HIGH DEGREE ANTI-INTEGRAL EXTENSIONS OF NOETHERIAN DOMAINS

SUSUMU ODA, JUNRO SATO and KEN-ICHI YOSHIDA

(Received January 30, 1991)

Introduction. Let R be a Noetherian integral domain and R[X] a polynomial ring. Let α be an element of an algebraic field extension L of the quotient field K of R and let $\pi: R[X] \to R[\alpha]$ be the R-algebra homomorphism sending X to α . Let $\varphi_{\alpha}(X)$ be the monic minimal polynomial of α over K with $\deg \varphi_{\alpha}(X) = d$ and write $\varphi_{\alpha}(X) = X^d + \eta_1 X^{d-1} + \dots + \eta_d$. Let $I_{[\alpha]} := \bigcap_{i=1}^d (R:_R \eta_i)$. For $f(X) \in R[X]$, let C(f(X)) denote the ideal generated by the coefficients of f(X). Let $J_{[\alpha]} := I_{[\alpha]} C(\varphi_{\alpha}(X))$, which is an ideal of R and contains $I_{[\alpha]}$. The element α is called an anti-integral element of degree d over R if K or $R = I_{[\alpha]} \varphi_{\alpha}(X) R[X]$. When R = 1 is an anti-integral element over R an anti-integral element R is the same as an anti-integral element (i.e., $R = R[\alpha] \cap R[1/\alpha]$) defied in [5]. The element R = 1 is called a super-primitive element of degree R = 1 over R = 1 if R = 1 is called a super-primitive element of degree R = 1 over R = 1 if R = 1 is called a super-primitive element of degree R = 1 if R = 1 in the same R = 1 is called a super-primitive element of degree R = 1 if R = 1 is all primes R = 1 of depth one.

For $p \in \operatorname{Spec}(R)$, k(p) denotes the residue field R_p/pR_p and $\operatorname{rank}_{k(p)}R[\alpha] \otimes_R k(p)$ denotes the dimension as a vector space over k(p). We are interested in characterizing the flatness and the integrality of an anti-integral extension $R[\alpha]$ of R. Indeed, among others we obtain the following results:

- (i) $R[\alpha]$ is flat over R if and only if $\operatorname{rank}_{k(p)} R[\alpha] \otimes_R k(p) \leq d$ for all $p \in \operatorname{Spec}(R)$,
- (ii) $R[\alpha]$ is integral over R if and only if $\operatorname{rank}_{k(p)} R[\alpha] \otimes_R k(p) = d$ for all $p \in \operatorname{Spec}(R)$.

Thus if an anti-integral extension $R[\alpha]$ is integral over R, then $R[\alpha]$ is flat over R. Concerning a super-primitive element, we obtain that if R is a Krull domain and α is an algebraic element over R, then α is a super-primitive element. We also obtain that a super-primitive element is an anti-integral element. More precisely, α is super-primitive over R if and only if α is anti-integral over R and $R[\alpha]_p$ is flat over R_p for any prime ideal p of depth one.

Using these results, we obtain the following:

Let $\Delta(S)$ denote the set $\{p \in \operatorname{Spec}(R) | \operatorname{rank}_{k(p)} S \otimes_R k(p) = d\}$, where S is an extension of R of degree d and let $Dp_1(R)$ denote the set of all prime ideals of R of depth one. Assume that [L:K]=d, and that $\alpha_1, \dots, \alpha_n \in L$ are anti-integral elements of degree d, and let $A=R[\alpha_1, \dots, \alpha_n]$. If $\Delta(R[\alpha_i]) \supset Dp_1(R)$ $(1 \le i \le n)$

and $Ur(R[\alpha_i]) \supset Dp_1(R)$, where Ur(A) denotes the set $\{p \in \operatorname{Spec}(R) | A_p \text{ is unramified over } R_p\}$, then A is integral over R, and A_p is etale over R_p for $p \in \Delta(A)$. If $\Delta(A) = \operatorname{Spec}(R)$ in addition to the above assumptions, then A is integral and etale over R.

Notations and Conventions. Throughout this paper, we use the following notations unless otherwise specified.

```
R: a Noetherian integral domian,
```

K:=K(R): the quotient field of R,

L: an algebraic field extension of K,

 α : a non-zero element of L,

 $d=[K(\alpha):K],$

 $\varphi_{\alpha}(X) = X^d + \eta_1 X^{d-1} + \dots + \eta_d$, the minimal polynomial of α over K.

Let $\pi: R[X] \to R[\alpha]$ be an R-algebra homomorphism defined by $X \to \alpha$ and let $A_{[\alpha]} := \text{Ker } \pi$. Then $A_{[\alpha]}$ is a prime ideal of R[X] with $A_{[\alpha]} \cap R = \{0\}$. By definition, $A_{[\alpha]} = \{\psi(X) \in R[X] | \psi(\alpha) = 0\}$.

Let $I_{[\alpha]} := \bigcap_{i=1}^{d} (R:_R \eta_i)$, which is an ideal of R.

For $f(X) \in K[X]$,

C(f(X)):=the ideal generated by all coefficients of f(X), that is, C(f(X)) is the content ideal of f(X).

Let $J_{[\alpha]}:=I_{[\alpha]}C(\varphi_{\alpha}(X))$, which is an ideal of R and contains $I_{[\alpha]}$. We also use the following standard notations:

k(p): = the residue filed R_p/pR_p for $p \in \operatorname{Spec}(R)$, $Dp_1(R)$: = $\{p \in \operatorname{Spec}(R) | \operatorname{depth} R_p = 1\}$, $Ht_1(R)$: = $\{p \in \operatorname{Spec}(R) | \operatorname{ht} p = 1\}$.

Throughout this paper, all fields, rings and algebras are assumed to be commutative with unity. Our special notations are indicated above and our general reference for unexplained technical terms is [3].

1. Anti-Integral Elements and Super-Primitive Elements

We start with the following definition.

DEFINITION 1.1. Let I be an ideal of R[X] with $I \cap R = (0)$ and let $f(X) = a_0 X^n + a_1 X^{n-1} + \dots + a_n$ be a polynomial in R[X]. We say that f(X) is a Sharma polynomial in I if there does not exist $t \in R$ with $t \notin a_0 R$ such that $ta_i \in a_0 R$ for $1 \le i \le n$.

We give an equivalent condition for a polynomial to be a Sharma polynomial in the following proposition.

Proposition 1.2. Let f(X) be a polynomial in R[X]. Then f(X) is a Sharma polynomial if and only if $C(f(X)) \subset p$ for any $p \in Dp_1(R)$.

Proof. Let $f(X) = a_0 X^n + \cdots + a_n (a_i \in R)$.

- (\Rightarrow) Suppose that $C(f(X)) \subset p$ for some $p \in Dp_1(R)$. Then $a_0 \in p$, and there exists $t \notin a_0 R$ such that $p = (a_0 R)_R t$. In this case, $a_i \in p$ implies that $a_i t \in a_0 R$ ($1 \le i \le n$), which asserts that f(X) is not a Sharma polynomial.
- (\Leftarrow) Suppose that f(X) is not a Sharma polynomial. Then there exists $t \in R$ such that $t \notin a_0 R$, $ta_i \in a_0 R (1 \le i \le n)$. Since there exists $p \in Dp_1(R)$ such that $(a_0 R:_R t) \subset p$, we have $a_i \in (a_0 R:_R t) \subset p$ $(1 \le i \le n)$ and obviously $a_0 \in p$. So $C(f(X)) = (a_0, \dots, a_n) \subset p$, a contradiction. Q.E.D.

Proposition 1.3. The following statements are equivalent:

- (i) $A_{[a]}$ is a principal ideal of R[X],
- (ii) $I_{[\alpha]}$ is a principal ideal of R,
- (iii) there exists a Sharma polynomial in $A_{[\alpha]}$ of degree d.

If one of the above conditions holds, then $A_{[a]}$ is generated by a Sharma polynomial.

Proof. (iii) \Rightarrow (i): Let f(X) be a Sharma polynomial in $A_{[\sigma]}$ of degree d. Since deg $\varphi_{\sigma}(X) = d$, this Sharma polynomial has the least degree. So by [6], $A_{[\sigma]}$ is principal.

