_{[\alpha]}} \nsubseteq I_{[\alpha]} \eta_{d}$, there exists $q \in \operatorname{Spes}(R)$ such that $q \supset B_{[\alpha]}$ but $q D I_{[\alpha]} \eta_{d}$. Thus $q A_{q}=A_{q}$ and so $q A=A$. Let m denote the maximal ideal of R. Suppose that $m \supset J_{[\alpha]}$. Then we have $A / m A \simeq(R / m)[T]$, a polynomial ring (cf. Theorem 1.8). Hence $m A \neq A$. But $q \subset m$ implies that $m A=A$, a contradiction. Thus $J_{[\alpha]}=R$.
Q.E.D.

Remark 3.5. Let the notation be the same as in Proposition 3.4.
(i) When $d=1$ (i.e., α is an element of K), then (i), (ii) and (iii) of Proposition 3.4 are equivalent.
(2) $p A \cap R=p$ if and only if there exists $P \in \operatorname{Spec}(A)$ such that $P \cap R=p$.

Remark 3.6. Let the notation be the same as in Lemma 3.1. If $B_{[\alpha]} \subset q$, then q is either a vanishing point (i.e., $I_{[\alpha]} \eta_{d} \nsubseteq q$) or a blowing-up point (i.e., $\left.I_{[\alpha]} \eta_{d} \subset q\right)$. So if $\sqrt{J_{[\alpha]}}$ contains $\sqrt{\overline{B_{[\alpha]}}}$ properly, there exists a vanishing point. Thus $\operatorname{Spec}(A) \rightarrow \operatorname{Spec}(R)$ is not surjective.

Proposition 3.7. Assume that α is an anti-integral element of degree d over R and let $A=R[\alpha]$. Then $\operatorname{Spec}(A) \rightarrow \operatorname{Spec}(R)$ is surjective if and only if $\sqrt{J_{[\alpha]}}$ $=\sqrt{B_{[\alpha]}}$.

Proof. (\Rightarrow) : Since $J_{[\alpha[} \supset B_{[\alpha]}, \sqrt{J_{[\alpha]}} \supset \sqrt{B_{[\alpha]}} . \quad$ If $B_{[\alpha]} \subset q$ for some $q \in \operatorname{Spec}(R)$, there exists $Q \in \operatorname{Spec}(A)$ such that $Q \cap R=q$ because $\operatorname{Spec}(A) \rightarrow \operatorname{Spec}(R)$ is surjective. So $q A_{q} \neq A_{q}$, which means that q is not a vanishing point. Thus by Remark 3.6, q is a blowing-up point, that is, $q \supset J_{[\alpha]}$. Therefore $\sqrt{J_{[\alpha]}}=\sqrt{B_{[\alpha]}}$. (\hookleftarrow) : Suppose that $\operatorname{Spec}(A) \rightarrow \operatorname{Spec}(R)$ is not surjective. There exists $q \in$ $\operatorname{Spec}(R)$ such that $q A_{q}=A_{q}$. So $q \supset \sqrt{B_{[\alpha]}}=\sqrt{J_{[\alpha]}} \supset J_{[\alpha]} \supset I_{[\alpha]} \eta_{d}$, a contradiction.
Q.E.D.

Proposition 3.8. Let the notation be the same as in Proposition 3.7 and let $p \in \operatorname{Spec}(R)$ satisfy $p A_{p}=A_{p}$. If $q \supset p A \cap R$, then q is a blowing-up point.

Proof. Since $p \in \operatorname{Spec}(R)$ satisfies $p A_{p}=A_{p}$, we have $p \supset B_{[\alpha]}$. Thus $\eta_{d} I_{[\alpha]}$ $\subset \alpha^{d} I_{[\alpha]}+\cdots+\eta_{d-1} \alpha I_{[\alpha]} \subset B_{[\alpha]} A \subset p A$. So $q \supset p A \cap R \supset B_{[\alpha]}+I_{[\alpha]} \eta_{d}=J_{[\alpha]]}$, which means that q is a blowing-up point.
Q.E.D.