(i) \Rightarrow (ii): Let $A_{[\sigma]} = f(X) R[X]$. Then $f(X) R[X] \supset I_{[\sigma]} \varphi_{\sigma}(X) R[X]$. Note that $A_{[\sigma]} \otimes_R K = f(X) K[X] = \varphi_{\sigma}(X) K[X]$ and hence $\deg f(X) = \deg \varphi_{\sigma}(X) = d$. Take $a \in I_{[\sigma]}$. Then $a \varphi_{\sigma}(X) = bf(X)$. Let $f(X) = a_0 X^d + \dots + a_d$ with $a_i \in R$. Then $a = ba_0$, so that $I_{[\sigma]} \supset a_0 R$ for some $b \in R$. Since $ba_0 \eta_i = a\eta_i = ba_i (1 \le i \le d)$, we have $a_0 \eta_i = a_i \in R$. Hence $a_0 \in I_{[\sigma]}$, which implies that $I_{[\sigma]} = a_0 R$.

(ii) \Rightarrow (iii): Let $I_{[\sigma]} = bR$. Then $I_{[\sigma]} \varphi_{\sigma}(X) R[X] = b\varphi_{\sigma}(X) R[X] \subset A_{[\sigma]}$ and $b \eta_i \in R \ (1 \le i \le d)$. Suppose that there exists $t \notin bR$ with $tb \eta_i \in bR \ (1 \le i \le d)$. Then $t \eta_i \in R$ and hence $t \in I_{[\sigma]} = bR$, a contradiction. Thus $b\varphi_{\sigma}(X) \in R[X]$ is a Sharma polynomial of degree d. Q.E.D.

For later use, we quote the following.

Lemma 1.4 ([6, Cor. 3]). Let R be an integral domain and I a non-zero ideal of a plynomial ring R[X] such that $I \cap R=(0)$. If there exists a polynomial $f(X) \in I$ such that f(X) is of the least positive degree in I and C(f(X))=R, then I is generated by the polynomial f(X).

DEFINITION 1.5. i) $\alpha \in L$ is called an *anti-integral element* of degree d over R if $A_{[\alpha]} = I_{[\alpha]} \varphi_{\alpha}(X) R[X]$. When α is an anti-integral element, we say that $R[\alpha]$ is an *anti-integral extention* of R.

ii) $\alpha \in L$ is called a super-primitive element of degree d over R if $J_{[\alpha]} \subset p$ for all $p \in Dp_1(R)$. When α is a super-primitive element, we say that $R[\alpha]$ is a super-primitive extention of R.

REMARK 1.6. i) In [5], we studied the anti-integrality which is defined as follows: An element $\alpha \in K$ is called anti-integral over R if $R=R[\alpha] \cap R[1/\alpha]$ (:= $R(\alpha)$). We knew that α is anti-integral over R in this sense if and only if $A_{[\alpha]}$ has a linear basis, that is,

$$A_{[\alpha]} = \sum (c_i X - d_i) R[X]$$

with $d_i/c_i=\alpha$ [5, Proof of (1.9)]. The last condition is equivalent to $A_{[\alpha]}=I_{[\alpha]}$ $\varphi_a(X)$ R[X], where $\varphi_a(X)=X-\alpha$. So $\alpha \in K$ is anti-integral over R in this sense if and only if α is an anti-integral element of degree one over R in the sense of Definition 1.5, that is, the anti-integrality defined in [5] is equivalent to the one defined in (1.5) in the case of degree one.

ii) It is immediate that $\alpha \in L$ is a super-primitive element of degree d over R if and only if α is a super-primitive element of degree d over R_p for any $p \in \operatorname{Spec}(R)$. Thus $R[\alpha]$ is a super-primitive extension if R of and only if $R[\alpha]_p$ is a super-primitive extension of R_p for all $p \in \operatorname{Spec}(R)$, where $R[\alpha]_p$ denotes the localization $S^{-1}R[\alpha]$ with $S=R \setminus p$.

Lemma 1.7. Let f(X) be an element of a polynomial ring R[X] and let $p \in \text{Spec}(R)$. Then $p \supset C(f(X))$ if and only if $R_p[X]/f(X)$ $R_p[X]$ is not flat over R_p .

Proof. The implication (\Leftarrow) follows from [3, (20.F)].

(\Rightarrow) Since $C(f(X)) \subset p$, pR[X] contains f(X), and hence Q = pR[X]/f(X) R[X] is a prime ideal of B := R[X]/f(X) R[X]. Suppose that $B_p = R_p[X]/f(X) R_p[X]$ is flat over R_p . Then B_Q is obtained from B_p by localizing at QB_p . So depth $B_Q \ge \text{depth } B_p$, and hence depth $B_Q \ge \text{depth } R_p$. It is easy to see that depth $B_{pB} = \text{depth } B_Q = \text{depth } R[X]_{pR[X]}/f(X) R[X]_{pR[X]}$. Since R is an integral domian, we have depth $B_{pB} = \text{depth } R[X]_{pR[X]} - 1 = \text{depth } R_p - 1$, which is a contradiction.

Q.E.D.

Our almost all main results are based on the following theorem.

Theorem 1.8. Assume that α is an anti-integral element of degree d over Then for $p \in \text{Spec}(R)$, the following are equivalent:

- (i) $\operatorname{rank}_{k(p)} R[\alpha] \otimes_R k(p) \leq d$,
- (ii) $\operatorname{rank}_{k(p)} R[\alpha] \otimes_R k(p) < \infty$,
- (iii) $R[\alpha] \otimes_R k(p)$ is not isomorphic to a polynomial ring k(p)[T],
- (iv) $J_{[\alpha]} \subset p$,
- (v) $pR[X] \supset A_{[\alpha]}$,
- (vi) $R[\alpha]_p$ is flat over R_p .

Proof. Since α is anti-integral, $A_{[\alpha]} = I_{[\alpha]} \varphi_{\alpha}(X) R[X]$.

(iv) \Rightarrow (vi): Since $R_p = (J_{[\alpha]})_p = (I_{[\alpha]})_p C(\varphi_{\alpha}(X))_p$, $(I_{[\alpha]})_p$ is a principal ideal bR_p

for some $b \in I_{[\alpha]}$. So $(A_{[\alpha]})_p = b\varphi_{\alpha}(X) R_p[X]$. It follows that $R[\alpha]_p = R_p[X]/(A_{[\alpha]})_p = R_p[X]/b\varphi_{\alpha}(X) R_p[X]$. Thus $R[\alpha]_p$ is flat over R_p by Lemma 1.7 because $R_p = (J_{[\alpha]})_p = C(b\varphi_{\alpha}(X))_p$.

(iv) \Rightarrow (i): By the same argument as above, we have $R[\alpha]_p \simeq R_p[X]/(A_{[\alpha]})_p = R_p[X]/b\varphi_\alpha(X) R_p[X]$. Since $R_p = (J_{[\alpha]})_p = C(b\varphi_\alpha(X))_p$, there exists $i(0 \le i \le d)$ such that $b\eta_i \notin pR_p[X]$. We take i minimal among such ones. Then $b\varphi_\alpha(X) = bX^d + b\eta_1 X^{d-1} + \dots + b\eta_d \equiv b\eta_i X^{d-1} + \dots + b\eta_d \equiv 0 \pmod{pR_p[X]}$, which means that $\operatorname{rank}_{k(p)} R[\alpha] \otimes_R k(p) \le d - i \le d$.

 $(i) \Rightarrow (ii)$ is trivial.

(ii) \Rightarrow (iv): Note that $R[\alpha]_p/pR[\alpha]_p \simeq R_p[X]/(pR[X]+A_{[\alpha]})_p$. Since $\operatorname{rank}_{k(p)}R[\alpha] \otimes_R k(p) < \infty$, $(pR[X]+A_{[\alpha]})_p$ contains an element $f(X) \in R[X]$ such that $C(f(X))_p = R_p$. Indeed, if not, we conclude that $R[\alpha] \otimes_R k(p) \simeq k(p)[T]$, a polynomial ring, a contradiction. We may assume that $f(X) \in A_{[\alpha]}$. So the equality $(A_{[\alpha]})_p = I_{[\alpha]} \varphi_{\alpha}(X) R_p[X]$ yields that $(J_{[\alpha]})_p = (I_{[\alpha]})_p C(\varphi_{\alpha}(X))_p = R_p$. (vi) \Rightarrow (iv): Suppose that $J_{[\alpha]} \subset p$. Localizing at p, we may assume that R is a local ring (R, m). Consider the exact sequence:

$$0 \to A_{[\alpha]} \to R[X] \to R[\alpha] \to 0$$
.

Then $A_{[\alpha]}$ is flat over R because R[X] and $R[\alpha]$ are flat over R. The isomorphism $A_{[\alpha]} = I_{[\alpha]} \varphi_{\alpha}(X) R[X] \cong I_{[\alpha]} R[X]$ yields that $I_{[\alpha]} R[X]$ is flat over R[X] and hence $I_{[\alpha]}$ is flat over R. Since R is local, $I_{[\alpha]} = bR$ for some $b \in I_{[\alpha]}$. So $J_{[\alpha]} = bC(\varphi_{\alpha}(X))$ and $A_{[\alpha]} = b\varphi_{\alpha}(X) R[X]$. So $C(b\varphi_{\alpha}(X)) \subset m$, and hence $R[\alpha]$ is not flat over R by Lemma 1.7.

(iv) \Rightarrow (v): Since $J_{[\alpha]} = I_{[\alpha]} C(\varphi_{\alpha}(X)) \oplus p$, there exists $a \in I_{[\alpha]}$ such that $aC(\varphi_{\alpha}(X)) = C(a\varphi_{\alpha}(X)) \oplus p$. Thus $a\varphi_{\alpha}(X) \oplus pR[X]$ and hence $A_{[\alpha]} \oplus pR[X]$.

(v) \Rightarrow (iv): Since $A_{\llbracket \alpha \rrbracket} = I_{\llbracket \alpha \rrbracket} \varphi_{\alpha}(X) R[X]$, there exists $a \in I_{\llbracket \alpha \rrbracket}$ such that $C(a\varphi_{\alpha}(X)) \subset p$. So $J_{\llbracket \alpha \rrbracket} = J_{\llbracket \alpha \rrbracket} C(\varphi_{\alpha}(X)) \subset p$.

(v) \Rightarrow (iii): There exists $f(X) \in A_{[\alpha]}$ with $f(X) \notin pR[X]$. So $R[\alpha]/pR[\alpha] = (R/p)[\alpha']$, where α' denotes the residue class of α in $R[\alpha]/pR[\alpha]$, and $f(\alpha')=0$. Thus α' is algebraic over R/p.

(iii) \Rightarrow (v): Suppose that $A_{[\alpha]} \subset pR[X]$. Then $R[\alpha]/pR[\alpha] = (R[X]/A_{[\alpha]})/p$ $(R[X]/A_{[\alpha]}) = R[X]/pR(X) = (R/p)[X]$, which is a polynomial ring over R/p. Q.E.D.

After the definition in [5], we employ the following.

DEFINITION 1.9. Let A be an extension of R and let $p \in \operatorname{Spec}(R)$. We say that A is a blowing-up at p or p is a blowing-up point of A/R if the following two conditions are satisfied:

- (i) $pA_p \cap R_p = pR_p$ (equivalently $pA \cap R = p$),
- (ii) A_p/pA_p is isomorphic to a polynomial ring (R_p/pR_p) [T].

Making use of the above definition, we get the following corollary to The-

orem 1.8.

Corollary 1.10. When α is an anti-integral element over R, the blowing-up locus $\{p \in \operatorname{Spec}(R) \mid p \text{ is not a blowing-up point of } R[\alpha] \}$ is given by $V(J_{[\alpha]})$, and is the same as the non-flat locus $\{p \in \operatorname{Spec}(R) \mid R[\alpha] \}$, is not flat over $R_p \}$.

Proof. This follows from Theorem 1.8 and Lemma 1.7.

The next proposition gives rise to the relation between Sharma polynomials and the ideal $A_{[\alpha]}$.

Proposition 1.11.

- (a) $R[\alpha]$ is not a blowing-up at any point in $Dp_1(R)$ if and only if $A_{[\alpha]}$ contains a Sharma polynomial.
- (b) $R[\alpha]$ is not a blowing-up at any point in Spec(R) if and only if there exists a polynomial f(X) in $A_{[\alpha]}$ such that C(f(X))=R.
- Proof. (a) Take $g_0(X) \in A_{[\omega]} \setminus (0)$. If $g_0(X)$ is a Sharma polynomial, then we are done. Suppose that $g_0(X)$ is not a Sharma polynomial. Let $\{p_1, \dots, p_i\}$ be the set of all elements in $Dp_1(R)$ satisfying $C(g_0(X)) \subset p_i$. Such p_i exists by Proposition 1.2. Since $A_{[\omega]} \subset p_R[X]$ for any $p \in Dp_1(R)$, there are $g_i(X) \in A_{[\omega]}$ such that $C(g_i(X)) \subset p_i$ $(1 \le i \le t)$. Put $N(0) := \deg(g_0(X))$ and $N(i) := N(i-1) + \deg(g_i(X)) + 1$ inductively. Let $f(X) := \sum g_i(X) X^{N(i)}$. Then $C(f(X)) = C(g_0(X)) + \dots + C(g_i(X))$. By the choice of p_i , there does not exist $p \in Dp_1(R)$ such that $C(f(X)) \subset p$. Hence f(X) is a Sharma polynomial. Assume that $A_{[\omega]}$ contains a Sharma polynomial. Then $A_{[\omega]} \subset pR[X]$ for any $p \in Dp_1(R)$ by Proposition 1.2. So a blowing-up does not occur for $R[\alpha]/R$ on $Dp_1(R)$.
- (b) Let $A_{[\alpha]} = (f_1(X), \dots, f_n(X)) R[X]$. Take $p \in \operatorname{Spec}(R)$. Then $A_{[\alpha]} \subset pR$ [X]. So there exists i such that $C(f_i(X)) \subset p$. Put N(0) = 0 and $N(i) = N(i-1) + \deg(f_i(X)) + 1$, and let $f(X) = \sum f_i(X) X^{N(i)}$. Then $C(f(X)) = C(f_1(X)) + \dots + C(f_n(X)) = R$. The converse is obvious. Q.E.D.

By the following theorem, we see that a super-primitive element is an antiintegral element.

Theorem 1.12. Under the above notations, the following statements are equivalent:

- (i) α is a super-primitive element of degree d,
- (ii) α is an anti-integral element of degree d over R and $R_p[\alpha]$ is flat over R_p for all $p \in Dp_1(R)$,
- (iii) α is an anti-integral element of degree d over R and $pR[X] \supset A_{[\alpha]}$ for all $p \in Dp_1(R)$,
- (iv) α is an anti-integral element of degree d over R and there exists a Sharma polynomial in $A_{[\alpha]}$,

(v) $\int_{[\boldsymbol{\omega}]^{-1}} = R$, where $\int_{[\boldsymbol{\omega}]^{-1}} := (R:_K \int_{[\boldsymbol{\omega}]})$.

Proof. (i) \Rightarrow (ii): It is clear that $I_{[\alpha]} \varphi_{\alpha}(X) R[X] \subset A_{[\alpha]}$, and hence $I_{[\alpha]} R[X] \subset \varphi_{\alpha}(X)^{-1} A_{[\alpha]}$. Put $J = \varphi_{\alpha}(X)^{-1} A_{[\alpha]}$. Let $I_{[\alpha]} R[X] = Q_1 \cap \cdots \cap Q_n$ be an irredundant primary decomposition of the ideal $I_{[\alpha]} R[X]$ and let $P_i = \sqrt{Q_i} 1 \le i \le n$). Assume that Q (resp. P) represents some Q_i (resp. P_i). Since $I_{[\alpha]}$ is a divisorial ideal of R, $I_{[\alpha]} R[X]$ is a divisorial ideal of R[X], and hence depth $R[X]_p = 1$. Put $p = P \cap R$. As $p \supset I_{[\alpha]}$, we see that $p \neq (0)$. Thus we have P = pR[X] and depth $(R_p) = 1$. Since α is a super-primitive elemnt, $I_{[\alpha]} \subset p$ by definition. Therefore there exists an element $a \in I_{[\alpha]}$ such that $(A_{[\alpha]})_p = a\varphi_{\alpha}(X)$ $R_p[X]$. Hence we have $I_p = aR_p[X] \subset I_{[\alpha]} R_p[X] \subset QR_p[X]$. Thus we get $I \subset R[X] \cap QR_p[X] = Q$, that is, $I \subset I_{[\alpha]} R[X]$ because Q (resp. P, p) is any Q_i (resp. P_i , $p_i := P_i \cap R$) for $1 \le i \le n$. This implies that α is an anti-integral element. Hence the assertion follows from Theorem 1.8.