Remark 3.9. Let k be a field, a, b indeterminates and $R=k[a, b]$. Let α be a root of an equation $a X^{2}+b X+a=0$ and put $A=R[\alpha]$. Then $J_{[\alpha]}=(a, b) R$ and grade $((a, b) R)=2$ so that α is a super-primitive element by Theorem 1.12. In this case, $J_{[\alpha]}=B_{[\alpha]}=(a, b) R$. Thus $\operatorname{Spec}(A) \rightarrow \operatorname{Spec}(R)$ is surjective, but not flat. Hence the implication (iii) \Rightarrow (i) in Proposition 3.4 does not necessarily hold.

Theorem 3.10. Assume that α is an anti-integral element over R and let $p \in \operatorname{Spec}(R)$. If $R[\alpha]$ is not a blowing-up at q, then $\operatorname{depth} R[\alpha]_{Q}=\operatorname{depth} R_{q}$ for $Q \in \operatorname{Spec}(R[\alpha])$ with $Q \cap R=q$.

Proof. Since α is an anti-integral element over R and φ is not a blowing-up point, $R[\alpha]_{q}$ is flat over R_{q} by Theorem 1.8. Since $R[\alpha]_{Q}$ is obtained from $R[\alpha]_{q}$ by localizing at $Q R[\alpha]_{Q}, R[\alpha]_{Q}$ is flat over $R q$. So we have depth $R_{q} \leq$ depth $R[\alpha]_{Q}$. As q is not a blowing-up point, there exists $a \in I_{[\alpha]}$ such that $a \varphi_{\alpha}(X) R_{q}[X]=\left(A_{[\alpha]}\right)_{q}$. Put $f(X):=a \varphi_{\alpha}(X)$. Since $Q \in \operatorname{Spec}(R[\alpha])$, there exists $P \in \operatorname{Spec}(R[X])$ such that $P \supset A_{[\alpha]}$ and $Q=P / A_{[\alpha]}$. Then $Q_{q}=P_{q} /\left(A_{[\alpha]}\right)_{q}$ $=P_{q} \mid f(X) R_{q}[X]$. So $Q R[\alpha]_{Q}=P R[X]_{P} / f(X) R[X]_{P}$ implies that depth $R[\alpha]_{Q}$ $=\operatorname{depth} R[X]_{P}-1$. Now since $P \cap R=q$, we have $P \supset p R[X]$. Suppose that $P=q R[X]$. Then $q R[X]=P \supset A_{[q]}$, which asserts that q is a blowing-up point. So we have $P \neq q R[X]$. Since $P R_{q}[X] / q R_{q}[X](\subset k(P)[X]) \neq 0$, we have $P R_{q}[X]=q R_{q}[X]+g(X) R_{q}[X]$ for some $g(X) \in R[X] \backslash q R[X]$. Hence depth $R[X]_{P} \leq \operatorname{depth} R[X]_{q} R[X]+1$. We obtain that depth $R[\alpha]_{Q} \leq \operatorname{depth} R_{q}$ because depth $R[X]_{q} R[X]=\operatorname{depth} R_{q}$. Thus depth $R_{q}=\operatorname{depth} R[\alpha]_{Q} \quad$ Q.E.D.

4. Unramifiedness and Etaleness of Super-Primitive Extensions

The following result can be proved by using [1, VI (6.8)] but we give a direct proof. If α is super-primitive and integral over $R, R[\alpha]$ is finite, flat over
R (cf. Proposition 1.11).
Proposition 4.1. Assume that α is an anti-integral element which is integral over R. Then $R[\alpha]$ is unramified over R if and only if $R[\alpha]_{p}$ is unramified over R_{p} for any $p \in D p_{1}(R)$.

Proof. Since $A:=R[\alpha]$ is integral over $R, \varphi_{\alpha}(X) \in R[X]$ by Theorem 2.2. For a polynomial f, we denote the derivative of f by f^{\prime}. Then $\varphi_{\alpha}^{\prime}(\alpha)=d \alpha^{d-1}+$ $(d-1) \eta_{1} \alpha^{d-2}+\cdots+\eta_{d-1}$ and let $p \in \operatorname{Spec}(R)$. Then $\varphi_{a}^{\prime}(\alpha) A \nsubseteq P$ for any $P \in$ $\operatorname{Spec}(A)$ with $P \cap R=p$ if and only if A_{p} is unramified over R_{p} (cf. [1, VI (6.12)]). Suppose that $\varphi_{\alpha}^{\prime}(\alpha) A \neq A$. Then there exists $P \in H t_{1}(A)$ such that $\varphi_{\alpha}^{\prime}(\alpha) \in P$. Put $p=P \cap R$. Then depth $A_{P}=1$ implies depth $R_{p}=1$ because A_{p} is flat over R_{p}. Thus A_{q} is unramified over R_{P} by the assumption. Hence A_{p} is unramified over R_{p}, which is a contradiction. So $\varphi_{\alpha}^{\prime}(\alpha) A=A$, which means that A is unramified over R.
Q.E.D.