(ii) ⇔(iii) ⇔(iv): It is immediate from Theorem 1.8 and Proposition 1.11.

(iv) \Rightarrow (i): Since α is an anti-integral element, $A_{[\alpha]} = I_{[\alpha]} \varphi_{\alpha}(X) R[X]$. By Proposition 1.11(a), $A_{[\alpha]} \subset pR[X]$ for all $p \in Dp_i(R)$. Hence there exists an element $a(p) \in I_{[\alpha]}$ such that $f(X) = a(p) \varphi_{\alpha}(X)$ and $C(f(X)) \subset p$. Thus $J_{[\alpha]} \subset p$ for any $p \in Dp_1(R)$. Therefore α is a super-primitive element.

(i) \Rightarrow (v): Assume that $J_{[\alpha]} \subset p$ for any $p \in Dp_1(R)$. Then $(J_{[\alpha]}^{-1})_p = (R:_K J_{[\alpha]})_p = (R_p:_K (J_{[\alpha]})_p) = (R_p:_K$

More equivalent conditions will be seen in the section 2.

By the following result, we see that a super-primitive element is not so special.

Theorem 1.13. Assume that R is a Krull domain, then any element α which is algebraic over R is a super-primitive element over R.

Proof. Since R is a Krull domian, $Dp_1(R) = Ht_1(R)$. Take $p \in Ht_1(R)$. Then R_p is a DVR. Let v denote the valuation corresponding to R_p . Let $\varphi_{\alpha}(X) = X^d + \eta_1 X^{d-1} + \dots + \eta_d$ be the minimal polynomial of α . Put $\eta_0 = 1$. Then there exists j such that $v(\eta_j) \leq v(\eta_i)$ for all i. Thus $\eta_i/\eta_j = a_i/b \in R_p$, where $b \in R \setminus p$, $a_i \in R$. In particular, $a_j = b \notin p$. Hence

$$m{arphi}_{\omega}\!(X) = \eta_{j}(a_{0}/\eta_{j})\,X^{d}\!+\!\cdots\!+\!\eta_{j}(a_{d}/\eta_{j})\,\eta_{d}$$
 .

Hence $f(X) := (b/\eta_j) \varphi_{\alpha}(X) = a_0 X^d + \dots + a_d \in \varphi_{\alpha}(X) K[X]$. Since $a_j = b \in p$, we have $C(f(X)) \subset p$. Since deg f(X) = d, we conclude that α is a superprimitive element over R by Theorem 1.10. Q.E.D.

Once we find one super-primitive element, we can get many such elements. Indeed we obtain the following.

Proposition 1.14. Assume that a is a super-primitive element of degree d over R. Then for any unit u of R and any element $b \in R$, $\beta = u\alpha + b$ is a super-primitive element of degree d over R.

Proof. We may assume that u=1. It is clear that $\varphi_{\beta}(X) = \varphi_{\alpha}(X-b)$ because $K(\beta) = K(\alpha)$, $d = \deg \varphi_{\alpha}(X-b)$ and $\varphi_{\alpha}(X-b)$ is monic in K[X]. We see that $I_{[\alpha]} \subset I_{[\alpha]}$ and $C(\varphi_{\alpha}(X)) = C(\varphi_{\alpha}(X-b)) = C(\varphi_{\beta}(X))$. Since $(J_{[\alpha]})_{p} = (I_{[\alpha]})_{p} = C(\varphi_{\alpha}(X))_{p} = R_{p}$ for any $p \in Dp_{1}(R)$ by Theorem 1.12, $R_{p} = (J_{[\alpha]})_{p} \subset (J_{[\beta]})_{p}$ and hence $(J_{[\beta]})_{p} = R_{p}$ for any $p \in Dp_{1}(R)$. Thus β is a super-primitive element of degree d over R by Theorem 1.12. Q.E.D,

Proposition 1.15. Assume that R is a local ring containing an infinite field k and that $J_{[\alpha]}=R$. Then there exists an element $\lambda \in k$ which satisfies that

- (a) $1/(\alpha \lambda)$ belongs to $R[\alpha]$,
- (b) $1/(\alpha-\lambda)$ is a super-primitive element of degree d over R,
- (c) $1/(\alpha-\lambda)$ is integral over R.

Proof. Since R is local, there exists an element λ in k such that $I_{[\alpha]} \varphi_{\alpha}(X+\lambda)$ contains a degree d polynomial g(X) in R[X] of which constant term is 1. Put $\beta = \alpha - \lambda$. Then $g(\beta) = 0$. Let $h(X) = X^d g(1/X) \in R[X]$. Then $h(1/\beta) = (1/\beta)^d g(\beta) = 0$. So $1/\beta$ is integral over R. Since $[K(\alpha): K] = [K(\beta): K] = d$, we conclude that $\varphi_{1/\beta}(X) = h(X) \in R[X]$. Thus $I_{[1/\beta]} = R$ and hence $J_{[1/\beta]} = I_{[1/\beta]} C(\varphi_{1/\beta}(X)) = R$. In particular, $1/\beta$ is a super-primitive element of degree d over R by Theorem 1.12. Q.E.D.

2. Integrality and Flatness of Anti-Integral Extensions

The following result asserts that the integrality of an extension of R is determined by localizing at prime ideals in $Dp_1(R)$.

Proposition 2.1. Let A be an integral domain containing R. Then A is integral over R if and only if $A_{\mathfrak{p}}(:=A\otimes_{\mathbb{R}}R_{\mathfrak{p}})$ is integral over $R_{\mathfrak{p}}$ for any $\mathfrak{p}\in D\mathfrak{p}_1(R)$.

Proof. The implication (\Rightarrow) is trivial. Consider the converse and assume that A_p is integral over R_p for any $p \in Dp_1(R)$. We have only to show that α is integral over R. Let R' be the integral closure of R in K. Then R' is a Krull domain [3, p.144]. It suffices to show that α is integral over R'. Let R'' be the integral closure of R in K(A) and let $C = R'' :_{R''} \alpha$, a denominator ideal of R''. Then K(R'') = K(A) and C is a divisorial ideal of R''. There exists $P \in Dp_1(R'') = Ht_1(R'')$ such that $C \subset P$. Since R''/R' is integral and R' is integrally closed in K, the Going-Down Theorem holds for R''/R'. Thus $P \cap R' \in$

 $Ht_1(R')=Dp_1(R')$. In particular, $P\cap R'$ is a divisorial ideal of R'. So $R'':_{R'}\alpha=C\cap R'\subset P\cap R'\in Dp_1(R')$. By $[2,(4.6)], (P\cap R')\cap R$ is a divisorial ideal of R. Hence $R'':_R\alpha=(C\cap R')\cap R\subset (P\cap R')\cap R\in Dp_1(R)$. Put $p=(P\cap R')\cap R$. Then we have $p\in Dp_1(R)$ and $R'':_R\alpha\subset p$, which is a contradiction. Q.E.D₃

The integrality of anti-integral extensions is characterized as follows:

Theorem 2.2. Assume that α is an anti-integral element of degree d over R. Then the following are equivalent:

- (i) $R[\alpha]$ is integral over R,
- (ii) $\varphi_{\alpha}(X) \in R[X]$,
- (iii) $I_{[\alpha]}=R$,
- (iv) $\operatorname{rank}_{k(q)} R[\alpha] \otimes_R k(q) = d \text{ for any } q \in Dp_1(R),$
- (v) $\operatorname{rank}_{k(q)} R[\alpha] \otimes_R k(q) = d$ for any $q \in \operatorname{Spec}(R)$.

Proof. Since α is anti-integral, $A_{[\alpha]} = I_{[\alpha]} \varphi_{\alpha}(X) R[X]$. So the equivalence of (i), (ii) and (iii) are immediate because $R[X]/A_{[\alpha]} = R[\alpha]$, and implications (ii) \Rightarrow (v) \Rightarrow (iv) are obvious.

(iv) \Rightarrow (ii): Suppose that $I_{[\alpha]} \subset p$ for some $p \in Dp_1(R)$. Since $J_{[\alpha]} = I_{[\alpha]} C(\varphi_{\alpha}(X))$ $\oplus p$ by Theorem 1.8, $(I_{[\alpha]})_p$ is an invertible ideal of R_p and hence $(I_{[\alpha]})_p$ is a principal ideal bR_p of R_p for some b. So $(A_{[\alpha]})_p = (I_{[\alpha]})_p \varphi_{\alpha}(X) R_p[X] = (b\varphi_{\alpha}(X)) R_p[X]$. Since $I_{[\alpha]} \subset p$, $b\varphi_{\alpha}(X) \in R_p[X]$ is not monic. Hence either $R[\alpha] \otimes_R k(p) \simeq k(p)[T]$, a polynomial ring or rank $_{k(p)} R[\alpha] \otimes_R k(p) < d$, a contradiction.