Remark 4.2. Let the notation be the same as in Proposition 4.1 and its proof. Let $B=A[1 / \alpha]$. Then for $P \in \operatorname{Spec}(B), B_{P}$ is unramified over $R_{R \cap B}$ if and only if $P \perp \varphi_{\alpha}^{\prime}(\alpha) B$. Indeed, let $P \subset B$ be a prime ideal and put $Q=P \cap A$ and $p=P \cap R$. When B_{P} / R_{p} is ramified, A_{Q} / R_{p} is ramified. So $\varphi_{\alpha}^{\prime}(\alpha) \in Q \subset P$. Conversely, if $\varphi_{\alpha}^{\prime}(\alpha) \in P$, then $Q=P \cap A \ni \varphi_{\alpha}^{\prime}(\alpha)$. So $B_{P}=A_{Q}$ is ramified over R_{p}.

It is known that the purity of branch locus holds for a finite flat extension [1]. The following is a result similar to this fact.

Proposition 4.3. Assume that α is a super-primitive element which is flat over R and that R contains an infinite field k. Then $R[\alpha]$ is unramified over R if and only if $R[\alpha]_{p}$ 2s unramified over R_{p} for any $p \in D p_{1}(R)$.

Proof. We have only to consider the case that R is a local ring. So we may assume that (R, m) is a local ring. If $A:=R[\alpha]$ is integral over R, we have shown this in Proposition 4.1. Assume that A is not integral over R. Since $J_{[\alpha]}=R$ by Theorem 2.2, replacing α by $\alpha-\lambda$ for some $\lambda \in k$, we may assume by Proposition 1.14, that α satisfies that
(a) $1 / \alpha \in R[\alpha]$,
(b) $1 / \alpha$ is a super-primitive element of degree d over R,
(c) $1 / \alpha$ is integral over R.

Hence we have

$$
R \subset R[1 / \alpha] \subset R[\alpha, 1 / \alpha]=R[\alpha]=A
$$

Apply Remark 4.2 to $B=R[1 / \alpha]\left[(1 / \alpha)^{-1}\right]=A$. We conclude that for $P \in$ $\operatorname{Spec}(A), A_{P}$ is unramified over $R_{P \cap R}$ if and only if $P \perp \varphi_{1 / \alpha}^{\prime}(1 / \alpha) A$. In the
same way as in the proof of Proposition 4.1, the assumption that A_{p} is unramified over R_{p} for any $p \in D p_{1}(R)$ yields that $R[\alpha]$ is unramified over R. Q.E.D.

As a consequence of Propositions 4.1 and 4.3 , we obtain the following theorem.

Theorem 4.4. Assume that α is a super-primitive element over R and that R contains an infinite field k. Then there exist $p_{1}, \cdots, p_{t} \in D p_{1}(R)(t$ may be 0$)$ such that the non-etale locus of $R[\alpha]$ is given by $V\left(J_{[\alpha]}\right) \cup \cup_{i=1}^{t} V\left(p_{i}\right)$.

Example 4.5. Let k be a field, a, b indeterminates and $R=k[a, b]$. Let α be a root of an equation $a X^{2}+b X+a=0$ and put $A=R[\alpha]$. Then $J_{[\alpha]}=$ $(a, b) R$. Assume that $p \in \operatorname{Spec}(R)$ and $p \nsubseteq J_{[\alpha]}$. When $a \notin p,(2 \alpha+b / c) A_{p}$ is the ramification locus. When $a \in p$ and $b \notin p,(\alpha+1) A_{p}$ is the ramification locus.