Q.E.D.

By the above theorem, we see that the obstrutcion of integrality of anti-integral extensions is given by $I_{[\alpha]}$. Namely, we obtain the following.

Corollay 2.3. Assume that α is an anti-integral element over R. Then $V(I_{[\alpha]}) = \{ p \in \operatorname{Spec}(R) | R[\alpha]_p \text{ is not integral over } R_p \}$.

Proof. The integrality is a local-global property. So our conclusion follows from Theorem 2.2.

Q.E.D.

REMARK 2.4. Let R be a Noetherian normal domain and let α be an element in a field L containing R. If α is integral over R, then it is a superprimitive element over R. Indeed, when $\varphi_{\alpha}(X) \in K[X]$ denotes the minimal polynomial of α over R, it is known that α is integral over R if and only if $\varphi_{\alpha}(X)$ belongs to R[X] ([4, (9.2)]. Since R is normal, $p \in Dp_1(R) \Rightarrow ht(p) = 1 \Rightarrow R_p$ is a DVR. As $R[\alpha]$ is a finite R-module, $R[\alpha]_p$ is free over R_p for any $p \in Dp_1(R)$. By Theorem 1.10, α is a super-primitive element over R. Moreover $R[\alpha]$ is flat over R by Theorems 1.8 and 3.2 because $R[\alpha]/R$ is super-primitive, integral and flat.

Summing up the results in the preceding argument, we obtain the following:

Assume that α is an anti-integral element of degree d. Let p be a prime ideal of R. Then

- (1) $R[\alpha]_{\flat}$ is flat over R_{\flat} if and only if $\operatorname{rank}_{k(\flat)} R[\alpha] \otimes_{R} k(p) \leq d$,
- (2) $R[\alpha]_p$ is integral over R_p if and only if $\operatorname{rank}_{k(p)} R[\alpha] \otimes_R k(p) = d$.

In particular, we conclude:

Corollary 2.5. Assume that α is an anti-integral element of degree d. If $R[\alpha]$ is integral over R, then $R[\alpha]$ is flat over R.

In view of Proposition 1.11, we extend Theorem 1.8 to the following.

Proposition 2.6. Assume that α is an anti-integral element of degree d over R. Then the following are equivalent:

- (i) $R[\alpha]$ is flat over R,
- (ii) $J_{[\alpha]}=R$,
- (iii) $\operatorname{rank}_{k(p)} R[\alpha] \otimes_R k(p) < \infty \text{ for any } p \in \operatorname{Spec}(R),$
- (iv) $\operatorname{rank}_{k(p)} R[\alpha] \otimes_R k(p) \leq d \text{ for any } p \in \operatorname{Spec}(R),$
- (v) $R[\alpha]$ is not a blowing-up at any point in Spec(R),
- (vi) $R[\alpha]$ is quasi-finite over R,
- (vii) $A_{[a]}$ contains a polynomial f(X) with C(f(X))=R.

Proof. The proof follows from Theorem 1.8 and Proposition 1.11 (b).

REMARK 2.7. Let A be over-ring of R (i.e., $R \subset A$ and K(A) = K). If A is integral and flat over R on $Dp_1(R)$, then A = R. Indeed, it is known that $R = \bigcap_{p \in Dp_1(R)} R_p$. For $p \in Dp_1(R)$, A_p is integral, flat over R_p by the assumption. So A_p is a free R_p -module of rank one. Thus $A_p = R_p$ and hence $R = \bigcap_{p \in Dp_1(R)} R_p \supset A$.

Relating to this remark, we have the following.

Theorem 2.8. Let α be an algebraic element over R. If $R[\alpha]$ is integral and flat at any point in $Dp_1(R)$, then $R[\alpha]$ is a free R-module and α is a superprimitive element over R.

Proof. First, we shall show that $I_{[\alpha]}=R$. Suppose that $I_{[\alpha]}=R$. Since $I_{[\alpha]}$ is a divisorial ideal of R, there exists $p \in Dp_1(R)$ such that $I_{[\alpha]} \subset p$. Since $R[\alpha]_p$ is integral over R_p by assumption, $R[\alpha]_p$ is a flat extension of R_p . As $R[\alpha]_p$ is flat over R_p , $R[\alpha]_p$ is a free R_p -module of rank d. We want to show that $R[\alpha]_p = R_p + R_p \alpha + \cdots + R_p \alpha^{d-1}$. For this purpose, we have only to show that $1', \alpha', \cdots, \alpha'^{d-1} \in R[\alpha]_p/pR[\alpha]_p$ are linearly independent over k(p), where α' denotes its residue class in $R[\alpha]_p/pR[\alpha]_p$. Suppose the contrary. Then $R[\alpha]_p/pR[\alpha]_p = k(p)[\alpha'] = k(p) + k(p) \alpha' + \cdots + k(p) \alpha'^s$ for some s < d. But $R[\alpha]_p$ is a free R_p -module of rank d, which asserts that $rank_k(p) R[\alpha]_p/pR[\alpha] = d$,

a contradiction. Thus we have shown that $R[\alpha]_p = R_p + R_p \ \alpha + \dots + R_p \ \alpha^{d-1}$. So we have a relation: $\alpha^d = \lambda_0 + \lambda_1 \ \alpha + \dots + \lambda_{d-1} \ \alpha^{d-1} \ (\lambda_i \in R_p)$. Since the minimal polynomial $\varphi_{\alpha}(X)$ of α is unique, we have $\varphi_{\alpha}(X) = X^d - \lambda_{d-1} \ X^{d-1} - \dots - \lambda_0$. So $I_{\lfloor \alpha \rfloor} \neq p$, a contradiction. Thus $\varphi_{\alpha}(X) \in R[X]$, which implies that $A_{\lfloor \alpha \rfloor} = \varphi_{\alpha}(X) \ R[X]$ and $R[\alpha]$ is a free R-module. Since $C(\varphi_{\alpha}(X)) = R$, we conclude that $J_{\lfloor \alpha \rfloor} = R$. By Theorem 1.12, α is a super-primitive element over R. Q.E.D.

Now we consider a certain over-ring of R which is seen in [5].

DEFINITION 2.9. Let J be a fractional ideal of R. Let $\mathcal{R}(J) := J :_{\kappa} J$, which is an over-ring of R.

Lemma 2.10. Let J be a divisorial ideal of R. Then $\mathcal{R}(J)=R$ if and only if $\mathcal{R}(J^{-1})=R$.

Proof. Since J is divisorial, $(J^{-1})^{-1}=J$. So we have only to prove one of the implications. Assm Assume that $\mathcal{R}(J)=R$. The implication $\mathcal{R}(J^{-1})\supset R$ is obvious. Take $\lambda\in\mathcal{R}(J^{-1})$. Then $\lambda J^{-1}\subset J^{-1}$. Thus $R:\lambda J^{-1}\supset R:J^{-1}=(J^{-1})^{-1}=J$. On the other hand, we have $R:\lambda J^{-1}=\lambda^{-1}R:J^{-1}=\lambda^{-1}(R:J^{-1})=\lambda^{-1}(J^{-1})^{-1}=\lambda^{-1}J$. Thus $\lambda^{-1}J\supset J$, which shows that $J\supset\lambda J$, and hence $\lambda\in\mathcal{R}(J)=R$. Q.E.D.

By these arguments, we extend Theorem 1.12 to the following.

Theorem 2.11. The following conditions are equivalent:

- (i) α is a super-primitive element over R,
- (ii) for each $p \in Dp_1(R)$, there exists $f(X) \in A_{[\alpha]}$ with $(A_{[\alpha]})_{b} = f(X) R_{b}[X]$,
- (iii) for each $p \in Dp_1(R)$, there exists $a \in I_{[\alpha]}$ with $(I_{[\alpha]})_p = aR_p$,
- (iv) $\mathcal{R}(I_{[\alpha]})=R$.

Proof. Denote the degree of α by d.

- (i) \Rightarrow (ii): Since $f_{[\alpha]} = I_{[\alpha]} C(\varphi_{\alpha}(X)) \oplus p$ for any $p \in Dp_1(R)$, there exists $a \in I_{[\alpha]}$ with $f(X) := a \varphi_{\alpha}(X) \in pR[X]$. Note that $(A_{[\alpha]})_K \cap R_p[X] = (A_{[\alpha]})_p$ and $f(X) \in (A_{[\alpha]})_p$. By Proposition 1.2, f(X) is a Sharma polynomial of degree d in $R_p[X]$. So $(A_{[\alpha]})_p = f(X) R_p[X]$.
- (ii) \Rightarrow (iii): Suppose that $(A_{[\alpha]})_{\flat} = f(X) R_{\flat}[X]$. Then $\deg f(X) = d$. Let a be the leading coefficient of f(X). Then $\varphi_{\alpha}(X) = (1/a) f(X)$ by the uniqueness of the minimal polynomial of α . So $f(X) = a\varphi_{\alpha}(X) R[X]$, and hence $a \in I_{[\alpha]}$. Since $(A_{[\alpha]})_{\flat} = f(X) R_{\flat}[X]$, $(I_{[\alpha]})_{\flat} = aR_{\flat}$.
- (iii) \Leftrightarrow (iv): We know that $\mathcal{R}(I_{[\sigma]})=R$ if and only if $\mathcal{R}(I_{[\sigma]}^{-1})=R$ by Lemma 2.10. So apply a result of [5, (3.2)] and we conclude that (iii) and (iv) are equivalent.
- (iii) \Rightarrow (i): Since $(I_{[a]})_p$ is a principal ideal of R_p for any $p \in Dp_1(R)$, there exists $f(X) \in A_{[a]}$ such that $\deg f(X) = d$ and $(A_{[a]})_p = f(X) R_p[X]$. Since f(X) is a

Sharma polynomial in $R_p[X]$ by Proposition 1.2 and depth $R_p=1$, $C(f(X)) \oplus p$. Thus $J_{[\alpha]} \oplus p$ for any $p \in Dp_1(R)$ and hence α is a super-primitive element over R by definition. Q.E.D.

3. Vanishing Points and Blowing-Up Points

Assume that α is an anti-integral element over R. For $p \in \operatorname{Spec}(R)$, $\operatorname{rank}_{k(p)} R[\alpha] \otimes_R k(p) < \infty$ if and only if $R[\alpha]_p$ is flat over R_p by Theorem 2.2. So it may be natural to ask when $\operatorname{rank}_{k(p)} R[\alpha] \otimes_R k(p)$ is infinite or zero.

Let α be an element which is algebraic over R. Recall that $\varphi_{\alpha}(X) = X^d + \eta_1 X^{d-1} + \dots + \eta_d$ is the minimal polynomial of α over K, where $d = [K(\alpha): K]$ and $J_{[\alpha]} := I_{[\alpha]} C(\varphi_{\alpha}(X)) = I_{[\alpha]} + I_{[\alpha]} \eta_1 + \dots + I_{[\alpha]} \eta_d$. Define $B_{[\alpha]} := I_{[\alpha]} + I_{[\alpha]} \eta_1 + \dots + I_{[\alpha]} \eta_{d-1}$, which is an ideal of R.

We use this notation throughout §3.

Lemma 3.1. Assume that α is an anti-integral element over R and let $A = R[\alpha]$. For $q \in \text{Spec}(R)$, the following are equivalent:

- i) $qA_{\mathbf{q}}=A_{\mathbf{q}}$,
- ii) $qA \cap R \subset q$,
- iii) $q \supset B_{[\alpha]}$ and $q \supset I_{[\alpha]} \eta_d$.

Proof. (i) \Rightarrow (ii): Since $qA_q = A_q$, there exist $a_i \in q$, $\beta_i \in A$ and $s_i \in R \setminus q$ such that $1 = \sum a_i \beta_i / s_i$. Put $s = \prod s_i$. Then $s = \sum a_i \beta_i b_i \in qA \cap R$ with $s \notin q$, where $s\beta_i / s_i = b_i \in A$. Thus $qA \cap R \subset q$.

(ii) \Rightarrow (i): Take $s \in qA \cap R$ with $s \notin q$. Then $s \in qA_q$ and s is invertible in A_q . Thus $qA_q = A_q$.

(iii) \Rightarrow (ii): Take $a \in I_{[\sigma]}$ with $a\eta_d \notin q$. Put $f(X) = a\varphi_{\sigma}(X)$ and $a\eta_i = b_i$, $a = b_j$, so that $f(X) = b_0 X^d + b_1 X^{d-1} + \dots + b_d$. Since $f(\alpha) = 0$, $b_0 \alpha^d + b_1 \alpha^{d-1} + \dots + b_d = 0$. Noting that $b_d \notin q$, b_d is a unit in A_q . Since $b_0, \dots, b_{d-1} \in q$, $b_d \in qA \subset qA_q$. Thus $qA_q = A_q$.

(ii) \Rightarrow (iii): Sinse $qA_q = A_q$, $1 = b_0 + b_1 \alpha + \cdots + b_n \alpha^n$ for some $b_i \in qR_q$. Put $f(x) = b_n X^n + \cdots + b_1 X + b_0 - 1$. Then $f(\alpha) = 0$ and $b_0 - 1$ is a unit in R_q . The kernel of $R_q[X] \rightarrow R[\alpha]_q$ is $(I_{[\alpha]})_q \varphi_{\alpha}(X) R_q[X]$. So $f(X) \in (I_{[\alpha]})_q \varphi_{\alpha}(X) R_q[X]$ and $C(f(X))_q = R_q$. Thus it follows that $(J_{[\alpha]})_q = (I_{[\alpha]})_q C(\varphi_{\alpha}(X))_q = R_q$, which means that $R[\alpha]_q$ is flat over R_q by Theorem 1.8. So $(I_{[\alpha]})_q \varphi_{\alpha}(X) R_q[X]$ is an invertible ideal of $R_q[X]$. Hence $(I_{[\alpha]})_q$ is a principal ideal of R_q . Let $(I_{[\alpha]})_q = aR_q$. We shall show that all of $a, a\eta_1, \cdots, a\eta_{d-1}$ belong to qR_q . Note that $f(X) \in a\varphi_{\alpha}(X) R_q[X]$ because $f(\alpha) = 0$. So there exists $h(X) \in R_q[X]$ such that $f(X) = a\varphi_{\alpha}(X) h(X)$. We have $-1 \equiv a\varphi_{\alpha}(X) h(X)$ (mod $qR_q[X]$). Thus $a\eta_i$, $a \in qR_q$, for $1 \le i \le d-1$ and $a\eta_d \notin qR_q$. Therefore $I_{[\alpha]}, I_{[\alpha]}, \eta_1, \cdots, I_{[\alpha]}, \eta_{d-1} \subset q$ and $I_{[\alpha]}, \eta_d \in q$.

DEFINITION 3.2. Let A be an extension of R and let $p \in \operatorname{Spec}(R)$. We say

that p is a vanishing point of A/R if $pA_p = A_p$.

Recall that A is a blowing-up at p or p is a blowing-up point of A/R if the following two conditions are satisfied:

- i) $pA_b \cap R_b = pR_b$ (equivalently $pA \cap R = p$, cf. Lemma 3.1),
- ii) A_{p}/pA_{p} is isomorphic to a polynomial ring (R_{p}/pR_{p}) [T].

By Lemma 3.1, we obtain the following theorem.

Theorem 3.3. Assume that α is an anti-integral element over R and let $A=R[\alpha]$. Then the set of vanishing points (i.e., $\{q\in \operatorname{Spec}(R)|qA_q=A_q\}$) is given by $\bigcap_{i=0}^{d-1}V(I_{[\alpha]}\eta_i)\setminus V(I_{[\alpha]}\eta_d)$, where $\eta_0=1$.

Proposition 3.4. Assume that α is an anti-integral element of degree d over R and let $A=R[\alpha]$. Consider the following conditions:

- (i) A is flat over R,
- (ii) $J_{[\alpha]}=R$,
- (iii) If $pA_p = A_p$ for $p \in \operatorname{Spec}(R)$, then pA = A.

Then we have implications (i) \Leftrightarrow (ii) \Rightarrow (iii). If moreover R is a local ring and $\sqrt{B_{\text{Lol}}}$ $\Rightarrow I_{\text{Lol}} \eta_d$, then (i), (ii) and (iii) are equivalent to each other.