Definition 4.6. Let A be an extension of R with $[K(A): K]=d$. Define

$$
\Delta(A):=\left\{q \in \operatorname{Sepc}(R) \mid \operatorname{rank}_{k(q)} A \otimes_{R} k(q)=d\right\}
$$

It is easy to see that when α is a super-primitive element of degree d over R, we have:

$$
\begin{aligned}
& \Delta(R[\alpha]) \supset D p_{1}(R) \\
& \Leftrightarrow R[\alpha] \text { is integral over } R \\
& \Rightarrow R[\alpha] \text { is flat over } R .
\end{aligned}
$$

When A is a finitely generated extension of R, define:

$$
\operatorname{Ur}(A):=\left\{p \in \operatorname{Spec}(R) \mid A_{p} \text { is unramified over } R_{p}\right\}
$$

which is an open set of $\operatorname{Spec}(R)$.
Under these preparations, we finally obtain the following.
Theorem 4.7. Assume that $[L: k]=d$, and that $\alpha_{1}, \cdots, \alpha_{n} \in L$ are superprimitive elements of degree d, and let $A=R\left[\alpha_{1}, \cdots, \alpha_{n}\right]$. If $\Delta\left(R\left[\alpha_{i}\right]\right) \supset D p_{1}(R)$ $(1 \leq i \leq n)$ and $\operatorname{Ur}\left(R\left[\alpha_{j}\right]\right) \supset D p_{1}(R)$ for some j, then A is integral over R, and A_{p} is etale over R_{p} for any $p \in \Lambda(A)$. If $\Delta(A)=\operatorname{Spec}(R)$ in addition to the preceding assumptions, then A is integral and etale over R.

Proof. The assumption $D p_{1}(R) \subset \Delta\left(R\left[\alpha_{i}\right]\right)$ implies that α_{i} is integral over R and $\Delta\left(R\left[\alpha_{i}\right]\right)=\operatorname{Spec}(R)$ by Theorem 2.2 , and hence A is integral gver R. Take $p \in \Delta(A)$. Then $p \in \Delta\left(R\left[\alpha_{j}\right]\right)$ and $R\left[\alpha_{j}\right]$ is finite, flat over R as was shown in Theorem 1.8. Thus $R\left[\alpha_{j}\right]_{q}$ is an R_{p}-free module of rank d. Since $\operatorname{Ur}\left(R\left[\alpha_{j}\right]\right)$ $\supset D p_{1}(R), R\left[\alpha_{j}\right]$ is unramified over R by Proposition 4.1. Hence $p R\left[\alpha_{j}\right]_{p}$ is a radical ideal. Noting that A is integral over $R\left[\alpha_{j}\right]$, we have $p A_{p} \cap R\left[\alpha_{j}\right]_{p}=$
$p R\left[\alpha_{j}\right]_{p}$. Thus $R\left[\alpha_{j}\right]_{p} / p R\left[\alpha_{j}\right]_{p} \subset A_{p} / p A_{p}$. As both of those sides have the same dimension d as vector spaces over $k(p)$, we have $R\left[\alpha_{j}\right]_{p} / p R\left[\alpha_{j}\right]_{p}=A_{p} / p A_{p}$, which means that $A_{p}=R\left[\alpha_{j}\right]_{p}+p A_{p}$. By Nakayama's lemma, we get $A_{p}=R\left[\alpha_{j}\right]_{q}$. Therefore A_{p} is unramified and flat (i.e., etale) over R_{p} for any $p \in \Delta(A)$.
Q.E.D.

References

[1] A. Altman and S. Kleiman: Introduction to Grothendieck duality theory, Lecture Notes in Math. 146, Springer-Verlag, 1977.
[2] R. Fossum: The Divisor Class Group of a Krull Domain, Springer-Verlag, Berlin, 1973.
[3] H. Matsumura: Commutative Algebra, Benjamin, New York, 1970.
[4] H. Matsumura: Commutative Ring Theory, Cambridge Univ. Press, Cambridge, 1986.
[5] S. Oda and K. Yoshida: Anti-integral extensions of Noetherian domains, Kobe J. Math. 5 (1988), 43-56.
[6] P. Sharma: A note on ideals in polynomial rings, Arch, Math. 37 (1981), 325-329.

Susumu ODA

Uji-Yamada High School, Uraguchi, Ise, Mie 516 JAPAN

Junro SATO and Ken-ichi YOSHIDA
Department of Applied Mathematics
Okayama University of Science
Ridai-cho, Okayama 700 JAPAN