Proof. (i) \Leftrightarrow (ii) was proved in Proposition 2.6. (ii) \Rightarrow (iii): Take $p \in \operatorname{Spec}(R)$ and assume that $pA_p = A_p$. Then $p \supset B_{\llbracket \alpha \rrbracket} = I_{\llbracket \alpha \rrbracket} + I_{\llbracket \alpha \rrbracket} \eta_1 + \dots + I_{\llbracket \alpha \rrbracket} \eta_{d-1}$ and $p \supset I_{\llbracket \alpha \rrbracket} \eta_d$ by Lemma 3.1. Take $a \in I_{\llbracket \alpha \rrbracket}$ and put $f(X) = a\varphi_{\alpha}(X) = aX^d + a\eta_1 X^{d-1} + \dots + a\eta_d$. Since $f(\alpha) = 0$, we get $a\eta_d \in pA$ and hence $I_{\llbracket \alpha \rrbracket} \eta_d \subset pA$. So $J_{\llbracket \alpha \rrbracket} = B_{\llbracket \alpha \rrbracket} + I_{\llbracket \alpha \rrbracket} \eta_d \subset pA$. Since $J_{\llbracket \alpha \rrbracket} = R$, we conclude that pA = A. We will show the last part. Since $\sqrt{B_{\llbracket \alpha \rrbracket}} \supset I_{\llbracket \alpha \rrbracket} \eta_d$, there exists $q \in \operatorname{Spes}(R)$ such that $q \supset B_{\llbracket \alpha \rrbracket}$ but $q \supset I_{\llbracket \alpha \rrbracket} \eta_d$. Thus $qA_q = A_q$ and so qA = A. Let m denote the maximal ideal of R. Suppose that $m \supset J_{\llbracket \alpha \rrbracket}$. Then we have $A/mA \simeq (R/m) [T]$, a polynomial ring (cf. Theorem 1.8). Hence $mA \not= A$. But $q \subset m$ implies that mA = A, a contradiction. Thus $J_{\llbracket \alpha \rrbracket} = R$.

REMARK 3.5. Let the notation be the same as in Proposition 3.4.

- (i) When d=1 (i.e., α is an element of K), then (i), (ii) and (iii) of Proposition 3.4 are equivalent.
- (2) $pA \cap R = p$ if and only if there exists $P \in \text{Spec}(A)$ such that $P \cap R = p$.

REMARK 3.6. Let the notation be the same as in Lemma 3.1. If $B_{\llbracket \omega \rrbracket} \subset q$, then q is either a vanishing point (i.e., $I_{\llbracket \omega \rrbracket} \eta_d \subset q$) or a blowing-up point (i.e., $I_{\llbracket \omega \rrbracket} \eta_d \subset q$). So if $\sqrt{J_{\llbracket \omega \rrbracket}}$ contains $\sqrt{B_{\llbracket \omega \rrbracket}}$ properly, there exists a vanishing point. Thus $\operatorname{Spec}(A) \to \operatorname{Spec}(R)$ is not surjective.

Proposition 3.7. Assume that α is an anti-integral element of degree d over R and let $A=R[\alpha]$. Then $\operatorname{Spec}(A) \to \operatorname{Spec}(R)$ is surjective if and only if $\sqrt{J_{[\alpha]}} = \sqrt{B_{[\alpha]}}$.

Proof. (\Rightarrow): Since $J_{[\omega]} \supset B_{[\omega]}$, $\sqrt{J_{[\omega]}} \supset \sqrt{B_{[\omega]}}$. If $B_{[\omega]} \subset q$ for some $q \in \operatorname{Spec}(R)$, there exists $Q \in \operatorname{Spec}(A)$ such that $Q \cap R = q$ because $\operatorname{Spec}(A) \to \operatorname{Spec}(R)$ is surjective. So $qA_q = A_q$, which means that q is not a vanishing point. Thus by Remark 3.6, q is a blowing-up point, that is, $q \supset J_{[\omega]}$. Therefore $\sqrt{J_{[\omega]}} = \sqrt{B_{[\omega]}}$. (\Leftarrow): Suppose that $\operatorname{Spec}(A) \to \operatorname{Spec}(R)$ is not surjective. There exists $q \in \operatorname{Spec}(R)$ such that $qA_q = A_q$. So $q \supset \sqrt{B_{[\omega]}} = \sqrt{J_{[\omega]}} \supset J_{[\omega]} \supset I_{[\omega]} \eta_d$, a contradiction. Q.E.D.

Proposition 3.8. Let the notation be the same as in Proposition 3.7 and let $p \in \text{Spec}(R)$ satisfy $pA_p = A_p$. If $q \supset pA \cap R$, then q is a blowing-up point.

Proof. Since $p \in \operatorname{Spec}(R)$ satisfies $pA_p = A_p$, we have $p \supset B_{[\omega]}$. Thus $\eta_d I_{[\omega]} \subset \alpha^d I_{[\omega]} + \dots + \eta_{d-1} \alpha I_{[\omega]} \subset B_{[\omega]} A \subset pA$. So $q \supset pA \cap R \supset B_{[\omega]} + I_{[\omega]} \eta_d = J_{[\omega]}$, which means that q is a blowing-up point. Q.E.D.

REMARK 3.9. Let k be a field, a, b indeterminates and R=k[a, b]. Let α be a root of an equation $aX^2+bX+a=0$ and put $A=R[\alpha]$. Then $J_{[\alpha]}=(a, b)R$ and grade((a, b)R)=2 so that α is a super-primitive element by Theorem 1.12. In this case, $J_{[\alpha]}=B_{[\alpha]}=(a, b)R$. Thus $\operatorname{Spec}(A) \to \operatorname{Spec}(R)$ is surjective, but not flat. Hence the implication (iii) \Rightarrow (i) in Proposition 3.4 does not necessarily hold.

Theorem 3.10. Assume that α is an anti-integral element over R and let $p \in \operatorname{Spec}(R)$. If $R[\alpha]$ is not a blowing-up at q, then $\operatorname{depth} R[\alpha]_Q = \operatorname{depth} R_q$ for $Q \in \operatorname{Spec}(R[\alpha])$ with $Q \cap R = q$.

Proof. Since α is an anti-integral element over R and q is not a blowing-up point, $R[\alpha]_q$ is flat over R_q by Theorem 1.8. Since $R[\alpha]_q$ is obtained from $R[\alpha]_q$ by localizing at $QR[\alpha]_q$, $R[\alpha]_q$ is flat over Rq. So we have depth $R_q \leq \operatorname{depth} R[\alpha]_q$. As q is not a blowing-up point, there exists $a \in I_{[\alpha]}$ such that $a\varphi_\alpha(X) R_q[X] = (A_{[\alpha]})_q$. Put $f(X) := a\varphi_\alpha(X)$. Since $Q \in \operatorname{Spec}(R[\alpha])$, there exists $P \in \operatorname{Spec}(R[X])$ such that $P \supset A_{[\alpha]}$ and $Q = P/A_{[\alpha]}$. Then $Q_q = P_q/(A_{[\alpha]})_q = P_q/f(X) R_q[X]$. So $QR[\alpha]_q = PR[X]_p/f(X) R[X]_p$ implies that depth $R[\alpha]_q = \operatorname{depth} R[X]_p - 1$. Now since $P \cap R = q$, we have $P \supset pR[X]$. Suppose that P = qR[X]. Then $qR[X] = P \supset A_{[\alpha]}$, which asserts that q is a blowing-up point. So we have $P \neq qR[X]$. Since $PR_q[X]/qR_q[X]$ ($\subset k(P)[X]$) $\neq 0$, we have $PR_q[X] = qR_q[X] + g(X) R_q[X]$ for some $g(X) \in R[X] \setminus qR[X]$. Hence depth $R[X]_p \leq \operatorname{depth} R[X]_q R[X] + 1$. We obtain that depth $R[\alpha]_q \leq \operatorname{depth} R_q$ because depth $R[X]_q R[X] = \operatorname{depth} R_q$. Thus depth $R_q = \operatorname{depth} R[\alpha]_q$. Q.E.D.

4. Unramifiedness and Etaleness of Super-Primitive Extensions

The following result can be proved by using [1, VI (6.8)] but we give a direct proof. If α is super-primitive and integral over R, $R[\alpha]$ is finite, flat over

R (cf. Proposition 1.11).

Proposition 4.1. Assume that α is an anti-integral element which is integral over R. Then $R[\alpha]$ is unramified over R if and only if $R[\alpha]_p$ is unramified over R_p for any $p \in Dp_1(R)$.

Proof. Since $A:=R[\alpha]$ is integral over R, $\varphi_{\sigma}(X) \in R[X]$ by Theorem 2.2. For a polynomial f, we denote the derivative of f by f'. Then $\varphi'_{\sigma}(\alpha) = d\alpha^{d-1} + (d-1)\eta_1 \alpha^{d-2} + \dots + \eta_{d-1}$ and let $p \in \operatorname{Spec}(R)$. Then $\varphi'_{\sigma}(\alpha) A \subset P$ for any $P \in \operatorname{Spec}(A)$ with $P \cap R = p$ if and only if A_p is unramified over R_p (cf. [1, VI (6.12)]). Suppose that $\varphi'_{\sigma}(\alpha) A \neq A$. Then there exists $P \in Ht_1(A)$ such that $\varphi'_{\sigma}(\alpha) \in P$. Put $p = P \cap R$. Then depth $A_p = 1$ implies depth $R_p = 1$ because A_p is flat over R_p . Thus A_q is unramified over R_p by the assumption. Hence A_p is unramified over R_p , which is a contradiction. So $\varphi'_{\sigma}(\alpha) A = A$, which means that A is unramified over R.

REMARK 4.2. Let the notation be the same as in Proposition 4.1 and its proof. Let $B = A[1/\alpha]$. Then for $P \in \operatorname{Spec}(B)$, B_P is unramified over $R_{R \cap B}$ if and only if $P \supset \varphi'_{\sigma}(\alpha) B$. Indeed, let $P \subset B$ be a prime ideal and put $Q = P \cap A$ and $p = P \cap R$. When B_P/R_p is ramified, A_Q/R_p is ramified. So $\varphi'_{\sigma}(\alpha) \in Q \subset P$. Conversely, if $\varphi'_{\sigma}(\alpha) \in P$, then $Q = P \cap A \supset \varphi'_{\sigma}(\alpha)$. So $B_P = A_Q$ is ramified over R_p .

It is known that the purity of branch locus holds for a finite flat extension [1]. The following is a result similar to this fact.

Proposition 4.3. Assume that α is a super-primitive element which is flat over R and that R contains an infinite field k. Then $R[\alpha]$ is unramified over R if and only if $R[\alpha]_p$ is unramified over R_p for any $p \in Dp_1(R)$.

Proof. We have only to consider the case that R is a local ring. So we may assume that (R, m) is a local ring. If $A := R[\alpha]$ is integral over R, we have shown this in Proposition 4.1. Assume that A is not integral over R. Since $J_{\lfloor \alpha \rfloor} = R$ by Theorem 2.2, replacing α by $\alpha - \lambda$ for some $\lambda \in k$, we may assume by Proposition 1.14, that α satisfies that

- (a) $1/\alpha \in R[\alpha]$,
- (b) $1/\alpha$ is a super-primitive element of degree d over R,
- (c) $1/\alpha$ is integral over R.

Hence we have

$$R \subset R[1/\alpha] \subset R[\alpha, 1/\alpha] = R[\alpha] = A$$
.

Apply Remark 4.2 to $B=R[1/\alpha][(1/\alpha)^{-1}]=A$. We conclude that for $P \in \operatorname{Spec}(A)$, A_P is unramified over $R_{P \cap R}$ if and only if $P \supset \varphi'_{I/\alpha}(1/\alpha) A$. In the

same way as in the proof of Proposition 4.1, the assumption that A_p is unramified over R_p for any $p \in Dp_1(R)$ yields that $R[\alpha]$ is unramified over R. Q.E.D.

As a consequence of Propositions 4.1 and 4.3, we obtain the following theorem.

Theorem 4.4. Assume that α is a super-primitive element over R and that R contains an infinite field k. Then there exist $p_1, \dots, p_i \in Dp_i(R)$ (t may be 0) such that the non-etale locus of $R[\alpha]$ is given by $V(J_{[\alpha]}) \cup \bigcup_{i=1}^{t} V(p_i)$.

EXAMPLE 4.5. Let k be a field, a, b indeterminates and R=k[a, b]. Let α be a root of an equation $aX^2+bX+a=0$ and put $A=R[\alpha]$. Then $J_{[\alpha]}=(a,b)R$. Assume that $p\in \operatorname{Spec}(R)$ and $p \oplus J_{[\alpha]}$. When $a \oplus p$, $(2\alpha+b/\epsilon)A_p$ is the ramification locus. When $a \oplus p$ and $b \oplus p$, $(\alpha+1)A_p$ is the ramification locus.

DEFINITION 4.6. Let A be an extension of R with [K(A):K]=d. Define

$$\Delta(A) := \{q \in \operatorname{Sepc}(R) | \operatorname{rank}_{k(q)} A \otimes_R k(q) = d\}$$
.

It is easy to see that when α is a super-primitive element of degree d over R, we have:

$$\Delta(R[\alpha]) \supset Dp_1(R)$$

 $\Leftrightarrow R[\alpha]$ is integral over R
 $\Rightarrow R[\alpha]$ is flat over R .

When A is a finitely generated extension of R, define:

$$Ur(A) := \{ p \in \operatorname{Spec}(R) | A_p \text{ is unramified over } R_p \}$$
,

which is an open set of Spec(R).

Under these preparations, we finally obtain the following.

Theorem 4.7. Assume that [L:k]=d, and that $\alpha_1, \dots, \alpha_n \in L$ are superprimitive elements of degree d, and let $A=R[\alpha_1, \dots, \alpha_n]$. If $\Delta(R[\alpha_i]) \supset Dp_1(R)$ $(1 \le i \le n)$ and $Ur(R[\alpha_j]) \supset Dp_1(R)$ for some j, then A is integral over R, and A_p is etale over R_p for any $p \in \Lambda(A)$. If $\Delta(A) = \operatorname{Spec}(R)$ in addition to the preceding assumptions, then A is integral and etale over R.

Proof. The assumption $Dp_1(R) \subset \Delta(R[\alpha_i])$ implies that α_i is integral over R and $\Delta(R[\alpha_i]) = \operatorname{Spec}(R)$ by Theorem 2.2, and hence A is integral given R. Take $p \in \Delta(A)$. Then $p \in \Delta(R[\alpha_j])$ and $R[\alpha_j]$ is finite, flat over R as was shown in Theorem 1.8. Thus $R[\alpha_j]_q$ is an R_p -free module of rank d. Since $Ur(R[\alpha_j]) \supset Dp_1(R)$, $R[\alpha_j]$ is unramified over R by Proposition 4.1. Hence $pR[\alpha_j]_p$ is a radical ideal. Noting that A is integral over $R[\alpha_j]$, we have $pA_p \cap R[\alpha_j]_p = R[\alpha_j]_p$

 $pR[\alpha_j]_p$. Thus $R[\alpha_j]_p/pR[\alpha_j]_p \subset A_p/pA_p$. As both of those sides have the same dimension d as vector spaces over k(p), we have $R[\alpha_j]_p/pR[\alpha_j]_p = A_p/pA_p$, which means that $A_p = R[\alpha_j]_p + pA_p$. By Nakayama's lemma, we get $A_p = R[\alpha_j]_q$. Therefore A_p is unramified and flat (i.e., etale) over R_p for any $p \in \Delta(A)$.

Q.E.D.

References

- [1] A. Altman and S. Kleiman: Introduction to Grothendieck duality theory, Lecture Notes in Math. 146, Springer-Verlag, 1977.
- [2] R. Fossum: The Divisor Class Group of a Krull Domain, Springer-Verlag, Berlin, 1973.
- [3] H. Matsumura: Commutative Algebra, Benjamin, New York, 1970.
- [4] H. Matsumura: Commutative Ring Theory, Cambridge Univ. Press, Cambridge, 1986.
- [5] S. Oda and K. Yoshida: Anti-integral extensions of Noetherian domains, Kobe J. Math. 5 (1988), 43-56.
- [6] P. Sharma: A note on ideals in polynomial rings, Arch, Math. 37 (1981), 325-329.

Susumu ODA Uji-Yamada High School, Uraguchi, Ise, Mie 516 JAPAN

JUNRO SATO and KEN-ICHI YOSHIDA Department of Applied Mathematics Okayama University of Science Ridai-cho, Okayama 700 JAPAN